]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-throttle.c
blk-throttle: Free up a group only after one rcu grace period
[mirror_ubuntu-artful-kernel.git] / block / blk-throttle.c
1 /*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include "blk-cgroup.h"
13
14 /* Max dispatch from a group in 1 round */
15 static int throtl_grp_quantum = 8;
16
17 /* Total max dispatch from all groups in one round */
18 static int throtl_quantum = 32;
19
20 /* Throttling is performed over 100ms slice and after that slice is renewed */
21 static unsigned long throtl_slice = HZ/10; /* 100 ms */
22
23 /* A workqueue to queue throttle related work */
24 static struct workqueue_struct *kthrotld_workqueue;
25 static void throtl_schedule_delayed_work(struct throtl_data *td,
26 unsigned long delay);
27
28 struct throtl_rb_root {
29 struct rb_root rb;
30 struct rb_node *left;
31 unsigned int count;
32 unsigned long min_disptime;
33 };
34
35 #define THROTL_RB_ROOT (struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
36 .count = 0, .min_disptime = 0}
37
38 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
39
40 struct throtl_grp {
41 /* List of throtl groups on the request queue*/
42 struct hlist_node tg_node;
43
44 /* active throtl group service_tree member */
45 struct rb_node rb_node;
46
47 /*
48 * Dispatch time in jiffies. This is the estimated time when group
49 * will unthrottle and is ready to dispatch more bio. It is used as
50 * key to sort active groups in service tree.
51 */
52 unsigned long disptime;
53
54 struct blkio_group blkg;
55 atomic_t ref;
56 unsigned int flags;
57
58 /* Two lists for READ and WRITE */
59 struct bio_list bio_lists[2];
60
61 /* Number of queued bios on READ and WRITE lists */
62 unsigned int nr_queued[2];
63
64 /* bytes per second rate limits */
65 uint64_t bps[2];
66
67 /* IOPS limits */
68 unsigned int iops[2];
69
70 /* Number of bytes disptached in current slice */
71 uint64_t bytes_disp[2];
72 /* Number of bio's dispatched in current slice */
73 unsigned int io_disp[2];
74
75 /* When did we start a new slice */
76 unsigned long slice_start[2];
77 unsigned long slice_end[2];
78
79 /* Some throttle limits got updated for the group */
80 int limits_changed;
81
82 struct rcu_head rcu_head;
83 };
84
85 struct throtl_data
86 {
87 /* List of throtl groups */
88 struct hlist_head tg_list;
89
90 /* service tree for active throtl groups */
91 struct throtl_rb_root tg_service_tree;
92
93 struct throtl_grp *root_tg;
94 struct request_queue *queue;
95
96 /* Total Number of queued bios on READ and WRITE lists */
97 unsigned int nr_queued[2];
98
99 /*
100 * number of total undestroyed groups
101 */
102 unsigned int nr_undestroyed_grps;
103
104 /* Work for dispatching throttled bios */
105 struct delayed_work throtl_work;
106
107 int limits_changed;
108 };
109
110 enum tg_state_flags {
111 THROTL_TG_FLAG_on_rr = 0, /* on round-robin busy list */
112 };
113
114 #define THROTL_TG_FNS(name) \
115 static inline void throtl_mark_tg_##name(struct throtl_grp *tg) \
116 { \
117 (tg)->flags |= (1 << THROTL_TG_FLAG_##name); \
118 } \
119 static inline void throtl_clear_tg_##name(struct throtl_grp *tg) \
120 { \
121 (tg)->flags &= ~(1 << THROTL_TG_FLAG_##name); \
122 } \
123 static inline int throtl_tg_##name(const struct throtl_grp *tg) \
124 { \
125 return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0; \
126 }
127
128 THROTL_TG_FNS(on_rr);
129
130 #define throtl_log_tg(td, tg, fmt, args...) \
131 blk_add_trace_msg((td)->queue, "throtl %s " fmt, \
132 blkg_path(&(tg)->blkg), ##args); \
133
134 #define throtl_log(td, fmt, args...) \
135 blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)
136
137 static inline struct throtl_grp *tg_of_blkg(struct blkio_group *blkg)
138 {
139 if (blkg)
140 return container_of(blkg, struct throtl_grp, blkg);
141
142 return NULL;
143 }
144
145 static inline int total_nr_queued(struct throtl_data *td)
146 {
147 return (td->nr_queued[0] + td->nr_queued[1]);
148 }
149
150 static inline struct throtl_grp *throtl_ref_get_tg(struct throtl_grp *tg)
151 {
152 atomic_inc(&tg->ref);
153 return tg;
154 }
155
156 static void throtl_free_tg(struct rcu_head *head)
157 {
158 struct throtl_grp *tg;
159
160 tg = container_of(head, struct throtl_grp, rcu_head);
161 kfree(tg);
162 }
163
164 static void throtl_put_tg(struct throtl_grp *tg)
165 {
166 BUG_ON(atomic_read(&tg->ref) <= 0);
167 if (!atomic_dec_and_test(&tg->ref))
168 return;
169
170 /*
171 * A group is freed in rcu manner. But having an rcu lock does not
172 * mean that one can access all the fields of blkg and assume these
173 * are valid. For example, don't try to follow throtl_data and
174 * request queue links.
175 *
176 * Having a reference to blkg under an rcu allows acess to only
177 * values local to groups like group stats and group rate limits
178 */
179 call_rcu(&tg->rcu_head, throtl_free_tg);
180 }
181
182 static void throtl_init_group(struct throtl_grp *tg)
183 {
184 INIT_HLIST_NODE(&tg->tg_node);
185 RB_CLEAR_NODE(&tg->rb_node);
186 bio_list_init(&tg->bio_lists[0]);
187 bio_list_init(&tg->bio_lists[1]);
188 tg->limits_changed = false;
189
190 /* Practically unlimited BW */
191 tg->bps[0] = tg->bps[1] = -1;
192 tg->iops[0] = tg->iops[1] = -1;
193
194 /*
195 * Take the initial reference that will be released on destroy
196 * This can be thought of a joint reference by cgroup and
197 * request queue which will be dropped by either request queue
198 * exit or cgroup deletion path depending on who is exiting first.
199 */
200 atomic_set(&tg->ref, 1);
201 }
202
203 /* Should be called with rcu read lock held (needed for blkcg) */
204 static void
205 throtl_add_group_to_td_list(struct throtl_data *td, struct throtl_grp *tg)
206 {
207 hlist_add_head(&tg->tg_node, &td->tg_list);
208 td->nr_undestroyed_grps++;
209 }
210
211 static void
212 __throtl_tg_fill_dev_details(struct throtl_data *td, struct throtl_grp *tg)
213 {
214 struct backing_dev_info *bdi = &td->queue->backing_dev_info;
215 unsigned int major, minor;
216
217 if (!tg || tg->blkg.dev)
218 return;
219
220 /*
221 * Fill in device details for a group which might not have been
222 * filled at group creation time as queue was being instantiated
223 * and driver had not attached a device yet
224 */
225 if (bdi->dev && dev_name(bdi->dev)) {
226 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
227 tg->blkg.dev = MKDEV(major, minor);
228 }
229 }
230
231 static void throtl_init_add_tg_lists(struct throtl_data *td,
232 struct throtl_grp *tg, struct blkio_cgroup *blkcg)
233 {
234 __throtl_tg_fill_dev_details(td, tg);
235
236 /* Add group onto cgroup list */
237 blkiocg_add_blkio_group(blkcg, &tg->blkg, (void *)td,
238 tg->blkg.dev, BLKIO_POLICY_THROTL);
239
240 tg->bps[READ] = blkcg_get_read_bps(blkcg, tg->blkg.dev);
241 tg->bps[WRITE] = blkcg_get_write_bps(blkcg, tg->blkg.dev);
242 tg->iops[READ] = blkcg_get_read_iops(blkcg, tg->blkg.dev);
243 tg->iops[WRITE] = blkcg_get_write_iops(blkcg, tg->blkg.dev);
244
245 throtl_add_group_to_td_list(td, tg);
246 }
247
248 /* Should be called without queue lock and outside of rcu period */
249 static struct throtl_grp *throtl_alloc_tg(struct throtl_data *td)
250 {
251 struct throtl_grp *tg = NULL;
252
253 tg = kzalloc_node(sizeof(*tg), GFP_ATOMIC, td->queue->node);
254 if (!tg)
255 return NULL;
256
257 throtl_init_group(tg);
258 return tg;
259 }
260
261 static struct
262 throtl_grp *throtl_find_tg(struct throtl_data *td, struct blkio_cgroup *blkcg)
263 {
264 struct throtl_grp *tg = NULL;
265 void *key = td;
266
267 /*
268 * This is the common case when there are no blkio cgroups.
269 * Avoid lookup in this case
270 */
271 if (blkcg == &blkio_root_cgroup)
272 tg = td->root_tg;
273 else
274 tg = tg_of_blkg(blkiocg_lookup_group(blkcg, key));
275
276 __throtl_tg_fill_dev_details(td, tg);
277 return tg;
278 }
279
280 /*
281 * This function returns with queue lock unlocked in case of error, like
282 * request queue is no more
283 */
284 static struct throtl_grp * throtl_get_tg(struct throtl_data *td)
285 {
286 struct throtl_grp *tg = NULL, *__tg = NULL;
287 struct blkio_cgroup *blkcg;
288 struct request_queue *q = td->queue;
289
290 rcu_read_lock();
291 blkcg = task_blkio_cgroup(current);
292 tg = throtl_find_tg(td, blkcg);
293 if (tg) {
294 rcu_read_unlock();
295 return tg;
296 }
297
298 /*
299 * Need to allocate a group. Allocation of group also needs allocation
300 * of per cpu stats which in-turn takes a mutex() and can block. Hence
301 * we need to drop rcu lock and queue_lock before we call alloc
302 *
303 * Take the request queue reference to make sure queue does not
304 * go away once we return from allocation.
305 */
306 blk_get_queue(q);
307 rcu_read_unlock();
308 spin_unlock_irq(q->queue_lock);
309
310 tg = throtl_alloc_tg(td);
311 /*
312 * We might have slept in group allocation. Make sure queue is not
313 * dead
314 */
315 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
316 blk_put_queue(q);
317 if (tg)
318 kfree(tg);
319
320 return ERR_PTR(-ENODEV);
321 }
322 blk_put_queue(q);
323
324 /* Group allocated and queue is still alive. take the lock */
325 spin_lock_irq(q->queue_lock);
326
327 /*
328 * Initialize the new group. After sleeping, read the blkcg again.
329 */
330 rcu_read_lock();
331 blkcg = task_blkio_cgroup(current);
332
333 /*
334 * If some other thread already allocated the group while we were
335 * not holding queue lock, free up the group
336 */
337 __tg = throtl_find_tg(td, blkcg);
338
339 if (__tg) {
340 kfree(tg);
341 rcu_read_unlock();
342 return __tg;
343 }
344
345 /* Group allocation failed. Account the IO to root group */
346 if (!tg) {
347 tg = td->root_tg;
348 return tg;
349 }
350
351 throtl_init_add_tg_lists(td, tg, blkcg);
352 rcu_read_unlock();
353 return tg;
354 }
355
356 static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root)
357 {
358 /* Service tree is empty */
359 if (!root->count)
360 return NULL;
361
362 if (!root->left)
363 root->left = rb_first(&root->rb);
364
365 if (root->left)
366 return rb_entry_tg(root->left);
367
368 return NULL;
369 }
370
371 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
372 {
373 rb_erase(n, root);
374 RB_CLEAR_NODE(n);
375 }
376
377 static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root)
378 {
379 if (root->left == n)
380 root->left = NULL;
381 rb_erase_init(n, &root->rb);
382 --root->count;
383 }
384
385 static void update_min_dispatch_time(struct throtl_rb_root *st)
386 {
387 struct throtl_grp *tg;
388
389 tg = throtl_rb_first(st);
390 if (!tg)
391 return;
392
393 st->min_disptime = tg->disptime;
394 }
395
396 static void
397 tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg)
398 {
399 struct rb_node **node = &st->rb.rb_node;
400 struct rb_node *parent = NULL;
401 struct throtl_grp *__tg;
402 unsigned long key = tg->disptime;
403 int left = 1;
404
405 while (*node != NULL) {
406 parent = *node;
407 __tg = rb_entry_tg(parent);
408
409 if (time_before(key, __tg->disptime))
410 node = &parent->rb_left;
411 else {
412 node = &parent->rb_right;
413 left = 0;
414 }
415 }
416
417 if (left)
418 st->left = &tg->rb_node;
419
420 rb_link_node(&tg->rb_node, parent, node);
421 rb_insert_color(&tg->rb_node, &st->rb);
422 }
423
424 static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
425 {
426 struct throtl_rb_root *st = &td->tg_service_tree;
427
428 tg_service_tree_add(st, tg);
429 throtl_mark_tg_on_rr(tg);
430 st->count++;
431 }
432
433 static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
434 {
435 if (!throtl_tg_on_rr(tg))
436 __throtl_enqueue_tg(td, tg);
437 }
438
439 static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
440 {
441 throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);
442 throtl_clear_tg_on_rr(tg);
443 }
444
445 static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
446 {
447 if (throtl_tg_on_rr(tg))
448 __throtl_dequeue_tg(td, tg);
449 }
450
451 static void throtl_schedule_next_dispatch(struct throtl_data *td)
452 {
453 struct throtl_rb_root *st = &td->tg_service_tree;
454
455 /*
456 * If there are more bios pending, schedule more work.
457 */
458 if (!total_nr_queued(td))
459 return;
460
461 BUG_ON(!st->count);
462
463 update_min_dispatch_time(st);
464
465 if (time_before_eq(st->min_disptime, jiffies))
466 throtl_schedule_delayed_work(td, 0);
467 else
468 throtl_schedule_delayed_work(td, (st->min_disptime - jiffies));
469 }
470
471 static inline void
472 throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
473 {
474 tg->bytes_disp[rw] = 0;
475 tg->io_disp[rw] = 0;
476 tg->slice_start[rw] = jiffies;
477 tg->slice_end[rw] = jiffies + throtl_slice;
478 throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
479 rw == READ ? 'R' : 'W', tg->slice_start[rw],
480 tg->slice_end[rw], jiffies);
481 }
482
483 static inline void throtl_set_slice_end(struct throtl_data *td,
484 struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
485 {
486 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
487 }
488
489 static inline void throtl_extend_slice(struct throtl_data *td,
490 struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
491 {
492 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
493 throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
494 rw == READ ? 'R' : 'W', tg->slice_start[rw],
495 tg->slice_end[rw], jiffies);
496 }
497
498 /* Determine if previously allocated or extended slice is complete or not */
499 static bool
500 throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
501 {
502 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
503 return 0;
504
505 return 1;
506 }
507
508 /* Trim the used slices and adjust slice start accordingly */
509 static inline void
510 throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
511 {
512 unsigned long nr_slices, time_elapsed, io_trim;
513 u64 bytes_trim, tmp;
514
515 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
516
517 /*
518 * If bps are unlimited (-1), then time slice don't get
519 * renewed. Don't try to trim the slice if slice is used. A new
520 * slice will start when appropriate.
521 */
522 if (throtl_slice_used(td, tg, rw))
523 return;
524
525 /*
526 * A bio has been dispatched. Also adjust slice_end. It might happen
527 * that initially cgroup limit was very low resulting in high
528 * slice_end, but later limit was bumped up and bio was dispached
529 * sooner, then we need to reduce slice_end. A high bogus slice_end
530 * is bad because it does not allow new slice to start.
531 */
532
533 throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);
534
535 time_elapsed = jiffies - tg->slice_start[rw];
536
537 nr_slices = time_elapsed / throtl_slice;
538
539 if (!nr_slices)
540 return;
541 tmp = tg->bps[rw] * throtl_slice * nr_slices;
542 do_div(tmp, HZ);
543 bytes_trim = tmp;
544
545 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
546
547 if (!bytes_trim && !io_trim)
548 return;
549
550 if (tg->bytes_disp[rw] >= bytes_trim)
551 tg->bytes_disp[rw] -= bytes_trim;
552 else
553 tg->bytes_disp[rw] = 0;
554
555 if (tg->io_disp[rw] >= io_trim)
556 tg->io_disp[rw] -= io_trim;
557 else
558 tg->io_disp[rw] = 0;
559
560 tg->slice_start[rw] += nr_slices * throtl_slice;
561
562 throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
563 " start=%lu end=%lu jiffies=%lu",
564 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
565 tg->slice_start[rw], tg->slice_end[rw], jiffies);
566 }
567
568 static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
569 struct bio *bio, unsigned long *wait)
570 {
571 bool rw = bio_data_dir(bio);
572 unsigned int io_allowed;
573 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
574 u64 tmp;
575
576 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
577
578 /* Slice has just started. Consider one slice interval */
579 if (!jiffy_elapsed)
580 jiffy_elapsed_rnd = throtl_slice;
581
582 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
583
584 /*
585 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
586 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
587 * will allow dispatch after 1 second and after that slice should
588 * have been trimmed.
589 */
590
591 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
592 do_div(tmp, HZ);
593
594 if (tmp > UINT_MAX)
595 io_allowed = UINT_MAX;
596 else
597 io_allowed = tmp;
598
599 if (tg->io_disp[rw] + 1 <= io_allowed) {
600 if (wait)
601 *wait = 0;
602 return 1;
603 }
604
605 /* Calc approx time to dispatch */
606 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
607
608 if (jiffy_wait > jiffy_elapsed)
609 jiffy_wait = jiffy_wait - jiffy_elapsed;
610 else
611 jiffy_wait = 1;
612
613 if (wait)
614 *wait = jiffy_wait;
615 return 0;
616 }
617
618 static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
619 struct bio *bio, unsigned long *wait)
620 {
621 bool rw = bio_data_dir(bio);
622 u64 bytes_allowed, extra_bytes, tmp;
623 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
624
625 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
626
627 /* Slice has just started. Consider one slice interval */
628 if (!jiffy_elapsed)
629 jiffy_elapsed_rnd = throtl_slice;
630
631 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
632
633 tmp = tg->bps[rw] * jiffy_elapsed_rnd;
634 do_div(tmp, HZ);
635 bytes_allowed = tmp;
636
637 if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
638 if (wait)
639 *wait = 0;
640 return 1;
641 }
642
643 /* Calc approx time to dispatch */
644 extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
645 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
646
647 if (!jiffy_wait)
648 jiffy_wait = 1;
649
650 /*
651 * This wait time is without taking into consideration the rounding
652 * up we did. Add that time also.
653 */
654 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
655 if (wait)
656 *wait = jiffy_wait;
657 return 0;
658 }
659
660 /*
661 * Returns whether one can dispatch a bio or not. Also returns approx number
662 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
663 */
664 static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
665 struct bio *bio, unsigned long *wait)
666 {
667 bool rw = bio_data_dir(bio);
668 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
669
670 /*
671 * Currently whole state machine of group depends on first bio
672 * queued in the group bio list. So one should not be calling
673 * this function with a different bio if there are other bios
674 * queued.
675 */
676 BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
677
678 /* If tg->bps = -1, then BW is unlimited */
679 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
680 if (wait)
681 *wait = 0;
682 return 1;
683 }
684
685 /*
686 * If previous slice expired, start a new one otherwise renew/extend
687 * existing slice to make sure it is at least throtl_slice interval
688 * long since now.
689 */
690 if (throtl_slice_used(td, tg, rw))
691 throtl_start_new_slice(td, tg, rw);
692 else {
693 if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
694 throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
695 }
696
697 if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
698 && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
699 if (wait)
700 *wait = 0;
701 return 1;
702 }
703
704 max_wait = max(bps_wait, iops_wait);
705
706 if (wait)
707 *wait = max_wait;
708
709 if (time_before(tg->slice_end[rw], jiffies + max_wait))
710 throtl_extend_slice(td, tg, rw, jiffies + max_wait);
711
712 return 0;
713 }
714
715 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
716 {
717 bool rw = bio_data_dir(bio);
718 bool sync = bio->bi_rw & REQ_SYNC;
719
720 /* Charge the bio to the group */
721 tg->bytes_disp[rw] += bio->bi_size;
722 tg->io_disp[rw]++;
723
724 /*
725 * TODO: This will take blkg->stats_lock. Figure out a way
726 * to avoid this cost.
727 */
728 blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size, rw, sync);
729 }
730
731 static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
732 struct bio *bio)
733 {
734 bool rw = bio_data_dir(bio);
735
736 bio_list_add(&tg->bio_lists[rw], bio);
737 /* Take a bio reference on tg */
738 throtl_ref_get_tg(tg);
739 tg->nr_queued[rw]++;
740 td->nr_queued[rw]++;
741 throtl_enqueue_tg(td, tg);
742 }
743
744 static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
745 {
746 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
747 struct bio *bio;
748
749 if ((bio = bio_list_peek(&tg->bio_lists[READ])))
750 tg_may_dispatch(td, tg, bio, &read_wait);
751
752 if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
753 tg_may_dispatch(td, tg, bio, &write_wait);
754
755 min_wait = min(read_wait, write_wait);
756 disptime = jiffies + min_wait;
757
758 /* Update dispatch time */
759 throtl_dequeue_tg(td, tg);
760 tg->disptime = disptime;
761 throtl_enqueue_tg(td, tg);
762 }
763
764 static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
765 bool rw, struct bio_list *bl)
766 {
767 struct bio *bio;
768
769 bio = bio_list_pop(&tg->bio_lists[rw]);
770 tg->nr_queued[rw]--;
771 /* Drop bio reference on tg */
772 throtl_put_tg(tg);
773
774 BUG_ON(td->nr_queued[rw] <= 0);
775 td->nr_queued[rw]--;
776
777 throtl_charge_bio(tg, bio);
778 bio_list_add(bl, bio);
779 bio->bi_rw |= REQ_THROTTLED;
780
781 throtl_trim_slice(td, tg, rw);
782 }
783
784 static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
785 struct bio_list *bl)
786 {
787 unsigned int nr_reads = 0, nr_writes = 0;
788 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
789 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
790 struct bio *bio;
791
792 /* Try to dispatch 75% READS and 25% WRITES */
793
794 while ((bio = bio_list_peek(&tg->bio_lists[READ]))
795 && tg_may_dispatch(td, tg, bio, NULL)) {
796
797 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
798 nr_reads++;
799
800 if (nr_reads >= max_nr_reads)
801 break;
802 }
803
804 while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
805 && tg_may_dispatch(td, tg, bio, NULL)) {
806
807 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
808 nr_writes++;
809
810 if (nr_writes >= max_nr_writes)
811 break;
812 }
813
814 return nr_reads + nr_writes;
815 }
816
817 static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
818 {
819 unsigned int nr_disp = 0;
820 struct throtl_grp *tg;
821 struct throtl_rb_root *st = &td->tg_service_tree;
822
823 while (1) {
824 tg = throtl_rb_first(st);
825
826 if (!tg)
827 break;
828
829 if (time_before(jiffies, tg->disptime))
830 break;
831
832 throtl_dequeue_tg(td, tg);
833
834 nr_disp += throtl_dispatch_tg(td, tg, bl);
835
836 if (tg->nr_queued[0] || tg->nr_queued[1]) {
837 tg_update_disptime(td, tg);
838 throtl_enqueue_tg(td, tg);
839 }
840
841 if (nr_disp >= throtl_quantum)
842 break;
843 }
844
845 return nr_disp;
846 }
847
848 static void throtl_process_limit_change(struct throtl_data *td)
849 {
850 struct throtl_grp *tg;
851 struct hlist_node *pos, *n;
852
853 if (!td->limits_changed)
854 return;
855
856 xchg(&td->limits_changed, false);
857
858 throtl_log(td, "limits changed");
859
860 hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
861 if (!tg->limits_changed)
862 continue;
863
864 if (!xchg(&tg->limits_changed, false))
865 continue;
866
867 throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu"
868 " riops=%u wiops=%u", tg->bps[READ], tg->bps[WRITE],
869 tg->iops[READ], tg->iops[WRITE]);
870
871 /*
872 * Restart the slices for both READ and WRITES. It
873 * might happen that a group's limit are dropped
874 * suddenly and we don't want to account recently
875 * dispatched IO with new low rate
876 */
877 throtl_start_new_slice(td, tg, 0);
878 throtl_start_new_slice(td, tg, 1);
879
880 if (throtl_tg_on_rr(tg))
881 tg_update_disptime(td, tg);
882 }
883 }
884
885 /* Dispatch throttled bios. Should be called without queue lock held. */
886 static int throtl_dispatch(struct request_queue *q)
887 {
888 struct throtl_data *td = q->td;
889 unsigned int nr_disp = 0;
890 struct bio_list bio_list_on_stack;
891 struct bio *bio;
892 struct blk_plug plug;
893
894 spin_lock_irq(q->queue_lock);
895
896 throtl_process_limit_change(td);
897
898 if (!total_nr_queued(td))
899 goto out;
900
901 bio_list_init(&bio_list_on_stack);
902
903 throtl_log(td, "dispatch nr_queued=%lu read=%u write=%u",
904 total_nr_queued(td), td->nr_queued[READ],
905 td->nr_queued[WRITE]);
906
907 nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);
908
909 if (nr_disp)
910 throtl_log(td, "bios disp=%u", nr_disp);
911
912 throtl_schedule_next_dispatch(td);
913 out:
914 spin_unlock_irq(q->queue_lock);
915
916 /*
917 * If we dispatched some requests, unplug the queue to make sure
918 * immediate dispatch
919 */
920 if (nr_disp) {
921 blk_start_plug(&plug);
922 while((bio = bio_list_pop(&bio_list_on_stack)))
923 generic_make_request(bio);
924 blk_finish_plug(&plug);
925 }
926 return nr_disp;
927 }
928
929 void blk_throtl_work(struct work_struct *work)
930 {
931 struct throtl_data *td = container_of(work, struct throtl_data,
932 throtl_work.work);
933 struct request_queue *q = td->queue;
934
935 throtl_dispatch(q);
936 }
937
938 /* Call with queue lock held */
939 static void
940 throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay)
941 {
942
943 struct delayed_work *dwork = &td->throtl_work;
944
945 /* schedule work if limits changed even if no bio is queued */
946 if (total_nr_queued(td) > 0 || td->limits_changed) {
947 /*
948 * We might have a work scheduled to be executed in future.
949 * Cancel that and schedule a new one.
950 */
951 __cancel_delayed_work(dwork);
952 queue_delayed_work(kthrotld_workqueue, dwork, delay);
953 throtl_log(td, "schedule work. delay=%lu jiffies=%lu",
954 delay, jiffies);
955 }
956 }
957
958 static void
959 throtl_destroy_tg(struct throtl_data *td, struct throtl_grp *tg)
960 {
961 /* Something wrong if we are trying to remove same group twice */
962 BUG_ON(hlist_unhashed(&tg->tg_node));
963
964 hlist_del_init(&tg->tg_node);
965
966 /*
967 * Put the reference taken at the time of creation so that when all
968 * queues are gone, group can be destroyed.
969 */
970 throtl_put_tg(tg);
971 td->nr_undestroyed_grps--;
972 }
973
974 static void throtl_release_tgs(struct throtl_data *td)
975 {
976 struct hlist_node *pos, *n;
977 struct throtl_grp *tg;
978
979 hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
980 /*
981 * If cgroup removal path got to blk_group first and removed
982 * it from cgroup list, then it will take care of destroying
983 * cfqg also.
984 */
985 if (!blkiocg_del_blkio_group(&tg->blkg))
986 throtl_destroy_tg(td, tg);
987 }
988 }
989
990 static void throtl_td_free(struct throtl_data *td)
991 {
992 kfree(td);
993 }
994
995 /*
996 * Blk cgroup controller notification saying that blkio_group object is being
997 * delinked as associated cgroup object is going away. That also means that
998 * no new IO will come in this group. So get rid of this group as soon as
999 * any pending IO in the group is finished.
1000 *
1001 * This function is called under rcu_read_lock(). key is the rcu protected
1002 * pointer. That means "key" is a valid throtl_data pointer as long as we are
1003 * rcu read lock.
1004 *
1005 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1006 * it should not be NULL as even if queue was going away, cgroup deltion
1007 * path got to it first.
1008 */
1009 void throtl_unlink_blkio_group(void *key, struct blkio_group *blkg)
1010 {
1011 unsigned long flags;
1012 struct throtl_data *td = key;
1013
1014 spin_lock_irqsave(td->queue->queue_lock, flags);
1015 throtl_destroy_tg(td, tg_of_blkg(blkg));
1016 spin_unlock_irqrestore(td->queue->queue_lock, flags);
1017 }
1018
1019 static void throtl_update_blkio_group_common(struct throtl_data *td,
1020 struct throtl_grp *tg)
1021 {
1022 xchg(&tg->limits_changed, true);
1023 xchg(&td->limits_changed, true);
1024 /* Schedule a work now to process the limit change */
1025 throtl_schedule_delayed_work(td, 0);
1026 }
1027
1028 /*
1029 * For all update functions, key should be a valid pointer because these
1030 * update functions are called under blkcg_lock, that means, blkg is
1031 * valid and in turn key is valid. queue exit path can not race because
1032 * of blkcg_lock
1033 *
1034 * Can not take queue lock in update functions as queue lock under blkcg_lock
1035 * is not allowed. Under other paths we take blkcg_lock under queue_lock.
1036 */
1037 static void throtl_update_blkio_group_read_bps(void *key,
1038 struct blkio_group *blkg, u64 read_bps)
1039 {
1040 struct throtl_data *td = key;
1041 struct throtl_grp *tg = tg_of_blkg(blkg);
1042
1043 tg->bps[READ] = read_bps;
1044 throtl_update_blkio_group_common(td, tg);
1045 }
1046
1047 static void throtl_update_blkio_group_write_bps(void *key,
1048 struct blkio_group *blkg, u64 write_bps)
1049 {
1050 struct throtl_data *td = key;
1051 struct throtl_grp *tg = tg_of_blkg(blkg);
1052
1053 tg->bps[WRITE] = write_bps;
1054 throtl_update_blkio_group_common(td, tg);
1055 }
1056
1057 static void throtl_update_blkio_group_read_iops(void *key,
1058 struct blkio_group *blkg, unsigned int read_iops)
1059 {
1060 struct throtl_data *td = key;
1061 struct throtl_grp *tg = tg_of_blkg(blkg);
1062
1063 tg->iops[READ] = read_iops;
1064 throtl_update_blkio_group_common(td, tg);
1065 }
1066
1067 static void throtl_update_blkio_group_write_iops(void *key,
1068 struct blkio_group *blkg, unsigned int write_iops)
1069 {
1070 struct throtl_data *td = key;
1071 struct throtl_grp *tg = tg_of_blkg(blkg);
1072
1073 tg->iops[WRITE] = write_iops;
1074 throtl_update_blkio_group_common(td, tg);
1075 }
1076
1077 static void throtl_shutdown_wq(struct request_queue *q)
1078 {
1079 struct throtl_data *td = q->td;
1080
1081 cancel_delayed_work_sync(&td->throtl_work);
1082 }
1083
1084 static struct blkio_policy_type blkio_policy_throtl = {
1085 .ops = {
1086 .blkio_unlink_group_fn = throtl_unlink_blkio_group,
1087 .blkio_update_group_read_bps_fn =
1088 throtl_update_blkio_group_read_bps,
1089 .blkio_update_group_write_bps_fn =
1090 throtl_update_blkio_group_write_bps,
1091 .blkio_update_group_read_iops_fn =
1092 throtl_update_blkio_group_read_iops,
1093 .blkio_update_group_write_iops_fn =
1094 throtl_update_blkio_group_write_iops,
1095 },
1096 .plid = BLKIO_POLICY_THROTL,
1097 };
1098
1099 int blk_throtl_bio(struct request_queue *q, struct bio **biop)
1100 {
1101 struct throtl_data *td = q->td;
1102 struct throtl_grp *tg;
1103 struct bio *bio = *biop;
1104 bool rw = bio_data_dir(bio), update_disptime = true;
1105
1106 if (bio->bi_rw & REQ_THROTTLED) {
1107 bio->bi_rw &= ~REQ_THROTTLED;
1108 return 0;
1109 }
1110
1111 spin_lock_irq(q->queue_lock);
1112 tg = throtl_get_tg(td);
1113
1114 if (IS_ERR(tg)) {
1115 if (PTR_ERR(tg) == -ENODEV) {
1116 /*
1117 * Queue is gone. No queue lock held here.
1118 */
1119 return -ENODEV;
1120 }
1121 }
1122
1123 if (tg->nr_queued[rw]) {
1124 /*
1125 * There is already another bio queued in same dir. No
1126 * need to update dispatch time.
1127 */
1128 update_disptime = false;
1129 goto queue_bio;
1130
1131 }
1132
1133 /* Bio is with-in rate limit of group */
1134 if (tg_may_dispatch(td, tg, bio, NULL)) {
1135 throtl_charge_bio(tg, bio);
1136
1137 /*
1138 * We need to trim slice even when bios are not being queued
1139 * otherwise it might happen that a bio is not queued for
1140 * a long time and slice keeps on extending and trim is not
1141 * called for a long time. Now if limits are reduced suddenly
1142 * we take into account all the IO dispatched so far at new
1143 * low rate and * newly queued IO gets a really long dispatch
1144 * time.
1145 *
1146 * So keep on trimming slice even if bio is not queued.
1147 */
1148 throtl_trim_slice(td, tg, rw);
1149 goto out;
1150 }
1151
1152 queue_bio:
1153 throtl_log_tg(td, tg, "[%c] bio. bdisp=%u sz=%u bps=%llu"
1154 " iodisp=%u iops=%u queued=%d/%d",
1155 rw == READ ? 'R' : 'W',
1156 tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1157 tg->io_disp[rw], tg->iops[rw],
1158 tg->nr_queued[READ], tg->nr_queued[WRITE]);
1159
1160 throtl_add_bio_tg(q->td, tg, bio);
1161 *biop = NULL;
1162
1163 if (update_disptime) {
1164 tg_update_disptime(td, tg);
1165 throtl_schedule_next_dispatch(td);
1166 }
1167
1168 out:
1169 spin_unlock_irq(q->queue_lock);
1170 return 0;
1171 }
1172
1173 int blk_throtl_init(struct request_queue *q)
1174 {
1175 struct throtl_data *td;
1176 struct throtl_grp *tg;
1177
1178 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1179 if (!td)
1180 return -ENOMEM;
1181
1182 INIT_HLIST_HEAD(&td->tg_list);
1183 td->tg_service_tree = THROTL_RB_ROOT;
1184 td->limits_changed = false;
1185 INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work);
1186
1187 /* alloc and Init root group. */
1188 td->queue = q;
1189 tg = throtl_alloc_tg(td);
1190
1191 if (!tg) {
1192 kfree(td);
1193 return -ENOMEM;
1194 }
1195
1196 td->root_tg = tg;
1197
1198 rcu_read_lock();
1199 throtl_init_add_tg_lists(td, tg, &blkio_root_cgroup);
1200 rcu_read_unlock();
1201
1202 /* Attach throtl data to request queue */
1203 q->td = td;
1204 return 0;
1205 }
1206
1207 void blk_throtl_exit(struct request_queue *q)
1208 {
1209 struct throtl_data *td = q->td;
1210 bool wait = false;
1211
1212 BUG_ON(!td);
1213
1214 throtl_shutdown_wq(q);
1215
1216 spin_lock_irq(q->queue_lock);
1217 throtl_release_tgs(td);
1218
1219 /* If there are other groups */
1220 if (td->nr_undestroyed_grps > 0)
1221 wait = true;
1222
1223 spin_unlock_irq(q->queue_lock);
1224
1225 /*
1226 * Wait for tg->blkg->key accessors to exit their grace periods.
1227 * Do this wait only if there are other undestroyed groups out
1228 * there (other than root group). This can happen if cgroup deletion
1229 * path claimed the responsibility of cleaning up a group before
1230 * queue cleanup code get to the group.
1231 *
1232 * Do not call synchronize_rcu() unconditionally as there are drivers
1233 * which create/delete request queue hundreds of times during scan/boot
1234 * and synchronize_rcu() can take significant time and slow down boot.
1235 */
1236 if (wait)
1237 synchronize_rcu();
1238
1239 /*
1240 * Just being safe to make sure after previous flush if some body did
1241 * update limits through cgroup and another work got queued, cancel
1242 * it.
1243 */
1244 throtl_shutdown_wq(q);
1245 throtl_td_free(td);
1246 }
1247
1248 static int __init throtl_init(void)
1249 {
1250 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1251 if (!kthrotld_workqueue)
1252 panic("Failed to create kthrotld\n");
1253
1254 blkio_policy_register(&blkio_policy_throtl);
1255 return 0;
1256 }
1257
1258 module_init(throtl_init);