]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-throttle.c
blkcg: let blkio_group point to blkio_cgroup directly
[mirror_ubuntu-bionic-kernel.git] / block / blk-throttle.c
1 /*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include "blk-cgroup.h"
13 #include "blk.h"
14
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum = 8;
17
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum = 32;
20
21 /* Throttling is performed over 100ms slice and after that slice is renewed */
22 static unsigned long throtl_slice = HZ/10; /* 100 ms */
23
24 /* A workqueue to queue throttle related work */
25 static struct workqueue_struct *kthrotld_workqueue;
26 static void throtl_schedule_delayed_work(struct throtl_data *td,
27 unsigned long delay);
28
29 struct throtl_rb_root {
30 struct rb_root rb;
31 struct rb_node *left;
32 unsigned int count;
33 unsigned long min_disptime;
34 };
35
36 #define THROTL_RB_ROOT (struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
37 .count = 0, .min_disptime = 0}
38
39 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
40
41 struct throtl_grp {
42 /* List of throtl groups on the request queue*/
43 struct hlist_node tg_node;
44
45 /* active throtl group service_tree member */
46 struct rb_node rb_node;
47
48 /*
49 * Dispatch time in jiffies. This is the estimated time when group
50 * will unthrottle and is ready to dispatch more bio. It is used as
51 * key to sort active groups in service tree.
52 */
53 unsigned long disptime;
54
55 struct blkio_group blkg;
56 atomic_t ref;
57 unsigned int flags;
58
59 /* Two lists for READ and WRITE */
60 struct bio_list bio_lists[2];
61
62 /* Number of queued bios on READ and WRITE lists */
63 unsigned int nr_queued[2];
64
65 /* bytes per second rate limits */
66 uint64_t bps[2];
67
68 /* IOPS limits */
69 unsigned int iops[2];
70
71 /* Number of bytes disptached in current slice */
72 uint64_t bytes_disp[2];
73 /* Number of bio's dispatched in current slice */
74 unsigned int io_disp[2];
75
76 /* When did we start a new slice */
77 unsigned long slice_start[2];
78 unsigned long slice_end[2];
79
80 /* Some throttle limits got updated for the group */
81 int limits_changed;
82
83 struct rcu_head rcu_head;
84 };
85
86 struct throtl_data
87 {
88 /* List of throtl groups */
89 struct hlist_head tg_list;
90
91 /* service tree for active throtl groups */
92 struct throtl_rb_root tg_service_tree;
93
94 struct throtl_grp *root_tg;
95 struct request_queue *queue;
96
97 /* Total Number of queued bios on READ and WRITE lists */
98 unsigned int nr_queued[2];
99
100 /*
101 * number of total undestroyed groups
102 */
103 unsigned int nr_undestroyed_grps;
104
105 /* Work for dispatching throttled bios */
106 struct delayed_work throtl_work;
107
108 int limits_changed;
109 };
110
111 enum tg_state_flags {
112 THROTL_TG_FLAG_on_rr = 0, /* on round-robin busy list */
113 };
114
115 #define THROTL_TG_FNS(name) \
116 static inline void throtl_mark_tg_##name(struct throtl_grp *tg) \
117 { \
118 (tg)->flags |= (1 << THROTL_TG_FLAG_##name); \
119 } \
120 static inline void throtl_clear_tg_##name(struct throtl_grp *tg) \
121 { \
122 (tg)->flags &= ~(1 << THROTL_TG_FLAG_##name); \
123 } \
124 static inline int throtl_tg_##name(const struct throtl_grp *tg) \
125 { \
126 return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0; \
127 }
128
129 THROTL_TG_FNS(on_rr);
130
131 #define throtl_log_tg(td, tg, fmt, args...) \
132 blk_add_trace_msg((td)->queue, "throtl %s " fmt, \
133 blkg_path(&(tg)->blkg), ##args); \
134
135 #define throtl_log(td, fmt, args...) \
136 blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)
137
138 static inline struct throtl_grp *tg_of_blkg(struct blkio_group *blkg)
139 {
140 if (blkg)
141 return container_of(blkg, struct throtl_grp, blkg);
142
143 return NULL;
144 }
145
146 static inline unsigned int total_nr_queued(struct throtl_data *td)
147 {
148 return td->nr_queued[0] + td->nr_queued[1];
149 }
150
151 static inline struct throtl_grp *throtl_ref_get_tg(struct throtl_grp *tg)
152 {
153 atomic_inc(&tg->ref);
154 return tg;
155 }
156
157 static void throtl_free_tg(struct rcu_head *head)
158 {
159 struct throtl_grp *tg;
160
161 tg = container_of(head, struct throtl_grp, rcu_head);
162 free_percpu(tg->blkg.stats_cpu);
163 kfree(tg);
164 }
165
166 static void throtl_put_tg(struct throtl_grp *tg)
167 {
168 BUG_ON(atomic_read(&tg->ref) <= 0);
169 if (!atomic_dec_and_test(&tg->ref))
170 return;
171
172 /* release the extra blkcg reference this blkg has been holding */
173 css_put(&tg->blkg.blkcg->css);
174
175 /*
176 * A group is freed in rcu manner. But having an rcu lock does not
177 * mean that one can access all the fields of blkg and assume these
178 * are valid. For example, don't try to follow throtl_data and
179 * request queue links.
180 *
181 * Having a reference to blkg under an rcu allows acess to only
182 * values local to groups like group stats and group rate limits
183 */
184 call_rcu(&tg->rcu_head, throtl_free_tg);
185 }
186
187 static struct blkio_group *throtl_alloc_blkio_group(struct request_queue *q,
188 struct blkio_cgroup *blkcg)
189 {
190 struct throtl_grp *tg;
191
192 tg = kzalloc_node(sizeof(*tg), GFP_ATOMIC, q->node);
193 if (!tg)
194 return NULL;
195
196 INIT_HLIST_NODE(&tg->tg_node);
197 RB_CLEAR_NODE(&tg->rb_node);
198 bio_list_init(&tg->bio_lists[0]);
199 bio_list_init(&tg->bio_lists[1]);
200 tg->limits_changed = false;
201
202 tg->bps[READ] = -1;
203 tg->bps[WRITE] = -1;
204 tg->iops[READ] = -1;
205 tg->iops[WRITE] = -1;
206
207 /*
208 * Take the initial reference that will be released on destroy
209 * This can be thought of a joint reference by cgroup and
210 * request queue which will be dropped by either request queue
211 * exit or cgroup deletion path depending on who is exiting first.
212 */
213 atomic_set(&tg->ref, 1);
214
215 return &tg->blkg;
216 }
217
218 static void throtl_link_blkio_group(struct request_queue *q,
219 struct blkio_group *blkg)
220 {
221 struct throtl_data *td = q->td;
222 struct throtl_grp *tg = tg_of_blkg(blkg);
223
224 hlist_add_head(&tg->tg_node, &td->tg_list);
225 td->nr_undestroyed_grps++;
226 }
227
228 static struct
229 throtl_grp *throtl_lookup_tg(struct throtl_data *td, struct blkio_cgroup *blkcg)
230 {
231 /*
232 * This is the common case when there are no blkio cgroups.
233 * Avoid lookup in this case
234 */
235 if (blkcg == &blkio_root_cgroup)
236 return td->root_tg;
237
238 return tg_of_blkg(blkg_lookup(blkcg, td->queue, BLKIO_POLICY_THROTL));
239 }
240
241 static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
242 struct blkio_cgroup *blkcg)
243 {
244 struct request_queue *q = td->queue;
245 struct throtl_grp *tg = NULL;
246
247 /*
248 * This is the common case when there are no blkio cgroups.
249 * Avoid lookup in this case
250 */
251 if (blkcg == &blkio_root_cgroup) {
252 tg = td->root_tg;
253 } else {
254 struct blkio_group *blkg;
255
256 blkg = blkg_lookup_create(blkcg, q, BLKIO_POLICY_THROTL, false);
257
258 /* if %NULL and @q is alive, fall back to root_tg */
259 if (!IS_ERR(blkg))
260 tg = tg_of_blkg(blkg);
261 else if (!blk_queue_dead(q))
262 tg = td->root_tg;
263 }
264
265 return tg;
266 }
267
268 static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root)
269 {
270 /* Service tree is empty */
271 if (!root->count)
272 return NULL;
273
274 if (!root->left)
275 root->left = rb_first(&root->rb);
276
277 if (root->left)
278 return rb_entry_tg(root->left);
279
280 return NULL;
281 }
282
283 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
284 {
285 rb_erase(n, root);
286 RB_CLEAR_NODE(n);
287 }
288
289 static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root)
290 {
291 if (root->left == n)
292 root->left = NULL;
293 rb_erase_init(n, &root->rb);
294 --root->count;
295 }
296
297 static void update_min_dispatch_time(struct throtl_rb_root *st)
298 {
299 struct throtl_grp *tg;
300
301 tg = throtl_rb_first(st);
302 if (!tg)
303 return;
304
305 st->min_disptime = tg->disptime;
306 }
307
308 static void
309 tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg)
310 {
311 struct rb_node **node = &st->rb.rb_node;
312 struct rb_node *parent = NULL;
313 struct throtl_grp *__tg;
314 unsigned long key = tg->disptime;
315 int left = 1;
316
317 while (*node != NULL) {
318 parent = *node;
319 __tg = rb_entry_tg(parent);
320
321 if (time_before(key, __tg->disptime))
322 node = &parent->rb_left;
323 else {
324 node = &parent->rb_right;
325 left = 0;
326 }
327 }
328
329 if (left)
330 st->left = &tg->rb_node;
331
332 rb_link_node(&tg->rb_node, parent, node);
333 rb_insert_color(&tg->rb_node, &st->rb);
334 }
335
336 static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
337 {
338 struct throtl_rb_root *st = &td->tg_service_tree;
339
340 tg_service_tree_add(st, tg);
341 throtl_mark_tg_on_rr(tg);
342 st->count++;
343 }
344
345 static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
346 {
347 if (!throtl_tg_on_rr(tg))
348 __throtl_enqueue_tg(td, tg);
349 }
350
351 static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
352 {
353 throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);
354 throtl_clear_tg_on_rr(tg);
355 }
356
357 static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
358 {
359 if (throtl_tg_on_rr(tg))
360 __throtl_dequeue_tg(td, tg);
361 }
362
363 static void throtl_schedule_next_dispatch(struct throtl_data *td)
364 {
365 struct throtl_rb_root *st = &td->tg_service_tree;
366
367 /*
368 * If there are more bios pending, schedule more work.
369 */
370 if (!total_nr_queued(td))
371 return;
372
373 BUG_ON(!st->count);
374
375 update_min_dispatch_time(st);
376
377 if (time_before_eq(st->min_disptime, jiffies))
378 throtl_schedule_delayed_work(td, 0);
379 else
380 throtl_schedule_delayed_work(td, (st->min_disptime - jiffies));
381 }
382
383 static inline void
384 throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
385 {
386 tg->bytes_disp[rw] = 0;
387 tg->io_disp[rw] = 0;
388 tg->slice_start[rw] = jiffies;
389 tg->slice_end[rw] = jiffies + throtl_slice;
390 throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
391 rw == READ ? 'R' : 'W', tg->slice_start[rw],
392 tg->slice_end[rw], jiffies);
393 }
394
395 static inline void throtl_set_slice_end(struct throtl_data *td,
396 struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
397 {
398 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
399 }
400
401 static inline void throtl_extend_slice(struct throtl_data *td,
402 struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
403 {
404 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
405 throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
406 rw == READ ? 'R' : 'W', tg->slice_start[rw],
407 tg->slice_end[rw], jiffies);
408 }
409
410 /* Determine if previously allocated or extended slice is complete or not */
411 static bool
412 throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
413 {
414 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
415 return 0;
416
417 return 1;
418 }
419
420 /* Trim the used slices and adjust slice start accordingly */
421 static inline void
422 throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
423 {
424 unsigned long nr_slices, time_elapsed, io_trim;
425 u64 bytes_trim, tmp;
426
427 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
428
429 /*
430 * If bps are unlimited (-1), then time slice don't get
431 * renewed. Don't try to trim the slice if slice is used. A new
432 * slice will start when appropriate.
433 */
434 if (throtl_slice_used(td, tg, rw))
435 return;
436
437 /*
438 * A bio has been dispatched. Also adjust slice_end. It might happen
439 * that initially cgroup limit was very low resulting in high
440 * slice_end, but later limit was bumped up and bio was dispached
441 * sooner, then we need to reduce slice_end. A high bogus slice_end
442 * is bad because it does not allow new slice to start.
443 */
444
445 throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);
446
447 time_elapsed = jiffies - tg->slice_start[rw];
448
449 nr_slices = time_elapsed / throtl_slice;
450
451 if (!nr_slices)
452 return;
453 tmp = tg->bps[rw] * throtl_slice * nr_slices;
454 do_div(tmp, HZ);
455 bytes_trim = tmp;
456
457 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
458
459 if (!bytes_trim && !io_trim)
460 return;
461
462 if (tg->bytes_disp[rw] >= bytes_trim)
463 tg->bytes_disp[rw] -= bytes_trim;
464 else
465 tg->bytes_disp[rw] = 0;
466
467 if (tg->io_disp[rw] >= io_trim)
468 tg->io_disp[rw] -= io_trim;
469 else
470 tg->io_disp[rw] = 0;
471
472 tg->slice_start[rw] += nr_slices * throtl_slice;
473
474 throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
475 " start=%lu end=%lu jiffies=%lu",
476 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
477 tg->slice_start[rw], tg->slice_end[rw], jiffies);
478 }
479
480 static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
481 struct bio *bio, unsigned long *wait)
482 {
483 bool rw = bio_data_dir(bio);
484 unsigned int io_allowed;
485 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
486 u64 tmp;
487
488 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
489
490 /* Slice has just started. Consider one slice interval */
491 if (!jiffy_elapsed)
492 jiffy_elapsed_rnd = throtl_slice;
493
494 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
495
496 /*
497 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
498 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
499 * will allow dispatch after 1 second and after that slice should
500 * have been trimmed.
501 */
502
503 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
504 do_div(tmp, HZ);
505
506 if (tmp > UINT_MAX)
507 io_allowed = UINT_MAX;
508 else
509 io_allowed = tmp;
510
511 if (tg->io_disp[rw] + 1 <= io_allowed) {
512 if (wait)
513 *wait = 0;
514 return 1;
515 }
516
517 /* Calc approx time to dispatch */
518 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
519
520 if (jiffy_wait > jiffy_elapsed)
521 jiffy_wait = jiffy_wait - jiffy_elapsed;
522 else
523 jiffy_wait = 1;
524
525 if (wait)
526 *wait = jiffy_wait;
527 return 0;
528 }
529
530 static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
531 struct bio *bio, unsigned long *wait)
532 {
533 bool rw = bio_data_dir(bio);
534 u64 bytes_allowed, extra_bytes, tmp;
535 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
536
537 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
538
539 /* Slice has just started. Consider one slice interval */
540 if (!jiffy_elapsed)
541 jiffy_elapsed_rnd = throtl_slice;
542
543 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
544
545 tmp = tg->bps[rw] * jiffy_elapsed_rnd;
546 do_div(tmp, HZ);
547 bytes_allowed = tmp;
548
549 if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
550 if (wait)
551 *wait = 0;
552 return 1;
553 }
554
555 /* Calc approx time to dispatch */
556 extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
557 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
558
559 if (!jiffy_wait)
560 jiffy_wait = 1;
561
562 /*
563 * This wait time is without taking into consideration the rounding
564 * up we did. Add that time also.
565 */
566 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
567 if (wait)
568 *wait = jiffy_wait;
569 return 0;
570 }
571
572 static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
573 if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
574 return 1;
575 return 0;
576 }
577
578 /*
579 * Returns whether one can dispatch a bio or not. Also returns approx number
580 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
581 */
582 static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
583 struct bio *bio, unsigned long *wait)
584 {
585 bool rw = bio_data_dir(bio);
586 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
587
588 /*
589 * Currently whole state machine of group depends on first bio
590 * queued in the group bio list. So one should not be calling
591 * this function with a different bio if there are other bios
592 * queued.
593 */
594 BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
595
596 /* If tg->bps = -1, then BW is unlimited */
597 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
598 if (wait)
599 *wait = 0;
600 return 1;
601 }
602
603 /*
604 * If previous slice expired, start a new one otherwise renew/extend
605 * existing slice to make sure it is at least throtl_slice interval
606 * long since now.
607 */
608 if (throtl_slice_used(td, tg, rw))
609 throtl_start_new_slice(td, tg, rw);
610 else {
611 if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
612 throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
613 }
614
615 if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
616 && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
617 if (wait)
618 *wait = 0;
619 return 1;
620 }
621
622 max_wait = max(bps_wait, iops_wait);
623
624 if (wait)
625 *wait = max_wait;
626
627 if (time_before(tg->slice_end[rw], jiffies + max_wait))
628 throtl_extend_slice(td, tg, rw, jiffies + max_wait);
629
630 return 0;
631 }
632
633 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
634 {
635 bool rw = bio_data_dir(bio);
636 bool sync = rw_is_sync(bio->bi_rw);
637
638 /* Charge the bio to the group */
639 tg->bytes_disp[rw] += bio->bi_size;
640 tg->io_disp[rw]++;
641
642 blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size, rw, sync);
643 }
644
645 static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
646 struct bio *bio)
647 {
648 bool rw = bio_data_dir(bio);
649
650 bio_list_add(&tg->bio_lists[rw], bio);
651 /* Take a bio reference on tg */
652 throtl_ref_get_tg(tg);
653 tg->nr_queued[rw]++;
654 td->nr_queued[rw]++;
655 throtl_enqueue_tg(td, tg);
656 }
657
658 static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
659 {
660 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
661 struct bio *bio;
662
663 if ((bio = bio_list_peek(&tg->bio_lists[READ])))
664 tg_may_dispatch(td, tg, bio, &read_wait);
665
666 if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
667 tg_may_dispatch(td, tg, bio, &write_wait);
668
669 min_wait = min(read_wait, write_wait);
670 disptime = jiffies + min_wait;
671
672 /* Update dispatch time */
673 throtl_dequeue_tg(td, tg);
674 tg->disptime = disptime;
675 throtl_enqueue_tg(td, tg);
676 }
677
678 static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
679 bool rw, struct bio_list *bl)
680 {
681 struct bio *bio;
682
683 bio = bio_list_pop(&tg->bio_lists[rw]);
684 tg->nr_queued[rw]--;
685 /* Drop bio reference on tg */
686 throtl_put_tg(tg);
687
688 BUG_ON(td->nr_queued[rw] <= 0);
689 td->nr_queued[rw]--;
690
691 throtl_charge_bio(tg, bio);
692 bio_list_add(bl, bio);
693 bio->bi_rw |= REQ_THROTTLED;
694
695 throtl_trim_slice(td, tg, rw);
696 }
697
698 static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
699 struct bio_list *bl)
700 {
701 unsigned int nr_reads = 0, nr_writes = 0;
702 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
703 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
704 struct bio *bio;
705
706 /* Try to dispatch 75% READS and 25% WRITES */
707
708 while ((bio = bio_list_peek(&tg->bio_lists[READ]))
709 && tg_may_dispatch(td, tg, bio, NULL)) {
710
711 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
712 nr_reads++;
713
714 if (nr_reads >= max_nr_reads)
715 break;
716 }
717
718 while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
719 && tg_may_dispatch(td, tg, bio, NULL)) {
720
721 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
722 nr_writes++;
723
724 if (nr_writes >= max_nr_writes)
725 break;
726 }
727
728 return nr_reads + nr_writes;
729 }
730
731 static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
732 {
733 unsigned int nr_disp = 0;
734 struct throtl_grp *tg;
735 struct throtl_rb_root *st = &td->tg_service_tree;
736
737 while (1) {
738 tg = throtl_rb_first(st);
739
740 if (!tg)
741 break;
742
743 if (time_before(jiffies, tg->disptime))
744 break;
745
746 throtl_dequeue_tg(td, tg);
747
748 nr_disp += throtl_dispatch_tg(td, tg, bl);
749
750 if (tg->nr_queued[0] || tg->nr_queued[1]) {
751 tg_update_disptime(td, tg);
752 throtl_enqueue_tg(td, tg);
753 }
754
755 if (nr_disp >= throtl_quantum)
756 break;
757 }
758
759 return nr_disp;
760 }
761
762 static void throtl_process_limit_change(struct throtl_data *td)
763 {
764 struct throtl_grp *tg;
765 struct hlist_node *pos, *n;
766
767 if (!td->limits_changed)
768 return;
769
770 xchg(&td->limits_changed, false);
771
772 throtl_log(td, "limits changed");
773
774 hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
775 if (!tg->limits_changed)
776 continue;
777
778 if (!xchg(&tg->limits_changed, false))
779 continue;
780
781 throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu"
782 " riops=%u wiops=%u", tg->bps[READ], tg->bps[WRITE],
783 tg->iops[READ], tg->iops[WRITE]);
784
785 /*
786 * Restart the slices for both READ and WRITES. It
787 * might happen that a group's limit are dropped
788 * suddenly and we don't want to account recently
789 * dispatched IO with new low rate
790 */
791 throtl_start_new_slice(td, tg, 0);
792 throtl_start_new_slice(td, tg, 1);
793
794 if (throtl_tg_on_rr(tg))
795 tg_update_disptime(td, tg);
796 }
797 }
798
799 /* Dispatch throttled bios. Should be called without queue lock held. */
800 static int throtl_dispatch(struct request_queue *q)
801 {
802 struct throtl_data *td = q->td;
803 unsigned int nr_disp = 0;
804 struct bio_list bio_list_on_stack;
805 struct bio *bio;
806 struct blk_plug plug;
807
808 spin_lock_irq(q->queue_lock);
809
810 throtl_process_limit_change(td);
811
812 if (!total_nr_queued(td))
813 goto out;
814
815 bio_list_init(&bio_list_on_stack);
816
817 throtl_log(td, "dispatch nr_queued=%u read=%u write=%u",
818 total_nr_queued(td), td->nr_queued[READ],
819 td->nr_queued[WRITE]);
820
821 nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);
822
823 if (nr_disp)
824 throtl_log(td, "bios disp=%u", nr_disp);
825
826 throtl_schedule_next_dispatch(td);
827 out:
828 spin_unlock_irq(q->queue_lock);
829
830 /*
831 * If we dispatched some requests, unplug the queue to make sure
832 * immediate dispatch
833 */
834 if (nr_disp) {
835 blk_start_plug(&plug);
836 while((bio = bio_list_pop(&bio_list_on_stack)))
837 generic_make_request(bio);
838 blk_finish_plug(&plug);
839 }
840 return nr_disp;
841 }
842
843 void blk_throtl_work(struct work_struct *work)
844 {
845 struct throtl_data *td = container_of(work, struct throtl_data,
846 throtl_work.work);
847 struct request_queue *q = td->queue;
848
849 throtl_dispatch(q);
850 }
851
852 /* Call with queue lock held */
853 static void
854 throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay)
855 {
856
857 struct delayed_work *dwork = &td->throtl_work;
858
859 /* schedule work if limits changed even if no bio is queued */
860 if (total_nr_queued(td) || td->limits_changed) {
861 /*
862 * We might have a work scheduled to be executed in future.
863 * Cancel that and schedule a new one.
864 */
865 __cancel_delayed_work(dwork);
866 queue_delayed_work(kthrotld_workqueue, dwork, delay);
867 throtl_log(td, "schedule work. delay=%lu jiffies=%lu",
868 delay, jiffies);
869 }
870 }
871
872 static void
873 throtl_destroy_tg(struct throtl_data *td, struct throtl_grp *tg)
874 {
875 /* Something wrong if we are trying to remove same group twice */
876 BUG_ON(hlist_unhashed(&tg->tg_node));
877
878 hlist_del_init(&tg->tg_node);
879
880 /*
881 * Put the reference taken at the time of creation so that when all
882 * queues are gone, group can be destroyed.
883 */
884 throtl_put_tg(tg);
885 td->nr_undestroyed_grps--;
886 }
887
888 static bool throtl_release_tgs(struct throtl_data *td, bool release_root)
889 {
890 struct hlist_node *pos, *n;
891 struct throtl_grp *tg;
892 bool empty = true;
893
894 hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
895 /* skip root? */
896 if (!release_root && tg == td->root_tg)
897 continue;
898
899 /*
900 * If cgroup removal path got to blk_group first and removed
901 * it from cgroup list, then it will take care of destroying
902 * cfqg also.
903 */
904 if (!blkiocg_del_blkio_group(&tg->blkg))
905 throtl_destroy_tg(td, tg);
906 else
907 empty = false;
908 }
909 return empty;
910 }
911
912 /*
913 * Blk cgroup controller notification saying that blkio_group object is being
914 * delinked as associated cgroup object is going away. That also means that
915 * no new IO will come in this group. So get rid of this group as soon as
916 * any pending IO in the group is finished.
917 *
918 * This function is called under rcu_read_lock(). @q is the rcu protected
919 * pointer. That means @q is a valid request_queue pointer as long as we
920 * are rcu read lock.
921 *
922 * @q was fetched from blkio_group under blkio_cgroup->lock. That means
923 * it should not be NULL as even if queue was going away, cgroup deltion
924 * path got to it first.
925 */
926 void throtl_unlink_blkio_group(struct request_queue *q,
927 struct blkio_group *blkg)
928 {
929 unsigned long flags;
930
931 spin_lock_irqsave(q->queue_lock, flags);
932 throtl_destroy_tg(q->td, tg_of_blkg(blkg));
933 spin_unlock_irqrestore(q->queue_lock, flags);
934 }
935
936 static bool throtl_clear_queue(struct request_queue *q)
937 {
938 lockdep_assert_held(q->queue_lock);
939
940 /*
941 * Clear tgs but leave the root one alone. This is necessary
942 * because root_tg is expected to be persistent and safe because
943 * blk-throtl can never be disabled while @q is alive. This is a
944 * kludge to prepare for unified blkg. This whole function will be
945 * removed soon.
946 */
947 return throtl_release_tgs(q->td, false);
948 }
949
950 static void throtl_update_blkio_group_common(struct throtl_data *td,
951 struct throtl_grp *tg)
952 {
953 xchg(&tg->limits_changed, true);
954 xchg(&td->limits_changed, true);
955 /* Schedule a work now to process the limit change */
956 throtl_schedule_delayed_work(td, 0);
957 }
958
959 /*
960 * For all update functions, @q should be a valid pointer because these
961 * update functions are called under blkcg_lock, that means, blkg is
962 * valid and in turn @q is valid. queue exit path can not race because
963 * of blkcg_lock
964 *
965 * Can not take queue lock in update functions as queue lock under blkcg_lock
966 * is not allowed. Under other paths we take blkcg_lock under queue_lock.
967 */
968 static void throtl_update_blkio_group_read_bps(struct request_queue *q,
969 struct blkio_group *blkg, u64 read_bps)
970 {
971 struct throtl_grp *tg = tg_of_blkg(blkg);
972
973 tg->bps[READ] = read_bps;
974 throtl_update_blkio_group_common(q->td, tg);
975 }
976
977 static void throtl_update_blkio_group_write_bps(struct request_queue *q,
978 struct blkio_group *blkg, u64 write_bps)
979 {
980 struct throtl_grp *tg = tg_of_blkg(blkg);
981
982 tg->bps[WRITE] = write_bps;
983 throtl_update_blkio_group_common(q->td, tg);
984 }
985
986 static void throtl_update_blkio_group_read_iops(struct request_queue *q,
987 struct blkio_group *blkg, unsigned int read_iops)
988 {
989 struct throtl_grp *tg = tg_of_blkg(blkg);
990
991 tg->iops[READ] = read_iops;
992 throtl_update_blkio_group_common(q->td, tg);
993 }
994
995 static void throtl_update_blkio_group_write_iops(struct request_queue *q,
996 struct blkio_group *blkg, unsigned int write_iops)
997 {
998 struct throtl_grp *tg = tg_of_blkg(blkg);
999
1000 tg->iops[WRITE] = write_iops;
1001 throtl_update_blkio_group_common(q->td, tg);
1002 }
1003
1004 static void throtl_shutdown_wq(struct request_queue *q)
1005 {
1006 struct throtl_data *td = q->td;
1007
1008 cancel_delayed_work_sync(&td->throtl_work);
1009 }
1010
1011 static struct blkio_policy_type blkio_policy_throtl = {
1012 .ops = {
1013 .blkio_alloc_group_fn = throtl_alloc_blkio_group,
1014 .blkio_link_group_fn = throtl_link_blkio_group,
1015 .blkio_unlink_group_fn = throtl_unlink_blkio_group,
1016 .blkio_clear_queue_fn = throtl_clear_queue,
1017 .blkio_update_group_read_bps_fn =
1018 throtl_update_blkio_group_read_bps,
1019 .blkio_update_group_write_bps_fn =
1020 throtl_update_blkio_group_write_bps,
1021 .blkio_update_group_read_iops_fn =
1022 throtl_update_blkio_group_read_iops,
1023 .blkio_update_group_write_iops_fn =
1024 throtl_update_blkio_group_write_iops,
1025 },
1026 .plid = BLKIO_POLICY_THROTL,
1027 };
1028
1029 bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1030 {
1031 struct throtl_data *td = q->td;
1032 struct throtl_grp *tg;
1033 bool rw = bio_data_dir(bio), update_disptime = true;
1034 struct blkio_cgroup *blkcg;
1035 bool throttled = false;
1036
1037 if (bio->bi_rw & REQ_THROTTLED) {
1038 bio->bi_rw &= ~REQ_THROTTLED;
1039 goto out;
1040 }
1041
1042 /*
1043 * A throtl_grp pointer retrieved under rcu can be used to access
1044 * basic fields like stats and io rates. If a group has no rules,
1045 * just update the dispatch stats in lockless manner and return.
1046 */
1047 rcu_read_lock();
1048 blkcg = task_blkio_cgroup(current);
1049 tg = throtl_lookup_tg(td, blkcg);
1050 if (tg) {
1051 if (tg_no_rule_group(tg, rw)) {
1052 blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size,
1053 rw, rw_is_sync(bio->bi_rw));
1054 goto out_unlock_rcu;
1055 }
1056 }
1057
1058 /*
1059 * Either group has not been allocated yet or it is not an unlimited
1060 * IO group
1061 */
1062 spin_lock_irq(q->queue_lock);
1063 tg = throtl_lookup_create_tg(td, blkcg);
1064 if (unlikely(!tg))
1065 goto out_unlock;
1066
1067 if (tg->nr_queued[rw]) {
1068 /*
1069 * There is already another bio queued in same dir. No
1070 * need to update dispatch time.
1071 */
1072 update_disptime = false;
1073 goto queue_bio;
1074
1075 }
1076
1077 /* Bio is with-in rate limit of group */
1078 if (tg_may_dispatch(td, tg, bio, NULL)) {
1079 throtl_charge_bio(tg, bio);
1080
1081 /*
1082 * We need to trim slice even when bios are not being queued
1083 * otherwise it might happen that a bio is not queued for
1084 * a long time and slice keeps on extending and trim is not
1085 * called for a long time. Now if limits are reduced suddenly
1086 * we take into account all the IO dispatched so far at new
1087 * low rate and * newly queued IO gets a really long dispatch
1088 * time.
1089 *
1090 * So keep on trimming slice even if bio is not queued.
1091 */
1092 throtl_trim_slice(td, tg, rw);
1093 goto out_unlock;
1094 }
1095
1096 queue_bio:
1097 throtl_log_tg(td, tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu"
1098 " iodisp=%u iops=%u queued=%d/%d",
1099 rw == READ ? 'R' : 'W',
1100 tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1101 tg->io_disp[rw], tg->iops[rw],
1102 tg->nr_queued[READ], tg->nr_queued[WRITE]);
1103
1104 throtl_add_bio_tg(q->td, tg, bio);
1105 throttled = true;
1106
1107 if (update_disptime) {
1108 tg_update_disptime(td, tg);
1109 throtl_schedule_next_dispatch(td);
1110 }
1111
1112 out_unlock:
1113 spin_unlock_irq(q->queue_lock);
1114 out_unlock_rcu:
1115 rcu_read_unlock();
1116 out:
1117 return throttled;
1118 }
1119
1120 /**
1121 * blk_throtl_drain - drain throttled bios
1122 * @q: request_queue to drain throttled bios for
1123 *
1124 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1125 */
1126 void blk_throtl_drain(struct request_queue *q)
1127 __releases(q->queue_lock) __acquires(q->queue_lock)
1128 {
1129 struct throtl_data *td = q->td;
1130 struct throtl_rb_root *st = &td->tg_service_tree;
1131 struct throtl_grp *tg;
1132 struct bio_list bl;
1133 struct bio *bio;
1134
1135 WARN_ON_ONCE(!queue_is_locked(q));
1136
1137 bio_list_init(&bl);
1138
1139 while ((tg = throtl_rb_first(st))) {
1140 throtl_dequeue_tg(td, tg);
1141
1142 while ((bio = bio_list_peek(&tg->bio_lists[READ])))
1143 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
1144 while ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
1145 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
1146 }
1147 spin_unlock_irq(q->queue_lock);
1148
1149 while ((bio = bio_list_pop(&bl)))
1150 generic_make_request(bio);
1151
1152 spin_lock_irq(q->queue_lock);
1153 }
1154
1155 int blk_throtl_init(struct request_queue *q)
1156 {
1157 struct throtl_data *td;
1158 struct blkio_group *blkg;
1159
1160 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1161 if (!td)
1162 return -ENOMEM;
1163
1164 INIT_HLIST_HEAD(&td->tg_list);
1165 td->tg_service_tree = THROTL_RB_ROOT;
1166 td->limits_changed = false;
1167 INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work);
1168
1169 q->td = td;
1170 td->queue = q;
1171
1172 /* alloc and init root group. */
1173 rcu_read_lock();
1174 spin_lock_irq(q->queue_lock);
1175
1176 blkg = blkg_lookup_create(&blkio_root_cgroup, q, BLKIO_POLICY_THROTL,
1177 true);
1178 if (!IS_ERR(blkg))
1179 td->root_tg = tg_of_blkg(blkg);
1180
1181 spin_unlock_irq(q->queue_lock);
1182 rcu_read_unlock();
1183
1184 if (!td->root_tg) {
1185 kfree(td);
1186 return -ENOMEM;
1187 }
1188 return 0;
1189 }
1190
1191 void blk_throtl_exit(struct request_queue *q)
1192 {
1193 struct throtl_data *td = q->td;
1194 bool wait = false;
1195
1196 BUG_ON(!td);
1197
1198 throtl_shutdown_wq(q);
1199
1200 spin_lock_irq(q->queue_lock);
1201 throtl_release_tgs(td, true);
1202
1203 /* If there are other groups */
1204 if (td->nr_undestroyed_grps > 0)
1205 wait = true;
1206
1207 spin_unlock_irq(q->queue_lock);
1208
1209 /*
1210 * Wait for tg->blkg->q accessors to exit their grace periods.
1211 * Do this wait only if there are other undestroyed groups out
1212 * there (other than root group). This can happen if cgroup deletion
1213 * path claimed the responsibility of cleaning up a group before
1214 * queue cleanup code get to the group.
1215 *
1216 * Do not call synchronize_rcu() unconditionally as there are drivers
1217 * which create/delete request queue hundreds of times during scan/boot
1218 * and synchronize_rcu() can take significant time and slow down boot.
1219 */
1220 if (wait)
1221 synchronize_rcu();
1222
1223 /*
1224 * Just being safe to make sure after previous flush if some body did
1225 * update limits through cgroup and another work got queued, cancel
1226 * it.
1227 */
1228 throtl_shutdown_wq(q);
1229 }
1230
1231 void blk_throtl_release(struct request_queue *q)
1232 {
1233 kfree(q->td);
1234 }
1235
1236 static int __init throtl_init(void)
1237 {
1238 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1239 if (!kthrotld_workqueue)
1240 panic("Failed to create kthrotld\n");
1241
1242 blkio_policy_register(&blkio_policy_throtl);
1243 return 0;
1244 }
1245
1246 module_init(throtl_init);