]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-throttle.c
e2aaf27e1f106c950bc8d697cef55037db997469
[mirror_ubuntu-artful-kernel.git] / block / blk-throttle.c
1 /*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include "blk-cgroup.h"
13 #include "blk.h"
14
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum = 8;
17
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum = 32;
20
21 /* Throttling is performed over 100ms slice and after that slice is renewed */
22 static unsigned long throtl_slice = HZ/10; /* 100 ms */
23
24 static struct blkio_policy_type blkio_policy_throtl;
25
26 /* A workqueue to queue throttle related work */
27 static struct workqueue_struct *kthrotld_workqueue;
28 static void throtl_schedule_delayed_work(struct throtl_data *td,
29 unsigned long delay);
30
31 struct throtl_rb_root {
32 struct rb_root rb;
33 struct rb_node *left;
34 unsigned int count;
35 unsigned long min_disptime;
36 };
37
38 #define THROTL_RB_ROOT (struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
39 .count = 0, .min_disptime = 0}
40
41 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
42
43 /* Per-cpu group stats */
44 struct tg_stats_cpu {
45 /* total bytes transferred */
46 struct blkg_rwstat service_bytes;
47 /* total IOs serviced, post merge */
48 struct blkg_rwstat serviced;
49 };
50
51 struct throtl_grp {
52 /* active throtl group service_tree member */
53 struct rb_node rb_node;
54
55 /*
56 * Dispatch time in jiffies. This is the estimated time when group
57 * will unthrottle and is ready to dispatch more bio. It is used as
58 * key to sort active groups in service tree.
59 */
60 unsigned long disptime;
61
62 unsigned int flags;
63
64 /* Two lists for READ and WRITE */
65 struct bio_list bio_lists[2];
66
67 /* Number of queued bios on READ and WRITE lists */
68 unsigned int nr_queued[2];
69
70 /* bytes per second rate limits */
71 uint64_t bps[2];
72
73 /* IOPS limits */
74 unsigned int iops[2];
75
76 /* Number of bytes disptached in current slice */
77 uint64_t bytes_disp[2];
78 /* Number of bio's dispatched in current slice */
79 unsigned int io_disp[2];
80
81 /* When did we start a new slice */
82 unsigned long slice_start[2];
83 unsigned long slice_end[2];
84
85 /* Some throttle limits got updated for the group */
86 int limits_changed;
87
88 /* Per cpu stats pointer */
89 struct tg_stats_cpu __percpu *stats_cpu;
90
91 /* List of tgs waiting for per cpu stats memory to be allocated */
92 struct list_head stats_alloc_node;
93 };
94
95 struct throtl_data
96 {
97 /* service tree for active throtl groups */
98 struct throtl_rb_root tg_service_tree;
99
100 struct request_queue *queue;
101
102 /* Total Number of queued bios on READ and WRITE lists */
103 unsigned int nr_queued[2];
104
105 /*
106 * number of total undestroyed groups
107 */
108 unsigned int nr_undestroyed_grps;
109
110 /* Work for dispatching throttled bios */
111 struct delayed_work throtl_work;
112
113 int limits_changed;
114 };
115
116 /* list and work item to allocate percpu group stats */
117 static DEFINE_SPINLOCK(tg_stats_alloc_lock);
118 static LIST_HEAD(tg_stats_alloc_list);
119
120 static void tg_stats_alloc_fn(struct work_struct *);
121 static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);
122
123 static inline struct throtl_grp *blkg_to_tg(struct blkio_group *blkg)
124 {
125 return blkg_to_pdata(blkg, &blkio_policy_throtl);
126 }
127
128 static inline struct blkio_group *tg_to_blkg(struct throtl_grp *tg)
129 {
130 return pdata_to_blkg(tg);
131 }
132
133 static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
134 {
135 return blkg_to_tg(td->queue->root_blkg);
136 }
137
138 enum tg_state_flags {
139 THROTL_TG_FLAG_on_rr = 0, /* on round-robin busy list */
140 };
141
142 #define THROTL_TG_FNS(name) \
143 static inline void throtl_mark_tg_##name(struct throtl_grp *tg) \
144 { \
145 (tg)->flags |= (1 << THROTL_TG_FLAG_##name); \
146 } \
147 static inline void throtl_clear_tg_##name(struct throtl_grp *tg) \
148 { \
149 (tg)->flags &= ~(1 << THROTL_TG_FLAG_##name); \
150 } \
151 static inline int throtl_tg_##name(const struct throtl_grp *tg) \
152 { \
153 return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0; \
154 }
155
156 THROTL_TG_FNS(on_rr);
157
158 #define throtl_log_tg(td, tg, fmt, args...) \
159 blk_add_trace_msg((td)->queue, "throtl %s " fmt, \
160 blkg_path(tg_to_blkg(tg)), ##args); \
161
162 #define throtl_log(td, fmt, args...) \
163 blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)
164
165 static inline unsigned int total_nr_queued(struct throtl_data *td)
166 {
167 return td->nr_queued[0] + td->nr_queued[1];
168 }
169
170 /*
171 * Worker for allocating per cpu stat for tgs. This is scheduled on the
172 * system_nrt_wq once there are some groups on the alloc_list waiting for
173 * allocation.
174 */
175 static void tg_stats_alloc_fn(struct work_struct *work)
176 {
177 static struct tg_stats_cpu *stats_cpu; /* this fn is non-reentrant */
178 struct delayed_work *dwork = to_delayed_work(work);
179 bool empty = false;
180
181 alloc_stats:
182 if (!stats_cpu) {
183 stats_cpu = alloc_percpu(struct tg_stats_cpu);
184 if (!stats_cpu) {
185 /* allocation failed, try again after some time */
186 queue_delayed_work(system_nrt_wq, dwork,
187 msecs_to_jiffies(10));
188 return;
189 }
190 }
191
192 spin_lock_irq(&tg_stats_alloc_lock);
193
194 if (!list_empty(&tg_stats_alloc_list)) {
195 struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
196 struct throtl_grp,
197 stats_alloc_node);
198 swap(tg->stats_cpu, stats_cpu);
199 list_del_init(&tg->stats_alloc_node);
200 }
201
202 empty = list_empty(&tg_stats_alloc_list);
203 spin_unlock_irq(&tg_stats_alloc_lock);
204 if (!empty)
205 goto alloc_stats;
206 }
207
208 static void throtl_init_blkio_group(struct blkio_group *blkg)
209 {
210 struct throtl_grp *tg = blkg_to_tg(blkg);
211
212 RB_CLEAR_NODE(&tg->rb_node);
213 bio_list_init(&tg->bio_lists[0]);
214 bio_list_init(&tg->bio_lists[1]);
215 tg->limits_changed = false;
216
217 tg->bps[READ] = -1;
218 tg->bps[WRITE] = -1;
219 tg->iops[READ] = -1;
220 tg->iops[WRITE] = -1;
221
222 /*
223 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
224 * but percpu allocator can't be called from IO path. Queue tg on
225 * tg_stats_alloc_list and allocate from work item.
226 */
227 spin_lock(&tg_stats_alloc_lock);
228 list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
229 queue_delayed_work(system_nrt_wq, &tg_stats_alloc_work, 0);
230 spin_unlock(&tg_stats_alloc_lock);
231 }
232
233 static void throtl_exit_blkio_group(struct blkio_group *blkg)
234 {
235 struct throtl_grp *tg = blkg_to_tg(blkg);
236
237 spin_lock(&tg_stats_alloc_lock);
238 list_del_init(&tg->stats_alloc_node);
239 spin_unlock(&tg_stats_alloc_lock);
240
241 free_percpu(tg->stats_cpu);
242 }
243
244 static void throtl_reset_group_stats(struct blkio_group *blkg)
245 {
246 struct throtl_grp *tg = blkg_to_tg(blkg);
247 int cpu;
248
249 if (tg->stats_cpu == NULL)
250 return;
251
252 for_each_possible_cpu(cpu) {
253 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
254
255 blkg_rwstat_reset(&sc->service_bytes);
256 blkg_rwstat_reset(&sc->serviced);
257 }
258 }
259
260 static struct
261 throtl_grp *throtl_lookup_tg(struct throtl_data *td, struct blkio_cgroup *blkcg)
262 {
263 /*
264 * This is the common case when there are no blkio cgroups.
265 * Avoid lookup in this case
266 */
267 if (blkcg == &blkio_root_cgroup)
268 return td_root_tg(td);
269
270 return blkg_to_tg(blkg_lookup(blkcg, td->queue));
271 }
272
273 static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
274 struct blkio_cgroup *blkcg)
275 {
276 struct request_queue *q = td->queue;
277 struct throtl_grp *tg = NULL;
278
279 /*
280 * This is the common case when there are no blkio cgroups.
281 * Avoid lookup in this case
282 */
283 if (blkcg == &blkio_root_cgroup) {
284 tg = td_root_tg(td);
285 } else {
286 struct blkio_group *blkg;
287
288 blkg = blkg_lookup_create(blkcg, q);
289
290 /* if %NULL and @q is alive, fall back to root_tg */
291 if (!IS_ERR(blkg))
292 tg = blkg_to_tg(blkg);
293 else if (!blk_queue_dead(q))
294 tg = td_root_tg(td);
295 }
296
297 return tg;
298 }
299
300 static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root)
301 {
302 /* Service tree is empty */
303 if (!root->count)
304 return NULL;
305
306 if (!root->left)
307 root->left = rb_first(&root->rb);
308
309 if (root->left)
310 return rb_entry_tg(root->left);
311
312 return NULL;
313 }
314
315 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
316 {
317 rb_erase(n, root);
318 RB_CLEAR_NODE(n);
319 }
320
321 static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root)
322 {
323 if (root->left == n)
324 root->left = NULL;
325 rb_erase_init(n, &root->rb);
326 --root->count;
327 }
328
329 static void update_min_dispatch_time(struct throtl_rb_root *st)
330 {
331 struct throtl_grp *tg;
332
333 tg = throtl_rb_first(st);
334 if (!tg)
335 return;
336
337 st->min_disptime = tg->disptime;
338 }
339
340 static void
341 tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg)
342 {
343 struct rb_node **node = &st->rb.rb_node;
344 struct rb_node *parent = NULL;
345 struct throtl_grp *__tg;
346 unsigned long key = tg->disptime;
347 int left = 1;
348
349 while (*node != NULL) {
350 parent = *node;
351 __tg = rb_entry_tg(parent);
352
353 if (time_before(key, __tg->disptime))
354 node = &parent->rb_left;
355 else {
356 node = &parent->rb_right;
357 left = 0;
358 }
359 }
360
361 if (left)
362 st->left = &tg->rb_node;
363
364 rb_link_node(&tg->rb_node, parent, node);
365 rb_insert_color(&tg->rb_node, &st->rb);
366 }
367
368 static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
369 {
370 struct throtl_rb_root *st = &td->tg_service_tree;
371
372 tg_service_tree_add(st, tg);
373 throtl_mark_tg_on_rr(tg);
374 st->count++;
375 }
376
377 static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
378 {
379 if (!throtl_tg_on_rr(tg))
380 __throtl_enqueue_tg(td, tg);
381 }
382
383 static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
384 {
385 throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);
386 throtl_clear_tg_on_rr(tg);
387 }
388
389 static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
390 {
391 if (throtl_tg_on_rr(tg))
392 __throtl_dequeue_tg(td, tg);
393 }
394
395 static void throtl_schedule_next_dispatch(struct throtl_data *td)
396 {
397 struct throtl_rb_root *st = &td->tg_service_tree;
398
399 /*
400 * If there are more bios pending, schedule more work.
401 */
402 if (!total_nr_queued(td))
403 return;
404
405 BUG_ON(!st->count);
406
407 update_min_dispatch_time(st);
408
409 if (time_before_eq(st->min_disptime, jiffies))
410 throtl_schedule_delayed_work(td, 0);
411 else
412 throtl_schedule_delayed_work(td, (st->min_disptime - jiffies));
413 }
414
415 static inline void
416 throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
417 {
418 tg->bytes_disp[rw] = 0;
419 tg->io_disp[rw] = 0;
420 tg->slice_start[rw] = jiffies;
421 tg->slice_end[rw] = jiffies + throtl_slice;
422 throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
423 rw == READ ? 'R' : 'W', tg->slice_start[rw],
424 tg->slice_end[rw], jiffies);
425 }
426
427 static inline void throtl_set_slice_end(struct throtl_data *td,
428 struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
429 {
430 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
431 }
432
433 static inline void throtl_extend_slice(struct throtl_data *td,
434 struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
435 {
436 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
437 throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
438 rw == READ ? 'R' : 'W', tg->slice_start[rw],
439 tg->slice_end[rw], jiffies);
440 }
441
442 /* Determine if previously allocated or extended slice is complete or not */
443 static bool
444 throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
445 {
446 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
447 return 0;
448
449 return 1;
450 }
451
452 /* Trim the used slices and adjust slice start accordingly */
453 static inline void
454 throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
455 {
456 unsigned long nr_slices, time_elapsed, io_trim;
457 u64 bytes_trim, tmp;
458
459 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
460
461 /*
462 * If bps are unlimited (-1), then time slice don't get
463 * renewed. Don't try to trim the slice if slice is used. A new
464 * slice will start when appropriate.
465 */
466 if (throtl_slice_used(td, tg, rw))
467 return;
468
469 /*
470 * A bio has been dispatched. Also adjust slice_end. It might happen
471 * that initially cgroup limit was very low resulting in high
472 * slice_end, but later limit was bumped up and bio was dispached
473 * sooner, then we need to reduce slice_end. A high bogus slice_end
474 * is bad because it does not allow new slice to start.
475 */
476
477 throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);
478
479 time_elapsed = jiffies - tg->slice_start[rw];
480
481 nr_slices = time_elapsed / throtl_slice;
482
483 if (!nr_slices)
484 return;
485 tmp = tg->bps[rw] * throtl_slice * nr_slices;
486 do_div(tmp, HZ);
487 bytes_trim = tmp;
488
489 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
490
491 if (!bytes_trim && !io_trim)
492 return;
493
494 if (tg->bytes_disp[rw] >= bytes_trim)
495 tg->bytes_disp[rw] -= bytes_trim;
496 else
497 tg->bytes_disp[rw] = 0;
498
499 if (tg->io_disp[rw] >= io_trim)
500 tg->io_disp[rw] -= io_trim;
501 else
502 tg->io_disp[rw] = 0;
503
504 tg->slice_start[rw] += nr_slices * throtl_slice;
505
506 throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
507 " start=%lu end=%lu jiffies=%lu",
508 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
509 tg->slice_start[rw], tg->slice_end[rw], jiffies);
510 }
511
512 static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
513 struct bio *bio, unsigned long *wait)
514 {
515 bool rw = bio_data_dir(bio);
516 unsigned int io_allowed;
517 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
518 u64 tmp;
519
520 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
521
522 /* Slice has just started. Consider one slice interval */
523 if (!jiffy_elapsed)
524 jiffy_elapsed_rnd = throtl_slice;
525
526 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
527
528 /*
529 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
530 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
531 * will allow dispatch after 1 second and after that slice should
532 * have been trimmed.
533 */
534
535 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
536 do_div(tmp, HZ);
537
538 if (tmp > UINT_MAX)
539 io_allowed = UINT_MAX;
540 else
541 io_allowed = tmp;
542
543 if (tg->io_disp[rw] + 1 <= io_allowed) {
544 if (wait)
545 *wait = 0;
546 return 1;
547 }
548
549 /* Calc approx time to dispatch */
550 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
551
552 if (jiffy_wait > jiffy_elapsed)
553 jiffy_wait = jiffy_wait - jiffy_elapsed;
554 else
555 jiffy_wait = 1;
556
557 if (wait)
558 *wait = jiffy_wait;
559 return 0;
560 }
561
562 static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
563 struct bio *bio, unsigned long *wait)
564 {
565 bool rw = bio_data_dir(bio);
566 u64 bytes_allowed, extra_bytes, tmp;
567 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
568
569 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
570
571 /* Slice has just started. Consider one slice interval */
572 if (!jiffy_elapsed)
573 jiffy_elapsed_rnd = throtl_slice;
574
575 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
576
577 tmp = tg->bps[rw] * jiffy_elapsed_rnd;
578 do_div(tmp, HZ);
579 bytes_allowed = tmp;
580
581 if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
582 if (wait)
583 *wait = 0;
584 return 1;
585 }
586
587 /* Calc approx time to dispatch */
588 extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
589 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
590
591 if (!jiffy_wait)
592 jiffy_wait = 1;
593
594 /*
595 * This wait time is without taking into consideration the rounding
596 * up we did. Add that time also.
597 */
598 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
599 if (wait)
600 *wait = jiffy_wait;
601 return 0;
602 }
603
604 static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
605 if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
606 return 1;
607 return 0;
608 }
609
610 /*
611 * Returns whether one can dispatch a bio or not. Also returns approx number
612 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
613 */
614 static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
615 struct bio *bio, unsigned long *wait)
616 {
617 bool rw = bio_data_dir(bio);
618 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
619
620 /*
621 * Currently whole state machine of group depends on first bio
622 * queued in the group bio list. So one should not be calling
623 * this function with a different bio if there are other bios
624 * queued.
625 */
626 BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
627
628 /* If tg->bps = -1, then BW is unlimited */
629 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
630 if (wait)
631 *wait = 0;
632 return 1;
633 }
634
635 /*
636 * If previous slice expired, start a new one otherwise renew/extend
637 * existing slice to make sure it is at least throtl_slice interval
638 * long since now.
639 */
640 if (throtl_slice_used(td, tg, rw))
641 throtl_start_new_slice(td, tg, rw);
642 else {
643 if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
644 throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
645 }
646
647 if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
648 && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
649 if (wait)
650 *wait = 0;
651 return 1;
652 }
653
654 max_wait = max(bps_wait, iops_wait);
655
656 if (wait)
657 *wait = max_wait;
658
659 if (time_before(tg->slice_end[rw], jiffies + max_wait))
660 throtl_extend_slice(td, tg, rw, jiffies + max_wait);
661
662 return 0;
663 }
664
665 static void throtl_update_dispatch_stats(struct blkio_group *blkg, u64 bytes,
666 int rw)
667 {
668 struct throtl_grp *tg = blkg_to_tg(blkg);
669 struct tg_stats_cpu *stats_cpu;
670 unsigned long flags;
671
672 /* If per cpu stats are not allocated yet, don't do any accounting. */
673 if (tg->stats_cpu == NULL)
674 return;
675
676 /*
677 * Disabling interrupts to provide mutual exclusion between two
678 * writes on same cpu. It probably is not needed for 64bit. Not
679 * optimizing that case yet.
680 */
681 local_irq_save(flags);
682
683 stats_cpu = this_cpu_ptr(tg->stats_cpu);
684
685 blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
686 blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);
687
688 local_irq_restore(flags);
689 }
690
691 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
692 {
693 bool rw = bio_data_dir(bio);
694
695 /* Charge the bio to the group */
696 tg->bytes_disp[rw] += bio->bi_size;
697 tg->io_disp[rw]++;
698
699 throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size, bio->bi_rw);
700 }
701
702 static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
703 struct bio *bio)
704 {
705 bool rw = bio_data_dir(bio);
706
707 bio_list_add(&tg->bio_lists[rw], bio);
708 /* Take a bio reference on tg */
709 blkg_get(tg_to_blkg(tg));
710 tg->nr_queued[rw]++;
711 td->nr_queued[rw]++;
712 throtl_enqueue_tg(td, tg);
713 }
714
715 static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
716 {
717 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
718 struct bio *bio;
719
720 if ((bio = bio_list_peek(&tg->bio_lists[READ])))
721 tg_may_dispatch(td, tg, bio, &read_wait);
722
723 if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
724 tg_may_dispatch(td, tg, bio, &write_wait);
725
726 min_wait = min(read_wait, write_wait);
727 disptime = jiffies + min_wait;
728
729 /* Update dispatch time */
730 throtl_dequeue_tg(td, tg);
731 tg->disptime = disptime;
732 throtl_enqueue_tg(td, tg);
733 }
734
735 static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
736 bool rw, struct bio_list *bl)
737 {
738 struct bio *bio;
739
740 bio = bio_list_pop(&tg->bio_lists[rw]);
741 tg->nr_queued[rw]--;
742 /* Drop bio reference on blkg */
743 blkg_put(tg_to_blkg(tg));
744
745 BUG_ON(td->nr_queued[rw] <= 0);
746 td->nr_queued[rw]--;
747
748 throtl_charge_bio(tg, bio);
749 bio_list_add(bl, bio);
750 bio->bi_rw |= REQ_THROTTLED;
751
752 throtl_trim_slice(td, tg, rw);
753 }
754
755 static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
756 struct bio_list *bl)
757 {
758 unsigned int nr_reads = 0, nr_writes = 0;
759 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
760 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
761 struct bio *bio;
762
763 /* Try to dispatch 75% READS and 25% WRITES */
764
765 while ((bio = bio_list_peek(&tg->bio_lists[READ]))
766 && tg_may_dispatch(td, tg, bio, NULL)) {
767
768 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
769 nr_reads++;
770
771 if (nr_reads >= max_nr_reads)
772 break;
773 }
774
775 while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
776 && tg_may_dispatch(td, tg, bio, NULL)) {
777
778 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
779 nr_writes++;
780
781 if (nr_writes >= max_nr_writes)
782 break;
783 }
784
785 return nr_reads + nr_writes;
786 }
787
788 static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
789 {
790 unsigned int nr_disp = 0;
791 struct throtl_grp *tg;
792 struct throtl_rb_root *st = &td->tg_service_tree;
793
794 while (1) {
795 tg = throtl_rb_first(st);
796
797 if (!tg)
798 break;
799
800 if (time_before(jiffies, tg->disptime))
801 break;
802
803 throtl_dequeue_tg(td, tg);
804
805 nr_disp += throtl_dispatch_tg(td, tg, bl);
806
807 if (tg->nr_queued[0] || tg->nr_queued[1]) {
808 tg_update_disptime(td, tg);
809 throtl_enqueue_tg(td, tg);
810 }
811
812 if (nr_disp >= throtl_quantum)
813 break;
814 }
815
816 return nr_disp;
817 }
818
819 static void throtl_process_limit_change(struct throtl_data *td)
820 {
821 struct request_queue *q = td->queue;
822 struct blkio_group *blkg, *n;
823
824 if (!td->limits_changed)
825 return;
826
827 xchg(&td->limits_changed, false);
828
829 throtl_log(td, "limits changed");
830
831 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
832 struct throtl_grp *tg = blkg_to_tg(blkg);
833
834 if (!tg->limits_changed)
835 continue;
836
837 if (!xchg(&tg->limits_changed, false))
838 continue;
839
840 throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu"
841 " riops=%u wiops=%u", tg->bps[READ], tg->bps[WRITE],
842 tg->iops[READ], tg->iops[WRITE]);
843
844 /*
845 * Restart the slices for both READ and WRITES. It
846 * might happen that a group's limit are dropped
847 * suddenly and we don't want to account recently
848 * dispatched IO with new low rate
849 */
850 throtl_start_new_slice(td, tg, 0);
851 throtl_start_new_slice(td, tg, 1);
852
853 if (throtl_tg_on_rr(tg))
854 tg_update_disptime(td, tg);
855 }
856 }
857
858 /* Dispatch throttled bios. Should be called without queue lock held. */
859 static int throtl_dispatch(struct request_queue *q)
860 {
861 struct throtl_data *td = q->td;
862 unsigned int nr_disp = 0;
863 struct bio_list bio_list_on_stack;
864 struct bio *bio;
865 struct blk_plug plug;
866
867 spin_lock_irq(q->queue_lock);
868
869 throtl_process_limit_change(td);
870
871 if (!total_nr_queued(td))
872 goto out;
873
874 bio_list_init(&bio_list_on_stack);
875
876 throtl_log(td, "dispatch nr_queued=%u read=%u write=%u",
877 total_nr_queued(td), td->nr_queued[READ],
878 td->nr_queued[WRITE]);
879
880 nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);
881
882 if (nr_disp)
883 throtl_log(td, "bios disp=%u", nr_disp);
884
885 throtl_schedule_next_dispatch(td);
886 out:
887 spin_unlock_irq(q->queue_lock);
888
889 /*
890 * If we dispatched some requests, unplug the queue to make sure
891 * immediate dispatch
892 */
893 if (nr_disp) {
894 blk_start_plug(&plug);
895 while((bio = bio_list_pop(&bio_list_on_stack)))
896 generic_make_request(bio);
897 blk_finish_plug(&plug);
898 }
899 return nr_disp;
900 }
901
902 void blk_throtl_work(struct work_struct *work)
903 {
904 struct throtl_data *td = container_of(work, struct throtl_data,
905 throtl_work.work);
906 struct request_queue *q = td->queue;
907
908 throtl_dispatch(q);
909 }
910
911 /* Call with queue lock held */
912 static void
913 throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay)
914 {
915
916 struct delayed_work *dwork = &td->throtl_work;
917
918 /* schedule work if limits changed even if no bio is queued */
919 if (total_nr_queued(td) || td->limits_changed) {
920 /*
921 * We might have a work scheduled to be executed in future.
922 * Cancel that and schedule a new one.
923 */
924 __cancel_delayed_work(dwork);
925 queue_delayed_work(kthrotld_workqueue, dwork, delay);
926 throtl_log(td, "schedule work. delay=%lu jiffies=%lu",
927 delay, jiffies);
928 }
929 }
930
931 static u64 tg_prfill_cpu_rwstat(struct seq_file *sf, void *pdata, int off)
932 {
933 struct throtl_grp *tg = pdata;
934 struct blkg_rwstat rwstat = { }, tmp;
935 int i, cpu;
936
937 for_each_possible_cpu(cpu) {
938 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
939
940 tmp = blkg_rwstat_read((void *)sc + off);
941 for (i = 0; i < BLKG_RWSTAT_NR; i++)
942 rwstat.cnt[i] += tmp.cnt[i];
943 }
944
945 return __blkg_prfill_rwstat(sf, pdata, &rwstat);
946 }
947
948 static int tg_print_cpu_rwstat(struct cgroup *cgrp, struct cftype *cft,
949 struct seq_file *sf)
950 {
951 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
952
953 blkcg_print_blkgs(sf, blkcg, tg_prfill_cpu_rwstat, &blkio_policy_throtl,
954 cft->private, true);
955 return 0;
956 }
957
958 static u64 tg_prfill_conf_u64(struct seq_file *sf, void *pdata, int off)
959 {
960 u64 v = *(u64 *)(pdata + off);
961
962 if (v == -1)
963 return 0;
964 return __blkg_prfill_u64(sf, pdata, v);
965 }
966
967 static u64 tg_prfill_conf_uint(struct seq_file *sf, void *pdata, int off)
968 {
969 unsigned int v = *(unsigned int *)(pdata + off);
970
971 if (v == -1)
972 return 0;
973 return __blkg_prfill_u64(sf, pdata, v);
974 }
975
976 static int tg_print_conf_u64(struct cgroup *cgrp, struct cftype *cft,
977 struct seq_file *sf)
978 {
979 blkcg_print_blkgs(sf, cgroup_to_blkio_cgroup(cgrp), tg_prfill_conf_u64,
980 &blkio_policy_throtl, cft->private, false);
981 return 0;
982 }
983
984 static int tg_print_conf_uint(struct cgroup *cgrp, struct cftype *cft,
985 struct seq_file *sf)
986 {
987 blkcg_print_blkgs(sf, cgroup_to_blkio_cgroup(cgrp), tg_prfill_conf_uint,
988 &blkio_policy_throtl, cft->private, false);
989 return 0;
990 }
991
992 static int tg_set_conf(struct cgroup *cgrp, struct cftype *cft, const char *buf,
993 bool is_u64)
994 {
995 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
996 struct blkg_conf_ctx ctx;
997 struct throtl_grp *tg;
998 struct throtl_data *td;
999 int ret;
1000
1001 ret = blkg_conf_prep(blkcg, &blkio_policy_throtl, buf, &ctx);
1002 if (ret)
1003 return ret;
1004
1005 tg = blkg_to_tg(ctx.blkg);
1006 td = ctx.blkg->q->td;
1007
1008 if (!ctx.v)
1009 ctx.v = -1;
1010
1011 if (is_u64)
1012 *(u64 *)((void *)tg + cft->private) = ctx.v;
1013 else
1014 *(unsigned int *)((void *)tg + cft->private) = ctx.v;
1015
1016 /* XXX: we don't need the following deferred processing */
1017 xchg(&tg->limits_changed, true);
1018 xchg(&td->limits_changed, true);
1019 throtl_schedule_delayed_work(td, 0);
1020
1021 blkg_conf_finish(&ctx);
1022 return 0;
1023 }
1024
1025 static int tg_set_conf_u64(struct cgroup *cgrp, struct cftype *cft,
1026 const char *buf)
1027 {
1028 return tg_set_conf(cgrp, cft, buf, true);
1029 }
1030
1031 static int tg_set_conf_uint(struct cgroup *cgrp, struct cftype *cft,
1032 const char *buf)
1033 {
1034 return tg_set_conf(cgrp, cft, buf, false);
1035 }
1036
1037 static struct cftype throtl_files[] = {
1038 {
1039 .name = "throttle.read_bps_device",
1040 .private = offsetof(struct throtl_grp, bps[READ]),
1041 .read_seq_string = tg_print_conf_u64,
1042 .write_string = tg_set_conf_u64,
1043 .max_write_len = 256,
1044 },
1045 {
1046 .name = "throttle.write_bps_device",
1047 .private = offsetof(struct throtl_grp, bps[WRITE]),
1048 .read_seq_string = tg_print_conf_u64,
1049 .write_string = tg_set_conf_u64,
1050 .max_write_len = 256,
1051 },
1052 {
1053 .name = "throttle.read_iops_device",
1054 .private = offsetof(struct throtl_grp, iops[READ]),
1055 .read_seq_string = tg_print_conf_uint,
1056 .write_string = tg_set_conf_uint,
1057 .max_write_len = 256,
1058 },
1059 {
1060 .name = "throttle.write_iops_device",
1061 .private = offsetof(struct throtl_grp, iops[WRITE]),
1062 .read_seq_string = tg_print_conf_uint,
1063 .write_string = tg_set_conf_uint,
1064 .max_write_len = 256,
1065 },
1066 {
1067 .name = "throttle.io_service_bytes",
1068 .private = offsetof(struct tg_stats_cpu, service_bytes),
1069 .read_seq_string = tg_print_cpu_rwstat,
1070 },
1071 {
1072 .name = "throttle.io_serviced",
1073 .private = offsetof(struct tg_stats_cpu, serviced),
1074 .read_seq_string = tg_print_cpu_rwstat,
1075 },
1076 { } /* terminate */
1077 };
1078
1079 static void throtl_shutdown_wq(struct request_queue *q)
1080 {
1081 struct throtl_data *td = q->td;
1082
1083 cancel_delayed_work_sync(&td->throtl_work);
1084 }
1085
1086 static struct blkio_policy_type blkio_policy_throtl = {
1087 .ops = {
1088 .blkio_init_group_fn = throtl_init_blkio_group,
1089 .blkio_exit_group_fn = throtl_exit_blkio_group,
1090 .blkio_reset_group_stats_fn = throtl_reset_group_stats,
1091 },
1092 .pdata_size = sizeof(struct throtl_grp),
1093 .cftypes = throtl_files,
1094 };
1095
1096 bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1097 {
1098 struct throtl_data *td = q->td;
1099 struct throtl_grp *tg;
1100 bool rw = bio_data_dir(bio), update_disptime = true;
1101 struct blkio_cgroup *blkcg;
1102 bool throttled = false;
1103
1104 if (bio->bi_rw & REQ_THROTTLED) {
1105 bio->bi_rw &= ~REQ_THROTTLED;
1106 goto out;
1107 }
1108
1109 /* bio_associate_current() needs ioc, try creating */
1110 create_io_context(GFP_ATOMIC, q->node);
1111
1112 /*
1113 * A throtl_grp pointer retrieved under rcu can be used to access
1114 * basic fields like stats and io rates. If a group has no rules,
1115 * just update the dispatch stats in lockless manner and return.
1116 */
1117 rcu_read_lock();
1118 blkcg = bio_blkio_cgroup(bio);
1119 tg = throtl_lookup_tg(td, blkcg);
1120 if (tg) {
1121 if (tg_no_rule_group(tg, rw)) {
1122 throtl_update_dispatch_stats(tg_to_blkg(tg),
1123 bio->bi_size, bio->bi_rw);
1124 goto out_unlock_rcu;
1125 }
1126 }
1127
1128 /*
1129 * Either group has not been allocated yet or it is not an unlimited
1130 * IO group
1131 */
1132 spin_lock_irq(q->queue_lock);
1133 tg = throtl_lookup_create_tg(td, blkcg);
1134 if (unlikely(!tg))
1135 goto out_unlock;
1136
1137 if (tg->nr_queued[rw]) {
1138 /*
1139 * There is already another bio queued in same dir. No
1140 * need to update dispatch time.
1141 */
1142 update_disptime = false;
1143 goto queue_bio;
1144
1145 }
1146
1147 /* Bio is with-in rate limit of group */
1148 if (tg_may_dispatch(td, tg, bio, NULL)) {
1149 throtl_charge_bio(tg, bio);
1150
1151 /*
1152 * We need to trim slice even when bios are not being queued
1153 * otherwise it might happen that a bio is not queued for
1154 * a long time and slice keeps on extending and trim is not
1155 * called for a long time. Now if limits are reduced suddenly
1156 * we take into account all the IO dispatched so far at new
1157 * low rate and * newly queued IO gets a really long dispatch
1158 * time.
1159 *
1160 * So keep on trimming slice even if bio is not queued.
1161 */
1162 throtl_trim_slice(td, tg, rw);
1163 goto out_unlock;
1164 }
1165
1166 queue_bio:
1167 throtl_log_tg(td, tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu"
1168 " iodisp=%u iops=%u queued=%d/%d",
1169 rw == READ ? 'R' : 'W',
1170 tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1171 tg->io_disp[rw], tg->iops[rw],
1172 tg->nr_queued[READ], tg->nr_queued[WRITE]);
1173
1174 bio_associate_current(bio);
1175 throtl_add_bio_tg(q->td, tg, bio);
1176 throttled = true;
1177
1178 if (update_disptime) {
1179 tg_update_disptime(td, tg);
1180 throtl_schedule_next_dispatch(td);
1181 }
1182
1183 out_unlock:
1184 spin_unlock_irq(q->queue_lock);
1185 out_unlock_rcu:
1186 rcu_read_unlock();
1187 out:
1188 return throttled;
1189 }
1190
1191 /**
1192 * blk_throtl_drain - drain throttled bios
1193 * @q: request_queue to drain throttled bios for
1194 *
1195 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1196 */
1197 void blk_throtl_drain(struct request_queue *q)
1198 __releases(q->queue_lock) __acquires(q->queue_lock)
1199 {
1200 struct throtl_data *td = q->td;
1201 struct throtl_rb_root *st = &td->tg_service_tree;
1202 struct throtl_grp *tg;
1203 struct bio_list bl;
1204 struct bio *bio;
1205
1206 WARN_ON_ONCE(!queue_is_locked(q));
1207
1208 bio_list_init(&bl);
1209
1210 while ((tg = throtl_rb_first(st))) {
1211 throtl_dequeue_tg(td, tg);
1212
1213 while ((bio = bio_list_peek(&tg->bio_lists[READ])))
1214 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
1215 while ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
1216 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
1217 }
1218 spin_unlock_irq(q->queue_lock);
1219
1220 while ((bio = bio_list_pop(&bl)))
1221 generic_make_request(bio);
1222
1223 spin_lock_irq(q->queue_lock);
1224 }
1225
1226 int blk_throtl_init(struct request_queue *q)
1227 {
1228 struct throtl_data *td;
1229 int ret;
1230
1231 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1232 if (!td)
1233 return -ENOMEM;
1234
1235 td->tg_service_tree = THROTL_RB_ROOT;
1236 td->limits_changed = false;
1237 INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work);
1238
1239 q->td = td;
1240 td->queue = q;
1241
1242 /* activate policy */
1243 ret = blkcg_activate_policy(q, &blkio_policy_throtl);
1244 if (ret)
1245 kfree(td);
1246 return ret;
1247 }
1248
1249 void blk_throtl_exit(struct request_queue *q)
1250 {
1251 BUG_ON(!q->td);
1252 throtl_shutdown_wq(q);
1253 blkcg_deactivate_policy(q, &blkio_policy_throtl);
1254 kfree(q->td);
1255 }
1256
1257 static int __init throtl_init(void)
1258 {
1259 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1260 if (!kthrotld_workqueue)
1261 panic("Failed to create kthrotld\n");
1262
1263 return blkio_policy_register(&blkio_policy_throtl);
1264 }
1265
1266 module_init(throtl_init);