]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-throttle.c
blk-throttle: make tg_dispatch_one_bio() ready for hierarchy
[mirror_ubuntu-artful-kernel.git] / block / blk-throttle.c
1 /*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include "blk-cgroup.h"
13 #include "blk.h"
14
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum = 8;
17
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum = 32;
20
21 /* Throttling is performed over 100ms slice and after that slice is renewed */
22 static unsigned long throtl_slice = HZ/10; /* 100 ms */
23
24 static struct blkcg_policy blkcg_policy_throtl;
25
26 /* A workqueue to queue throttle related work */
27 static struct workqueue_struct *kthrotld_workqueue;
28
29 struct throtl_service_queue {
30 struct throtl_service_queue *parent_sq; /* the parent service_queue */
31
32 /*
33 * Bios queued directly to this service_queue or dispatched from
34 * children throtl_grp's.
35 */
36 struct bio_list bio_lists[2]; /* queued bios [READ/WRITE] */
37 unsigned int nr_queued[2]; /* number of queued bios */
38
39 /*
40 * RB tree of active children throtl_grp's, which are sorted by
41 * their ->disptime.
42 */
43 struct rb_root pending_tree; /* RB tree of active tgs */
44 struct rb_node *first_pending; /* first node in the tree */
45 unsigned int nr_pending; /* # queued in the tree */
46 unsigned long first_pending_disptime; /* disptime of the first tg */
47 struct timer_list pending_timer; /* fires on first_pending_disptime */
48 };
49
50 enum tg_state_flags {
51 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
52 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
53 };
54
55 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
56
57 /* Per-cpu group stats */
58 struct tg_stats_cpu {
59 /* total bytes transferred */
60 struct blkg_rwstat service_bytes;
61 /* total IOs serviced, post merge */
62 struct blkg_rwstat serviced;
63 };
64
65 struct throtl_grp {
66 /* must be the first member */
67 struct blkg_policy_data pd;
68
69 /* active throtl group service_queue member */
70 struct rb_node rb_node;
71
72 /* throtl_data this group belongs to */
73 struct throtl_data *td;
74
75 /* this group's service queue */
76 struct throtl_service_queue service_queue;
77
78 /*
79 * Dispatch time in jiffies. This is the estimated time when group
80 * will unthrottle and is ready to dispatch more bio. It is used as
81 * key to sort active groups in service tree.
82 */
83 unsigned long disptime;
84
85 unsigned int flags;
86
87 /* bytes per second rate limits */
88 uint64_t bps[2];
89
90 /* IOPS limits */
91 unsigned int iops[2];
92
93 /* Number of bytes disptached in current slice */
94 uint64_t bytes_disp[2];
95 /* Number of bio's dispatched in current slice */
96 unsigned int io_disp[2];
97
98 /* When did we start a new slice */
99 unsigned long slice_start[2];
100 unsigned long slice_end[2];
101
102 /* Per cpu stats pointer */
103 struct tg_stats_cpu __percpu *stats_cpu;
104
105 /* List of tgs waiting for per cpu stats memory to be allocated */
106 struct list_head stats_alloc_node;
107 };
108
109 struct throtl_data
110 {
111 /* service tree for active throtl groups */
112 struct throtl_service_queue service_queue;
113
114 struct request_queue *queue;
115
116 /* Total Number of queued bios on READ and WRITE lists */
117 unsigned int nr_queued[2];
118
119 /*
120 * number of total undestroyed groups
121 */
122 unsigned int nr_undestroyed_grps;
123
124 /* Work for dispatching throttled bios */
125 struct work_struct dispatch_work;
126 };
127
128 /* list and work item to allocate percpu group stats */
129 static DEFINE_SPINLOCK(tg_stats_alloc_lock);
130 static LIST_HEAD(tg_stats_alloc_list);
131
132 static void tg_stats_alloc_fn(struct work_struct *);
133 static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);
134
135 static void throtl_pending_timer_fn(unsigned long arg);
136
137 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
138 {
139 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
140 }
141
142 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
143 {
144 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
145 }
146
147 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
148 {
149 return pd_to_blkg(&tg->pd);
150 }
151
152 static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
153 {
154 return blkg_to_tg(td->queue->root_blkg);
155 }
156
157 /**
158 * sq_to_tg - return the throl_grp the specified service queue belongs to
159 * @sq: the throtl_service_queue of interest
160 *
161 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
162 * embedded in throtl_data, %NULL is returned.
163 */
164 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
165 {
166 if (sq && sq->parent_sq)
167 return container_of(sq, struct throtl_grp, service_queue);
168 else
169 return NULL;
170 }
171
172 /**
173 * sq_to_td - return throtl_data the specified service queue belongs to
174 * @sq: the throtl_service_queue of interest
175 *
176 * A service_queue can be embeded in either a throtl_grp or throtl_data.
177 * Determine the associated throtl_data accordingly and return it.
178 */
179 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
180 {
181 struct throtl_grp *tg = sq_to_tg(sq);
182
183 if (tg)
184 return tg->td;
185 else
186 return container_of(sq, struct throtl_data, service_queue);
187 }
188
189 /**
190 * throtl_log - log debug message via blktrace
191 * @sq: the service_queue being reported
192 * @fmt: printf format string
193 * @args: printf args
194 *
195 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
196 * throtl_grp; otherwise, just "throtl".
197 *
198 * TODO: this should be made a function and name formatting should happen
199 * after testing whether blktrace is enabled.
200 */
201 #define throtl_log(sq, fmt, args...) do { \
202 struct throtl_grp *__tg = sq_to_tg((sq)); \
203 struct throtl_data *__td = sq_to_td((sq)); \
204 \
205 (void)__td; \
206 if ((__tg)) { \
207 char __pbuf[128]; \
208 \
209 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \
210 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
211 } else { \
212 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
213 } \
214 } while (0)
215
216 /*
217 * Worker for allocating per cpu stat for tgs. This is scheduled on the
218 * system_wq once there are some groups on the alloc_list waiting for
219 * allocation.
220 */
221 static void tg_stats_alloc_fn(struct work_struct *work)
222 {
223 static struct tg_stats_cpu *stats_cpu; /* this fn is non-reentrant */
224 struct delayed_work *dwork = to_delayed_work(work);
225 bool empty = false;
226
227 alloc_stats:
228 if (!stats_cpu) {
229 stats_cpu = alloc_percpu(struct tg_stats_cpu);
230 if (!stats_cpu) {
231 /* allocation failed, try again after some time */
232 schedule_delayed_work(dwork, msecs_to_jiffies(10));
233 return;
234 }
235 }
236
237 spin_lock_irq(&tg_stats_alloc_lock);
238
239 if (!list_empty(&tg_stats_alloc_list)) {
240 struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
241 struct throtl_grp,
242 stats_alloc_node);
243 swap(tg->stats_cpu, stats_cpu);
244 list_del_init(&tg->stats_alloc_node);
245 }
246
247 empty = list_empty(&tg_stats_alloc_list);
248 spin_unlock_irq(&tg_stats_alloc_lock);
249 if (!empty)
250 goto alloc_stats;
251 }
252
253 /* init a service_queue, assumes the caller zeroed it */
254 static void throtl_service_queue_init(struct throtl_service_queue *sq,
255 struct throtl_service_queue *parent_sq)
256 {
257 bio_list_init(&sq->bio_lists[0]);
258 bio_list_init(&sq->bio_lists[1]);
259 sq->pending_tree = RB_ROOT;
260 sq->parent_sq = parent_sq;
261 setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
262 (unsigned long)sq);
263 }
264
265 static void throtl_service_queue_exit(struct throtl_service_queue *sq)
266 {
267 del_timer_sync(&sq->pending_timer);
268 }
269
270 static void throtl_pd_init(struct blkcg_gq *blkg)
271 {
272 struct throtl_grp *tg = blkg_to_tg(blkg);
273 struct throtl_data *td = blkg->q->td;
274 unsigned long flags;
275
276 throtl_service_queue_init(&tg->service_queue, &td->service_queue);
277 RB_CLEAR_NODE(&tg->rb_node);
278 tg->td = td;
279
280 tg->bps[READ] = -1;
281 tg->bps[WRITE] = -1;
282 tg->iops[READ] = -1;
283 tg->iops[WRITE] = -1;
284
285 /*
286 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
287 * but percpu allocator can't be called from IO path. Queue tg on
288 * tg_stats_alloc_list and allocate from work item.
289 */
290 spin_lock_irqsave(&tg_stats_alloc_lock, flags);
291 list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
292 schedule_delayed_work(&tg_stats_alloc_work, 0);
293 spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
294 }
295
296 static void throtl_pd_exit(struct blkcg_gq *blkg)
297 {
298 struct throtl_grp *tg = blkg_to_tg(blkg);
299 unsigned long flags;
300
301 spin_lock_irqsave(&tg_stats_alloc_lock, flags);
302 list_del_init(&tg->stats_alloc_node);
303 spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
304
305 free_percpu(tg->stats_cpu);
306
307 throtl_service_queue_exit(&tg->service_queue);
308 }
309
310 static void throtl_pd_reset_stats(struct blkcg_gq *blkg)
311 {
312 struct throtl_grp *tg = blkg_to_tg(blkg);
313 int cpu;
314
315 if (tg->stats_cpu == NULL)
316 return;
317
318 for_each_possible_cpu(cpu) {
319 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
320
321 blkg_rwstat_reset(&sc->service_bytes);
322 blkg_rwstat_reset(&sc->serviced);
323 }
324 }
325
326 static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
327 struct blkcg *blkcg)
328 {
329 /*
330 * This is the common case when there are no blkcgs. Avoid lookup
331 * in this case
332 */
333 if (blkcg == &blkcg_root)
334 return td_root_tg(td);
335
336 return blkg_to_tg(blkg_lookup(blkcg, td->queue));
337 }
338
339 static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
340 struct blkcg *blkcg)
341 {
342 struct request_queue *q = td->queue;
343 struct throtl_grp *tg = NULL;
344
345 /*
346 * This is the common case when there are no blkcgs. Avoid lookup
347 * in this case
348 */
349 if (blkcg == &blkcg_root) {
350 tg = td_root_tg(td);
351 } else {
352 struct blkcg_gq *blkg;
353
354 blkg = blkg_lookup_create(blkcg, q);
355
356 /* if %NULL and @q is alive, fall back to root_tg */
357 if (!IS_ERR(blkg))
358 tg = blkg_to_tg(blkg);
359 else if (!blk_queue_dying(q))
360 tg = td_root_tg(td);
361 }
362
363 return tg;
364 }
365
366 static struct throtl_grp *
367 throtl_rb_first(struct throtl_service_queue *parent_sq)
368 {
369 /* Service tree is empty */
370 if (!parent_sq->nr_pending)
371 return NULL;
372
373 if (!parent_sq->first_pending)
374 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
375
376 if (parent_sq->first_pending)
377 return rb_entry_tg(parent_sq->first_pending);
378
379 return NULL;
380 }
381
382 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
383 {
384 rb_erase(n, root);
385 RB_CLEAR_NODE(n);
386 }
387
388 static void throtl_rb_erase(struct rb_node *n,
389 struct throtl_service_queue *parent_sq)
390 {
391 if (parent_sq->first_pending == n)
392 parent_sq->first_pending = NULL;
393 rb_erase_init(n, &parent_sq->pending_tree);
394 --parent_sq->nr_pending;
395 }
396
397 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
398 {
399 struct throtl_grp *tg;
400
401 tg = throtl_rb_first(parent_sq);
402 if (!tg)
403 return;
404
405 parent_sq->first_pending_disptime = tg->disptime;
406 }
407
408 static void tg_service_queue_add(struct throtl_grp *tg)
409 {
410 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
411 struct rb_node **node = &parent_sq->pending_tree.rb_node;
412 struct rb_node *parent = NULL;
413 struct throtl_grp *__tg;
414 unsigned long key = tg->disptime;
415 int left = 1;
416
417 while (*node != NULL) {
418 parent = *node;
419 __tg = rb_entry_tg(parent);
420
421 if (time_before(key, __tg->disptime))
422 node = &parent->rb_left;
423 else {
424 node = &parent->rb_right;
425 left = 0;
426 }
427 }
428
429 if (left)
430 parent_sq->first_pending = &tg->rb_node;
431
432 rb_link_node(&tg->rb_node, parent, node);
433 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
434 }
435
436 static void __throtl_enqueue_tg(struct throtl_grp *tg)
437 {
438 tg_service_queue_add(tg);
439 tg->flags |= THROTL_TG_PENDING;
440 tg->service_queue.parent_sq->nr_pending++;
441 }
442
443 static void throtl_enqueue_tg(struct throtl_grp *tg)
444 {
445 if (!(tg->flags & THROTL_TG_PENDING))
446 __throtl_enqueue_tg(tg);
447 }
448
449 static void __throtl_dequeue_tg(struct throtl_grp *tg)
450 {
451 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
452 tg->flags &= ~THROTL_TG_PENDING;
453 }
454
455 static void throtl_dequeue_tg(struct throtl_grp *tg)
456 {
457 if (tg->flags & THROTL_TG_PENDING)
458 __throtl_dequeue_tg(tg);
459 }
460
461 /* Call with queue lock held */
462 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
463 unsigned long expires)
464 {
465 mod_timer(&sq->pending_timer, expires);
466 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
467 expires - jiffies, jiffies);
468 }
469
470 /**
471 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
472 * @sq: the service_queue to schedule dispatch for
473 * @force: force scheduling
474 *
475 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
476 * dispatch time of the first pending child. Returns %true if either timer
477 * is armed or there's no pending child left. %false if the current
478 * dispatch window is still open and the caller should continue
479 * dispatching.
480 *
481 * If @force is %true, the dispatch timer is always scheduled and this
482 * function is guaranteed to return %true. This is to be used when the
483 * caller can't dispatch itself and needs to invoke pending_timer
484 * unconditionally. Note that forced scheduling is likely to induce short
485 * delay before dispatch starts even if @sq->first_pending_disptime is not
486 * in the future and thus shouldn't be used in hot paths.
487 */
488 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
489 bool force)
490 {
491 /* any pending children left? */
492 if (!sq->nr_pending)
493 return true;
494
495 update_min_dispatch_time(sq);
496
497 /* is the next dispatch time in the future? */
498 if (force || time_after(sq->first_pending_disptime, jiffies)) {
499 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
500 return true;
501 }
502
503 /* tell the caller to continue dispatching */
504 return false;
505 }
506
507 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
508 {
509 tg->bytes_disp[rw] = 0;
510 tg->io_disp[rw] = 0;
511 tg->slice_start[rw] = jiffies;
512 tg->slice_end[rw] = jiffies + throtl_slice;
513 throtl_log(&tg->service_queue,
514 "[%c] new slice start=%lu end=%lu jiffies=%lu",
515 rw == READ ? 'R' : 'W', tg->slice_start[rw],
516 tg->slice_end[rw], jiffies);
517 }
518
519 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
520 unsigned long jiffy_end)
521 {
522 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
523 }
524
525 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
526 unsigned long jiffy_end)
527 {
528 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
529 throtl_log(&tg->service_queue,
530 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
531 rw == READ ? 'R' : 'W', tg->slice_start[rw],
532 tg->slice_end[rw], jiffies);
533 }
534
535 /* Determine if previously allocated or extended slice is complete or not */
536 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
537 {
538 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
539 return 0;
540
541 return 1;
542 }
543
544 /* Trim the used slices and adjust slice start accordingly */
545 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
546 {
547 unsigned long nr_slices, time_elapsed, io_trim;
548 u64 bytes_trim, tmp;
549
550 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
551
552 /*
553 * If bps are unlimited (-1), then time slice don't get
554 * renewed. Don't try to trim the slice if slice is used. A new
555 * slice will start when appropriate.
556 */
557 if (throtl_slice_used(tg, rw))
558 return;
559
560 /*
561 * A bio has been dispatched. Also adjust slice_end. It might happen
562 * that initially cgroup limit was very low resulting in high
563 * slice_end, but later limit was bumped up and bio was dispached
564 * sooner, then we need to reduce slice_end. A high bogus slice_end
565 * is bad because it does not allow new slice to start.
566 */
567
568 throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
569
570 time_elapsed = jiffies - tg->slice_start[rw];
571
572 nr_slices = time_elapsed / throtl_slice;
573
574 if (!nr_slices)
575 return;
576 tmp = tg->bps[rw] * throtl_slice * nr_slices;
577 do_div(tmp, HZ);
578 bytes_trim = tmp;
579
580 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
581
582 if (!bytes_trim && !io_trim)
583 return;
584
585 if (tg->bytes_disp[rw] >= bytes_trim)
586 tg->bytes_disp[rw] -= bytes_trim;
587 else
588 tg->bytes_disp[rw] = 0;
589
590 if (tg->io_disp[rw] >= io_trim)
591 tg->io_disp[rw] -= io_trim;
592 else
593 tg->io_disp[rw] = 0;
594
595 tg->slice_start[rw] += nr_slices * throtl_slice;
596
597 throtl_log(&tg->service_queue,
598 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
599 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
600 tg->slice_start[rw], tg->slice_end[rw], jiffies);
601 }
602
603 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
604 unsigned long *wait)
605 {
606 bool rw = bio_data_dir(bio);
607 unsigned int io_allowed;
608 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
609 u64 tmp;
610
611 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
612
613 /* Slice has just started. Consider one slice interval */
614 if (!jiffy_elapsed)
615 jiffy_elapsed_rnd = throtl_slice;
616
617 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
618
619 /*
620 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
621 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
622 * will allow dispatch after 1 second and after that slice should
623 * have been trimmed.
624 */
625
626 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
627 do_div(tmp, HZ);
628
629 if (tmp > UINT_MAX)
630 io_allowed = UINT_MAX;
631 else
632 io_allowed = tmp;
633
634 if (tg->io_disp[rw] + 1 <= io_allowed) {
635 if (wait)
636 *wait = 0;
637 return 1;
638 }
639
640 /* Calc approx time to dispatch */
641 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
642
643 if (jiffy_wait > jiffy_elapsed)
644 jiffy_wait = jiffy_wait - jiffy_elapsed;
645 else
646 jiffy_wait = 1;
647
648 if (wait)
649 *wait = jiffy_wait;
650 return 0;
651 }
652
653 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
654 unsigned long *wait)
655 {
656 bool rw = bio_data_dir(bio);
657 u64 bytes_allowed, extra_bytes, tmp;
658 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
659
660 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
661
662 /* Slice has just started. Consider one slice interval */
663 if (!jiffy_elapsed)
664 jiffy_elapsed_rnd = throtl_slice;
665
666 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
667
668 tmp = tg->bps[rw] * jiffy_elapsed_rnd;
669 do_div(tmp, HZ);
670 bytes_allowed = tmp;
671
672 if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
673 if (wait)
674 *wait = 0;
675 return 1;
676 }
677
678 /* Calc approx time to dispatch */
679 extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
680 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
681
682 if (!jiffy_wait)
683 jiffy_wait = 1;
684
685 /*
686 * This wait time is without taking into consideration the rounding
687 * up we did. Add that time also.
688 */
689 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
690 if (wait)
691 *wait = jiffy_wait;
692 return 0;
693 }
694
695 static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
696 if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
697 return 1;
698 return 0;
699 }
700
701 /*
702 * Returns whether one can dispatch a bio or not. Also returns approx number
703 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
704 */
705 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
706 unsigned long *wait)
707 {
708 bool rw = bio_data_dir(bio);
709 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
710
711 /*
712 * Currently whole state machine of group depends on first bio
713 * queued in the group bio list. So one should not be calling
714 * this function with a different bio if there are other bios
715 * queued.
716 */
717 BUG_ON(tg->service_queue.nr_queued[rw] &&
718 bio != bio_list_peek(&tg->service_queue.bio_lists[rw]));
719
720 /* If tg->bps = -1, then BW is unlimited */
721 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
722 if (wait)
723 *wait = 0;
724 return 1;
725 }
726
727 /*
728 * If previous slice expired, start a new one otherwise renew/extend
729 * existing slice to make sure it is at least throtl_slice interval
730 * long since now.
731 */
732 if (throtl_slice_used(tg, rw))
733 throtl_start_new_slice(tg, rw);
734 else {
735 if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
736 throtl_extend_slice(tg, rw, jiffies + throtl_slice);
737 }
738
739 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
740 tg_with_in_iops_limit(tg, bio, &iops_wait)) {
741 if (wait)
742 *wait = 0;
743 return 1;
744 }
745
746 max_wait = max(bps_wait, iops_wait);
747
748 if (wait)
749 *wait = max_wait;
750
751 if (time_before(tg->slice_end[rw], jiffies + max_wait))
752 throtl_extend_slice(tg, rw, jiffies + max_wait);
753
754 return 0;
755 }
756
757 static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
758 int rw)
759 {
760 struct throtl_grp *tg = blkg_to_tg(blkg);
761 struct tg_stats_cpu *stats_cpu;
762 unsigned long flags;
763
764 /* If per cpu stats are not allocated yet, don't do any accounting. */
765 if (tg->stats_cpu == NULL)
766 return;
767
768 /*
769 * Disabling interrupts to provide mutual exclusion between two
770 * writes on same cpu. It probably is not needed for 64bit. Not
771 * optimizing that case yet.
772 */
773 local_irq_save(flags);
774
775 stats_cpu = this_cpu_ptr(tg->stats_cpu);
776
777 blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
778 blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);
779
780 local_irq_restore(flags);
781 }
782
783 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
784 {
785 bool rw = bio_data_dir(bio);
786
787 /* Charge the bio to the group */
788 tg->bytes_disp[rw] += bio->bi_size;
789 tg->io_disp[rw]++;
790
791 /*
792 * REQ_THROTTLED is used to prevent the same bio to be throttled
793 * more than once as a throttled bio will go through blk-throtl the
794 * second time when it eventually gets issued. Set it when a bio
795 * is being charged to a tg.
796 *
797 * Dispatch stats aren't recursive and each @bio should only be
798 * accounted by the @tg it was originally associated with. Let's
799 * update the stats when setting REQ_THROTTLED for the first time
800 * which is guaranteed to be for the @bio's original tg.
801 */
802 if (!(bio->bi_rw & REQ_THROTTLED)) {
803 bio->bi_rw |= REQ_THROTTLED;
804 throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size,
805 bio->bi_rw);
806 }
807 }
808
809 static void throtl_add_bio_tg(struct bio *bio, struct throtl_grp *tg)
810 {
811 struct throtl_service_queue *sq = &tg->service_queue;
812 bool rw = bio_data_dir(bio);
813
814 /*
815 * If @tg doesn't currently have any bios queued in the same
816 * direction, queueing @bio can change when @tg should be
817 * dispatched. Mark that @tg was empty. This is automatically
818 * cleaered on the next tg_update_disptime().
819 */
820 if (!sq->nr_queued[rw])
821 tg->flags |= THROTL_TG_WAS_EMPTY;
822
823 bio_list_add(&sq->bio_lists[rw], bio);
824 /* Take a bio reference on tg */
825 blkg_get(tg_to_blkg(tg));
826 sq->nr_queued[rw]++;
827 throtl_enqueue_tg(tg);
828 }
829
830 static void tg_update_disptime(struct throtl_grp *tg)
831 {
832 struct throtl_service_queue *sq = &tg->service_queue;
833 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
834 struct bio *bio;
835
836 if ((bio = bio_list_peek(&sq->bio_lists[READ])))
837 tg_may_dispatch(tg, bio, &read_wait);
838
839 if ((bio = bio_list_peek(&sq->bio_lists[WRITE])))
840 tg_may_dispatch(tg, bio, &write_wait);
841
842 min_wait = min(read_wait, write_wait);
843 disptime = jiffies + min_wait;
844
845 /* Update dispatch time */
846 throtl_dequeue_tg(tg);
847 tg->disptime = disptime;
848 throtl_enqueue_tg(tg);
849
850 /* see throtl_add_bio_tg() */
851 tg->flags &= ~THROTL_TG_WAS_EMPTY;
852 }
853
854 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
855 {
856 struct throtl_service_queue *sq = &tg->service_queue;
857 struct throtl_service_queue *parent_sq = sq->parent_sq;
858 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
859 struct bio *bio;
860
861 bio = bio_list_pop(&sq->bio_lists[rw]);
862 sq->nr_queued[rw]--;
863
864 throtl_charge_bio(tg, bio);
865
866 /*
867 * If our parent is another tg, we just need to transfer @bio to
868 * the parent using throtl_add_bio_tg(). If our parent is
869 * @td->service_queue, @bio is ready to be issued. Put it on its
870 * bio_lists[] and decrease total number queued. The caller is
871 * responsible for issuing these bios.
872 */
873 if (parent_tg) {
874 throtl_add_bio_tg(bio, parent_tg);
875 } else {
876 bio_list_add(&parent_sq->bio_lists[rw], bio);
877 BUG_ON(tg->td->nr_queued[rw] <= 0);
878 tg->td->nr_queued[rw]--;
879 }
880
881 throtl_trim_slice(tg, rw);
882
883 /* @bio is transferred to parent, drop its blkg reference */
884 blkg_put(tg_to_blkg(tg));
885 }
886
887 static int throtl_dispatch_tg(struct throtl_grp *tg)
888 {
889 struct throtl_service_queue *sq = &tg->service_queue;
890 unsigned int nr_reads = 0, nr_writes = 0;
891 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
892 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
893 struct bio *bio;
894
895 /* Try to dispatch 75% READS and 25% WRITES */
896
897 while ((bio = bio_list_peek(&sq->bio_lists[READ])) &&
898 tg_may_dispatch(tg, bio, NULL)) {
899
900 tg_dispatch_one_bio(tg, bio_data_dir(bio));
901 nr_reads++;
902
903 if (nr_reads >= max_nr_reads)
904 break;
905 }
906
907 while ((bio = bio_list_peek(&sq->bio_lists[WRITE])) &&
908 tg_may_dispatch(tg, bio, NULL)) {
909
910 tg_dispatch_one_bio(tg, bio_data_dir(bio));
911 nr_writes++;
912
913 if (nr_writes >= max_nr_writes)
914 break;
915 }
916
917 return nr_reads + nr_writes;
918 }
919
920 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
921 {
922 unsigned int nr_disp = 0;
923
924 while (1) {
925 struct throtl_grp *tg = throtl_rb_first(parent_sq);
926 struct throtl_service_queue *sq = &tg->service_queue;
927
928 if (!tg)
929 break;
930
931 if (time_before(jiffies, tg->disptime))
932 break;
933
934 throtl_dequeue_tg(tg);
935
936 nr_disp += throtl_dispatch_tg(tg);
937
938 if (sq->nr_queued[0] || sq->nr_queued[1])
939 tg_update_disptime(tg);
940
941 if (nr_disp >= throtl_quantum)
942 break;
943 }
944
945 return nr_disp;
946 }
947
948 /**
949 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
950 * @arg: the throtl_service_queue being serviced
951 *
952 * This timer is armed when a child throtl_grp with active bio's become
953 * pending and queued on the service_queue's pending_tree and expires when
954 * the first child throtl_grp should be dispatched. This function
955 * dispatches bio's from the children throtl_grps and kicks
956 * throtl_data->dispatch_work if there are bio's ready to be issued.
957 */
958 static void throtl_pending_timer_fn(unsigned long arg)
959 {
960 struct throtl_service_queue *sq = (void *)arg;
961 struct throtl_data *td = sq_to_td(sq);
962 struct request_queue *q = td->queue;
963 bool dispatched = false;
964 int ret;
965
966 spin_lock_irq(q->queue_lock);
967
968 while (true) {
969 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
970 td->nr_queued[READ] + td->nr_queued[WRITE],
971 td->nr_queued[READ], td->nr_queued[WRITE]);
972
973 ret = throtl_select_dispatch(sq);
974 if (ret) {
975 throtl_log(sq, "bios disp=%u", ret);
976 dispatched = true;
977 }
978
979 if (throtl_schedule_next_dispatch(sq, false))
980 break;
981
982 /* this dispatch windows is still open, relax and repeat */
983 spin_unlock_irq(q->queue_lock);
984 cpu_relax();
985 spin_lock_irq(q->queue_lock);
986 }
987
988 if (dispatched)
989 queue_work(kthrotld_workqueue, &td->dispatch_work);
990
991 spin_unlock_irq(q->queue_lock);
992 }
993
994 /**
995 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
996 * @work: work item being executed
997 *
998 * This function is queued for execution when bio's reach the bio_lists[]
999 * of throtl_data->service_queue. Those bio's are ready and issued by this
1000 * function.
1001 */
1002 void blk_throtl_dispatch_work_fn(struct work_struct *work)
1003 {
1004 struct throtl_data *td = container_of(work, struct throtl_data,
1005 dispatch_work);
1006 struct throtl_service_queue *td_sq = &td->service_queue;
1007 struct request_queue *q = td->queue;
1008 struct bio_list bio_list_on_stack;
1009 struct bio *bio;
1010 struct blk_plug plug;
1011 int rw;
1012
1013 bio_list_init(&bio_list_on_stack);
1014
1015 spin_lock_irq(q->queue_lock);
1016 for (rw = READ; rw <= WRITE; rw++) {
1017 bio_list_merge(&bio_list_on_stack, &td_sq->bio_lists[rw]);
1018 bio_list_init(&td_sq->bio_lists[rw]);
1019 }
1020 spin_unlock_irq(q->queue_lock);
1021
1022 if (!bio_list_empty(&bio_list_on_stack)) {
1023 blk_start_plug(&plug);
1024 while((bio = bio_list_pop(&bio_list_on_stack)))
1025 generic_make_request(bio);
1026 blk_finish_plug(&plug);
1027 }
1028 }
1029
1030 static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
1031 struct blkg_policy_data *pd, int off)
1032 {
1033 struct throtl_grp *tg = pd_to_tg(pd);
1034 struct blkg_rwstat rwstat = { }, tmp;
1035 int i, cpu;
1036
1037 for_each_possible_cpu(cpu) {
1038 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
1039
1040 tmp = blkg_rwstat_read((void *)sc + off);
1041 for (i = 0; i < BLKG_RWSTAT_NR; i++)
1042 rwstat.cnt[i] += tmp.cnt[i];
1043 }
1044
1045 return __blkg_prfill_rwstat(sf, pd, &rwstat);
1046 }
1047
1048 static int tg_print_cpu_rwstat(struct cgroup *cgrp, struct cftype *cft,
1049 struct seq_file *sf)
1050 {
1051 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1052
1053 blkcg_print_blkgs(sf, blkcg, tg_prfill_cpu_rwstat, &blkcg_policy_throtl,
1054 cft->private, true);
1055 return 0;
1056 }
1057
1058 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1059 int off)
1060 {
1061 struct throtl_grp *tg = pd_to_tg(pd);
1062 u64 v = *(u64 *)((void *)tg + off);
1063
1064 if (v == -1)
1065 return 0;
1066 return __blkg_prfill_u64(sf, pd, v);
1067 }
1068
1069 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1070 int off)
1071 {
1072 struct throtl_grp *tg = pd_to_tg(pd);
1073 unsigned int v = *(unsigned int *)((void *)tg + off);
1074
1075 if (v == -1)
1076 return 0;
1077 return __blkg_prfill_u64(sf, pd, v);
1078 }
1079
1080 static int tg_print_conf_u64(struct cgroup *cgrp, struct cftype *cft,
1081 struct seq_file *sf)
1082 {
1083 blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_u64,
1084 &blkcg_policy_throtl, cft->private, false);
1085 return 0;
1086 }
1087
1088 static int tg_print_conf_uint(struct cgroup *cgrp, struct cftype *cft,
1089 struct seq_file *sf)
1090 {
1091 blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_uint,
1092 &blkcg_policy_throtl, cft->private, false);
1093 return 0;
1094 }
1095
1096 static int tg_set_conf(struct cgroup *cgrp, struct cftype *cft, const char *buf,
1097 bool is_u64)
1098 {
1099 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1100 struct blkg_conf_ctx ctx;
1101 struct throtl_grp *tg;
1102 struct throtl_service_queue *sq;
1103 int ret;
1104
1105 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1106 if (ret)
1107 return ret;
1108
1109 tg = blkg_to_tg(ctx.blkg);
1110 sq = &tg->service_queue;
1111
1112 if (!ctx.v)
1113 ctx.v = -1;
1114
1115 if (is_u64)
1116 *(u64 *)((void *)tg + cft->private) = ctx.v;
1117 else
1118 *(unsigned int *)((void *)tg + cft->private) = ctx.v;
1119
1120 throtl_log(&tg->service_queue,
1121 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1122 tg->bps[READ], tg->bps[WRITE],
1123 tg->iops[READ], tg->iops[WRITE]);
1124
1125 /*
1126 * We're already holding queue_lock and know @tg is valid. Let's
1127 * apply the new config directly.
1128 *
1129 * Restart the slices for both READ and WRITES. It might happen
1130 * that a group's limit are dropped suddenly and we don't want to
1131 * account recently dispatched IO with new low rate.
1132 */
1133 throtl_start_new_slice(tg, 0);
1134 throtl_start_new_slice(tg, 1);
1135
1136 if (tg->flags & THROTL_TG_PENDING) {
1137 tg_update_disptime(tg);
1138 throtl_schedule_next_dispatch(sq->parent_sq, true);
1139 }
1140
1141 blkg_conf_finish(&ctx);
1142 return 0;
1143 }
1144
1145 static int tg_set_conf_u64(struct cgroup *cgrp, struct cftype *cft,
1146 const char *buf)
1147 {
1148 return tg_set_conf(cgrp, cft, buf, true);
1149 }
1150
1151 static int tg_set_conf_uint(struct cgroup *cgrp, struct cftype *cft,
1152 const char *buf)
1153 {
1154 return tg_set_conf(cgrp, cft, buf, false);
1155 }
1156
1157 static struct cftype throtl_files[] = {
1158 {
1159 .name = "throttle.read_bps_device",
1160 .private = offsetof(struct throtl_grp, bps[READ]),
1161 .read_seq_string = tg_print_conf_u64,
1162 .write_string = tg_set_conf_u64,
1163 .max_write_len = 256,
1164 },
1165 {
1166 .name = "throttle.write_bps_device",
1167 .private = offsetof(struct throtl_grp, bps[WRITE]),
1168 .read_seq_string = tg_print_conf_u64,
1169 .write_string = tg_set_conf_u64,
1170 .max_write_len = 256,
1171 },
1172 {
1173 .name = "throttle.read_iops_device",
1174 .private = offsetof(struct throtl_grp, iops[READ]),
1175 .read_seq_string = tg_print_conf_uint,
1176 .write_string = tg_set_conf_uint,
1177 .max_write_len = 256,
1178 },
1179 {
1180 .name = "throttle.write_iops_device",
1181 .private = offsetof(struct throtl_grp, iops[WRITE]),
1182 .read_seq_string = tg_print_conf_uint,
1183 .write_string = tg_set_conf_uint,
1184 .max_write_len = 256,
1185 },
1186 {
1187 .name = "throttle.io_service_bytes",
1188 .private = offsetof(struct tg_stats_cpu, service_bytes),
1189 .read_seq_string = tg_print_cpu_rwstat,
1190 },
1191 {
1192 .name = "throttle.io_serviced",
1193 .private = offsetof(struct tg_stats_cpu, serviced),
1194 .read_seq_string = tg_print_cpu_rwstat,
1195 },
1196 { } /* terminate */
1197 };
1198
1199 static void throtl_shutdown_wq(struct request_queue *q)
1200 {
1201 struct throtl_data *td = q->td;
1202
1203 cancel_work_sync(&td->dispatch_work);
1204 }
1205
1206 static struct blkcg_policy blkcg_policy_throtl = {
1207 .pd_size = sizeof(struct throtl_grp),
1208 .cftypes = throtl_files,
1209
1210 .pd_init_fn = throtl_pd_init,
1211 .pd_exit_fn = throtl_pd_exit,
1212 .pd_reset_stats_fn = throtl_pd_reset_stats,
1213 };
1214
1215 bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1216 {
1217 struct throtl_data *td = q->td;
1218 struct throtl_grp *tg;
1219 struct throtl_service_queue *sq;
1220 bool rw = bio_data_dir(bio);
1221 struct blkcg *blkcg;
1222 bool throttled = false;
1223
1224 /* see throtl_charge_bio() */
1225 if (bio->bi_rw & REQ_THROTTLED)
1226 goto out;
1227
1228 /*
1229 * A throtl_grp pointer retrieved under rcu can be used to access
1230 * basic fields like stats and io rates. If a group has no rules,
1231 * just update the dispatch stats in lockless manner and return.
1232 */
1233 rcu_read_lock();
1234 blkcg = bio_blkcg(bio);
1235 tg = throtl_lookup_tg(td, blkcg);
1236 if (tg) {
1237 if (tg_no_rule_group(tg, rw)) {
1238 throtl_update_dispatch_stats(tg_to_blkg(tg),
1239 bio->bi_size, bio->bi_rw);
1240 goto out_unlock_rcu;
1241 }
1242 }
1243
1244 /*
1245 * Either group has not been allocated yet or it is not an unlimited
1246 * IO group
1247 */
1248 spin_lock_irq(q->queue_lock);
1249 tg = throtl_lookup_create_tg(td, blkcg);
1250 if (unlikely(!tg))
1251 goto out_unlock;
1252
1253 sq = &tg->service_queue;
1254
1255 while (true) {
1256 /* throtl is FIFO - if bios are already queued, should queue */
1257 if (sq->nr_queued[rw])
1258 break;
1259
1260 /* if above limits, break to queue */
1261 if (!tg_may_dispatch(tg, bio, NULL))
1262 break;
1263
1264 /* within limits, let's charge and dispatch directly */
1265 throtl_charge_bio(tg, bio);
1266
1267 /*
1268 * We need to trim slice even when bios are not being queued
1269 * otherwise it might happen that a bio is not queued for
1270 * a long time and slice keeps on extending and trim is not
1271 * called for a long time. Now if limits are reduced suddenly
1272 * we take into account all the IO dispatched so far at new
1273 * low rate and * newly queued IO gets a really long dispatch
1274 * time.
1275 *
1276 * So keep on trimming slice even if bio is not queued.
1277 */
1278 throtl_trim_slice(tg, rw);
1279
1280 /*
1281 * @bio passed through this layer without being throttled.
1282 * Climb up the ladder. If we''re already at the top, it
1283 * can be executed directly.
1284 */
1285 sq = sq->parent_sq;
1286 tg = sq_to_tg(sq);
1287 if (!tg)
1288 goto out_unlock;
1289 }
1290
1291 /* out-of-limit, queue to @tg */
1292 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1293 rw == READ ? 'R' : 'W',
1294 tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1295 tg->io_disp[rw], tg->iops[rw],
1296 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1297
1298 bio_associate_current(bio);
1299 tg->td->nr_queued[rw]++;
1300 throtl_add_bio_tg(bio, tg);
1301 throttled = true;
1302
1303 /*
1304 * Update @tg's dispatch time and force schedule dispatch if @tg
1305 * was empty before @bio. The forced scheduling isn't likely to
1306 * cause undue delay as @bio is likely to be dispatched directly if
1307 * its @tg's disptime is not in the future.
1308 */
1309 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1310 tg_update_disptime(tg);
1311 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1312 }
1313
1314 out_unlock:
1315 spin_unlock_irq(q->queue_lock);
1316 out_unlock_rcu:
1317 rcu_read_unlock();
1318 out:
1319 /*
1320 * As multiple blk-throtls may stack in the same issue path, we
1321 * don't want bios to leave with the flag set. Clear the flag if
1322 * being issued.
1323 */
1324 if (!throttled)
1325 bio->bi_rw &= ~REQ_THROTTLED;
1326 return throttled;
1327 }
1328
1329 /*
1330 * Dispatch all bios from all children tg's queued on @parent_sq. On
1331 * return, @parent_sq is guaranteed to not have any active children tg's
1332 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1333 */
1334 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
1335 {
1336 struct throtl_grp *tg;
1337
1338 while ((tg = throtl_rb_first(parent_sq))) {
1339 struct throtl_service_queue *sq = &tg->service_queue;
1340 struct bio *bio;
1341
1342 throtl_dequeue_tg(tg);
1343
1344 while ((bio = bio_list_peek(&sq->bio_lists[READ])))
1345 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1346 while ((bio = bio_list_peek(&sq->bio_lists[WRITE])))
1347 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1348 }
1349 }
1350
1351 /**
1352 * blk_throtl_drain - drain throttled bios
1353 * @q: request_queue to drain throttled bios for
1354 *
1355 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1356 */
1357 void blk_throtl_drain(struct request_queue *q)
1358 __releases(q->queue_lock) __acquires(q->queue_lock)
1359 {
1360 struct throtl_data *td = q->td;
1361 struct blkcg_gq *blkg;
1362 struct cgroup *pos_cgrp;
1363 struct bio *bio;
1364 int rw;
1365
1366 queue_lockdep_assert_held(q);
1367 rcu_read_lock();
1368
1369 /*
1370 * Drain each tg while doing post-order walk on the blkg tree, so
1371 * that all bios are propagated to td->service_queue. It'd be
1372 * better to walk service_queue tree directly but blkg walk is
1373 * easier.
1374 */
1375 blkg_for_each_descendant_post(blkg, pos_cgrp, td->queue->root_blkg)
1376 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1377
1378 tg_drain_bios(&td_root_tg(td)->service_queue);
1379
1380 /* finally, transfer bios from top-level tg's into the td */
1381 tg_drain_bios(&td->service_queue);
1382
1383 rcu_read_unlock();
1384 spin_unlock_irq(q->queue_lock);
1385
1386 /* all bios now should be in td->service_queue, issue them */
1387 for (rw = READ; rw <= WRITE; rw++)
1388 while ((bio = bio_list_pop(&td->service_queue.bio_lists[rw])))
1389 generic_make_request(bio);
1390
1391 spin_lock_irq(q->queue_lock);
1392 }
1393
1394 int blk_throtl_init(struct request_queue *q)
1395 {
1396 struct throtl_data *td;
1397 int ret;
1398
1399 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1400 if (!td)
1401 return -ENOMEM;
1402
1403 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1404 throtl_service_queue_init(&td->service_queue, NULL);
1405
1406 q->td = td;
1407 td->queue = q;
1408
1409 /* activate policy */
1410 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1411 if (ret)
1412 kfree(td);
1413 return ret;
1414 }
1415
1416 void blk_throtl_exit(struct request_queue *q)
1417 {
1418 BUG_ON(!q->td);
1419 throtl_shutdown_wq(q);
1420 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1421 kfree(q->td);
1422 }
1423
1424 static int __init throtl_init(void)
1425 {
1426 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1427 if (!kthrotld_workqueue)
1428 panic("Failed to create kthrotld\n");
1429
1430 return blkcg_policy_register(&blkcg_policy_throtl);
1431 }
1432
1433 module_init(throtl_init);