]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-throttle.c
blkcg: move refcnt to blkcg core
[mirror_ubuntu-artful-kernel.git] / block / blk-throttle.c
1 /*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include "blk-cgroup.h"
13 #include "blk.h"
14
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum = 8;
17
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum = 32;
20
21 /* Throttling is performed over 100ms slice and after that slice is renewed */
22 static unsigned long throtl_slice = HZ/10; /* 100 ms */
23
24 static struct blkio_policy_type blkio_policy_throtl;
25
26 /* A workqueue to queue throttle related work */
27 static struct workqueue_struct *kthrotld_workqueue;
28 static void throtl_schedule_delayed_work(struct throtl_data *td,
29 unsigned long delay);
30
31 struct throtl_rb_root {
32 struct rb_root rb;
33 struct rb_node *left;
34 unsigned int count;
35 unsigned long min_disptime;
36 };
37
38 #define THROTL_RB_ROOT (struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
39 .count = 0, .min_disptime = 0}
40
41 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
42
43 struct throtl_grp {
44 /* List of throtl groups on the request queue*/
45 struct hlist_node tg_node;
46
47 /* active throtl group service_tree member */
48 struct rb_node rb_node;
49
50 /*
51 * Dispatch time in jiffies. This is the estimated time when group
52 * will unthrottle and is ready to dispatch more bio. It is used as
53 * key to sort active groups in service tree.
54 */
55 unsigned long disptime;
56
57 unsigned int flags;
58
59 /* Two lists for READ and WRITE */
60 struct bio_list bio_lists[2];
61
62 /* Number of queued bios on READ and WRITE lists */
63 unsigned int nr_queued[2];
64
65 /* bytes per second rate limits */
66 uint64_t bps[2];
67
68 /* IOPS limits */
69 unsigned int iops[2];
70
71 /* Number of bytes disptached in current slice */
72 uint64_t bytes_disp[2];
73 /* Number of bio's dispatched in current slice */
74 unsigned int io_disp[2];
75
76 /* When did we start a new slice */
77 unsigned long slice_start[2];
78 unsigned long slice_end[2];
79
80 /* Some throttle limits got updated for the group */
81 int limits_changed;
82 };
83
84 struct throtl_data
85 {
86 /* List of throtl groups */
87 struct hlist_head tg_list;
88
89 /* service tree for active throtl groups */
90 struct throtl_rb_root tg_service_tree;
91
92 struct throtl_grp *root_tg;
93 struct request_queue *queue;
94
95 /* Total Number of queued bios on READ and WRITE lists */
96 unsigned int nr_queued[2];
97
98 /*
99 * number of total undestroyed groups
100 */
101 unsigned int nr_undestroyed_grps;
102
103 /* Work for dispatching throttled bios */
104 struct delayed_work throtl_work;
105
106 int limits_changed;
107 };
108
109 static inline struct throtl_grp *blkg_to_tg(struct blkio_group *blkg)
110 {
111 return blkg_to_pdata(blkg, &blkio_policy_throtl);
112 }
113
114 static inline struct blkio_group *tg_to_blkg(struct throtl_grp *tg)
115 {
116 return pdata_to_blkg(tg, &blkio_policy_throtl);
117 }
118
119 enum tg_state_flags {
120 THROTL_TG_FLAG_on_rr = 0, /* on round-robin busy list */
121 };
122
123 #define THROTL_TG_FNS(name) \
124 static inline void throtl_mark_tg_##name(struct throtl_grp *tg) \
125 { \
126 (tg)->flags |= (1 << THROTL_TG_FLAG_##name); \
127 } \
128 static inline void throtl_clear_tg_##name(struct throtl_grp *tg) \
129 { \
130 (tg)->flags &= ~(1 << THROTL_TG_FLAG_##name); \
131 } \
132 static inline int throtl_tg_##name(const struct throtl_grp *tg) \
133 { \
134 return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0; \
135 }
136
137 THROTL_TG_FNS(on_rr);
138
139 #define throtl_log_tg(td, tg, fmt, args...) \
140 blk_add_trace_msg((td)->queue, "throtl %s " fmt, \
141 blkg_path(tg_to_blkg(tg)), ##args); \
142
143 #define throtl_log(td, fmt, args...) \
144 blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)
145
146 static inline unsigned int total_nr_queued(struct throtl_data *td)
147 {
148 return td->nr_queued[0] + td->nr_queued[1];
149 }
150
151 static void throtl_init_blkio_group(struct blkio_group *blkg)
152 {
153 struct throtl_grp *tg = blkg_to_tg(blkg);
154
155 INIT_HLIST_NODE(&tg->tg_node);
156 RB_CLEAR_NODE(&tg->rb_node);
157 bio_list_init(&tg->bio_lists[0]);
158 bio_list_init(&tg->bio_lists[1]);
159 tg->limits_changed = false;
160
161 tg->bps[READ] = -1;
162 tg->bps[WRITE] = -1;
163 tg->iops[READ] = -1;
164 tg->iops[WRITE] = -1;
165 }
166
167 static void throtl_link_blkio_group(struct request_queue *q,
168 struct blkio_group *blkg)
169 {
170 struct throtl_data *td = q->td;
171 struct throtl_grp *tg = blkg_to_tg(blkg);
172
173 hlist_add_head(&tg->tg_node, &td->tg_list);
174 td->nr_undestroyed_grps++;
175 }
176
177 static struct
178 throtl_grp *throtl_lookup_tg(struct throtl_data *td, struct blkio_cgroup *blkcg)
179 {
180 /*
181 * This is the common case when there are no blkio cgroups.
182 * Avoid lookup in this case
183 */
184 if (blkcg == &blkio_root_cgroup)
185 return td->root_tg;
186
187 return blkg_to_tg(blkg_lookup(blkcg, td->queue, BLKIO_POLICY_THROTL));
188 }
189
190 static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
191 struct blkio_cgroup *blkcg)
192 {
193 struct request_queue *q = td->queue;
194 struct throtl_grp *tg = NULL;
195
196 /*
197 * This is the common case when there are no blkio cgroups.
198 * Avoid lookup in this case
199 */
200 if (blkcg == &blkio_root_cgroup) {
201 tg = td->root_tg;
202 } else {
203 struct blkio_group *blkg;
204
205 blkg = blkg_lookup_create(blkcg, q, BLKIO_POLICY_THROTL, false);
206
207 /* if %NULL and @q is alive, fall back to root_tg */
208 if (!IS_ERR(blkg))
209 tg = blkg_to_tg(blkg);
210 else if (!blk_queue_dead(q))
211 tg = td->root_tg;
212 }
213
214 return tg;
215 }
216
217 static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root)
218 {
219 /* Service tree is empty */
220 if (!root->count)
221 return NULL;
222
223 if (!root->left)
224 root->left = rb_first(&root->rb);
225
226 if (root->left)
227 return rb_entry_tg(root->left);
228
229 return NULL;
230 }
231
232 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
233 {
234 rb_erase(n, root);
235 RB_CLEAR_NODE(n);
236 }
237
238 static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root)
239 {
240 if (root->left == n)
241 root->left = NULL;
242 rb_erase_init(n, &root->rb);
243 --root->count;
244 }
245
246 static void update_min_dispatch_time(struct throtl_rb_root *st)
247 {
248 struct throtl_grp *tg;
249
250 tg = throtl_rb_first(st);
251 if (!tg)
252 return;
253
254 st->min_disptime = tg->disptime;
255 }
256
257 static void
258 tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg)
259 {
260 struct rb_node **node = &st->rb.rb_node;
261 struct rb_node *parent = NULL;
262 struct throtl_grp *__tg;
263 unsigned long key = tg->disptime;
264 int left = 1;
265
266 while (*node != NULL) {
267 parent = *node;
268 __tg = rb_entry_tg(parent);
269
270 if (time_before(key, __tg->disptime))
271 node = &parent->rb_left;
272 else {
273 node = &parent->rb_right;
274 left = 0;
275 }
276 }
277
278 if (left)
279 st->left = &tg->rb_node;
280
281 rb_link_node(&tg->rb_node, parent, node);
282 rb_insert_color(&tg->rb_node, &st->rb);
283 }
284
285 static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
286 {
287 struct throtl_rb_root *st = &td->tg_service_tree;
288
289 tg_service_tree_add(st, tg);
290 throtl_mark_tg_on_rr(tg);
291 st->count++;
292 }
293
294 static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
295 {
296 if (!throtl_tg_on_rr(tg))
297 __throtl_enqueue_tg(td, tg);
298 }
299
300 static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
301 {
302 throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);
303 throtl_clear_tg_on_rr(tg);
304 }
305
306 static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
307 {
308 if (throtl_tg_on_rr(tg))
309 __throtl_dequeue_tg(td, tg);
310 }
311
312 static void throtl_schedule_next_dispatch(struct throtl_data *td)
313 {
314 struct throtl_rb_root *st = &td->tg_service_tree;
315
316 /*
317 * If there are more bios pending, schedule more work.
318 */
319 if (!total_nr_queued(td))
320 return;
321
322 BUG_ON(!st->count);
323
324 update_min_dispatch_time(st);
325
326 if (time_before_eq(st->min_disptime, jiffies))
327 throtl_schedule_delayed_work(td, 0);
328 else
329 throtl_schedule_delayed_work(td, (st->min_disptime - jiffies));
330 }
331
332 static inline void
333 throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
334 {
335 tg->bytes_disp[rw] = 0;
336 tg->io_disp[rw] = 0;
337 tg->slice_start[rw] = jiffies;
338 tg->slice_end[rw] = jiffies + throtl_slice;
339 throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
340 rw == READ ? 'R' : 'W', tg->slice_start[rw],
341 tg->slice_end[rw], jiffies);
342 }
343
344 static inline void throtl_set_slice_end(struct throtl_data *td,
345 struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
346 {
347 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
348 }
349
350 static inline void throtl_extend_slice(struct throtl_data *td,
351 struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
352 {
353 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
354 throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
355 rw == READ ? 'R' : 'W', tg->slice_start[rw],
356 tg->slice_end[rw], jiffies);
357 }
358
359 /* Determine if previously allocated or extended slice is complete or not */
360 static bool
361 throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
362 {
363 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
364 return 0;
365
366 return 1;
367 }
368
369 /* Trim the used slices and adjust slice start accordingly */
370 static inline void
371 throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
372 {
373 unsigned long nr_slices, time_elapsed, io_trim;
374 u64 bytes_trim, tmp;
375
376 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
377
378 /*
379 * If bps are unlimited (-1), then time slice don't get
380 * renewed. Don't try to trim the slice if slice is used. A new
381 * slice will start when appropriate.
382 */
383 if (throtl_slice_used(td, tg, rw))
384 return;
385
386 /*
387 * A bio has been dispatched. Also adjust slice_end. It might happen
388 * that initially cgroup limit was very low resulting in high
389 * slice_end, but later limit was bumped up and bio was dispached
390 * sooner, then we need to reduce slice_end. A high bogus slice_end
391 * is bad because it does not allow new slice to start.
392 */
393
394 throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);
395
396 time_elapsed = jiffies - tg->slice_start[rw];
397
398 nr_slices = time_elapsed / throtl_slice;
399
400 if (!nr_slices)
401 return;
402 tmp = tg->bps[rw] * throtl_slice * nr_slices;
403 do_div(tmp, HZ);
404 bytes_trim = tmp;
405
406 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
407
408 if (!bytes_trim && !io_trim)
409 return;
410
411 if (tg->bytes_disp[rw] >= bytes_trim)
412 tg->bytes_disp[rw] -= bytes_trim;
413 else
414 tg->bytes_disp[rw] = 0;
415
416 if (tg->io_disp[rw] >= io_trim)
417 tg->io_disp[rw] -= io_trim;
418 else
419 tg->io_disp[rw] = 0;
420
421 tg->slice_start[rw] += nr_slices * throtl_slice;
422
423 throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
424 " start=%lu end=%lu jiffies=%lu",
425 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
426 tg->slice_start[rw], tg->slice_end[rw], jiffies);
427 }
428
429 static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
430 struct bio *bio, unsigned long *wait)
431 {
432 bool rw = bio_data_dir(bio);
433 unsigned int io_allowed;
434 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
435 u64 tmp;
436
437 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
438
439 /* Slice has just started. Consider one slice interval */
440 if (!jiffy_elapsed)
441 jiffy_elapsed_rnd = throtl_slice;
442
443 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
444
445 /*
446 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
447 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
448 * will allow dispatch after 1 second and after that slice should
449 * have been trimmed.
450 */
451
452 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
453 do_div(tmp, HZ);
454
455 if (tmp > UINT_MAX)
456 io_allowed = UINT_MAX;
457 else
458 io_allowed = tmp;
459
460 if (tg->io_disp[rw] + 1 <= io_allowed) {
461 if (wait)
462 *wait = 0;
463 return 1;
464 }
465
466 /* Calc approx time to dispatch */
467 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
468
469 if (jiffy_wait > jiffy_elapsed)
470 jiffy_wait = jiffy_wait - jiffy_elapsed;
471 else
472 jiffy_wait = 1;
473
474 if (wait)
475 *wait = jiffy_wait;
476 return 0;
477 }
478
479 static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
480 struct bio *bio, unsigned long *wait)
481 {
482 bool rw = bio_data_dir(bio);
483 u64 bytes_allowed, extra_bytes, tmp;
484 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
485
486 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
487
488 /* Slice has just started. Consider one slice interval */
489 if (!jiffy_elapsed)
490 jiffy_elapsed_rnd = throtl_slice;
491
492 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
493
494 tmp = tg->bps[rw] * jiffy_elapsed_rnd;
495 do_div(tmp, HZ);
496 bytes_allowed = tmp;
497
498 if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
499 if (wait)
500 *wait = 0;
501 return 1;
502 }
503
504 /* Calc approx time to dispatch */
505 extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
506 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
507
508 if (!jiffy_wait)
509 jiffy_wait = 1;
510
511 /*
512 * This wait time is without taking into consideration the rounding
513 * up we did. Add that time also.
514 */
515 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
516 if (wait)
517 *wait = jiffy_wait;
518 return 0;
519 }
520
521 static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
522 if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
523 return 1;
524 return 0;
525 }
526
527 /*
528 * Returns whether one can dispatch a bio or not. Also returns approx number
529 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
530 */
531 static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
532 struct bio *bio, unsigned long *wait)
533 {
534 bool rw = bio_data_dir(bio);
535 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
536
537 /*
538 * Currently whole state machine of group depends on first bio
539 * queued in the group bio list. So one should not be calling
540 * this function with a different bio if there are other bios
541 * queued.
542 */
543 BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
544
545 /* If tg->bps = -1, then BW is unlimited */
546 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
547 if (wait)
548 *wait = 0;
549 return 1;
550 }
551
552 /*
553 * If previous slice expired, start a new one otherwise renew/extend
554 * existing slice to make sure it is at least throtl_slice interval
555 * long since now.
556 */
557 if (throtl_slice_used(td, tg, rw))
558 throtl_start_new_slice(td, tg, rw);
559 else {
560 if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
561 throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
562 }
563
564 if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
565 && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
566 if (wait)
567 *wait = 0;
568 return 1;
569 }
570
571 max_wait = max(bps_wait, iops_wait);
572
573 if (wait)
574 *wait = max_wait;
575
576 if (time_before(tg->slice_end[rw], jiffies + max_wait))
577 throtl_extend_slice(td, tg, rw, jiffies + max_wait);
578
579 return 0;
580 }
581
582 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
583 {
584 bool rw = bio_data_dir(bio);
585 bool sync = rw_is_sync(bio->bi_rw);
586
587 /* Charge the bio to the group */
588 tg->bytes_disp[rw] += bio->bi_size;
589 tg->io_disp[rw]++;
590
591 blkiocg_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size, rw, sync);
592 }
593
594 static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
595 struct bio *bio)
596 {
597 bool rw = bio_data_dir(bio);
598
599 bio_list_add(&tg->bio_lists[rw], bio);
600 /* Take a bio reference on tg */
601 blkg_get(tg_to_blkg(tg));
602 tg->nr_queued[rw]++;
603 td->nr_queued[rw]++;
604 throtl_enqueue_tg(td, tg);
605 }
606
607 static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
608 {
609 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
610 struct bio *bio;
611
612 if ((bio = bio_list_peek(&tg->bio_lists[READ])))
613 tg_may_dispatch(td, tg, bio, &read_wait);
614
615 if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
616 tg_may_dispatch(td, tg, bio, &write_wait);
617
618 min_wait = min(read_wait, write_wait);
619 disptime = jiffies + min_wait;
620
621 /* Update dispatch time */
622 throtl_dequeue_tg(td, tg);
623 tg->disptime = disptime;
624 throtl_enqueue_tg(td, tg);
625 }
626
627 static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
628 bool rw, struct bio_list *bl)
629 {
630 struct bio *bio;
631
632 bio = bio_list_pop(&tg->bio_lists[rw]);
633 tg->nr_queued[rw]--;
634 /* Drop bio reference on blkg */
635 blkg_put(tg_to_blkg(tg));
636
637 BUG_ON(td->nr_queued[rw] <= 0);
638 td->nr_queued[rw]--;
639
640 throtl_charge_bio(tg, bio);
641 bio_list_add(bl, bio);
642 bio->bi_rw |= REQ_THROTTLED;
643
644 throtl_trim_slice(td, tg, rw);
645 }
646
647 static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
648 struct bio_list *bl)
649 {
650 unsigned int nr_reads = 0, nr_writes = 0;
651 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
652 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
653 struct bio *bio;
654
655 /* Try to dispatch 75% READS and 25% WRITES */
656
657 while ((bio = bio_list_peek(&tg->bio_lists[READ]))
658 && tg_may_dispatch(td, tg, bio, NULL)) {
659
660 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
661 nr_reads++;
662
663 if (nr_reads >= max_nr_reads)
664 break;
665 }
666
667 while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
668 && tg_may_dispatch(td, tg, bio, NULL)) {
669
670 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
671 nr_writes++;
672
673 if (nr_writes >= max_nr_writes)
674 break;
675 }
676
677 return nr_reads + nr_writes;
678 }
679
680 static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
681 {
682 unsigned int nr_disp = 0;
683 struct throtl_grp *tg;
684 struct throtl_rb_root *st = &td->tg_service_tree;
685
686 while (1) {
687 tg = throtl_rb_first(st);
688
689 if (!tg)
690 break;
691
692 if (time_before(jiffies, tg->disptime))
693 break;
694
695 throtl_dequeue_tg(td, tg);
696
697 nr_disp += throtl_dispatch_tg(td, tg, bl);
698
699 if (tg->nr_queued[0] || tg->nr_queued[1]) {
700 tg_update_disptime(td, tg);
701 throtl_enqueue_tg(td, tg);
702 }
703
704 if (nr_disp >= throtl_quantum)
705 break;
706 }
707
708 return nr_disp;
709 }
710
711 static void throtl_process_limit_change(struct throtl_data *td)
712 {
713 struct throtl_grp *tg;
714 struct hlist_node *pos, *n;
715
716 if (!td->limits_changed)
717 return;
718
719 xchg(&td->limits_changed, false);
720
721 throtl_log(td, "limits changed");
722
723 hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
724 if (!tg->limits_changed)
725 continue;
726
727 if (!xchg(&tg->limits_changed, false))
728 continue;
729
730 throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu"
731 " riops=%u wiops=%u", tg->bps[READ], tg->bps[WRITE],
732 tg->iops[READ], tg->iops[WRITE]);
733
734 /*
735 * Restart the slices for both READ and WRITES. It
736 * might happen that a group's limit are dropped
737 * suddenly and we don't want to account recently
738 * dispatched IO with new low rate
739 */
740 throtl_start_new_slice(td, tg, 0);
741 throtl_start_new_slice(td, tg, 1);
742
743 if (throtl_tg_on_rr(tg))
744 tg_update_disptime(td, tg);
745 }
746 }
747
748 /* Dispatch throttled bios. Should be called without queue lock held. */
749 static int throtl_dispatch(struct request_queue *q)
750 {
751 struct throtl_data *td = q->td;
752 unsigned int nr_disp = 0;
753 struct bio_list bio_list_on_stack;
754 struct bio *bio;
755 struct blk_plug plug;
756
757 spin_lock_irq(q->queue_lock);
758
759 throtl_process_limit_change(td);
760
761 if (!total_nr_queued(td))
762 goto out;
763
764 bio_list_init(&bio_list_on_stack);
765
766 throtl_log(td, "dispatch nr_queued=%u read=%u write=%u",
767 total_nr_queued(td), td->nr_queued[READ],
768 td->nr_queued[WRITE]);
769
770 nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);
771
772 if (nr_disp)
773 throtl_log(td, "bios disp=%u", nr_disp);
774
775 throtl_schedule_next_dispatch(td);
776 out:
777 spin_unlock_irq(q->queue_lock);
778
779 /*
780 * If we dispatched some requests, unplug the queue to make sure
781 * immediate dispatch
782 */
783 if (nr_disp) {
784 blk_start_plug(&plug);
785 while((bio = bio_list_pop(&bio_list_on_stack)))
786 generic_make_request(bio);
787 blk_finish_plug(&plug);
788 }
789 return nr_disp;
790 }
791
792 void blk_throtl_work(struct work_struct *work)
793 {
794 struct throtl_data *td = container_of(work, struct throtl_data,
795 throtl_work.work);
796 struct request_queue *q = td->queue;
797
798 throtl_dispatch(q);
799 }
800
801 /* Call with queue lock held */
802 static void
803 throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay)
804 {
805
806 struct delayed_work *dwork = &td->throtl_work;
807
808 /* schedule work if limits changed even if no bio is queued */
809 if (total_nr_queued(td) || td->limits_changed) {
810 /*
811 * We might have a work scheduled to be executed in future.
812 * Cancel that and schedule a new one.
813 */
814 __cancel_delayed_work(dwork);
815 queue_delayed_work(kthrotld_workqueue, dwork, delay);
816 throtl_log(td, "schedule work. delay=%lu jiffies=%lu",
817 delay, jiffies);
818 }
819 }
820
821 static void
822 throtl_destroy_tg(struct throtl_data *td, struct throtl_grp *tg)
823 {
824 /* Something wrong if we are trying to remove same group twice */
825 BUG_ON(hlist_unhashed(&tg->tg_node));
826
827 hlist_del_init(&tg->tg_node);
828
829 /*
830 * Put the reference taken at the time of creation so that when all
831 * queues are gone, group can be destroyed.
832 */
833 blkg_put(tg_to_blkg(tg));
834 td->nr_undestroyed_grps--;
835 }
836
837 static bool throtl_release_tgs(struct throtl_data *td, bool release_root)
838 {
839 struct hlist_node *pos, *n;
840 struct throtl_grp *tg;
841 bool empty = true;
842
843 hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
844 /* skip root? */
845 if (!release_root && tg == td->root_tg)
846 continue;
847
848 /*
849 * If cgroup removal path got to blk_group first and removed
850 * it from cgroup list, then it will take care of destroying
851 * cfqg also.
852 */
853 if (!blkiocg_del_blkio_group(tg_to_blkg(tg)))
854 throtl_destroy_tg(td, tg);
855 else
856 empty = false;
857 }
858 return empty;
859 }
860
861 /*
862 * Blk cgroup controller notification saying that blkio_group object is being
863 * delinked as associated cgroup object is going away. That also means that
864 * no new IO will come in this group. So get rid of this group as soon as
865 * any pending IO in the group is finished.
866 *
867 * This function is called under rcu_read_lock(). @q is the rcu protected
868 * pointer. That means @q is a valid request_queue pointer as long as we
869 * are rcu read lock.
870 *
871 * @q was fetched from blkio_group under blkio_cgroup->lock. That means
872 * it should not be NULL as even if queue was going away, cgroup deltion
873 * path got to it first.
874 */
875 void throtl_unlink_blkio_group(struct request_queue *q,
876 struct blkio_group *blkg)
877 {
878 unsigned long flags;
879
880 spin_lock_irqsave(q->queue_lock, flags);
881 throtl_destroy_tg(q->td, blkg_to_tg(blkg));
882 spin_unlock_irqrestore(q->queue_lock, flags);
883 }
884
885 static bool throtl_clear_queue(struct request_queue *q)
886 {
887 lockdep_assert_held(q->queue_lock);
888
889 /*
890 * Clear tgs but leave the root one alone. This is necessary
891 * because root_tg is expected to be persistent and safe because
892 * blk-throtl can never be disabled while @q is alive. This is a
893 * kludge to prepare for unified blkg. This whole function will be
894 * removed soon.
895 */
896 return throtl_release_tgs(q->td, false);
897 }
898
899 static void throtl_update_blkio_group_common(struct throtl_data *td,
900 struct throtl_grp *tg)
901 {
902 xchg(&tg->limits_changed, true);
903 xchg(&td->limits_changed, true);
904 /* Schedule a work now to process the limit change */
905 throtl_schedule_delayed_work(td, 0);
906 }
907
908 /*
909 * For all update functions, @q should be a valid pointer because these
910 * update functions are called under blkcg_lock, that means, blkg is
911 * valid and in turn @q is valid. queue exit path can not race because
912 * of blkcg_lock
913 *
914 * Can not take queue lock in update functions as queue lock under blkcg_lock
915 * is not allowed. Under other paths we take blkcg_lock under queue_lock.
916 */
917 static void throtl_update_blkio_group_read_bps(struct request_queue *q,
918 struct blkio_group *blkg, u64 read_bps)
919 {
920 struct throtl_grp *tg = blkg_to_tg(blkg);
921
922 tg->bps[READ] = read_bps;
923 throtl_update_blkio_group_common(q->td, tg);
924 }
925
926 static void throtl_update_blkio_group_write_bps(struct request_queue *q,
927 struct blkio_group *blkg, u64 write_bps)
928 {
929 struct throtl_grp *tg = blkg_to_tg(blkg);
930
931 tg->bps[WRITE] = write_bps;
932 throtl_update_blkio_group_common(q->td, tg);
933 }
934
935 static void throtl_update_blkio_group_read_iops(struct request_queue *q,
936 struct blkio_group *blkg, unsigned int read_iops)
937 {
938 struct throtl_grp *tg = blkg_to_tg(blkg);
939
940 tg->iops[READ] = read_iops;
941 throtl_update_blkio_group_common(q->td, tg);
942 }
943
944 static void throtl_update_blkio_group_write_iops(struct request_queue *q,
945 struct blkio_group *blkg, unsigned int write_iops)
946 {
947 struct throtl_grp *tg = blkg_to_tg(blkg);
948
949 tg->iops[WRITE] = write_iops;
950 throtl_update_blkio_group_common(q->td, tg);
951 }
952
953 static void throtl_shutdown_wq(struct request_queue *q)
954 {
955 struct throtl_data *td = q->td;
956
957 cancel_delayed_work_sync(&td->throtl_work);
958 }
959
960 static struct blkio_policy_type blkio_policy_throtl = {
961 .ops = {
962 .blkio_init_group_fn = throtl_init_blkio_group,
963 .blkio_link_group_fn = throtl_link_blkio_group,
964 .blkio_unlink_group_fn = throtl_unlink_blkio_group,
965 .blkio_clear_queue_fn = throtl_clear_queue,
966 .blkio_update_group_read_bps_fn =
967 throtl_update_blkio_group_read_bps,
968 .blkio_update_group_write_bps_fn =
969 throtl_update_blkio_group_write_bps,
970 .blkio_update_group_read_iops_fn =
971 throtl_update_blkio_group_read_iops,
972 .blkio_update_group_write_iops_fn =
973 throtl_update_blkio_group_write_iops,
974 },
975 .plid = BLKIO_POLICY_THROTL,
976 .pdata_size = sizeof(struct throtl_grp),
977 };
978
979 bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
980 {
981 struct throtl_data *td = q->td;
982 struct throtl_grp *tg;
983 bool rw = bio_data_dir(bio), update_disptime = true;
984 struct blkio_cgroup *blkcg;
985 bool throttled = false;
986
987 if (bio->bi_rw & REQ_THROTTLED) {
988 bio->bi_rw &= ~REQ_THROTTLED;
989 goto out;
990 }
991
992 /*
993 * A throtl_grp pointer retrieved under rcu can be used to access
994 * basic fields like stats and io rates. If a group has no rules,
995 * just update the dispatch stats in lockless manner and return.
996 */
997 rcu_read_lock();
998 blkcg = task_blkio_cgroup(current);
999 tg = throtl_lookup_tg(td, blkcg);
1000 if (tg) {
1001 if (tg_no_rule_group(tg, rw)) {
1002 blkiocg_update_dispatch_stats(tg_to_blkg(tg),
1003 bio->bi_size, rw,
1004 rw_is_sync(bio->bi_rw));
1005 goto out_unlock_rcu;
1006 }
1007 }
1008
1009 /*
1010 * Either group has not been allocated yet or it is not an unlimited
1011 * IO group
1012 */
1013 spin_lock_irq(q->queue_lock);
1014 tg = throtl_lookup_create_tg(td, blkcg);
1015 if (unlikely(!tg))
1016 goto out_unlock;
1017
1018 if (tg->nr_queued[rw]) {
1019 /*
1020 * There is already another bio queued in same dir. No
1021 * need to update dispatch time.
1022 */
1023 update_disptime = false;
1024 goto queue_bio;
1025
1026 }
1027
1028 /* Bio is with-in rate limit of group */
1029 if (tg_may_dispatch(td, tg, bio, NULL)) {
1030 throtl_charge_bio(tg, bio);
1031
1032 /*
1033 * We need to trim slice even when bios are not being queued
1034 * otherwise it might happen that a bio is not queued for
1035 * a long time and slice keeps on extending and trim is not
1036 * called for a long time. Now if limits are reduced suddenly
1037 * we take into account all the IO dispatched so far at new
1038 * low rate and * newly queued IO gets a really long dispatch
1039 * time.
1040 *
1041 * So keep on trimming slice even if bio is not queued.
1042 */
1043 throtl_trim_slice(td, tg, rw);
1044 goto out_unlock;
1045 }
1046
1047 queue_bio:
1048 throtl_log_tg(td, tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu"
1049 " iodisp=%u iops=%u queued=%d/%d",
1050 rw == READ ? 'R' : 'W',
1051 tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1052 tg->io_disp[rw], tg->iops[rw],
1053 tg->nr_queued[READ], tg->nr_queued[WRITE]);
1054
1055 throtl_add_bio_tg(q->td, tg, bio);
1056 throttled = true;
1057
1058 if (update_disptime) {
1059 tg_update_disptime(td, tg);
1060 throtl_schedule_next_dispatch(td);
1061 }
1062
1063 out_unlock:
1064 spin_unlock_irq(q->queue_lock);
1065 out_unlock_rcu:
1066 rcu_read_unlock();
1067 out:
1068 return throttled;
1069 }
1070
1071 /**
1072 * blk_throtl_drain - drain throttled bios
1073 * @q: request_queue to drain throttled bios for
1074 *
1075 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1076 */
1077 void blk_throtl_drain(struct request_queue *q)
1078 __releases(q->queue_lock) __acquires(q->queue_lock)
1079 {
1080 struct throtl_data *td = q->td;
1081 struct throtl_rb_root *st = &td->tg_service_tree;
1082 struct throtl_grp *tg;
1083 struct bio_list bl;
1084 struct bio *bio;
1085
1086 WARN_ON_ONCE(!queue_is_locked(q));
1087
1088 bio_list_init(&bl);
1089
1090 while ((tg = throtl_rb_first(st))) {
1091 throtl_dequeue_tg(td, tg);
1092
1093 while ((bio = bio_list_peek(&tg->bio_lists[READ])))
1094 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
1095 while ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
1096 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
1097 }
1098 spin_unlock_irq(q->queue_lock);
1099
1100 while ((bio = bio_list_pop(&bl)))
1101 generic_make_request(bio);
1102
1103 spin_lock_irq(q->queue_lock);
1104 }
1105
1106 int blk_throtl_init(struct request_queue *q)
1107 {
1108 struct throtl_data *td;
1109 struct blkio_group *blkg;
1110
1111 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1112 if (!td)
1113 return -ENOMEM;
1114
1115 INIT_HLIST_HEAD(&td->tg_list);
1116 td->tg_service_tree = THROTL_RB_ROOT;
1117 td->limits_changed = false;
1118 INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work);
1119
1120 q->td = td;
1121 td->queue = q;
1122
1123 /* alloc and init root group. */
1124 rcu_read_lock();
1125 spin_lock_irq(q->queue_lock);
1126
1127 blkg = blkg_lookup_create(&blkio_root_cgroup, q, BLKIO_POLICY_THROTL,
1128 true);
1129 if (!IS_ERR(blkg))
1130 td->root_tg = blkg_to_tg(blkg);
1131
1132 spin_unlock_irq(q->queue_lock);
1133 rcu_read_unlock();
1134
1135 if (!td->root_tg) {
1136 kfree(td);
1137 return -ENOMEM;
1138 }
1139 return 0;
1140 }
1141
1142 void blk_throtl_exit(struct request_queue *q)
1143 {
1144 struct throtl_data *td = q->td;
1145 bool wait = false;
1146
1147 BUG_ON(!td);
1148
1149 throtl_shutdown_wq(q);
1150
1151 spin_lock_irq(q->queue_lock);
1152 throtl_release_tgs(td, true);
1153
1154 /* If there are other groups */
1155 if (td->nr_undestroyed_grps > 0)
1156 wait = true;
1157
1158 spin_unlock_irq(q->queue_lock);
1159
1160 /*
1161 * Wait for tg_to_blkg(tg)->q accessors to exit their grace periods.
1162 * Do this wait only if there are other undestroyed groups out
1163 * there (other than root group). This can happen if cgroup deletion
1164 * path claimed the responsibility of cleaning up a group before
1165 * queue cleanup code get to the group.
1166 *
1167 * Do not call synchronize_rcu() unconditionally as there are drivers
1168 * which create/delete request queue hundreds of times during scan/boot
1169 * and synchronize_rcu() can take significant time and slow down boot.
1170 */
1171 if (wait)
1172 synchronize_rcu();
1173
1174 /*
1175 * Just being safe to make sure after previous flush if some body did
1176 * update limits through cgroup and another work got queued, cancel
1177 * it.
1178 */
1179 throtl_shutdown_wq(q);
1180
1181 kfree(q->td);
1182 }
1183
1184 static int __init throtl_init(void)
1185 {
1186 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1187 if (!kthrotld_workqueue)
1188 panic("Failed to create kthrotld\n");
1189
1190 blkio_policy_register(&blkio_policy_throtl);
1191 return 0;
1192 }
1193
1194 module_init(throtl_init);