]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-throttle.c
blk-throttle: add downgrade logic
[mirror_ubuntu-bionic-kernel.git] / block / blk-throttle.c
1 /*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include <linux/blk-cgroup.h>
13 #include "blk.h"
14
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum = 8;
17
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum = 32;
20
21 /* Throttling is performed over 100ms slice and after that slice is renewed */
22 static unsigned long throtl_slice = HZ/10; /* 100 ms */
23
24 static struct blkcg_policy blkcg_policy_throtl;
25
26 /* A workqueue to queue throttle related work */
27 static struct workqueue_struct *kthrotld_workqueue;
28
29 /*
30 * To implement hierarchical throttling, throtl_grps form a tree and bios
31 * are dispatched upwards level by level until they reach the top and get
32 * issued. When dispatching bios from the children and local group at each
33 * level, if the bios are dispatched into a single bio_list, there's a risk
34 * of a local or child group which can queue many bios at once filling up
35 * the list starving others.
36 *
37 * To avoid such starvation, dispatched bios are queued separately
38 * according to where they came from. When they are again dispatched to
39 * the parent, they're popped in round-robin order so that no single source
40 * hogs the dispatch window.
41 *
42 * throtl_qnode is used to keep the queued bios separated by their sources.
43 * Bios are queued to throtl_qnode which in turn is queued to
44 * throtl_service_queue and then dispatched in round-robin order.
45 *
46 * It's also used to track the reference counts on blkg's. A qnode always
47 * belongs to a throtl_grp and gets queued on itself or the parent, so
48 * incrementing the reference of the associated throtl_grp when a qnode is
49 * queued and decrementing when dequeued is enough to keep the whole blkg
50 * tree pinned while bios are in flight.
51 */
52 struct throtl_qnode {
53 struct list_head node; /* service_queue->queued[] */
54 struct bio_list bios; /* queued bios */
55 struct throtl_grp *tg; /* tg this qnode belongs to */
56 };
57
58 struct throtl_service_queue {
59 struct throtl_service_queue *parent_sq; /* the parent service_queue */
60
61 /*
62 * Bios queued directly to this service_queue or dispatched from
63 * children throtl_grp's.
64 */
65 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
66 unsigned int nr_queued[2]; /* number of queued bios */
67
68 /*
69 * RB tree of active children throtl_grp's, which are sorted by
70 * their ->disptime.
71 */
72 struct rb_root pending_tree; /* RB tree of active tgs */
73 struct rb_node *first_pending; /* first node in the tree */
74 unsigned int nr_pending; /* # queued in the tree */
75 unsigned long first_pending_disptime; /* disptime of the first tg */
76 struct timer_list pending_timer; /* fires on first_pending_disptime */
77 };
78
79 enum tg_state_flags {
80 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
81 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
82 };
83
84 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
85
86 enum {
87 LIMIT_LOW,
88 LIMIT_MAX,
89 LIMIT_CNT,
90 };
91
92 struct throtl_grp {
93 /* must be the first member */
94 struct blkg_policy_data pd;
95
96 /* active throtl group service_queue member */
97 struct rb_node rb_node;
98
99 /* throtl_data this group belongs to */
100 struct throtl_data *td;
101
102 /* this group's service queue */
103 struct throtl_service_queue service_queue;
104
105 /*
106 * qnode_on_self is used when bios are directly queued to this
107 * throtl_grp so that local bios compete fairly with bios
108 * dispatched from children. qnode_on_parent is used when bios are
109 * dispatched from this throtl_grp into its parent and will compete
110 * with the sibling qnode_on_parents and the parent's
111 * qnode_on_self.
112 */
113 struct throtl_qnode qnode_on_self[2];
114 struct throtl_qnode qnode_on_parent[2];
115
116 /*
117 * Dispatch time in jiffies. This is the estimated time when group
118 * will unthrottle and is ready to dispatch more bio. It is used as
119 * key to sort active groups in service tree.
120 */
121 unsigned long disptime;
122
123 unsigned int flags;
124
125 /* are there any throtl rules between this group and td? */
126 bool has_rules[2];
127
128 /* internally used bytes per second rate limits */
129 uint64_t bps[2][LIMIT_CNT];
130 /* user configured bps limits */
131 uint64_t bps_conf[2][LIMIT_CNT];
132
133 /* internally used IOPS limits */
134 unsigned int iops[2][LIMIT_CNT];
135 /* user configured IOPS limits */
136 unsigned int iops_conf[2][LIMIT_CNT];
137
138 /* Number of bytes disptached in current slice */
139 uint64_t bytes_disp[2];
140 /* Number of bio's dispatched in current slice */
141 unsigned int io_disp[2];
142
143 unsigned long last_low_overflow_time[2];
144
145 uint64_t last_bytes_disp[2];
146 unsigned int last_io_disp[2];
147
148 unsigned long last_check_time;
149
150 /* When did we start a new slice */
151 unsigned long slice_start[2];
152 unsigned long slice_end[2];
153 };
154
155 struct throtl_data
156 {
157 /* service tree for active throtl groups */
158 struct throtl_service_queue service_queue;
159
160 struct request_queue *queue;
161
162 /* Total Number of queued bios on READ and WRITE lists */
163 unsigned int nr_queued[2];
164
165 /* Work for dispatching throttled bios */
166 struct work_struct dispatch_work;
167 unsigned int limit_index;
168 bool limit_valid[LIMIT_CNT];
169
170 unsigned long low_upgrade_time;
171 unsigned long low_downgrade_time;
172 };
173
174 static void throtl_pending_timer_fn(unsigned long arg);
175
176 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
177 {
178 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
179 }
180
181 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
182 {
183 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
184 }
185
186 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
187 {
188 return pd_to_blkg(&tg->pd);
189 }
190
191 /**
192 * sq_to_tg - return the throl_grp the specified service queue belongs to
193 * @sq: the throtl_service_queue of interest
194 *
195 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
196 * embedded in throtl_data, %NULL is returned.
197 */
198 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
199 {
200 if (sq && sq->parent_sq)
201 return container_of(sq, struct throtl_grp, service_queue);
202 else
203 return NULL;
204 }
205
206 /**
207 * sq_to_td - return throtl_data the specified service queue belongs to
208 * @sq: the throtl_service_queue of interest
209 *
210 * A service_queue can be embedded in either a throtl_grp or throtl_data.
211 * Determine the associated throtl_data accordingly and return it.
212 */
213 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
214 {
215 struct throtl_grp *tg = sq_to_tg(sq);
216
217 if (tg)
218 return tg->td;
219 else
220 return container_of(sq, struct throtl_data, service_queue);
221 }
222
223 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
224 {
225 struct blkcg_gq *blkg = tg_to_blkg(tg);
226 uint64_t ret;
227
228 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
229 return U64_MAX;
230 ret = tg->bps[rw][tg->td->limit_index];
231 if (ret == 0 && tg->td->limit_index == LIMIT_LOW)
232 return tg->bps[rw][LIMIT_MAX];
233 return ret;
234 }
235
236 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
237 {
238 struct blkcg_gq *blkg = tg_to_blkg(tg);
239 unsigned int ret;
240
241 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
242 return UINT_MAX;
243 ret = tg->iops[rw][tg->td->limit_index];
244 if (ret == 0 && tg->td->limit_index == LIMIT_LOW)
245 return tg->iops[rw][LIMIT_MAX];
246 return ret;
247 }
248
249 /**
250 * throtl_log - log debug message via blktrace
251 * @sq: the service_queue being reported
252 * @fmt: printf format string
253 * @args: printf args
254 *
255 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
256 * throtl_grp; otherwise, just "throtl".
257 */
258 #define throtl_log(sq, fmt, args...) do { \
259 struct throtl_grp *__tg = sq_to_tg((sq)); \
260 struct throtl_data *__td = sq_to_td((sq)); \
261 \
262 (void)__td; \
263 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
264 break; \
265 if ((__tg)) { \
266 char __pbuf[128]; \
267 \
268 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \
269 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
270 } else { \
271 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
272 } \
273 } while (0)
274
275 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
276 {
277 INIT_LIST_HEAD(&qn->node);
278 bio_list_init(&qn->bios);
279 qn->tg = tg;
280 }
281
282 /**
283 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
284 * @bio: bio being added
285 * @qn: qnode to add bio to
286 * @queued: the service_queue->queued[] list @qn belongs to
287 *
288 * Add @bio to @qn and put @qn on @queued if it's not already on.
289 * @qn->tg's reference count is bumped when @qn is activated. See the
290 * comment on top of throtl_qnode definition for details.
291 */
292 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
293 struct list_head *queued)
294 {
295 bio_list_add(&qn->bios, bio);
296 if (list_empty(&qn->node)) {
297 list_add_tail(&qn->node, queued);
298 blkg_get(tg_to_blkg(qn->tg));
299 }
300 }
301
302 /**
303 * throtl_peek_queued - peek the first bio on a qnode list
304 * @queued: the qnode list to peek
305 */
306 static struct bio *throtl_peek_queued(struct list_head *queued)
307 {
308 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
309 struct bio *bio;
310
311 if (list_empty(queued))
312 return NULL;
313
314 bio = bio_list_peek(&qn->bios);
315 WARN_ON_ONCE(!bio);
316 return bio;
317 }
318
319 /**
320 * throtl_pop_queued - pop the first bio form a qnode list
321 * @queued: the qnode list to pop a bio from
322 * @tg_to_put: optional out argument for throtl_grp to put
323 *
324 * Pop the first bio from the qnode list @queued. After popping, the first
325 * qnode is removed from @queued if empty or moved to the end of @queued so
326 * that the popping order is round-robin.
327 *
328 * When the first qnode is removed, its associated throtl_grp should be put
329 * too. If @tg_to_put is NULL, this function automatically puts it;
330 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
331 * responsible for putting it.
332 */
333 static struct bio *throtl_pop_queued(struct list_head *queued,
334 struct throtl_grp **tg_to_put)
335 {
336 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
337 struct bio *bio;
338
339 if (list_empty(queued))
340 return NULL;
341
342 bio = bio_list_pop(&qn->bios);
343 WARN_ON_ONCE(!bio);
344
345 if (bio_list_empty(&qn->bios)) {
346 list_del_init(&qn->node);
347 if (tg_to_put)
348 *tg_to_put = qn->tg;
349 else
350 blkg_put(tg_to_blkg(qn->tg));
351 } else {
352 list_move_tail(&qn->node, queued);
353 }
354
355 return bio;
356 }
357
358 /* init a service_queue, assumes the caller zeroed it */
359 static void throtl_service_queue_init(struct throtl_service_queue *sq)
360 {
361 INIT_LIST_HEAD(&sq->queued[0]);
362 INIT_LIST_HEAD(&sq->queued[1]);
363 sq->pending_tree = RB_ROOT;
364 setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
365 (unsigned long)sq);
366 }
367
368 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
369 {
370 struct throtl_grp *tg;
371 int rw;
372
373 tg = kzalloc_node(sizeof(*tg), gfp, node);
374 if (!tg)
375 return NULL;
376
377 throtl_service_queue_init(&tg->service_queue);
378
379 for (rw = READ; rw <= WRITE; rw++) {
380 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
381 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
382 }
383
384 RB_CLEAR_NODE(&tg->rb_node);
385 tg->bps[READ][LIMIT_MAX] = U64_MAX;
386 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
387 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
388 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
389 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
390 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
391 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
392 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
393 /* LIMIT_LOW will have default value 0 */
394
395 return &tg->pd;
396 }
397
398 static void throtl_pd_init(struct blkg_policy_data *pd)
399 {
400 struct throtl_grp *tg = pd_to_tg(pd);
401 struct blkcg_gq *blkg = tg_to_blkg(tg);
402 struct throtl_data *td = blkg->q->td;
403 struct throtl_service_queue *sq = &tg->service_queue;
404
405 /*
406 * If on the default hierarchy, we switch to properly hierarchical
407 * behavior where limits on a given throtl_grp are applied to the
408 * whole subtree rather than just the group itself. e.g. If 16M
409 * read_bps limit is set on the root group, the whole system can't
410 * exceed 16M for the device.
411 *
412 * If not on the default hierarchy, the broken flat hierarchy
413 * behavior is retained where all throtl_grps are treated as if
414 * they're all separate root groups right below throtl_data.
415 * Limits of a group don't interact with limits of other groups
416 * regardless of the position of the group in the hierarchy.
417 */
418 sq->parent_sq = &td->service_queue;
419 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
420 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
421 tg->td = td;
422 }
423
424 /*
425 * Set has_rules[] if @tg or any of its parents have limits configured.
426 * This doesn't require walking up to the top of the hierarchy as the
427 * parent's has_rules[] is guaranteed to be correct.
428 */
429 static void tg_update_has_rules(struct throtl_grp *tg)
430 {
431 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
432 struct throtl_data *td = tg->td;
433 int rw;
434
435 for (rw = READ; rw <= WRITE; rw++)
436 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
437 (td->limit_valid[td->limit_index] &&
438 (tg_bps_limit(tg, rw) != U64_MAX ||
439 tg_iops_limit(tg, rw) != UINT_MAX));
440 }
441
442 static void throtl_pd_online(struct blkg_policy_data *pd)
443 {
444 /*
445 * We don't want new groups to escape the limits of its ancestors.
446 * Update has_rules[] after a new group is brought online.
447 */
448 tg_update_has_rules(pd_to_tg(pd));
449 }
450
451 static void blk_throtl_update_limit_valid(struct throtl_data *td)
452 {
453 struct cgroup_subsys_state *pos_css;
454 struct blkcg_gq *blkg;
455 bool low_valid = false;
456
457 rcu_read_lock();
458 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
459 struct throtl_grp *tg = blkg_to_tg(blkg);
460
461 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
462 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
463 low_valid = true;
464 }
465 rcu_read_unlock();
466
467 td->limit_valid[LIMIT_LOW] = low_valid;
468 }
469
470 static void throtl_upgrade_state(struct throtl_data *td);
471 static void throtl_pd_offline(struct blkg_policy_data *pd)
472 {
473 struct throtl_grp *tg = pd_to_tg(pd);
474
475 tg->bps[READ][LIMIT_LOW] = 0;
476 tg->bps[WRITE][LIMIT_LOW] = 0;
477 tg->iops[READ][LIMIT_LOW] = 0;
478 tg->iops[WRITE][LIMIT_LOW] = 0;
479
480 blk_throtl_update_limit_valid(tg->td);
481
482 if (!tg->td->limit_valid[tg->td->limit_index])
483 throtl_upgrade_state(tg->td);
484 }
485
486 static void throtl_pd_free(struct blkg_policy_data *pd)
487 {
488 struct throtl_grp *tg = pd_to_tg(pd);
489
490 del_timer_sync(&tg->service_queue.pending_timer);
491 kfree(tg);
492 }
493
494 static struct throtl_grp *
495 throtl_rb_first(struct throtl_service_queue *parent_sq)
496 {
497 /* Service tree is empty */
498 if (!parent_sq->nr_pending)
499 return NULL;
500
501 if (!parent_sq->first_pending)
502 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
503
504 if (parent_sq->first_pending)
505 return rb_entry_tg(parent_sq->first_pending);
506
507 return NULL;
508 }
509
510 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
511 {
512 rb_erase(n, root);
513 RB_CLEAR_NODE(n);
514 }
515
516 static void throtl_rb_erase(struct rb_node *n,
517 struct throtl_service_queue *parent_sq)
518 {
519 if (parent_sq->first_pending == n)
520 parent_sq->first_pending = NULL;
521 rb_erase_init(n, &parent_sq->pending_tree);
522 --parent_sq->nr_pending;
523 }
524
525 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
526 {
527 struct throtl_grp *tg;
528
529 tg = throtl_rb_first(parent_sq);
530 if (!tg)
531 return;
532
533 parent_sq->first_pending_disptime = tg->disptime;
534 }
535
536 static void tg_service_queue_add(struct throtl_grp *tg)
537 {
538 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
539 struct rb_node **node = &parent_sq->pending_tree.rb_node;
540 struct rb_node *parent = NULL;
541 struct throtl_grp *__tg;
542 unsigned long key = tg->disptime;
543 int left = 1;
544
545 while (*node != NULL) {
546 parent = *node;
547 __tg = rb_entry_tg(parent);
548
549 if (time_before(key, __tg->disptime))
550 node = &parent->rb_left;
551 else {
552 node = &parent->rb_right;
553 left = 0;
554 }
555 }
556
557 if (left)
558 parent_sq->first_pending = &tg->rb_node;
559
560 rb_link_node(&tg->rb_node, parent, node);
561 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
562 }
563
564 static void __throtl_enqueue_tg(struct throtl_grp *tg)
565 {
566 tg_service_queue_add(tg);
567 tg->flags |= THROTL_TG_PENDING;
568 tg->service_queue.parent_sq->nr_pending++;
569 }
570
571 static void throtl_enqueue_tg(struct throtl_grp *tg)
572 {
573 if (!(tg->flags & THROTL_TG_PENDING))
574 __throtl_enqueue_tg(tg);
575 }
576
577 static void __throtl_dequeue_tg(struct throtl_grp *tg)
578 {
579 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
580 tg->flags &= ~THROTL_TG_PENDING;
581 }
582
583 static void throtl_dequeue_tg(struct throtl_grp *tg)
584 {
585 if (tg->flags & THROTL_TG_PENDING)
586 __throtl_dequeue_tg(tg);
587 }
588
589 /* Call with queue lock held */
590 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
591 unsigned long expires)
592 {
593 mod_timer(&sq->pending_timer, expires);
594 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
595 expires - jiffies, jiffies);
596 }
597
598 /**
599 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
600 * @sq: the service_queue to schedule dispatch for
601 * @force: force scheduling
602 *
603 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
604 * dispatch time of the first pending child. Returns %true if either timer
605 * is armed or there's no pending child left. %false if the current
606 * dispatch window is still open and the caller should continue
607 * dispatching.
608 *
609 * If @force is %true, the dispatch timer is always scheduled and this
610 * function is guaranteed to return %true. This is to be used when the
611 * caller can't dispatch itself and needs to invoke pending_timer
612 * unconditionally. Note that forced scheduling is likely to induce short
613 * delay before dispatch starts even if @sq->first_pending_disptime is not
614 * in the future and thus shouldn't be used in hot paths.
615 */
616 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
617 bool force)
618 {
619 /* any pending children left? */
620 if (!sq->nr_pending)
621 return true;
622
623 update_min_dispatch_time(sq);
624
625 /* is the next dispatch time in the future? */
626 if (force || time_after(sq->first_pending_disptime, jiffies)) {
627 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
628 return true;
629 }
630
631 /* tell the caller to continue dispatching */
632 return false;
633 }
634
635 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
636 bool rw, unsigned long start)
637 {
638 tg->bytes_disp[rw] = 0;
639 tg->io_disp[rw] = 0;
640
641 /*
642 * Previous slice has expired. We must have trimmed it after last
643 * bio dispatch. That means since start of last slice, we never used
644 * that bandwidth. Do try to make use of that bandwidth while giving
645 * credit.
646 */
647 if (time_after_eq(start, tg->slice_start[rw]))
648 tg->slice_start[rw] = start;
649
650 tg->slice_end[rw] = jiffies + throtl_slice;
651 throtl_log(&tg->service_queue,
652 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
653 rw == READ ? 'R' : 'W', tg->slice_start[rw],
654 tg->slice_end[rw], jiffies);
655 }
656
657 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
658 {
659 tg->bytes_disp[rw] = 0;
660 tg->io_disp[rw] = 0;
661 tg->slice_start[rw] = jiffies;
662 tg->slice_end[rw] = jiffies + throtl_slice;
663 throtl_log(&tg->service_queue,
664 "[%c] new slice start=%lu end=%lu jiffies=%lu",
665 rw == READ ? 'R' : 'W', tg->slice_start[rw],
666 tg->slice_end[rw], jiffies);
667 }
668
669 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
670 unsigned long jiffy_end)
671 {
672 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
673 }
674
675 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
676 unsigned long jiffy_end)
677 {
678 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
679 throtl_log(&tg->service_queue,
680 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
681 rw == READ ? 'R' : 'W', tg->slice_start[rw],
682 tg->slice_end[rw], jiffies);
683 }
684
685 /* Determine if previously allocated or extended slice is complete or not */
686 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
687 {
688 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
689 return false;
690
691 return 1;
692 }
693
694 /* Trim the used slices and adjust slice start accordingly */
695 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
696 {
697 unsigned long nr_slices, time_elapsed, io_trim;
698 u64 bytes_trim, tmp;
699
700 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
701
702 /*
703 * If bps are unlimited (-1), then time slice don't get
704 * renewed. Don't try to trim the slice if slice is used. A new
705 * slice will start when appropriate.
706 */
707 if (throtl_slice_used(tg, rw))
708 return;
709
710 /*
711 * A bio has been dispatched. Also adjust slice_end. It might happen
712 * that initially cgroup limit was very low resulting in high
713 * slice_end, but later limit was bumped up and bio was dispached
714 * sooner, then we need to reduce slice_end. A high bogus slice_end
715 * is bad because it does not allow new slice to start.
716 */
717
718 throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
719
720 time_elapsed = jiffies - tg->slice_start[rw];
721
722 nr_slices = time_elapsed / throtl_slice;
723
724 if (!nr_slices)
725 return;
726 tmp = tg_bps_limit(tg, rw) * throtl_slice * nr_slices;
727 do_div(tmp, HZ);
728 bytes_trim = tmp;
729
730 io_trim = (tg_iops_limit(tg, rw) * throtl_slice * nr_slices) / HZ;
731
732 if (!bytes_trim && !io_trim)
733 return;
734
735 if (tg->bytes_disp[rw] >= bytes_trim)
736 tg->bytes_disp[rw] -= bytes_trim;
737 else
738 tg->bytes_disp[rw] = 0;
739
740 if (tg->io_disp[rw] >= io_trim)
741 tg->io_disp[rw] -= io_trim;
742 else
743 tg->io_disp[rw] = 0;
744
745 tg->slice_start[rw] += nr_slices * throtl_slice;
746
747 throtl_log(&tg->service_queue,
748 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
749 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
750 tg->slice_start[rw], tg->slice_end[rw], jiffies);
751 }
752
753 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
754 unsigned long *wait)
755 {
756 bool rw = bio_data_dir(bio);
757 unsigned int io_allowed;
758 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
759 u64 tmp;
760
761 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
762
763 /* Slice has just started. Consider one slice interval */
764 if (!jiffy_elapsed)
765 jiffy_elapsed_rnd = throtl_slice;
766
767 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
768
769 /*
770 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
771 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
772 * will allow dispatch after 1 second and after that slice should
773 * have been trimmed.
774 */
775
776 tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
777 do_div(tmp, HZ);
778
779 if (tmp > UINT_MAX)
780 io_allowed = UINT_MAX;
781 else
782 io_allowed = tmp;
783
784 if (tg->io_disp[rw] + 1 <= io_allowed) {
785 if (wait)
786 *wait = 0;
787 return true;
788 }
789
790 /* Calc approx time to dispatch */
791 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
792
793 if (jiffy_wait > jiffy_elapsed)
794 jiffy_wait = jiffy_wait - jiffy_elapsed;
795 else
796 jiffy_wait = 1;
797
798 if (wait)
799 *wait = jiffy_wait;
800 return 0;
801 }
802
803 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
804 unsigned long *wait)
805 {
806 bool rw = bio_data_dir(bio);
807 u64 bytes_allowed, extra_bytes, tmp;
808 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
809
810 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
811
812 /* Slice has just started. Consider one slice interval */
813 if (!jiffy_elapsed)
814 jiffy_elapsed_rnd = throtl_slice;
815
816 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
817
818 tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
819 do_div(tmp, HZ);
820 bytes_allowed = tmp;
821
822 if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
823 if (wait)
824 *wait = 0;
825 return true;
826 }
827
828 /* Calc approx time to dispatch */
829 extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
830 jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
831
832 if (!jiffy_wait)
833 jiffy_wait = 1;
834
835 /*
836 * This wait time is without taking into consideration the rounding
837 * up we did. Add that time also.
838 */
839 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
840 if (wait)
841 *wait = jiffy_wait;
842 return 0;
843 }
844
845 /*
846 * Returns whether one can dispatch a bio or not. Also returns approx number
847 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
848 */
849 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
850 unsigned long *wait)
851 {
852 bool rw = bio_data_dir(bio);
853 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
854
855 /*
856 * Currently whole state machine of group depends on first bio
857 * queued in the group bio list. So one should not be calling
858 * this function with a different bio if there are other bios
859 * queued.
860 */
861 BUG_ON(tg->service_queue.nr_queued[rw] &&
862 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
863
864 /* If tg->bps = -1, then BW is unlimited */
865 if (tg_bps_limit(tg, rw) == U64_MAX &&
866 tg_iops_limit(tg, rw) == UINT_MAX) {
867 if (wait)
868 *wait = 0;
869 return true;
870 }
871
872 /*
873 * If previous slice expired, start a new one otherwise renew/extend
874 * existing slice to make sure it is at least throtl_slice interval
875 * long since now. New slice is started only for empty throttle group.
876 * If there is queued bio, that means there should be an active
877 * slice and it should be extended instead.
878 */
879 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
880 throtl_start_new_slice(tg, rw);
881 else {
882 if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
883 throtl_extend_slice(tg, rw, jiffies + throtl_slice);
884 }
885
886 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
887 tg_with_in_iops_limit(tg, bio, &iops_wait)) {
888 if (wait)
889 *wait = 0;
890 return 1;
891 }
892
893 max_wait = max(bps_wait, iops_wait);
894
895 if (wait)
896 *wait = max_wait;
897
898 if (time_before(tg->slice_end[rw], jiffies + max_wait))
899 throtl_extend_slice(tg, rw, jiffies + max_wait);
900
901 return 0;
902 }
903
904 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
905 {
906 bool rw = bio_data_dir(bio);
907
908 /* Charge the bio to the group */
909 tg->bytes_disp[rw] += bio->bi_iter.bi_size;
910 tg->io_disp[rw]++;
911 tg->last_bytes_disp[rw] += bio->bi_iter.bi_size;
912 tg->last_io_disp[rw]++;
913
914 /*
915 * BIO_THROTTLED is used to prevent the same bio to be throttled
916 * more than once as a throttled bio will go through blk-throtl the
917 * second time when it eventually gets issued. Set it when a bio
918 * is being charged to a tg.
919 */
920 if (!bio_flagged(bio, BIO_THROTTLED))
921 bio_set_flag(bio, BIO_THROTTLED);
922 }
923
924 /**
925 * throtl_add_bio_tg - add a bio to the specified throtl_grp
926 * @bio: bio to add
927 * @qn: qnode to use
928 * @tg: the target throtl_grp
929 *
930 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
931 * tg->qnode_on_self[] is used.
932 */
933 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
934 struct throtl_grp *tg)
935 {
936 struct throtl_service_queue *sq = &tg->service_queue;
937 bool rw = bio_data_dir(bio);
938
939 if (!qn)
940 qn = &tg->qnode_on_self[rw];
941
942 /*
943 * If @tg doesn't currently have any bios queued in the same
944 * direction, queueing @bio can change when @tg should be
945 * dispatched. Mark that @tg was empty. This is automatically
946 * cleaered on the next tg_update_disptime().
947 */
948 if (!sq->nr_queued[rw])
949 tg->flags |= THROTL_TG_WAS_EMPTY;
950
951 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
952
953 sq->nr_queued[rw]++;
954 throtl_enqueue_tg(tg);
955 }
956
957 static void tg_update_disptime(struct throtl_grp *tg)
958 {
959 struct throtl_service_queue *sq = &tg->service_queue;
960 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
961 struct bio *bio;
962
963 bio = throtl_peek_queued(&sq->queued[READ]);
964 if (bio)
965 tg_may_dispatch(tg, bio, &read_wait);
966
967 bio = throtl_peek_queued(&sq->queued[WRITE]);
968 if (bio)
969 tg_may_dispatch(tg, bio, &write_wait);
970
971 min_wait = min(read_wait, write_wait);
972 disptime = jiffies + min_wait;
973
974 /* Update dispatch time */
975 throtl_dequeue_tg(tg);
976 tg->disptime = disptime;
977 throtl_enqueue_tg(tg);
978
979 /* see throtl_add_bio_tg() */
980 tg->flags &= ~THROTL_TG_WAS_EMPTY;
981 }
982
983 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
984 struct throtl_grp *parent_tg, bool rw)
985 {
986 if (throtl_slice_used(parent_tg, rw)) {
987 throtl_start_new_slice_with_credit(parent_tg, rw,
988 child_tg->slice_start[rw]);
989 }
990
991 }
992
993 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
994 {
995 struct throtl_service_queue *sq = &tg->service_queue;
996 struct throtl_service_queue *parent_sq = sq->parent_sq;
997 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
998 struct throtl_grp *tg_to_put = NULL;
999 struct bio *bio;
1000
1001 /*
1002 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1003 * from @tg may put its reference and @parent_sq might end up
1004 * getting released prematurely. Remember the tg to put and put it
1005 * after @bio is transferred to @parent_sq.
1006 */
1007 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1008 sq->nr_queued[rw]--;
1009
1010 throtl_charge_bio(tg, bio);
1011
1012 /*
1013 * If our parent is another tg, we just need to transfer @bio to
1014 * the parent using throtl_add_bio_tg(). If our parent is
1015 * @td->service_queue, @bio is ready to be issued. Put it on its
1016 * bio_lists[] and decrease total number queued. The caller is
1017 * responsible for issuing these bios.
1018 */
1019 if (parent_tg) {
1020 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1021 start_parent_slice_with_credit(tg, parent_tg, rw);
1022 } else {
1023 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1024 &parent_sq->queued[rw]);
1025 BUG_ON(tg->td->nr_queued[rw] <= 0);
1026 tg->td->nr_queued[rw]--;
1027 }
1028
1029 throtl_trim_slice(tg, rw);
1030
1031 if (tg_to_put)
1032 blkg_put(tg_to_blkg(tg_to_put));
1033 }
1034
1035 static int throtl_dispatch_tg(struct throtl_grp *tg)
1036 {
1037 struct throtl_service_queue *sq = &tg->service_queue;
1038 unsigned int nr_reads = 0, nr_writes = 0;
1039 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1040 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1041 struct bio *bio;
1042
1043 /* Try to dispatch 75% READS and 25% WRITES */
1044
1045 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1046 tg_may_dispatch(tg, bio, NULL)) {
1047
1048 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1049 nr_reads++;
1050
1051 if (nr_reads >= max_nr_reads)
1052 break;
1053 }
1054
1055 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1056 tg_may_dispatch(tg, bio, NULL)) {
1057
1058 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1059 nr_writes++;
1060
1061 if (nr_writes >= max_nr_writes)
1062 break;
1063 }
1064
1065 return nr_reads + nr_writes;
1066 }
1067
1068 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1069 {
1070 unsigned int nr_disp = 0;
1071
1072 while (1) {
1073 struct throtl_grp *tg = throtl_rb_first(parent_sq);
1074 struct throtl_service_queue *sq = &tg->service_queue;
1075
1076 if (!tg)
1077 break;
1078
1079 if (time_before(jiffies, tg->disptime))
1080 break;
1081
1082 throtl_dequeue_tg(tg);
1083
1084 nr_disp += throtl_dispatch_tg(tg);
1085
1086 if (sq->nr_queued[0] || sq->nr_queued[1])
1087 tg_update_disptime(tg);
1088
1089 if (nr_disp >= throtl_quantum)
1090 break;
1091 }
1092
1093 return nr_disp;
1094 }
1095
1096 static bool throtl_can_upgrade(struct throtl_data *td,
1097 struct throtl_grp *this_tg);
1098 /**
1099 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1100 * @arg: the throtl_service_queue being serviced
1101 *
1102 * This timer is armed when a child throtl_grp with active bio's become
1103 * pending and queued on the service_queue's pending_tree and expires when
1104 * the first child throtl_grp should be dispatched. This function
1105 * dispatches bio's from the children throtl_grps to the parent
1106 * service_queue.
1107 *
1108 * If the parent's parent is another throtl_grp, dispatching is propagated
1109 * by either arming its pending_timer or repeating dispatch directly. If
1110 * the top-level service_tree is reached, throtl_data->dispatch_work is
1111 * kicked so that the ready bio's are issued.
1112 */
1113 static void throtl_pending_timer_fn(unsigned long arg)
1114 {
1115 struct throtl_service_queue *sq = (void *)arg;
1116 struct throtl_grp *tg = sq_to_tg(sq);
1117 struct throtl_data *td = sq_to_td(sq);
1118 struct request_queue *q = td->queue;
1119 struct throtl_service_queue *parent_sq;
1120 bool dispatched;
1121 int ret;
1122
1123 spin_lock_irq(q->queue_lock);
1124 if (throtl_can_upgrade(td, NULL))
1125 throtl_upgrade_state(td);
1126
1127 again:
1128 parent_sq = sq->parent_sq;
1129 dispatched = false;
1130
1131 while (true) {
1132 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1133 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1134 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1135
1136 ret = throtl_select_dispatch(sq);
1137 if (ret) {
1138 throtl_log(sq, "bios disp=%u", ret);
1139 dispatched = true;
1140 }
1141
1142 if (throtl_schedule_next_dispatch(sq, false))
1143 break;
1144
1145 /* this dispatch windows is still open, relax and repeat */
1146 spin_unlock_irq(q->queue_lock);
1147 cpu_relax();
1148 spin_lock_irq(q->queue_lock);
1149 }
1150
1151 if (!dispatched)
1152 goto out_unlock;
1153
1154 if (parent_sq) {
1155 /* @parent_sq is another throl_grp, propagate dispatch */
1156 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1157 tg_update_disptime(tg);
1158 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1159 /* window is already open, repeat dispatching */
1160 sq = parent_sq;
1161 tg = sq_to_tg(sq);
1162 goto again;
1163 }
1164 }
1165 } else {
1166 /* reached the top-level, queue issueing */
1167 queue_work(kthrotld_workqueue, &td->dispatch_work);
1168 }
1169 out_unlock:
1170 spin_unlock_irq(q->queue_lock);
1171 }
1172
1173 /**
1174 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1175 * @work: work item being executed
1176 *
1177 * This function is queued for execution when bio's reach the bio_lists[]
1178 * of throtl_data->service_queue. Those bio's are ready and issued by this
1179 * function.
1180 */
1181 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1182 {
1183 struct throtl_data *td = container_of(work, struct throtl_data,
1184 dispatch_work);
1185 struct throtl_service_queue *td_sq = &td->service_queue;
1186 struct request_queue *q = td->queue;
1187 struct bio_list bio_list_on_stack;
1188 struct bio *bio;
1189 struct blk_plug plug;
1190 int rw;
1191
1192 bio_list_init(&bio_list_on_stack);
1193
1194 spin_lock_irq(q->queue_lock);
1195 for (rw = READ; rw <= WRITE; rw++)
1196 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1197 bio_list_add(&bio_list_on_stack, bio);
1198 spin_unlock_irq(q->queue_lock);
1199
1200 if (!bio_list_empty(&bio_list_on_stack)) {
1201 blk_start_plug(&plug);
1202 while((bio = bio_list_pop(&bio_list_on_stack)))
1203 generic_make_request(bio);
1204 blk_finish_plug(&plug);
1205 }
1206 }
1207
1208 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1209 int off)
1210 {
1211 struct throtl_grp *tg = pd_to_tg(pd);
1212 u64 v = *(u64 *)((void *)tg + off);
1213
1214 if (v == U64_MAX)
1215 return 0;
1216 return __blkg_prfill_u64(sf, pd, v);
1217 }
1218
1219 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1220 int off)
1221 {
1222 struct throtl_grp *tg = pd_to_tg(pd);
1223 unsigned int v = *(unsigned int *)((void *)tg + off);
1224
1225 if (v == UINT_MAX)
1226 return 0;
1227 return __blkg_prfill_u64(sf, pd, v);
1228 }
1229
1230 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1231 {
1232 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1233 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1234 return 0;
1235 }
1236
1237 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1238 {
1239 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1240 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1241 return 0;
1242 }
1243
1244 static void tg_conf_updated(struct throtl_grp *tg)
1245 {
1246 struct throtl_service_queue *sq = &tg->service_queue;
1247 struct cgroup_subsys_state *pos_css;
1248 struct blkcg_gq *blkg;
1249
1250 throtl_log(&tg->service_queue,
1251 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1252 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1253 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1254
1255 /*
1256 * Update has_rules[] flags for the updated tg's subtree. A tg is
1257 * considered to have rules if either the tg itself or any of its
1258 * ancestors has rules. This identifies groups without any
1259 * restrictions in the whole hierarchy and allows them to bypass
1260 * blk-throttle.
1261 */
1262 blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg))
1263 tg_update_has_rules(blkg_to_tg(blkg));
1264
1265 /*
1266 * We're already holding queue_lock and know @tg is valid. Let's
1267 * apply the new config directly.
1268 *
1269 * Restart the slices for both READ and WRITES. It might happen
1270 * that a group's limit are dropped suddenly and we don't want to
1271 * account recently dispatched IO with new low rate.
1272 */
1273 throtl_start_new_slice(tg, 0);
1274 throtl_start_new_slice(tg, 1);
1275
1276 if (tg->flags & THROTL_TG_PENDING) {
1277 tg_update_disptime(tg);
1278 throtl_schedule_next_dispatch(sq->parent_sq, true);
1279 }
1280 }
1281
1282 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1283 char *buf, size_t nbytes, loff_t off, bool is_u64)
1284 {
1285 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1286 struct blkg_conf_ctx ctx;
1287 struct throtl_grp *tg;
1288 int ret;
1289 u64 v;
1290
1291 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1292 if (ret)
1293 return ret;
1294
1295 ret = -EINVAL;
1296 if (sscanf(ctx.body, "%llu", &v) != 1)
1297 goto out_finish;
1298 if (!v)
1299 v = U64_MAX;
1300
1301 tg = blkg_to_tg(ctx.blkg);
1302
1303 if (is_u64)
1304 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1305 else
1306 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1307
1308 tg_conf_updated(tg);
1309 ret = 0;
1310 out_finish:
1311 blkg_conf_finish(&ctx);
1312 return ret ?: nbytes;
1313 }
1314
1315 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1316 char *buf, size_t nbytes, loff_t off)
1317 {
1318 return tg_set_conf(of, buf, nbytes, off, true);
1319 }
1320
1321 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1322 char *buf, size_t nbytes, loff_t off)
1323 {
1324 return tg_set_conf(of, buf, nbytes, off, false);
1325 }
1326
1327 static struct cftype throtl_legacy_files[] = {
1328 {
1329 .name = "throttle.read_bps_device",
1330 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1331 .seq_show = tg_print_conf_u64,
1332 .write = tg_set_conf_u64,
1333 },
1334 {
1335 .name = "throttle.write_bps_device",
1336 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1337 .seq_show = tg_print_conf_u64,
1338 .write = tg_set_conf_u64,
1339 },
1340 {
1341 .name = "throttle.read_iops_device",
1342 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1343 .seq_show = tg_print_conf_uint,
1344 .write = tg_set_conf_uint,
1345 },
1346 {
1347 .name = "throttle.write_iops_device",
1348 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1349 .seq_show = tg_print_conf_uint,
1350 .write = tg_set_conf_uint,
1351 },
1352 {
1353 .name = "throttle.io_service_bytes",
1354 .private = (unsigned long)&blkcg_policy_throtl,
1355 .seq_show = blkg_print_stat_bytes,
1356 },
1357 {
1358 .name = "throttle.io_serviced",
1359 .private = (unsigned long)&blkcg_policy_throtl,
1360 .seq_show = blkg_print_stat_ios,
1361 },
1362 { } /* terminate */
1363 };
1364
1365 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1366 int off)
1367 {
1368 struct throtl_grp *tg = pd_to_tg(pd);
1369 const char *dname = blkg_dev_name(pd->blkg);
1370 char bufs[4][21] = { "max", "max", "max", "max" };
1371 u64 bps_dft;
1372 unsigned int iops_dft;
1373
1374 if (!dname)
1375 return 0;
1376
1377 if (off == LIMIT_LOW) {
1378 bps_dft = 0;
1379 iops_dft = 0;
1380 } else {
1381 bps_dft = U64_MAX;
1382 iops_dft = UINT_MAX;
1383 }
1384
1385 if (tg->bps_conf[READ][off] == bps_dft &&
1386 tg->bps_conf[WRITE][off] == bps_dft &&
1387 tg->iops_conf[READ][off] == iops_dft &&
1388 tg->iops_conf[WRITE][off] == iops_dft)
1389 return 0;
1390
1391 if (tg->bps_conf[READ][off] != bps_dft)
1392 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1393 tg->bps_conf[READ][off]);
1394 if (tg->bps_conf[WRITE][off] != bps_dft)
1395 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1396 tg->bps_conf[WRITE][off]);
1397 if (tg->iops_conf[READ][off] != iops_dft)
1398 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1399 tg->iops_conf[READ][off]);
1400 if (tg->iops_conf[WRITE][off] != iops_dft)
1401 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1402 tg->iops_conf[WRITE][off]);
1403
1404 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s\n",
1405 dname, bufs[0], bufs[1], bufs[2], bufs[3]);
1406 return 0;
1407 }
1408
1409 static int tg_print_limit(struct seq_file *sf, void *v)
1410 {
1411 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1412 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1413 return 0;
1414 }
1415
1416 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1417 char *buf, size_t nbytes, loff_t off)
1418 {
1419 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1420 struct blkg_conf_ctx ctx;
1421 struct throtl_grp *tg;
1422 u64 v[4];
1423 int ret;
1424 int index = of_cft(of)->private;
1425
1426 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1427 if (ret)
1428 return ret;
1429
1430 tg = blkg_to_tg(ctx.blkg);
1431
1432 v[0] = tg->bps_conf[READ][index];
1433 v[1] = tg->bps_conf[WRITE][index];
1434 v[2] = tg->iops_conf[READ][index];
1435 v[3] = tg->iops_conf[WRITE][index];
1436
1437 while (true) {
1438 char tok[27]; /* wiops=18446744073709551616 */
1439 char *p;
1440 u64 val = U64_MAX;
1441 int len;
1442
1443 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1444 break;
1445 if (tok[0] == '\0')
1446 break;
1447 ctx.body += len;
1448
1449 ret = -EINVAL;
1450 p = tok;
1451 strsep(&p, "=");
1452 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1453 goto out_finish;
1454
1455 ret = -ERANGE;
1456 if (!val)
1457 goto out_finish;
1458
1459 ret = -EINVAL;
1460 if (!strcmp(tok, "rbps"))
1461 v[0] = val;
1462 else if (!strcmp(tok, "wbps"))
1463 v[1] = val;
1464 else if (!strcmp(tok, "riops"))
1465 v[2] = min_t(u64, val, UINT_MAX);
1466 else if (!strcmp(tok, "wiops"))
1467 v[3] = min_t(u64, val, UINT_MAX);
1468 else
1469 goto out_finish;
1470 }
1471
1472 tg->bps_conf[READ][index] = v[0];
1473 tg->bps_conf[WRITE][index] = v[1];
1474 tg->iops_conf[READ][index] = v[2];
1475 tg->iops_conf[WRITE][index] = v[3];
1476
1477 if (index == LIMIT_MAX) {
1478 tg->bps[READ][index] = v[0];
1479 tg->bps[WRITE][index] = v[1];
1480 tg->iops[READ][index] = v[2];
1481 tg->iops[WRITE][index] = v[3];
1482 }
1483 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1484 tg->bps_conf[READ][LIMIT_MAX]);
1485 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1486 tg->bps_conf[WRITE][LIMIT_MAX]);
1487 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1488 tg->iops_conf[READ][LIMIT_MAX]);
1489 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1490 tg->iops_conf[WRITE][LIMIT_MAX]);
1491
1492 if (index == LIMIT_LOW) {
1493 blk_throtl_update_limit_valid(tg->td);
1494 if (tg->td->limit_valid[LIMIT_LOW])
1495 tg->td->limit_index = LIMIT_LOW;
1496 }
1497 tg_conf_updated(tg);
1498 ret = 0;
1499 out_finish:
1500 blkg_conf_finish(&ctx);
1501 return ret ?: nbytes;
1502 }
1503
1504 static struct cftype throtl_files[] = {
1505 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1506 {
1507 .name = "low",
1508 .flags = CFTYPE_NOT_ON_ROOT,
1509 .seq_show = tg_print_limit,
1510 .write = tg_set_limit,
1511 .private = LIMIT_LOW,
1512 },
1513 #endif
1514 {
1515 .name = "max",
1516 .flags = CFTYPE_NOT_ON_ROOT,
1517 .seq_show = tg_print_limit,
1518 .write = tg_set_limit,
1519 .private = LIMIT_MAX,
1520 },
1521 { } /* terminate */
1522 };
1523
1524 static void throtl_shutdown_wq(struct request_queue *q)
1525 {
1526 struct throtl_data *td = q->td;
1527
1528 cancel_work_sync(&td->dispatch_work);
1529 }
1530
1531 static struct blkcg_policy blkcg_policy_throtl = {
1532 .dfl_cftypes = throtl_files,
1533 .legacy_cftypes = throtl_legacy_files,
1534
1535 .pd_alloc_fn = throtl_pd_alloc,
1536 .pd_init_fn = throtl_pd_init,
1537 .pd_online_fn = throtl_pd_online,
1538 .pd_offline_fn = throtl_pd_offline,
1539 .pd_free_fn = throtl_pd_free,
1540 };
1541
1542 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1543 {
1544 unsigned long rtime = jiffies, wtime = jiffies;
1545
1546 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1547 rtime = tg->last_low_overflow_time[READ];
1548 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1549 wtime = tg->last_low_overflow_time[WRITE];
1550 return min(rtime, wtime);
1551 }
1552
1553 /* tg should not be an intermediate node */
1554 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1555 {
1556 struct throtl_service_queue *parent_sq;
1557 struct throtl_grp *parent = tg;
1558 unsigned long ret = __tg_last_low_overflow_time(tg);
1559
1560 while (true) {
1561 parent_sq = parent->service_queue.parent_sq;
1562 parent = sq_to_tg(parent_sq);
1563 if (!parent)
1564 break;
1565
1566 /*
1567 * The parent doesn't have low limit, it always reaches low
1568 * limit. Its overflow time is useless for children
1569 */
1570 if (!parent->bps[READ][LIMIT_LOW] &&
1571 !parent->iops[READ][LIMIT_LOW] &&
1572 !parent->bps[WRITE][LIMIT_LOW] &&
1573 !parent->iops[WRITE][LIMIT_LOW])
1574 continue;
1575 if (time_after(__tg_last_low_overflow_time(parent), ret))
1576 ret = __tg_last_low_overflow_time(parent);
1577 }
1578 return ret;
1579 }
1580
1581 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1582 {
1583 struct throtl_service_queue *sq = &tg->service_queue;
1584 bool read_limit, write_limit;
1585
1586 /*
1587 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1588 * reaches), it's ok to upgrade to next limit
1589 */
1590 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1591 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1592 if (!read_limit && !write_limit)
1593 return true;
1594 if (read_limit && sq->nr_queued[READ] &&
1595 (!write_limit || sq->nr_queued[WRITE]))
1596 return true;
1597 if (write_limit && sq->nr_queued[WRITE] &&
1598 (!read_limit || sq->nr_queued[READ]))
1599 return true;
1600 return false;
1601 }
1602
1603 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1604 {
1605 while (true) {
1606 if (throtl_tg_can_upgrade(tg))
1607 return true;
1608 tg = sq_to_tg(tg->service_queue.parent_sq);
1609 if (!tg || !tg_to_blkg(tg)->parent)
1610 return false;
1611 }
1612 return false;
1613 }
1614
1615 static bool throtl_can_upgrade(struct throtl_data *td,
1616 struct throtl_grp *this_tg)
1617 {
1618 struct cgroup_subsys_state *pos_css;
1619 struct blkcg_gq *blkg;
1620
1621 if (td->limit_index != LIMIT_LOW)
1622 return false;
1623
1624 if (time_before(jiffies, td->low_downgrade_time + throtl_slice))
1625 return false;
1626
1627 rcu_read_lock();
1628 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1629 struct throtl_grp *tg = blkg_to_tg(blkg);
1630
1631 if (tg == this_tg)
1632 continue;
1633 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1634 continue;
1635 if (!throtl_hierarchy_can_upgrade(tg)) {
1636 rcu_read_unlock();
1637 return false;
1638 }
1639 }
1640 rcu_read_unlock();
1641 return true;
1642 }
1643
1644 static void throtl_upgrade_state(struct throtl_data *td)
1645 {
1646 struct cgroup_subsys_state *pos_css;
1647 struct blkcg_gq *blkg;
1648
1649 td->limit_index = LIMIT_MAX;
1650 td->low_upgrade_time = jiffies;
1651 rcu_read_lock();
1652 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1653 struct throtl_grp *tg = blkg_to_tg(blkg);
1654 struct throtl_service_queue *sq = &tg->service_queue;
1655
1656 tg->disptime = jiffies - 1;
1657 throtl_select_dispatch(sq);
1658 throtl_schedule_next_dispatch(sq, false);
1659 }
1660 rcu_read_unlock();
1661 throtl_select_dispatch(&td->service_queue);
1662 throtl_schedule_next_dispatch(&td->service_queue, false);
1663 queue_work(kthrotld_workqueue, &td->dispatch_work);
1664 }
1665
1666 static void throtl_downgrade_state(struct throtl_data *td, int new)
1667 {
1668 td->limit_index = new;
1669 td->low_downgrade_time = jiffies;
1670 }
1671
1672 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1673 {
1674 struct throtl_data *td = tg->td;
1675 unsigned long now = jiffies;
1676
1677 /*
1678 * If cgroup is below low limit, consider downgrade and throttle other
1679 * cgroups
1680 */
1681 if (time_after_eq(now, td->low_upgrade_time + throtl_slice) &&
1682 time_after_eq(now, tg_last_low_overflow_time(tg) + throtl_slice))
1683 return true;
1684 return false;
1685 }
1686
1687 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1688 {
1689 while (true) {
1690 if (!throtl_tg_can_downgrade(tg))
1691 return false;
1692 tg = sq_to_tg(tg->service_queue.parent_sq);
1693 if (!tg || !tg_to_blkg(tg)->parent)
1694 break;
1695 }
1696 return true;
1697 }
1698
1699 static void throtl_downgrade_check(struct throtl_grp *tg)
1700 {
1701 uint64_t bps;
1702 unsigned int iops;
1703 unsigned long elapsed_time;
1704 unsigned long now = jiffies;
1705
1706 if (tg->td->limit_index != LIMIT_MAX ||
1707 !tg->td->limit_valid[LIMIT_LOW])
1708 return;
1709 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1710 return;
1711 if (time_after(tg->last_check_time + throtl_slice, now))
1712 return;
1713
1714 elapsed_time = now - tg->last_check_time;
1715 tg->last_check_time = now;
1716
1717 if (time_before(now, tg_last_low_overflow_time(tg) + throtl_slice))
1718 return;
1719
1720 if (tg->bps[READ][LIMIT_LOW]) {
1721 bps = tg->last_bytes_disp[READ] * HZ;
1722 do_div(bps, elapsed_time);
1723 if (bps >= tg->bps[READ][LIMIT_LOW])
1724 tg->last_low_overflow_time[READ] = now;
1725 }
1726
1727 if (tg->bps[WRITE][LIMIT_LOW]) {
1728 bps = tg->last_bytes_disp[WRITE] * HZ;
1729 do_div(bps, elapsed_time);
1730 if (bps >= tg->bps[WRITE][LIMIT_LOW])
1731 tg->last_low_overflow_time[WRITE] = now;
1732 }
1733
1734 if (tg->iops[READ][LIMIT_LOW]) {
1735 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
1736 if (iops >= tg->iops[READ][LIMIT_LOW])
1737 tg->last_low_overflow_time[READ] = now;
1738 }
1739
1740 if (tg->iops[WRITE][LIMIT_LOW]) {
1741 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
1742 if (iops >= tg->iops[WRITE][LIMIT_LOW])
1743 tg->last_low_overflow_time[WRITE] = now;
1744 }
1745
1746 /*
1747 * If cgroup is below low limit, consider downgrade and throttle other
1748 * cgroups
1749 */
1750 if (throtl_hierarchy_can_downgrade(tg))
1751 throtl_downgrade_state(tg->td, LIMIT_LOW);
1752
1753 tg->last_bytes_disp[READ] = 0;
1754 tg->last_bytes_disp[WRITE] = 0;
1755 tg->last_io_disp[READ] = 0;
1756 tg->last_io_disp[WRITE] = 0;
1757 }
1758
1759 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
1760 struct bio *bio)
1761 {
1762 struct throtl_qnode *qn = NULL;
1763 struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
1764 struct throtl_service_queue *sq;
1765 bool rw = bio_data_dir(bio);
1766 bool throttled = false;
1767
1768 WARN_ON_ONCE(!rcu_read_lock_held());
1769
1770 /* see throtl_charge_bio() */
1771 if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
1772 goto out;
1773
1774 spin_lock_irq(q->queue_lock);
1775
1776 if (unlikely(blk_queue_bypass(q)))
1777 goto out_unlock;
1778
1779 sq = &tg->service_queue;
1780
1781 again:
1782 while (true) {
1783 if (tg->last_low_overflow_time[rw] == 0)
1784 tg->last_low_overflow_time[rw] = jiffies;
1785 throtl_downgrade_check(tg);
1786 /* throtl is FIFO - if bios are already queued, should queue */
1787 if (sq->nr_queued[rw])
1788 break;
1789
1790 /* if above limits, break to queue */
1791 if (!tg_may_dispatch(tg, bio, NULL)) {
1792 tg->last_low_overflow_time[rw] = jiffies;
1793 if (throtl_can_upgrade(tg->td, tg)) {
1794 throtl_upgrade_state(tg->td);
1795 goto again;
1796 }
1797 break;
1798 }
1799
1800 /* within limits, let's charge and dispatch directly */
1801 throtl_charge_bio(tg, bio);
1802
1803 /*
1804 * We need to trim slice even when bios are not being queued
1805 * otherwise it might happen that a bio is not queued for
1806 * a long time and slice keeps on extending and trim is not
1807 * called for a long time. Now if limits are reduced suddenly
1808 * we take into account all the IO dispatched so far at new
1809 * low rate and * newly queued IO gets a really long dispatch
1810 * time.
1811 *
1812 * So keep on trimming slice even if bio is not queued.
1813 */
1814 throtl_trim_slice(tg, rw);
1815
1816 /*
1817 * @bio passed through this layer without being throttled.
1818 * Climb up the ladder. If we''re already at the top, it
1819 * can be executed directly.
1820 */
1821 qn = &tg->qnode_on_parent[rw];
1822 sq = sq->parent_sq;
1823 tg = sq_to_tg(sq);
1824 if (!tg)
1825 goto out_unlock;
1826 }
1827
1828 /* out-of-limit, queue to @tg */
1829 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1830 rw == READ ? 'R' : 'W',
1831 tg->bytes_disp[rw], bio->bi_iter.bi_size,
1832 tg_bps_limit(tg, rw),
1833 tg->io_disp[rw], tg_iops_limit(tg, rw),
1834 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1835
1836 tg->last_low_overflow_time[rw] = jiffies;
1837
1838 bio_associate_current(bio);
1839 tg->td->nr_queued[rw]++;
1840 throtl_add_bio_tg(bio, qn, tg);
1841 throttled = true;
1842
1843 /*
1844 * Update @tg's dispatch time and force schedule dispatch if @tg
1845 * was empty before @bio. The forced scheduling isn't likely to
1846 * cause undue delay as @bio is likely to be dispatched directly if
1847 * its @tg's disptime is not in the future.
1848 */
1849 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1850 tg_update_disptime(tg);
1851 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1852 }
1853
1854 out_unlock:
1855 spin_unlock_irq(q->queue_lock);
1856 out:
1857 /*
1858 * As multiple blk-throtls may stack in the same issue path, we
1859 * don't want bios to leave with the flag set. Clear the flag if
1860 * being issued.
1861 */
1862 if (!throttled)
1863 bio_clear_flag(bio, BIO_THROTTLED);
1864 return throttled;
1865 }
1866
1867 /*
1868 * Dispatch all bios from all children tg's queued on @parent_sq. On
1869 * return, @parent_sq is guaranteed to not have any active children tg's
1870 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1871 */
1872 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
1873 {
1874 struct throtl_grp *tg;
1875
1876 while ((tg = throtl_rb_first(parent_sq))) {
1877 struct throtl_service_queue *sq = &tg->service_queue;
1878 struct bio *bio;
1879
1880 throtl_dequeue_tg(tg);
1881
1882 while ((bio = throtl_peek_queued(&sq->queued[READ])))
1883 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1884 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1885 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1886 }
1887 }
1888
1889 /**
1890 * blk_throtl_drain - drain throttled bios
1891 * @q: request_queue to drain throttled bios for
1892 *
1893 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1894 */
1895 void blk_throtl_drain(struct request_queue *q)
1896 __releases(q->queue_lock) __acquires(q->queue_lock)
1897 {
1898 struct throtl_data *td = q->td;
1899 struct blkcg_gq *blkg;
1900 struct cgroup_subsys_state *pos_css;
1901 struct bio *bio;
1902 int rw;
1903
1904 queue_lockdep_assert_held(q);
1905 rcu_read_lock();
1906
1907 /*
1908 * Drain each tg while doing post-order walk on the blkg tree, so
1909 * that all bios are propagated to td->service_queue. It'd be
1910 * better to walk service_queue tree directly but blkg walk is
1911 * easier.
1912 */
1913 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1914 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1915
1916 /* finally, transfer bios from top-level tg's into the td */
1917 tg_drain_bios(&td->service_queue);
1918
1919 rcu_read_unlock();
1920 spin_unlock_irq(q->queue_lock);
1921
1922 /* all bios now should be in td->service_queue, issue them */
1923 for (rw = READ; rw <= WRITE; rw++)
1924 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
1925 NULL)))
1926 generic_make_request(bio);
1927
1928 spin_lock_irq(q->queue_lock);
1929 }
1930
1931 int blk_throtl_init(struct request_queue *q)
1932 {
1933 struct throtl_data *td;
1934 int ret;
1935
1936 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1937 if (!td)
1938 return -ENOMEM;
1939
1940 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1941 throtl_service_queue_init(&td->service_queue);
1942
1943 q->td = td;
1944 td->queue = q;
1945
1946 td->limit_valid[LIMIT_MAX] = true;
1947 td->limit_index = LIMIT_MAX;
1948 td->low_upgrade_time = jiffies;
1949 td->low_downgrade_time = jiffies;
1950 /* activate policy */
1951 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1952 if (ret)
1953 kfree(td);
1954 return ret;
1955 }
1956
1957 void blk_throtl_exit(struct request_queue *q)
1958 {
1959 BUG_ON(!q->td);
1960 throtl_shutdown_wq(q);
1961 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1962 kfree(q->td);
1963 }
1964
1965 static int __init throtl_init(void)
1966 {
1967 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1968 if (!kthrotld_workqueue)
1969 panic("Failed to create kthrotld\n");
1970
1971 return blkcg_policy_register(&blkcg_policy_throtl);
1972 }
1973
1974 module_init(throtl_init);