]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/blk-settings.c
Merge tag 'for-linus-5.11-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / block / blk-settings.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions related to setting various queue properties from drivers
4 */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/memblock.h> /* for max_pfn/max_low_pfn */
11 #include <linux/gcd.h>
12 #include <linux/lcm.h>
13 #include <linux/jiffies.h>
14 #include <linux/gfp.h>
15 #include <linux/dma-mapping.h>
16
17 #include "blk.h"
18 #include "blk-wbt.h"
19
20 unsigned long blk_max_low_pfn;
21 EXPORT_SYMBOL(blk_max_low_pfn);
22
23 unsigned long blk_max_pfn;
24
25 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
26 {
27 q->rq_timeout = timeout;
28 }
29 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
30
31 /**
32 * blk_set_default_limits - reset limits to default values
33 * @lim: the queue_limits structure to reset
34 *
35 * Description:
36 * Returns a queue_limit struct to its default state.
37 */
38 void blk_set_default_limits(struct queue_limits *lim)
39 {
40 lim->max_segments = BLK_MAX_SEGMENTS;
41 lim->max_discard_segments = 1;
42 lim->max_integrity_segments = 0;
43 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
44 lim->virt_boundary_mask = 0;
45 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
46 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
47 lim->max_dev_sectors = 0;
48 lim->chunk_sectors = 0;
49 lim->max_write_same_sectors = 0;
50 lim->max_write_zeroes_sectors = 0;
51 lim->max_zone_append_sectors = 0;
52 lim->max_discard_sectors = 0;
53 lim->max_hw_discard_sectors = 0;
54 lim->discard_granularity = 0;
55 lim->discard_alignment = 0;
56 lim->discard_misaligned = 0;
57 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
58 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
59 lim->alignment_offset = 0;
60 lim->io_opt = 0;
61 lim->misaligned = 0;
62 lim->zoned = BLK_ZONED_NONE;
63 }
64 EXPORT_SYMBOL(blk_set_default_limits);
65
66 /**
67 * blk_set_stacking_limits - set default limits for stacking devices
68 * @lim: the queue_limits structure to reset
69 *
70 * Description:
71 * Returns a queue_limit struct to its default state. Should be used
72 * by stacking drivers like DM that have no internal limits.
73 */
74 void blk_set_stacking_limits(struct queue_limits *lim)
75 {
76 blk_set_default_limits(lim);
77
78 /* Inherit limits from component devices */
79 lim->max_segments = USHRT_MAX;
80 lim->max_discard_segments = USHRT_MAX;
81 lim->max_hw_sectors = UINT_MAX;
82 lim->max_segment_size = UINT_MAX;
83 lim->max_sectors = UINT_MAX;
84 lim->max_dev_sectors = UINT_MAX;
85 lim->max_write_same_sectors = UINT_MAX;
86 lim->max_write_zeroes_sectors = UINT_MAX;
87 lim->max_zone_append_sectors = UINT_MAX;
88 }
89 EXPORT_SYMBOL(blk_set_stacking_limits);
90
91 /**
92 * blk_queue_bounce_limit - set bounce buffer limit for queue
93 * @q: the request queue for the device
94 * @max_addr: the maximum address the device can handle
95 *
96 * Description:
97 * Different hardware can have different requirements as to what pages
98 * it can do I/O directly to. A low level driver can call
99 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
100 * buffers for doing I/O to pages residing above @max_addr.
101 **/
102 void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
103 {
104 unsigned long b_pfn = max_addr >> PAGE_SHIFT;
105 int dma = 0;
106
107 q->bounce_gfp = GFP_NOIO;
108 #if BITS_PER_LONG == 64
109 /*
110 * Assume anything <= 4GB can be handled by IOMMU. Actually
111 * some IOMMUs can handle everything, but I don't know of a
112 * way to test this here.
113 */
114 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
115 dma = 1;
116 q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
117 #else
118 if (b_pfn < blk_max_low_pfn)
119 dma = 1;
120 q->limits.bounce_pfn = b_pfn;
121 #endif
122 if (dma) {
123 init_emergency_isa_pool();
124 q->bounce_gfp = GFP_NOIO | GFP_DMA;
125 q->limits.bounce_pfn = b_pfn;
126 }
127 }
128 EXPORT_SYMBOL(blk_queue_bounce_limit);
129
130 /**
131 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
132 * @q: the request queue for the device
133 * @max_hw_sectors: max hardware sectors in the usual 512b unit
134 *
135 * Description:
136 * Enables a low level driver to set a hard upper limit,
137 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
138 * the device driver based upon the capabilities of the I/O
139 * controller.
140 *
141 * max_dev_sectors is a hard limit imposed by the storage device for
142 * READ/WRITE requests. It is set by the disk driver.
143 *
144 * max_sectors is a soft limit imposed by the block layer for
145 * filesystem type requests. This value can be overridden on a
146 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
147 * The soft limit can not exceed max_hw_sectors.
148 **/
149 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
150 {
151 struct queue_limits *limits = &q->limits;
152 unsigned int max_sectors;
153
154 if ((max_hw_sectors << 9) < PAGE_SIZE) {
155 max_hw_sectors = 1 << (PAGE_SHIFT - 9);
156 printk(KERN_INFO "%s: set to minimum %d\n",
157 __func__, max_hw_sectors);
158 }
159
160 max_hw_sectors = round_down(max_hw_sectors,
161 limits->logical_block_size >> SECTOR_SHIFT);
162 limits->max_hw_sectors = max_hw_sectors;
163
164 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
165 max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
166 max_sectors = round_down(max_sectors,
167 limits->logical_block_size >> SECTOR_SHIFT);
168 limits->max_sectors = max_sectors;
169
170 q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9);
171 }
172 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
173
174 /**
175 * blk_queue_chunk_sectors - set size of the chunk for this queue
176 * @q: the request queue for the device
177 * @chunk_sectors: chunk sectors in the usual 512b unit
178 *
179 * Description:
180 * If a driver doesn't want IOs to cross a given chunk size, it can set
181 * this limit and prevent merging across chunks. Note that the block layer
182 * must accept a page worth of data at any offset. So if the crossing of
183 * chunks is a hard limitation in the driver, it must still be prepared
184 * to split single page bios.
185 **/
186 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
187 {
188 q->limits.chunk_sectors = chunk_sectors;
189 }
190 EXPORT_SYMBOL(blk_queue_chunk_sectors);
191
192 /**
193 * blk_queue_max_discard_sectors - set max sectors for a single discard
194 * @q: the request queue for the device
195 * @max_discard_sectors: maximum number of sectors to discard
196 **/
197 void blk_queue_max_discard_sectors(struct request_queue *q,
198 unsigned int max_discard_sectors)
199 {
200 q->limits.max_hw_discard_sectors = max_discard_sectors;
201 q->limits.max_discard_sectors = max_discard_sectors;
202 }
203 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
204
205 /**
206 * blk_queue_max_write_same_sectors - set max sectors for a single write same
207 * @q: the request queue for the device
208 * @max_write_same_sectors: maximum number of sectors to write per command
209 **/
210 void blk_queue_max_write_same_sectors(struct request_queue *q,
211 unsigned int max_write_same_sectors)
212 {
213 q->limits.max_write_same_sectors = max_write_same_sectors;
214 }
215 EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
216
217 /**
218 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
219 * write zeroes
220 * @q: the request queue for the device
221 * @max_write_zeroes_sectors: maximum number of sectors to write per command
222 **/
223 void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
224 unsigned int max_write_zeroes_sectors)
225 {
226 q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
227 }
228 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
229
230 /**
231 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
232 * @q: the request queue for the device
233 * @max_zone_append_sectors: maximum number of sectors to write per command
234 **/
235 void blk_queue_max_zone_append_sectors(struct request_queue *q,
236 unsigned int max_zone_append_sectors)
237 {
238 unsigned int max_sectors;
239
240 if (WARN_ON(!blk_queue_is_zoned(q)))
241 return;
242
243 max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
244 max_sectors = min(q->limits.chunk_sectors, max_sectors);
245
246 /*
247 * Signal eventual driver bugs resulting in the max_zone_append sectors limit
248 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
249 * or the max_hw_sectors limit not set.
250 */
251 WARN_ON(!max_sectors);
252
253 q->limits.max_zone_append_sectors = max_sectors;
254 }
255 EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
256
257 /**
258 * blk_queue_max_segments - set max hw segments for a request for this queue
259 * @q: the request queue for the device
260 * @max_segments: max number of segments
261 *
262 * Description:
263 * Enables a low level driver to set an upper limit on the number of
264 * hw data segments in a request.
265 **/
266 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
267 {
268 if (!max_segments) {
269 max_segments = 1;
270 printk(KERN_INFO "%s: set to minimum %d\n",
271 __func__, max_segments);
272 }
273
274 q->limits.max_segments = max_segments;
275 }
276 EXPORT_SYMBOL(blk_queue_max_segments);
277
278 /**
279 * blk_queue_max_discard_segments - set max segments for discard requests
280 * @q: the request queue for the device
281 * @max_segments: max number of segments
282 *
283 * Description:
284 * Enables a low level driver to set an upper limit on the number of
285 * segments in a discard request.
286 **/
287 void blk_queue_max_discard_segments(struct request_queue *q,
288 unsigned short max_segments)
289 {
290 q->limits.max_discard_segments = max_segments;
291 }
292 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
293
294 /**
295 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
296 * @q: the request queue for the device
297 * @max_size: max size of segment in bytes
298 *
299 * Description:
300 * Enables a low level driver to set an upper limit on the size of a
301 * coalesced segment
302 **/
303 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
304 {
305 if (max_size < PAGE_SIZE) {
306 max_size = PAGE_SIZE;
307 printk(KERN_INFO "%s: set to minimum %d\n",
308 __func__, max_size);
309 }
310
311 /* see blk_queue_virt_boundary() for the explanation */
312 WARN_ON_ONCE(q->limits.virt_boundary_mask);
313
314 q->limits.max_segment_size = max_size;
315 }
316 EXPORT_SYMBOL(blk_queue_max_segment_size);
317
318 /**
319 * blk_queue_logical_block_size - set logical block size for the queue
320 * @q: the request queue for the device
321 * @size: the logical block size, in bytes
322 *
323 * Description:
324 * This should be set to the lowest possible block size that the
325 * storage device can address. The default of 512 covers most
326 * hardware.
327 **/
328 void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
329 {
330 struct queue_limits *limits = &q->limits;
331
332 limits->logical_block_size = size;
333
334 if (limits->physical_block_size < size)
335 limits->physical_block_size = size;
336
337 if (limits->io_min < limits->physical_block_size)
338 limits->io_min = limits->physical_block_size;
339
340 limits->max_hw_sectors =
341 round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
342 limits->max_sectors =
343 round_down(limits->max_sectors, size >> SECTOR_SHIFT);
344 }
345 EXPORT_SYMBOL(blk_queue_logical_block_size);
346
347 /**
348 * blk_queue_physical_block_size - set physical block size for the queue
349 * @q: the request queue for the device
350 * @size: the physical block size, in bytes
351 *
352 * Description:
353 * This should be set to the lowest possible sector size that the
354 * hardware can operate on without reverting to read-modify-write
355 * operations.
356 */
357 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
358 {
359 q->limits.physical_block_size = size;
360
361 if (q->limits.physical_block_size < q->limits.logical_block_size)
362 q->limits.physical_block_size = q->limits.logical_block_size;
363
364 if (q->limits.io_min < q->limits.physical_block_size)
365 q->limits.io_min = q->limits.physical_block_size;
366 }
367 EXPORT_SYMBOL(blk_queue_physical_block_size);
368
369 /**
370 * blk_queue_alignment_offset - set physical block alignment offset
371 * @q: the request queue for the device
372 * @offset: alignment offset in bytes
373 *
374 * Description:
375 * Some devices are naturally misaligned to compensate for things like
376 * the legacy DOS partition table 63-sector offset. Low-level drivers
377 * should call this function for devices whose first sector is not
378 * naturally aligned.
379 */
380 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
381 {
382 q->limits.alignment_offset =
383 offset & (q->limits.physical_block_size - 1);
384 q->limits.misaligned = 0;
385 }
386 EXPORT_SYMBOL(blk_queue_alignment_offset);
387
388 void blk_queue_update_readahead(struct request_queue *q)
389 {
390 /*
391 * For read-ahead of large files to be effective, we need to read ahead
392 * at least twice the optimal I/O size.
393 */
394 q->backing_dev_info->ra_pages =
395 max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
396 q->backing_dev_info->io_pages =
397 queue_max_sectors(q) >> (PAGE_SHIFT - 9);
398 }
399 EXPORT_SYMBOL_GPL(blk_queue_update_readahead);
400
401 /**
402 * blk_limits_io_min - set minimum request size for a device
403 * @limits: the queue limits
404 * @min: smallest I/O size in bytes
405 *
406 * Description:
407 * Some devices have an internal block size bigger than the reported
408 * hardware sector size. This function can be used to signal the
409 * smallest I/O the device can perform without incurring a performance
410 * penalty.
411 */
412 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
413 {
414 limits->io_min = min;
415
416 if (limits->io_min < limits->logical_block_size)
417 limits->io_min = limits->logical_block_size;
418
419 if (limits->io_min < limits->physical_block_size)
420 limits->io_min = limits->physical_block_size;
421 }
422 EXPORT_SYMBOL(blk_limits_io_min);
423
424 /**
425 * blk_queue_io_min - set minimum request size for the queue
426 * @q: the request queue for the device
427 * @min: smallest I/O size in bytes
428 *
429 * Description:
430 * Storage devices may report a granularity or preferred minimum I/O
431 * size which is the smallest request the device can perform without
432 * incurring a performance penalty. For disk drives this is often the
433 * physical block size. For RAID arrays it is often the stripe chunk
434 * size. A properly aligned multiple of minimum_io_size is the
435 * preferred request size for workloads where a high number of I/O
436 * operations is desired.
437 */
438 void blk_queue_io_min(struct request_queue *q, unsigned int min)
439 {
440 blk_limits_io_min(&q->limits, min);
441 }
442 EXPORT_SYMBOL(blk_queue_io_min);
443
444 /**
445 * blk_limits_io_opt - set optimal request size for a device
446 * @limits: the queue limits
447 * @opt: smallest I/O size in bytes
448 *
449 * Description:
450 * Storage devices may report an optimal I/O size, which is the
451 * device's preferred unit for sustained I/O. This is rarely reported
452 * for disk drives. For RAID arrays it is usually the stripe width or
453 * the internal track size. A properly aligned multiple of
454 * optimal_io_size is the preferred request size for workloads where
455 * sustained throughput is desired.
456 */
457 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
458 {
459 limits->io_opt = opt;
460 }
461 EXPORT_SYMBOL(blk_limits_io_opt);
462
463 /**
464 * blk_queue_io_opt - set optimal request size for the queue
465 * @q: the request queue for the device
466 * @opt: optimal request size in bytes
467 *
468 * Description:
469 * Storage devices may report an optimal I/O size, which is the
470 * device's preferred unit for sustained I/O. This is rarely reported
471 * for disk drives. For RAID arrays it is usually the stripe width or
472 * the internal track size. A properly aligned multiple of
473 * optimal_io_size is the preferred request size for workloads where
474 * sustained throughput is desired.
475 */
476 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
477 {
478 blk_limits_io_opt(&q->limits, opt);
479 q->backing_dev_info->ra_pages =
480 max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
481 }
482 EXPORT_SYMBOL(blk_queue_io_opt);
483
484 /**
485 * blk_stack_limits - adjust queue_limits for stacked devices
486 * @t: the stacking driver limits (top device)
487 * @b: the underlying queue limits (bottom, component device)
488 * @start: first data sector within component device
489 *
490 * Description:
491 * This function is used by stacking drivers like MD and DM to ensure
492 * that all component devices have compatible block sizes and
493 * alignments. The stacking driver must provide a queue_limits
494 * struct (top) and then iteratively call the stacking function for
495 * all component (bottom) devices. The stacking function will
496 * attempt to combine the values and ensure proper alignment.
497 *
498 * Returns 0 if the top and bottom queue_limits are compatible. The
499 * top device's block sizes and alignment offsets may be adjusted to
500 * ensure alignment with the bottom device. If no compatible sizes
501 * and alignments exist, -1 is returned and the resulting top
502 * queue_limits will have the misaligned flag set to indicate that
503 * the alignment_offset is undefined.
504 */
505 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
506 sector_t start)
507 {
508 unsigned int top, bottom, alignment, ret = 0;
509
510 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
511 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
512 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
513 t->max_write_same_sectors = min(t->max_write_same_sectors,
514 b->max_write_same_sectors);
515 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
516 b->max_write_zeroes_sectors);
517 t->max_zone_append_sectors = min(t->max_zone_append_sectors,
518 b->max_zone_append_sectors);
519 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
520
521 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
522 b->seg_boundary_mask);
523 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
524 b->virt_boundary_mask);
525
526 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
527 t->max_discard_segments = min_not_zero(t->max_discard_segments,
528 b->max_discard_segments);
529 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
530 b->max_integrity_segments);
531
532 t->max_segment_size = min_not_zero(t->max_segment_size,
533 b->max_segment_size);
534
535 t->misaligned |= b->misaligned;
536
537 alignment = queue_limit_alignment_offset(b, start);
538
539 /* Bottom device has different alignment. Check that it is
540 * compatible with the current top alignment.
541 */
542 if (t->alignment_offset != alignment) {
543
544 top = max(t->physical_block_size, t->io_min)
545 + t->alignment_offset;
546 bottom = max(b->physical_block_size, b->io_min) + alignment;
547
548 /* Verify that top and bottom intervals line up */
549 if (max(top, bottom) % min(top, bottom)) {
550 t->misaligned = 1;
551 ret = -1;
552 }
553 }
554
555 t->logical_block_size = max(t->logical_block_size,
556 b->logical_block_size);
557
558 t->physical_block_size = max(t->physical_block_size,
559 b->physical_block_size);
560
561 t->io_min = max(t->io_min, b->io_min);
562 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
563
564 /* Set non-power-of-2 compatible chunk_sectors boundary */
565 if (b->chunk_sectors)
566 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
567
568 /* Physical block size a multiple of the logical block size? */
569 if (t->physical_block_size & (t->logical_block_size - 1)) {
570 t->physical_block_size = t->logical_block_size;
571 t->misaligned = 1;
572 ret = -1;
573 }
574
575 /* Minimum I/O a multiple of the physical block size? */
576 if (t->io_min & (t->physical_block_size - 1)) {
577 t->io_min = t->physical_block_size;
578 t->misaligned = 1;
579 ret = -1;
580 }
581
582 /* Optimal I/O a multiple of the physical block size? */
583 if (t->io_opt & (t->physical_block_size - 1)) {
584 t->io_opt = 0;
585 t->misaligned = 1;
586 ret = -1;
587 }
588
589 /* chunk_sectors a multiple of the physical block size? */
590 if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
591 t->chunk_sectors = 0;
592 t->misaligned = 1;
593 ret = -1;
594 }
595
596 t->raid_partial_stripes_expensive =
597 max(t->raid_partial_stripes_expensive,
598 b->raid_partial_stripes_expensive);
599
600 /* Find lowest common alignment_offset */
601 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
602 % max(t->physical_block_size, t->io_min);
603
604 /* Verify that new alignment_offset is on a logical block boundary */
605 if (t->alignment_offset & (t->logical_block_size - 1)) {
606 t->misaligned = 1;
607 ret = -1;
608 }
609
610 /* Discard alignment and granularity */
611 if (b->discard_granularity) {
612 alignment = queue_limit_discard_alignment(b, start);
613
614 if (t->discard_granularity != 0 &&
615 t->discard_alignment != alignment) {
616 top = t->discard_granularity + t->discard_alignment;
617 bottom = b->discard_granularity + alignment;
618
619 /* Verify that top and bottom intervals line up */
620 if ((max(top, bottom) % min(top, bottom)) != 0)
621 t->discard_misaligned = 1;
622 }
623
624 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
625 b->max_discard_sectors);
626 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
627 b->max_hw_discard_sectors);
628 t->discard_granularity = max(t->discard_granularity,
629 b->discard_granularity);
630 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
631 t->discard_granularity;
632 }
633
634 t->zoned = max(t->zoned, b->zoned);
635 return ret;
636 }
637 EXPORT_SYMBOL(blk_stack_limits);
638
639 /**
640 * disk_stack_limits - adjust queue limits for stacked drivers
641 * @disk: MD/DM gendisk (top)
642 * @bdev: the underlying block device (bottom)
643 * @offset: offset to beginning of data within component device
644 *
645 * Description:
646 * Merges the limits for a top level gendisk and a bottom level
647 * block_device.
648 */
649 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
650 sector_t offset)
651 {
652 struct request_queue *t = disk->queue;
653
654 if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits,
655 get_start_sect(bdev) + (offset >> 9)) < 0) {
656 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
657
658 disk_name(disk, 0, top);
659 bdevname(bdev, bottom);
660
661 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
662 top, bottom);
663 }
664
665 blk_queue_update_readahead(disk->queue);
666 }
667 EXPORT_SYMBOL(disk_stack_limits);
668
669 /**
670 * blk_queue_update_dma_pad - update pad mask
671 * @q: the request queue for the device
672 * @mask: pad mask
673 *
674 * Update dma pad mask.
675 *
676 * Appending pad buffer to a request modifies the last entry of a
677 * scatter list such that it includes the pad buffer.
678 **/
679 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
680 {
681 if (mask > q->dma_pad_mask)
682 q->dma_pad_mask = mask;
683 }
684 EXPORT_SYMBOL(blk_queue_update_dma_pad);
685
686 /**
687 * blk_queue_segment_boundary - set boundary rules for segment merging
688 * @q: the request queue for the device
689 * @mask: the memory boundary mask
690 **/
691 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
692 {
693 if (mask < PAGE_SIZE - 1) {
694 mask = PAGE_SIZE - 1;
695 printk(KERN_INFO "%s: set to minimum %lx\n",
696 __func__, mask);
697 }
698
699 q->limits.seg_boundary_mask = mask;
700 }
701 EXPORT_SYMBOL(blk_queue_segment_boundary);
702
703 /**
704 * blk_queue_virt_boundary - set boundary rules for bio merging
705 * @q: the request queue for the device
706 * @mask: the memory boundary mask
707 **/
708 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
709 {
710 q->limits.virt_boundary_mask = mask;
711
712 /*
713 * Devices that require a virtual boundary do not support scatter/gather
714 * I/O natively, but instead require a descriptor list entry for each
715 * page (which might not be idential to the Linux PAGE_SIZE). Because
716 * of that they are not limited by our notion of "segment size".
717 */
718 if (mask)
719 q->limits.max_segment_size = UINT_MAX;
720 }
721 EXPORT_SYMBOL(blk_queue_virt_boundary);
722
723 /**
724 * blk_queue_dma_alignment - set dma length and memory alignment
725 * @q: the request queue for the device
726 * @mask: alignment mask
727 *
728 * description:
729 * set required memory and length alignment for direct dma transactions.
730 * this is used when building direct io requests for the queue.
731 *
732 **/
733 void blk_queue_dma_alignment(struct request_queue *q, int mask)
734 {
735 q->dma_alignment = mask;
736 }
737 EXPORT_SYMBOL(blk_queue_dma_alignment);
738
739 /**
740 * blk_queue_update_dma_alignment - update dma length and memory alignment
741 * @q: the request queue for the device
742 * @mask: alignment mask
743 *
744 * description:
745 * update required memory and length alignment for direct dma transactions.
746 * If the requested alignment is larger than the current alignment, then
747 * the current queue alignment is updated to the new value, otherwise it
748 * is left alone. The design of this is to allow multiple objects
749 * (driver, device, transport etc) to set their respective
750 * alignments without having them interfere.
751 *
752 **/
753 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
754 {
755 BUG_ON(mask > PAGE_SIZE);
756
757 if (mask > q->dma_alignment)
758 q->dma_alignment = mask;
759 }
760 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
761
762 /**
763 * blk_set_queue_depth - tell the block layer about the device queue depth
764 * @q: the request queue for the device
765 * @depth: queue depth
766 *
767 */
768 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
769 {
770 q->queue_depth = depth;
771 rq_qos_queue_depth_changed(q);
772 }
773 EXPORT_SYMBOL(blk_set_queue_depth);
774
775 /**
776 * blk_queue_write_cache - configure queue's write cache
777 * @q: the request queue for the device
778 * @wc: write back cache on or off
779 * @fua: device supports FUA writes, if true
780 *
781 * Tell the block layer about the write cache of @q.
782 */
783 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
784 {
785 if (wc)
786 blk_queue_flag_set(QUEUE_FLAG_WC, q);
787 else
788 blk_queue_flag_clear(QUEUE_FLAG_WC, q);
789 if (fua)
790 blk_queue_flag_set(QUEUE_FLAG_FUA, q);
791 else
792 blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
793
794 wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
795 }
796 EXPORT_SYMBOL_GPL(blk_queue_write_cache);
797
798 /**
799 * blk_queue_required_elevator_features - Set a queue required elevator features
800 * @q: the request queue for the target device
801 * @features: Required elevator features OR'ed together
802 *
803 * Tell the block layer that for the device controlled through @q, only the
804 * only elevators that can be used are those that implement at least the set of
805 * features specified by @features.
806 */
807 void blk_queue_required_elevator_features(struct request_queue *q,
808 unsigned int features)
809 {
810 q->required_elevator_features = features;
811 }
812 EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
813
814 /**
815 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
816 * @q: the request queue for the device
817 * @dev: the device pointer for dma
818 *
819 * Tell the block layer about merging the segments by dma map of @q.
820 */
821 bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
822 struct device *dev)
823 {
824 unsigned long boundary = dma_get_merge_boundary(dev);
825
826 if (!boundary)
827 return false;
828
829 /* No need to update max_segment_size. see blk_queue_virt_boundary() */
830 blk_queue_virt_boundary(q, boundary);
831
832 return true;
833 }
834 EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
835
836 /**
837 * blk_queue_set_zoned - configure a disk queue zoned model.
838 * @disk: the gendisk of the queue to configure
839 * @model: the zoned model to set
840 *
841 * Set the zoned model of the request queue of @disk according to @model.
842 * When @model is BLK_ZONED_HM (host managed), this should be called only
843 * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option).
844 * If @model specifies BLK_ZONED_HA (host aware), the effective model used
845 * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions
846 * on the disk.
847 */
848 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model)
849 {
850 switch (model) {
851 case BLK_ZONED_HM:
852 /*
853 * Host managed devices are supported only if
854 * CONFIG_BLK_DEV_ZONED is enabled.
855 */
856 WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
857 break;
858 case BLK_ZONED_HA:
859 /*
860 * Host aware devices can be treated either as regular block
861 * devices (similar to drive managed devices) or as zoned block
862 * devices to take advantage of the zone command set, similarly
863 * to host managed devices. We try the latter if there are no
864 * partitions and zoned block device support is enabled, else
865 * we do nothing special as far as the block layer is concerned.
866 */
867 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) ||
868 disk_has_partitions(disk))
869 model = BLK_ZONED_NONE;
870 break;
871 case BLK_ZONED_NONE:
872 default:
873 if (WARN_ON_ONCE(model != BLK_ZONED_NONE))
874 model = BLK_ZONED_NONE;
875 break;
876 }
877
878 disk->queue->limits.zoned = model;
879 }
880 EXPORT_SYMBOL_GPL(blk_queue_set_zoned);
881
882 static int __init blk_settings_init(void)
883 {
884 blk_max_low_pfn = max_low_pfn - 1;
885 blk_max_pfn = max_pfn - 1;
886 return 0;
887 }
888 subsys_initcall(blk_settings_init);