]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-settings.c
Merge tag 'pstore-v4.12-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[mirror_ubuntu-artful-kernel.git] / block / blk-settings.c
1 /*
2 * Functions related to setting various queue properties from drivers
3 */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
14
15 #include "blk.h"
16 #include "blk-wbt.h"
17
18 unsigned long blk_max_low_pfn;
19 EXPORT_SYMBOL(blk_max_low_pfn);
20
21 unsigned long blk_max_pfn;
22
23 /**
24 * blk_queue_prep_rq - set a prepare_request function for queue
25 * @q: queue
26 * @pfn: prepare_request function
27 *
28 * It's possible for a queue to register a prepare_request callback which
29 * is invoked before the request is handed to the request_fn. The goal of
30 * the function is to prepare a request for I/O, it can be used to build a
31 * cdb from the request data for instance.
32 *
33 */
34 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
35 {
36 q->prep_rq_fn = pfn;
37 }
38 EXPORT_SYMBOL(blk_queue_prep_rq);
39
40 /**
41 * blk_queue_unprep_rq - set an unprepare_request function for queue
42 * @q: queue
43 * @ufn: unprepare_request function
44 *
45 * It's possible for a queue to register an unprepare_request callback
46 * which is invoked before the request is finally completed. The goal
47 * of the function is to deallocate any data that was allocated in the
48 * prepare_request callback.
49 *
50 */
51 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
52 {
53 q->unprep_rq_fn = ufn;
54 }
55 EXPORT_SYMBOL(blk_queue_unprep_rq);
56
57 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
58 {
59 q->softirq_done_fn = fn;
60 }
61 EXPORT_SYMBOL(blk_queue_softirq_done);
62
63 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
64 {
65 q->rq_timeout = timeout;
66 }
67 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
68
69 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
70 {
71 q->rq_timed_out_fn = fn;
72 }
73 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
74
75 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
76 {
77 q->lld_busy_fn = fn;
78 }
79 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
80
81 /**
82 * blk_set_default_limits - reset limits to default values
83 * @lim: the queue_limits structure to reset
84 *
85 * Description:
86 * Returns a queue_limit struct to its default state.
87 */
88 void blk_set_default_limits(struct queue_limits *lim)
89 {
90 lim->max_segments = BLK_MAX_SEGMENTS;
91 lim->max_discard_segments = 1;
92 lim->max_integrity_segments = 0;
93 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
94 lim->virt_boundary_mask = 0;
95 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
96 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
97 lim->max_dev_sectors = 0;
98 lim->chunk_sectors = 0;
99 lim->max_write_same_sectors = 0;
100 lim->max_write_zeroes_sectors = 0;
101 lim->max_discard_sectors = 0;
102 lim->max_hw_discard_sectors = 0;
103 lim->discard_granularity = 0;
104 lim->discard_alignment = 0;
105 lim->discard_misaligned = 0;
106 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
107 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
108 lim->alignment_offset = 0;
109 lim->io_opt = 0;
110 lim->misaligned = 0;
111 lim->cluster = 1;
112 lim->zoned = BLK_ZONED_NONE;
113 }
114 EXPORT_SYMBOL(blk_set_default_limits);
115
116 /**
117 * blk_set_stacking_limits - set default limits for stacking devices
118 * @lim: the queue_limits structure to reset
119 *
120 * Description:
121 * Returns a queue_limit struct to its default state. Should be used
122 * by stacking drivers like DM that have no internal limits.
123 */
124 void blk_set_stacking_limits(struct queue_limits *lim)
125 {
126 blk_set_default_limits(lim);
127
128 /* Inherit limits from component devices */
129 lim->max_segments = USHRT_MAX;
130 lim->max_discard_segments = 1;
131 lim->max_hw_sectors = UINT_MAX;
132 lim->max_segment_size = UINT_MAX;
133 lim->max_sectors = UINT_MAX;
134 lim->max_dev_sectors = UINT_MAX;
135 lim->max_write_same_sectors = UINT_MAX;
136 lim->max_write_zeroes_sectors = UINT_MAX;
137 }
138 EXPORT_SYMBOL(blk_set_stacking_limits);
139
140 /**
141 * blk_queue_make_request - define an alternate make_request function for a device
142 * @q: the request queue for the device to be affected
143 * @mfn: the alternate make_request function
144 *
145 * Description:
146 * The normal way for &struct bios to be passed to a device
147 * driver is for them to be collected into requests on a request
148 * queue, and then to allow the device driver to select requests
149 * off that queue when it is ready. This works well for many block
150 * devices. However some block devices (typically virtual devices
151 * such as md or lvm) do not benefit from the processing on the
152 * request queue, and are served best by having the requests passed
153 * directly to them. This can be achieved by providing a function
154 * to blk_queue_make_request().
155 *
156 * Caveat:
157 * The driver that does this *must* be able to deal appropriately
158 * with buffers in "highmemory". This can be accomplished by either calling
159 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
160 * blk_queue_bounce() to create a buffer in normal memory.
161 **/
162 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
163 {
164 /*
165 * set defaults
166 */
167 q->nr_requests = BLKDEV_MAX_RQ;
168
169 q->make_request_fn = mfn;
170 blk_queue_dma_alignment(q, 511);
171 blk_queue_congestion_threshold(q);
172 q->nr_batching = BLK_BATCH_REQ;
173
174 blk_set_default_limits(&q->limits);
175
176 /*
177 * by default assume old behaviour and bounce for any highmem page
178 */
179 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
180 }
181 EXPORT_SYMBOL(blk_queue_make_request);
182
183 /**
184 * blk_queue_bounce_limit - set bounce buffer limit for queue
185 * @q: the request queue for the device
186 * @max_addr: the maximum address the device can handle
187 *
188 * Description:
189 * Different hardware can have different requirements as to what pages
190 * it can do I/O directly to. A low level driver can call
191 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
192 * buffers for doing I/O to pages residing above @max_addr.
193 **/
194 void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
195 {
196 unsigned long b_pfn = max_addr >> PAGE_SHIFT;
197 int dma = 0;
198
199 q->bounce_gfp = GFP_NOIO;
200 #if BITS_PER_LONG == 64
201 /*
202 * Assume anything <= 4GB can be handled by IOMMU. Actually
203 * some IOMMUs can handle everything, but I don't know of a
204 * way to test this here.
205 */
206 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
207 dma = 1;
208 q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
209 #else
210 if (b_pfn < blk_max_low_pfn)
211 dma = 1;
212 q->limits.bounce_pfn = b_pfn;
213 #endif
214 if (dma) {
215 init_emergency_isa_pool();
216 q->bounce_gfp = GFP_NOIO | GFP_DMA;
217 q->limits.bounce_pfn = b_pfn;
218 }
219 }
220 EXPORT_SYMBOL(blk_queue_bounce_limit);
221
222 /**
223 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
224 * @q: the request queue for the device
225 * @max_hw_sectors: max hardware sectors in the usual 512b unit
226 *
227 * Description:
228 * Enables a low level driver to set a hard upper limit,
229 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
230 * the device driver based upon the capabilities of the I/O
231 * controller.
232 *
233 * max_dev_sectors is a hard limit imposed by the storage device for
234 * READ/WRITE requests. It is set by the disk driver.
235 *
236 * max_sectors is a soft limit imposed by the block layer for
237 * filesystem type requests. This value can be overridden on a
238 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
239 * The soft limit can not exceed max_hw_sectors.
240 **/
241 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
242 {
243 struct queue_limits *limits = &q->limits;
244 unsigned int max_sectors;
245
246 if ((max_hw_sectors << 9) < PAGE_SIZE) {
247 max_hw_sectors = 1 << (PAGE_SHIFT - 9);
248 printk(KERN_INFO "%s: set to minimum %d\n",
249 __func__, max_hw_sectors);
250 }
251
252 limits->max_hw_sectors = max_hw_sectors;
253 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
254 max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
255 limits->max_sectors = max_sectors;
256 q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9);
257 }
258 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
259
260 /**
261 * blk_queue_chunk_sectors - set size of the chunk for this queue
262 * @q: the request queue for the device
263 * @chunk_sectors: chunk sectors in the usual 512b unit
264 *
265 * Description:
266 * If a driver doesn't want IOs to cross a given chunk size, it can set
267 * this limit and prevent merging across chunks. Note that the chunk size
268 * must currently be a power-of-2 in sectors. Also note that the block
269 * layer must accept a page worth of data at any offset. So if the
270 * crossing of chunks is a hard limitation in the driver, it must still be
271 * prepared to split single page bios.
272 **/
273 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
274 {
275 BUG_ON(!is_power_of_2(chunk_sectors));
276 q->limits.chunk_sectors = chunk_sectors;
277 }
278 EXPORT_SYMBOL(blk_queue_chunk_sectors);
279
280 /**
281 * blk_queue_max_discard_sectors - set max sectors for a single discard
282 * @q: the request queue for the device
283 * @max_discard_sectors: maximum number of sectors to discard
284 **/
285 void blk_queue_max_discard_sectors(struct request_queue *q,
286 unsigned int max_discard_sectors)
287 {
288 q->limits.max_hw_discard_sectors = max_discard_sectors;
289 q->limits.max_discard_sectors = max_discard_sectors;
290 }
291 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
292
293 /**
294 * blk_queue_max_write_same_sectors - set max sectors for a single write same
295 * @q: the request queue for the device
296 * @max_write_same_sectors: maximum number of sectors to write per command
297 **/
298 void blk_queue_max_write_same_sectors(struct request_queue *q,
299 unsigned int max_write_same_sectors)
300 {
301 q->limits.max_write_same_sectors = max_write_same_sectors;
302 }
303 EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
304
305 /**
306 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
307 * write zeroes
308 * @q: the request queue for the device
309 * @max_write_zeroes_sectors: maximum number of sectors to write per command
310 **/
311 void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
312 unsigned int max_write_zeroes_sectors)
313 {
314 q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
315 }
316 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
317
318 /**
319 * blk_queue_max_segments - set max hw segments for a request for this queue
320 * @q: the request queue for the device
321 * @max_segments: max number of segments
322 *
323 * Description:
324 * Enables a low level driver to set an upper limit on the number of
325 * hw data segments in a request.
326 **/
327 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
328 {
329 if (!max_segments) {
330 max_segments = 1;
331 printk(KERN_INFO "%s: set to minimum %d\n",
332 __func__, max_segments);
333 }
334
335 q->limits.max_segments = max_segments;
336 }
337 EXPORT_SYMBOL(blk_queue_max_segments);
338
339 /**
340 * blk_queue_max_discard_segments - set max segments for discard requests
341 * @q: the request queue for the device
342 * @max_segments: max number of segments
343 *
344 * Description:
345 * Enables a low level driver to set an upper limit on the number of
346 * segments in a discard request.
347 **/
348 void blk_queue_max_discard_segments(struct request_queue *q,
349 unsigned short max_segments)
350 {
351 q->limits.max_discard_segments = max_segments;
352 }
353 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
354
355 /**
356 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
357 * @q: the request queue for the device
358 * @max_size: max size of segment in bytes
359 *
360 * Description:
361 * Enables a low level driver to set an upper limit on the size of a
362 * coalesced segment
363 **/
364 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
365 {
366 if (max_size < PAGE_SIZE) {
367 max_size = PAGE_SIZE;
368 printk(KERN_INFO "%s: set to minimum %d\n",
369 __func__, max_size);
370 }
371
372 q->limits.max_segment_size = max_size;
373 }
374 EXPORT_SYMBOL(blk_queue_max_segment_size);
375
376 /**
377 * blk_queue_logical_block_size - set logical block size for the queue
378 * @q: the request queue for the device
379 * @size: the logical block size, in bytes
380 *
381 * Description:
382 * This should be set to the lowest possible block size that the
383 * storage device can address. The default of 512 covers most
384 * hardware.
385 **/
386 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
387 {
388 q->limits.logical_block_size = size;
389
390 if (q->limits.physical_block_size < size)
391 q->limits.physical_block_size = size;
392
393 if (q->limits.io_min < q->limits.physical_block_size)
394 q->limits.io_min = q->limits.physical_block_size;
395 }
396 EXPORT_SYMBOL(blk_queue_logical_block_size);
397
398 /**
399 * blk_queue_physical_block_size - set physical block size for the queue
400 * @q: the request queue for the device
401 * @size: the physical block size, in bytes
402 *
403 * Description:
404 * This should be set to the lowest possible sector size that the
405 * hardware can operate on without reverting to read-modify-write
406 * operations.
407 */
408 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
409 {
410 q->limits.physical_block_size = size;
411
412 if (q->limits.physical_block_size < q->limits.logical_block_size)
413 q->limits.physical_block_size = q->limits.logical_block_size;
414
415 if (q->limits.io_min < q->limits.physical_block_size)
416 q->limits.io_min = q->limits.physical_block_size;
417 }
418 EXPORT_SYMBOL(blk_queue_physical_block_size);
419
420 /**
421 * blk_queue_alignment_offset - set physical block alignment offset
422 * @q: the request queue for the device
423 * @offset: alignment offset in bytes
424 *
425 * Description:
426 * Some devices are naturally misaligned to compensate for things like
427 * the legacy DOS partition table 63-sector offset. Low-level drivers
428 * should call this function for devices whose first sector is not
429 * naturally aligned.
430 */
431 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
432 {
433 q->limits.alignment_offset =
434 offset & (q->limits.physical_block_size - 1);
435 q->limits.misaligned = 0;
436 }
437 EXPORT_SYMBOL(blk_queue_alignment_offset);
438
439 /**
440 * blk_limits_io_min - set minimum request size for a device
441 * @limits: the queue limits
442 * @min: smallest I/O size in bytes
443 *
444 * Description:
445 * Some devices have an internal block size bigger than the reported
446 * hardware sector size. This function can be used to signal the
447 * smallest I/O the device can perform without incurring a performance
448 * penalty.
449 */
450 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
451 {
452 limits->io_min = min;
453
454 if (limits->io_min < limits->logical_block_size)
455 limits->io_min = limits->logical_block_size;
456
457 if (limits->io_min < limits->physical_block_size)
458 limits->io_min = limits->physical_block_size;
459 }
460 EXPORT_SYMBOL(blk_limits_io_min);
461
462 /**
463 * blk_queue_io_min - set minimum request size for the queue
464 * @q: the request queue for the device
465 * @min: smallest I/O size in bytes
466 *
467 * Description:
468 * Storage devices may report a granularity or preferred minimum I/O
469 * size which is the smallest request the device can perform without
470 * incurring a performance penalty. For disk drives this is often the
471 * physical block size. For RAID arrays it is often the stripe chunk
472 * size. A properly aligned multiple of minimum_io_size is the
473 * preferred request size for workloads where a high number of I/O
474 * operations is desired.
475 */
476 void blk_queue_io_min(struct request_queue *q, unsigned int min)
477 {
478 blk_limits_io_min(&q->limits, min);
479 }
480 EXPORT_SYMBOL(blk_queue_io_min);
481
482 /**
483 * blk_limits_io_opt - set optimal request size for a device
484 * @limits: the queue limits
485 * @opt: smallest I/O size in bytes
486 *
487 * Description:
488 * Storage devices may report an optimal I/O size, which is the
489 * device's preferred unit for sustained I/O. This is rarely reported
490 * for disk drives. For RAID arrays it is usually the stripe width or
491 * the internal track size. A properly aligned multiple of
492 * optimal_io_size is the preferred request size for workloads where
493 * sustained throughput is desired.
494 */
495 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
496 {
497 limits->io_opt = opt;
498 }
499 EXPORT_SYMBOL(blk_limits_io_opt);
500
501 /**
502 * blk_queue_io_opt - set optimal request size for the queue
503 * @q: the request queue for the device
504 * @opt: optimal request size in bytes
505 *
506 * Description:
507 * Storage devices may report an optimal I/O size, which is the
508 * device's preferred unit for sustained I/O. This is rarely reported
509 * for disk drives. For RAID arrays it is usually the stripe width or
510 * the internal track size. A properly aligned multiple of
511 * optimal_io_size is the preferred request size for workloads where
512 * sustained throughput is desired.
513 */
514 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
515 {
516 blk_limits_io_opt(&q->limits, opt);
517 }
518 EXPORT_SYMBOL(blk_queue_io_opt);
519
520 /**
521 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
522 * @t: the stacking driver (top)
523 * @b: the underlying device (bottom)
524 **/
525 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
526 {
527 blk_stack_limits(&t->limits, &b->limits, 0);
528 }
529 EXPORT_SYMBOL(blk_queue_stack_limits);
530
531 /**
532 * blk_stack_limits - adjust queue_limits for stacked devices
533 * @t: the stacking driver limits (top device)
534 * @b: the underlying queue limits (bottom, component device)
535 * @start: first data sector within component device
536 *
537 * Description:
538 * This function is used by stacking drivers like MD and DM to ensure
539 * that all component devices have compatible block sizes and
540 * alignments. The stacking driver must provide a queue_limits
541 * struct (top) and then iteratively call the stacking function for
542 * all component (bottom) devices. The stacking function will
543 * attempt to combine the values and ensure proper alignment.
544 *
545 * Returns 0 if the top and bottom queue_limits are compatible. The
546 * top device's block sizes and alignment offsets may be adjusted to
547 * ensure alignment with the bottom device. If no compatible sizes
548 * and alignments exist, -1 is returned and the resulting top
549 * queue_limits will have the misaligned flag set to indicate that
550 * the alignment_offset is undefined.
551 */
552 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
553 sector_t start)
554 {
555 unsigned int top, bottom, alignment, ret = 0;
556
557 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
558 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
559 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
560 t->max_write_same_sectors = min(t->max_write_same_sectors,
561 b->max_write_same_sectors);
562 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
563 b->max_write_zeroes_sectors);
564 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
565
566 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
567 b->seg_boundary_mask);
568 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
569 b->virt_boundary_mask);
570
571 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
572 t->max_discard_segments = min_not_zero(t->max_discard_segments,
573 b->max_discard_segments);
574 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
575 b->max_integrity_segments);
576
577 t->max_segment_size = min_not_zero(t->max_segment_size,
578 b->max_segment_size);
579
580 t->misaligned |= b->misaligned;
581
582 alignment = queue_limit_alignment_offset(b, start);
583
584 /* Bottom device has different alignment. Check that it is
585 * compatible with the current top alignment.
586 */
587 if (t->alignment_offset != alignment) {
588
589 top = max(t->physical_block_size, t->io_min)
590 + t->alignment_offset;
591 bottom = max(b->physical_block_size, b->io_min) + alignment;
592
593 /* Verify that top and bottom intervals line up */
594 if (max(top, bottom) % min(top, bottom)) {
595 t->misaligned = 1;
596 ret = -1;
597 }
598 }
599
600 t->logical_block_size = max(t->logical_block_size,
601 b->logical_block_size);
602
603 t->physical_block_size = max(t->physical_block_size,
604 b->physical_block_size);
605
606 t->io_min = max(t->io_min, b->io_min);
607 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
608
609 t->cluster &= b->cluster;
610
611 /* Physical block size a multiple of the logical block size? */
612 if (t->physical_block_size & (t->logical_block_size - 1)) {
613 t->physical_block_size = t->logical_block_size;
614 t->misaligned = 1;
615 ret = -1;
616 }
617
618 /* Minimum I/O a multiple of the physical block size? */
619 if (t->io_min & (t->physical_block_size - 1)) {
620 t->io_min = t->physical_block_size;
621 t->misaligned = 1;
622 ret = -1;
623 }
624
625 /* Optimal I/O a multiple of the physical block size? */
626 if (t->io_opt & (t->physical_block_size - 1)) {
627 t->io_opt = 0;
628 t->misaligned = 1;
629 ret = -1;
630 }
631
632 t->raid_partial_stripes_expensive =
633 max(t->raid_partial_stripes_expensive,
634 b->raid_partial_stripes_expensive);
635
636 /* Find lowest common alignment_offset */
637 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
638 % max(t->physical_block_size, t->io_min);
639
640 /* Verify that new alignment_offset is on a logical block boundary */
641 if (t->alignment_offset & (t->logical_block_size - 1)) {
642 t->misaligned = 1;
643 ret = -1;
644 }
645
646 /* Discard alignment and granularity */
647 if (b->discard_granularity) {
648 alignment = queue_limit_discard_alignment(b, start);
649
650 if (t->discard_granularity != 0 &&
651 t->discard_alignment != alignment) {
652 top = t->discard_granularity + t->discard_alignment;
653 bottom = b->discard_granularity + alignment;
654
655 /* Verify that top and bottom intervals line up */
656 if ((max(top, bottom) % min(top, bottom)) != 0)
657 t->discard_misaligned = 1;
658 }
659
660 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
661 b->max_discard_sectors);
662 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
663 b->max_hw_discard_sectors);
664 t->discard_granularity = max(t->discard_granularity,
665 b->discard_granularity);
666 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
667 t->discard_granularity;
668 }
669
670 if (b->chunk_sectors)
671 t->chunk_sectors = min_not_zero(t->chunk_sectors,
672 b->chunk_sectors);
673
674 return ret;
675 }
676 EXPORT_SYMBOL(blk_stack_limits);
677
678 /**
679 * bdev_stack_limits - adjust queue limits for stacked drivers
680 * @t: the stacking driver limits (top device)
681 * @bdev: the component block_device (bottom)
682 * @start: first data sector within component device
683 *
684 * Description:
685 * Merges queue limits for a top device and a block_device. Returns
686 * 0 if alignment didn't change. Returns -1 if adding the bottom
687 * device caused misalignment.
688 */
689 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
690 sector_t start)
691 {
692 struct request_queue *bq = bdev_get_queue(bdev);
693
694 start += get_start_sect(bdev);
695
696 return blk_stack_limits(t, &bq->limits, start);
697 }
698 EXPORT_SYMBOL(bdev_stack_limits);
699
700 /**
701 * disk_stack_limits - adjust queue limits for stacked drivers
702 * @disk: MD/DM gendisk (top)
703 * @bdev: the underlying block device (bottom)
704 * @offset: offset to beginning of data within component device
705 *
706 * Description:
707 * Merges the limits for a top level gendisk and a bottom level
708 * block_device.
709 */
710 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
711 sector_t offset)
712 {
713 struct request_queue *t = disk->queue;
714
715 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
716 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
717
718 disk_name(disk, 0, top);
719 bdevname(bdev, bottom);
720
721 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
722 top, bottom);
723 }
724 }
725 EXPORT_SYMBOL(disk_stack_limits);
726
727 /**
728 * blk_queue_dma_pad - set pad mask
729 * @q: the request queue for the device
730 * @mask: pad mask
731 *
732 * Set dma pad mask.
733 *
734 * Appending pad buffer to a request modifies the last entry of a
735 * scatter list such that it includes the pad buffer.
736 **/
737 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
738 {
739 q->dma_pad_mask = mask;
740 }
741 EXPORT_SYMBOL(blk_queue_dma_pad);
742
743 /**
744 * blk_queue_update_dma_pad - update pad mask
745 * @q: the request queue for the device
746 * @mask: pad mask
747 *
748 * Update dma pad mask.
749 *
750 * Appending pad buffer to a request modifies the last entry of a
751 * scatter list such that it includes the pad buffer.
752 **/
753 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
754 {
755 if (mask > q->dma_pad_mask)
756 q->dma_pad_mask = mask;
757 }
758 EXPORT_SYMBOL(blk_queue_update_dma_pad);
759
760 /**
761 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
762 * @q: the request queue for the device
763 * @dma_drain_needed: fn which returns non-zero if drain is necessary
764 * @buf: physically contiguous buffer
765 * @size: size of the buffer in bytes
766 *
767 * Some devices have excess DMA problems and can't simply discard (or
768 * zero fill) the unwanted piece of the transfer. They have to have a
769 * real area of memory to transfer it into. The use case for this is
770 * ATAPI devices in DMA mode. If the packet command causes a transfer
771 * bigger than the transfer size some HBAs will lock up if there
772 * aren't DMA elements to contain the excess transfer. What this API
773 * does is adjust the queue so that the buf is always appended
774 * silently to the scatterlist.
775 *
776 * Note: This routine adjusts max_hw_segments to make room for appending
777 * the drain buffer. If you call blk_queue_max_segments() after calling
778 * this routine, you must set the limit to one fewer than your device
779 * can support otherwise there won't be room for the drain buffer.
780 */
781 int blk_queue_dma_drain(struct request_queue *q,
782 dma_drain_needed_fn *dma_drain_needed,
783 void *buf, unsigned int size)
784 {
785 if (queue_max_segments(q) < 2)
786 return -EINVAL;
787 /* make room for appending the drain */
788 blk_queue_max_segments(q, queue_max_segments(q) - 1);
789 q->dma_drain_needed = dma_drain_needed;
790 q->dma_drain_buffer = buf;
791 q->dma_drain_size = size;
792
793 return 0;
794 }
795 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
796
797 /**
798 * blk_queue_segment_boundary - set boundary rules for segment merging
799 * @q: the request queue for the device
800 * @mask: the memory boundary mask
801 **/
802 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
803 {
804 if (mask < PAGE_SIZE - 1) {
805 mask = PAGE_SIZE - 1;
806 printk(KERN_INFO "%s: set to minimum %lx\n",
807 __func__, mask);
808 }
809
810 q->limits.seg_boundary_mask = mask;
811 }
812 EXPORT_SYMBOL(blk_queue_segment_boundary);
813
814 /**
815 * blk_queue_virt_boundary - set boundary rules for bio merging
816 * @q: the request queue for the device
817 * @mask: the memory boundary mask
818 **/
819 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
820 {
821 q->limits.virt_boundary_mask = mask;
822 }
823 EXPORT_SYMBOL(blk_queue_virt_boundary);
824
825 /**
826 * blk_queue_dma_alignment - set dma length and memory alignment
827 * @q: the request queue for the device
828 * @mask: alignment mask
829 *
830 * description:
831 * set required memory and length alignment for direct dma transactions.
832 * this is used when building direct io requests for the queue.
833 *
834 **/
835 void blk_queue_dma_alignment(struct request_queue *q, int mask)
836 {
837 q->dma_alignment = mask;
838 }
839 EXPORT_SYMBOL(blk_queue_dma_alignment);
840
841 /**
842 * blk_queue_update_dma_alignment - update dma length and memory alignment
843 * @q: the request queue for the device
844 * @mask: alignment mask
845 *
846 * description:
847 * update required memory and length alignment for direct dma transactions.
848 * If the requested alignment is larger than the current alignment, then
849 * the current queue alignment is updated to the new value, otherwise it
850 * is left alone. The design of this is to allow multiple objects
851 * (driver, device, transport etc) to set their respective
852 * alignments without having them interfere.
853 *
854 **/
855 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
856 {
857 BUG_ON(mask > PAGE_SIZE);
858
859 if (mask > q->dma_alignment)
860 q->dma_alignment = mask;
861 }
862 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
863
864 void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
865 {
866 spin_lock_irq(q->queue_lock);
867 if (queueable)
868 clear_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
869 else
870 set_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
871 spin_unlock_irq(q->queue_lock);
872 }
873 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
874
875 /**
876 * blk_set_queue_depth - tell the block layer about the device queue depth
877 * @q: the request queue for the device
878 * @depth: queue depth
879 *
880 */
881 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
882 {
883 q->queue_depth = depth;
884 wbt_set_queue_depth(q->rq_wb, depth);
885 }
886 EXPORT_SYMBOL(blk_set_queue_depth);
887
888 /**
889 * blk_queue_write_cache - configure queue's write cache
890 * @q: the request queue for the device
891 * @wc: write back cache on or off
892 * @fua: device supports FUA writes, if true
893 *
894 * Tell the block layer about the write cache of @q.
895 */
896 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
897 {
898 spin_lock_irq(q->queue_lock);
899 if (wc)
900 queue_flag_set(QUEUE_FLAG_WC, q);
901 else
902 queue_flag_clear(QUEUE_FLAG_WC, q);
903 if (fua)
904 queue_flag_set(QUEUE_FLAG_FUA, q);
905 else
906 queue_flag_clear(QUEUE_FLAG_FUA, q);
907 spin_unlock_irq(q->queue_lock);
908
909 wbt_set_write_cache(q->rq_wb, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
910 }
911 EXPORT_SYMBOL_GPL(blk_queue_write_cache);
912
913 static int __init blk_settings_init(void)
914 {
915 blk_max_low_pfn = max_low_pfn - 1;
916 blk_max_pfn = max_pfn - 1;
917 return 0;
918 }
919 subsys_initcall(blk_settings_init);