]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - block/blk-throttle.c
Merge tag 'for-5.10-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[mirror_ubuntu-hirsute-kernel.git] / block / blk-throttle.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Interface for controlling IO bandwidth on a request queue
4 *
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6 */
7
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
14 #include "blk.h"
15 #include "blk-cgroup-rwstat.h"
16
17 /* Max dispatch from a group in 1 round */
18 #define THROTL_GRP_QUANTUM 8
19
20 /* Total max dispatch from all groups in one round */
21 #define THROTL_QUANTUM 32
22
23 /* Throttling is performed over a slice and after that slice is renewed */
24 #define DFL_THROTL_SLICE_HD (HZ / 10)
25 #define DFL_THROTL_SLICE_SSD (HZ / 50)
26 #define MAX_THROTL_SLICE (HZ)
27 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
28 #define MIN_THROTL_BPS (320 * 1024)
29 #define MIN_THROTL_IOPS (10)
30 #define DFL_LATENCY_TARGET (-1L)
31 #define DFL_IDLE_THRESHOLD (0)
32 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
33 #define LATENCY_FILTERED_SSD (0)
34 /*
35 * For HD, very small latency comes from sequential IO. Such IO is helpless to
36 * help determine if its IO is impacted by others, hence we ignore the IO
37 */
38 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
39
40 static struct blkcg_policy blkcg_policy_throtl;
41
42 /* A workqueue to queue throttle related work */
43 static struct workqueue_struct *kthrotld_workqueue;
44
45 /*
46 * To implement hierarchical throttling, throtl_grps form a tree and bios
47 * are dispatched upwards level by level until they reach the top and get
48 * issued. When dispatching bios from the children and local group at each
49 * level, if the bios are dispatched into a single bio_list, there's a risk
50 * of a local or child group which can queue many bios at once filling up
51 * the list starving others.
52 *
53 * To avoid such starvation, dispatched bios are queued separately
54 * according to where they came from. When they are again dispatched to
55 * the parent, they're popped in round-robin order so that no single source
56 * hogs the dispatch window.
57 *
58 * throtl_qnode is used to keep the queued bios separated by their sources.
59 * Bios are queued to throtl_qnode which in turn is queued to
60 * throtl_service_queue and then dispatched in round-robin order.
61 *
62 * It's also used to track the reference counts on blkg's. A qnode always
63 * belongs to a throtl_grp and gets queued on itself or the parent, so
64 * incrementing the reference of the associated throtl_grp when a qnode is
65 * queued and decrementing when dequeued is enough to keep the whole blkg
66 * tree pinned while bios are in flight.
67 */
68 struct throtl_qnode {
69 struct list_head node; /* service_queue->queued[] */
70 struct bio_list bios; /* queued bios */
71 struct throtl_grp *tg; /* tg this qnode belongs to */
72 };
73
74 struct throtl_service_queue {
75 struct throtl_service_queue *parent_sq; /* the parent service_queue */
76
77 /*
78 * Bios queued directly to this service_queue or dispatched from
79 * children throtl_grp's.
80 */
81 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
82 unsigned int nr_queued[2]; /* number of queued bios */
83
84 /*
85 * RB tree of active children throtl_grp's, which are sorted by
86 * their ->disptime.
87 */
88 struct rb_root_cached pending_tree; /* RB tree of active tgs */
89 unsigned int nr_pending; /* # queued in the tree */
90 unsigned long first_pending_disptime; /* disptime of the first tg */
91 struct timer_list pending_timer; /* fires on first_pending_disptime */
92 };
93
94 enum tg_state_flags {
95 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
96 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
97 };
98
99 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
100
101 enum {
102 LIMIT_LOW,
103 LIMIT_MAX,
104 LIMIT_CNT,
105 };
106
107 struct throtl_grp {
108 /* must be the first member */
109 struct blkg_policy_data pd;
110
111 /* active throtl group service_queue member */
112 struct rb_node rb_node;
113
114 /* throtl_data this group belongs to */
115 struct throtl_data *td;
116
117 /* this group's service queue */
118 struct throtl_service_queue service_queue;
119
120 /*
121 * qnode_on_self is used when bios are directly queued to this
122 * throtl_grp so that local bios compete fairly with bios
123 * dispatched from children. qnode_on_parent is used when bios are
124 * dispatched from this throtl_grp into its parent and will compete
125 * with the sibling qnode_on_parents and the parent's
126 * qnode_on_self.
127 */
128 struct throtl_qnode qnode_on_self[2];
129 struct throtl_qnode qnode_on_parent[2];
130
131 /*
132 * Dispatch time in jiffies. This is the estimated time when group
133 * will unthrottle and is ready to dispatch more bio. It is used as
134 * key to sort active groups in service tree.
135 */
136 unsigned long disptime;
137
138 unsigned int flags;
139
140 /* are there any throtl rules between this group and td? */
141 bool has_rules[2];
142
143 /* internally used bytes per second rate limits */
144 uint64_t bps[2][LIMIT_CNT];
145 /* user configured bps limits */
146 uint64_t bps_conf[2][LIMIT_CNT];
147
148 /* internally used IOPS limits */
149 unsigned int iops[2][LIMIT_CNT];
150 /* user configured IOPS limits */
151 unsigned int iops_conf[2][LIMIT_CNT];
152
153 /* Number of bytes dispatched in current slice */
154 uint64_t bytes_disp[2];
155 /* Number of bio's dispatched in current slice */
156 unsigned int io_disp[2];
157
158 unsigned long last_low_overflow_time[2];
159
160 uint64_t last_bytes_disp[2];
161 unsigned int last_io_disp[2];
162
163 unsigned long last_check_time;
164
165 unsigned long latency_target; /* us */
166 unsigned long latency_target_conf; /* us */
167 /* When did we start a new slice */
168 unsigned long slice_start[2];
169 unsigned long slice_end[2];
170
171 unsigned long last_finish_time; /* ns / 1024 */
172 unsigned long checked_last_finish_time; /* ns / 1024 */
173 unsigned long avg_idletime; /* ns / 1024 */
174 unsigned long idletime_threshold; /* us */
175 unsigned long idletime_threshold_conf; /* us */
176
177 unsigned int bio_cnt; /* total bios */
178 unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
179 unsigned long bio_cnt_reset_time;
180
181 struct blkg_rwstat stat_bytes;
182 struct blkg_rwstat stat_ios;
183 };
184
185 /* We measure latency for request size from <= 4k to >= 1M */
186 #define LATENCY_BUCKET_SIZE 9
187
188 struct latency_bucket {
189 unsigned long total_latency; /* ns / 1024 */
190 int samples;
191 };
192
193 struct avg_latency_bucket {
194 unsigned long latency; /* ns / 1024 */
195 bool valid;
196 };
197
198 struct throtl_data
199 {
200 /* service tree for active throtl groups */
201 struct throtl_service_queue service_queue;
202
203 struct request_queue *queue;
204
205 /* Total Number of queued bios on READ and WRITE lists */
206 unsigned int nr_queued[2];
207
208 unsigned int throtl_slice;
209
210 /* Work for dispatching throttled bios */
211 struct work_struct dispatch_work;
212 unsigned int limit_index;
213 bool limit_valid[LIMIT_CNT];
214
215 unsigned long low_upgrade_time;
216 unsigned long low_downgrade_time;
217
218 unsigned int scale;
219
220 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
221 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
222 struct latency_bucket __percpu *latency_buckets[2];
223 unsigned long last_calculate_time;
224 unsigned long filtered_latency;
225
226 bool track_bio_latency;
227 };
228
229 static void throtl_pending_timer_fn(struct timer_list *t);
230
231 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
232 {
233 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
234 }
235
236 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
237 {
238 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
239 }
240
241 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
242 {
243 return pd_to_blkg(&tg->pd);
244 }
245
246 /**
247 * sq_to_tg - return the throl_grp the specified service queue belongs to
248 * @sq: the throtl_service_queue of interest
249 *
250 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
251 * embedded in throtl_data, %NULL is returned.
252 */
253 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
254 {
255 if (sq && sq->parent_sq)
256 return container_of(sq, struct throtl_grp, service_queue);
257 else
258 return NULL;
259 }
260
261 /**
262 * sq_to_td - return throtl_data the specified service queue belongs to
263 * @sq: the throtl_service_queue of interest
264 *
265 * A service_queue can be embedded in either a throtl_grp or throtl_data.
266 * Determine the associated throtl_data accordingly and return it.
267 */
268 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
269 {
270 struct throtl_grp *tg = sq_to_tg(sq);
271
272 if (tg)
273 return tg->td;
274 else
275 return container_of(sq, struct throtl_data, service_queue);
276 }
277
278 /*
279 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
280 * make the IO dispatch more smooth.
281 * Scale up: linearly scale up according to lapsed time since upgrade. For
282 * every throtl_slice, the limit scales up 1/2 .low limit till the
283 * limit hits .max limit
284 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
285 */
286 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
287 {
288 /* arbitrary value to avoid too big scale */
289 if (td->scale < 4096 && time_after_eq(jiffies,
290 td->low_upgrade_time + td->scale * td->throtl_slice))
291 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
292
293 return low + (low >> 1) * td->scale;
294 }
295
296 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
297 {
298 struct blkcg_gq *blkg = tg_to_blkg(tg);
299 struct throtl_data *td;
300 uint64_t ret;
301
302 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
303 return U64_MAX;
304
305 td = tg->td;
306 ret = tg->bps[rw][td->limit_index];
307 if (ret == 0 && td->limit_index == LIMIT_LOW) {
308 /* intermediate node or iops isn't 0 */
309 if (!list_empty(&blkg->blkcg->css.children) ||
310 tg->iops[rw][td->limit_index])
311 return U64_MAX;
312 else
313 return MIN_THROTL_BPS;
314 }
315
316 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
317 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
318 uint64_t adjusted;
319
320 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
321 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
322 }
323 return ret;
324 }
325
326 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
327 {
328 struct blkcg_gq *blkg = tg_to_blkg(tg);
329 struct throtl_data *td;
330 unsigned int ret;
331
332 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
333 return UINT_MAX;
334
335 td = tg->td;
336 ret = tg->iops[rw][td->limit_index];
337 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
338 /* intermediate node or bps isn't 0 */
339 if (!list_empty(&blkg->blkcg->css.children) ||
340 tg->bps[rw][td->limit_index])
341 return UINT_MAX;
342 else
343 return MIN_THROTL_IOPS;
344 }
345
346 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
347 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
348 uint64_t adjusted;
349
350 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
351 if (adjusted > UINT_MAX)
352 adjusted = UINT_MAX;
353 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
354 }
355 return ret;
356 }
357
358 #define request_bucket_index(sectors) \
359 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
360
361 /**
362 * throtl_log - log debug message via blktrace
363 * @sq: the service_queue being reported
364 * @fmt: printf format string
365 * @args: printf args
366 *
367 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
368 * throtl_grp; otherwise, just "throtl".
369 */
370 #define throtl_log(sq, fmt, args...) do { \
371 struct throtl_grp *__tg = sq_to_tg((sq)); \
372 struct throtl_data *__td = sq_to_td((sq)); \
373 \
374 (void)__td; \
375 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
376 break; \
377 if ((__tg)) { \
378 blk_add_cgroup_trace_msg(__td->queue, \
379 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
380 } else { \
381 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
382 } \
383 } while (0)
384
385 static inline unsigned int throtl_bio_data_size(struct bio *bio)
386 {
387 /* assume it's one sector */
388 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
389 return 512;
390 return bio->bi_iter.bi_size;
391 }
392
393 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
394 {
395 INIT_LIST_HEAD(&qn->node);
396 bio_list_init(&qn->bios);
397 qn->tg = tg;
398 }
399
400 /**
401 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
402 * @bio: bio being added
403 * @qn: qnode to add bio to
404 * @queued: the service_queue->queued[] list @qn belongs to
405 *
406 * Add @bio to @qn and put @qn on @queued if it's not already on.
407 * @qn->tg's reference count is bumped when @qn is activated. See the
408 * comment on top of throtl_qnode definition for details.
409 */
410 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
411 struct list_head *queued)
412 {
413 bio_list_add(&qn->bios, bio);
414 if (list_empty(&qn->node)) {
415 list_add_tail(&qn->node, queued);
416 blkg_get(tg_to_blkg(qn->tg));
417 }
418 }
419
420 /**
421 * throtl_peek_queued - peek the first bio on a qnode list
422 * @queued: the qnode list to peek
423 */
424 static struct bio *throtl_peek_queued(struct list_head *queued)
425 {
426 struct throtl_qnode *qn;
427 struct bio *bio;
428
429 if (list_empty(queued))
430 return NULL;
431
432 qn = list_first_entry(queued, struct throtl_qnode, node);
433 bio = bio_list_peek(&qn->bios);
434 WARN_ON_ONCE(!bio);
435 return bio;
436 }
437
438 /**
439 * throtl_pop_queued - pop the first bio form a qnode list
440 * @queued: the qnode list to pop a bio from
441 * @tg_to_put: optional out argument for throtl_grp to put
442 *
443 * Pop the first bio from the qnode list @queued. After popping, the first
444 * qnode is removed from @queued if empty or moved to the end of @queued so
445 * that the popping order is round-robin.
446 *
447 * When the first qnode is removed, its associated throtl_grp should be put
448 * too. If @tg_to_put is NULL, this function automatically puts it;
449 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
450 * responsible for putting it.
451 */
452 static struct bio *throtl_pop_queued(struct list_head *queued,
453 struct throtl_grp **tg_to_put)
454 {
455 struct throtl_qnode *qn;
456 struct bio *bio;
457
458 if (list_empty(queued))
459 return NULL;
460
461 qn = list_first_entry(queued, struct throtl_qnode, node);
462 bio = bio_list_pop(&qn->bios);
463 WARN_ON_ONCE(!bio);
464
465 if (bio_list_empty(&qn->bios)) {
466 list_del_init(&qn->node);
467 if (tg_to_put)
468 *tg_to_put = qn->tg;
469 else
470 blkg_put(tg_to_blkg(qn->tg));
471 } else {
472 list_move_tail(&qn->node, queued);
473 }
474
475 return bio;
476 }
477
478 /* init a service_queue, assumes the caller zeroed it */
479 static void throtl_service_queue_init(struct throtl_service_queue *sq)
480 {
481 INIT_LIST_HEAD(&sq->queued[0]);
482 INIT_LIST_HEAD(&sq->queued[1]);
483 sq->pending_tree = RB_ROOT_CACHED;
484 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
485 }
486
487 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
488 struct request_queue *q,
489 struct blkcg *blkcg)
490 {
491 struct throtl_grp *tg;
492 int rw;
493
494 tg = kzalloc_node(sizeof(*tg), gfp, q->node);
495 if (!tg)
496 return NULL;
497
498 if (blkg_rwstat_init(&tg->stat_bytes, gfp))
499 goto err_free_tg;
500
501 if (blkg_rwstat_init(&tg->stat_ios, gfp))
502 goto err_exit_stat_bytes;
503
504 throtl_service_queue_init(&tg->service_queue);
505
506 for (rw = READ; rw <= WRITE; rw++) {
507 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
508 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
509 }
510
511 RB_CLEAR_NODE(&tg->rb_node);
512 tg->bps[READ][LIMIT_MAX] = U64_MAX;
513 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
514 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
515 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
516 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
517 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
518 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
519 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
520 /* LIMIT_LOW will have default value 0 */
521
522 tg->latency_target = DFL_LATENCY_TARGET;
523 tg->latency_target_conf = DFL_LATENCY_TARGET;
524 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
525 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
526
527 return &tg->pd;
528
529 err_exit_stat_bytes:
530 blkg_rwstat_exit(&tg->stat_bytes);
531 err_free_tg:
532 kfree(tg);
533 return NULL;
534 }
535
536 static void throtl_pd_init(struct blkg_policy_data *pd)
537 {
538 struct throtl_grp *tg = pd_to_tg(pd);
539 struct blkcg_gq *blkg = tg_to_blkg(tg);
540 struct throtl_data *td = blkg->q->td;
541 struct throtl_service_queue *sq = &tg->service_queue;
542
543 /*
544 * If on the default hierarchy, we switch to properly hierarchical
545 * behavior where limits on a given throtl_grp are applied to the
546 * whole subtree rather than just the group itself. e.g. If 16M
547 * read_bps limit is set on the root group, the whole system can't
548 * exceed 16M for the device.
549 *
550 * If not on the default hierarchy, the broken flat hierarchy
551 * behavior is retained where all throtl_grps are treated as if
552 * they're all separate root groups right below throtl_data.
553 * Limits of a group don't interact with limits of other groups
554 * regardless of the position of the group in the hierarchy.
555 */
556 sq->parent_sq = &td->service_queue;
557 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
558 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
559 tg->td = td;
560 }
561
562 /*
563 * Set has_rules[] if @tg or any of its parents have limits configured.
564 * This doesn't require walking up to the top of the hierarchy as the
565 * parent's has_rules[] is guaranteed to be correct.
566 */
567 static void tg_update_has_rules(struct throtl_grp *tg)
568 {
569 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
570 struct throtl_data *td = tg->td;
571 int rw;
572
573 for (rw = READ; rw <= WRITE; rw++)
574 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
575 (td->limit_valid[td->limit_index] &&
576 (tg_bps_limit(tg, rw) != U64_MAX ||
577 tg_iops_limit(tg, rw) != UINT_MAX));
578 }
579
580 static void throtl_pd_online(struct blkg_policy_data *pd)
581 {
582 struct throtl_grp *tg = pd_to_tg(pd);
583 /*
584 * We don't want new groups to escape the limits of its ancestors.
585 * Update has_rules[] after a new group is brought online.
586 */
587 tg_update_has_rules(tg);
588 }
589
590 static void blk_throtl_update_limit_valid(struct throtl_data *td)
591 {
592 struct cgroup_subsys_state *pos_css;
593 struct blkcg_gq *blkg;
594 bool low_valid = false;
595
596 rcu_read_lock();
597 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
598 struct throtl_grp *tg = blkg_to_tg(blkg);
599
600 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
601 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
602 low_valid = true;
603 break;
604 }
605 }
606 rcu_read_unlock();
607
608 td->limit_valid[LIMIT_LOW] = low_valid;
609 }
610
611 static void throtl_upgrade_state(struct throtl_data *td);
612 static void throtl_pd_offline(struct blkg_policy_data *pd)
613 {
614 struct throtl_grp *tg = pd_to_tg(pd);
615
616 tg->bps[READ][LIMIT_LOW] = 0;
617 tg->bps[WRITE][LIMIT_LOW] = 0;
618 tg->iops[READ][LIMIT_LOW] = 0;
619 tg->iops[WRITE][LIMIT_LOW] = 0;
620
621 blk_throtl_update_limit_valid(tg->td);
622
623 if (!tg->td->limit_valid[tg->td->limit_index])
624 throtl_upgrade_state(tg->td);
625 }
626
627 static void throtl_pd_free(struct blkg_policy_data *pd)
628 {
629 struct throtl_grp *tg = pd_to_tg(pd);
630
631 del_timer_sync(&tg->service_queue.pending_timer);
632 blkg_rwstat_exit(&tg->stat_bytes);
633 blkg_rwstat_exit(&tg->stat_ios);
634 kfree(tg);
635 }
636
637 static struct throtl_grp *
638 throtl_rb_first(struct throtl_service_queue *parent_sq)
639 {
640 struct rb_node *n;
641
642 n = rb_first_cached(&parent_sq->pending_tree);
643 WARN_ON_ONCE(!n);
644 if (!n)
645 return NULL;
646 return rb_entry_tg(n);
647 }
648
649 static void throtl_rb_erase(struct rb_node *n,
650 struct throtl_service_queue *parent_sq)
651 {
652 rb_erase_cached(n, &parent_sq->pending_tree);
653 RB_CLEAR_NODE(n);
654 --parent_sq->nr_pending;
655 }
656
657 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
658 {
659 struct throtl_grp *tg;
660
661 tg = throtl_rb_first(parent_sq);
662 if (!tg)
663 return;
664
665 parent_sq->first_pending_disptime = tg->disptime;
666 }
667
668 static void tg_service_queue_add(struct throtl_grp *tg)
669 {
670 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
671 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
672 struct rb_node *parent = NULL;
673 struct throtl_grp *__tg;
674 unsigned long key = tg->disptime;
675 bool leftmost = true;
676
677 while (*node != NULL) {
678 parent = *node;
679 __tg = rb_entry_tg(parent);
680
681 if (time_before(key, __tg->disptime))
682 node = &parent->rb_left;
683 else {
684 node = &parent->rb_right;
685 leftmost = false;
686 }
687 }
688
689 rb_link_node(&tg->rb_node, parent, node);
690 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
691 leftmost);
692 }
693
694 static void throtl_enqueue_tg(struct throtl_grp *tg)
695 {
696 if (!(tg->flags & THROTL_TG_PENDING)) {
697 tg_service_queue_add(tg);
698 tg->flags |= THROTL_TG_PENDING;
699 tg->service_queue.parent_sq->nr_pending++;
700 }
701 }
702
703 static void throtl_dequeue_tg(struct throtl_grp *tg)
704 {
705 if (tg->flags & THROTL_TG_PENDING) {
706 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
707 tg->flags &= ~THROTL_TG_PENDING;
708 }
709 }
710
711 /* Call with queue lock held */
712 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
713 unsigned long expires)
714 {
715 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
716
717 /*
718 * Since we are adjusting the throttle limit dynamically, the sleep
719 * time calculated according to previous limit might be invalid. It's
720 * possible the cgroup sleep time is very long and no other cgroups
721 * have IO running so notify the limit changes. Make sure the cgroup
722 * doesn't sleep too long to avoid the missed notification.
723 */
724 if (time_after(expires, max_expire))
725 expires = max_expire;
726 mod_timer(&sq->pending_timer, expires);
727 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
728 expires - jiffies, jiffies);
729 }
730
731 /**
732 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
733 * @sq: the service_queue to schedule dispatch for
734 * @force: force scheduling
735 *
736 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
737 * dispatch time of the first pending child. Returns %true if either timer
738 * is armed or there's no pending child left. %false if the current
739 * dispatch window is still open and the caller should continue
740 * dispatching.
741 *
742 * If @force is %true, the dispatch timer is always scheduled and this
743 * function is guaranteed to return %true. This is to be used when the
744 * caller can't dispatch itself and needs to invoke pending_timer
745 * unconditionally. Note that forced scheduling is likely to induce short
746 * delay before dispatch starts even if @sq->first_pending_disptime is not
747 * in the future and thus shouldn't be used in hot paths.
748 */
749 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
750 bool force)
751 {
752 /* any pending children left? */
753 if (!sq->nr_pending)
754 return true;
755
756 update_min_dispatch_time(sq);
757
758 /* is the next dispatch time in the future? */
759 if (force || time_after(sq->first_pending_disptime, jiffies)) {
760 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
761 return true;
762 }
763
764 /* tell the caller to continue dispatching */
765 return false;
766 }
767
768 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
769 bool rw, unsigned long start)
770 {
771 tg->bytes_disp[rw] = 0;
772 tg->io_disp[rw] = 0;
773
774 /*
775 * Previous slice has expired. We must have trimmed it after last
776 * bio dispatch. That means since start of last slice, we never used
777 * that bandwidth. Do try to make use of that bandwidth while giving
778 * credit.
779 */
780 if (time_after_eq(start, tg->slice_start[rw]))
781 tg->slice_start[rw] = start;
782
783 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
784 throtl_log(&tg->service_queue,
785 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
786 rw == READ ? 'R' : 'W', tg->slice_start[rw],
787 tg->slice_end[rw], jiffies);
788 }
789
790 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
791 {
792 tg->bytes_disp[rw] = 0;
793 tg->io_disp[rw] = 0;
794 tg->slice_start[rw] = jiffies;
795 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
796 throtl_log(&tg->service_queue,
797 "[%c] new slice start=%lu end=%lu jiffies=%lu",
798 rw == READ ? 'R' : 'W', tg->slice_start[rw],
799 tg->slice_end[rw], jiffies);
800 }
801
802 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
803 unsigned long jiffy_end)
804 {
805 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
806 }
807
808 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
809 unsigned long jiffy_end)
810 {
811 throtl_set_slice_end(tg, rw, jiffy_end);
812 throtl_log(&tg->service_queue,
813 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
814 rw == READ ? 'R' : 'W', tg->slice_start[rw],
815 tg->slice_end[rw], jiffies);
816 }
817
818 /* Determine if previously allocated or extended slice is complete or not */
819 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
820 {
821 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
822 return false;
823
824 return true;
825 }
826
827 /* Trim the used slices and adjust slice start accordingly */
828 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
829 {
830 unsigned long nr_slices, time_elapsed, io_trim;
831 u64 bytes_trim, tmp;
832
833 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
834
835 /*
836 * If bps are unlimited (-1), then time slice don't get
837 * renewed. Don't try to trim the slice if slice is used. A new
838 * slice will start when appropriate.
839 */
840 if (throtl_slice_used(tg, rw))
841 return;
842
843 /*
844 * A bio has been dispatched. Also adjust slice_end. It might happen
845 * that initially cgroup limit was very low resulting in high
846 * slice_end, but later limit was bumped up and bio was dispatched
847 * sooner, then we need to reduce slice_end. A high bogus slice_end
848 * is bad because it does not allow new slice to start.
849 */
850
851 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
852
853 time_elapsed = jiffies - tg->slice_start[rw];
854
855 nr_slices = time_elapsed / tg->td->throtl_slice;
856
857 if (!nr_slices)
858 return;
859 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
860 do_div(tmp, HZ);
861 bytes_trim = tmp;
862
863 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
864 HZ;
865
866 if (!bytes_trim && !io_trim)
867 return;
868
869 if (tg->bytes_disp[rw] >= bytes_trim)
870 tg->bytes_disp[rw] -= bytes_trim;
871 else
872 tg->bytes_disp[rw] = 0;
873
874 if (tg->io_disp[rw] >= io_trim)
875 tg->io_disp[rw] -= io_trim;
876 else
877 tg->io_disp[rw] = 0;
878
879 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
880
881 throtl_log(&tg->service_queue,
882 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
883 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
884 tg->slice_start[rw], tg->slice_end[rw], jiffies);
885 }
886
887 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
888 u32 iops_limit, unsigned long *wait)
889 {
890 bool rw = bio_data_dir(bio);
891 unsigned int io_allowed;
892 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
893 u64 tmp;
894
895 if (iops_limit == UINT_MAX) {
896 if (wait)
897 *wait = 0;
898 return true;
899 }
900
901 jiffy_elapsed = jiffies - tg->slice_start[rw];
902
903 /* Round up to the next throttle slice, wait time must be nonzero */
904 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
905
906 /*
907 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
908 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
909 * will allow dispatch after 1 second and after that slice should
910 * have been trimmed.
911 */
912
913 tmp = (u64)iops_limit * jiffy_elapsed_rnd;
914 do_div(tmp, HZ);
915
916 if (tmp > UINT_MAX)
917 io_allowed = UINT_MAX;
918 else
919 io_allowed = tmp;
920
921 if (tg->io_disp[rw] + 1 <= io_allowed) {
922 if (wait)
923 *wait = 0;
924 return true;
925 }
926
927 /* Calc approx time to dispatch */
928 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
929
930 if (wait)
931 *wait = jiffy_wait;
932 return false;
933 }
934
935 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
936 u64 bps_limit, unsigned long *wait)
937 {
938 bool rw = bio_data_dir(bio);
939 u64 bytes_allowed, extra_bytes, tmp;
940 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
941 unsigned int bio_size = throtl_bio_data_size(bio);
942
943 if (bps_limit == U64_MAX) {
944 if (wait)
945 *wait = 0;
946 return true;
947 }
948
949 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
950
951 /* Slice has just started. Consider one slice interval */
952 if (!jiffy_elapsed)
953 jiffy_elapsed_rnd = tg->td->throtl_slice;
954
955 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
956
957 tmp = bps_limit * jiffy_elapsed_rnd;
958 do_div(tmp, HZ);
959 bytes_allowed = tmp;
960
961 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
962 if (wait)
963 *wait = 0;
964 return true;
965 }
966
967 /* Calc approx time to dispatch */
968 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
969 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
970
971 if (!jiffy_wait)
972 jiffy_wait = 1;
973
974 /*
975 * This wait time is without taking into consideration the rounding
976 * up we did. Add that time also.
977 */
978 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
979 if (wait)
980 *wait = jiffy_wait;
981 return false;
982 }
983
984 /*
985 * Returns whether one can dispatch a bio or not. Also returns approx number
986 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
987 */
988 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
989 unsigned long *wait)
990 {
991 bool rw = bio_data_dir(bio);
992 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
993 u64 bps_limit = tg_bps_limit(tg, rw);
994 u32 iops_limit = tg_iops_limit(tg, rw);
995
996 /*
997 * Currently whole state machine of group depends on first bio
998 * queued in the group bio list. So one should not be calling
999 * this function with a different bio if there are other bios
1000 * queued.
1001 */
1002 BUG_ON(tg->service_queue.nr_queued[rw] &&
1003 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
1004
1005 /* If tg->bps = -1, then BW is unlimited */
1006 if (bps_limit == U64_MAX && iops_limit == UINT_MAX) {
1007 if (wait)
1008 *wait = 0;
1009 return true;
1010 }
1011
1012 /*
1013 * If previous slice expired, start a new one otherwise renew/extend
1014 * existing slice to make sure it is at least throtl_slice interval
1015 * long since now. New slice is started only for empty throttle group.
1016 * If there is queued bio, that means there should be an active
1017 * slice and it should be extended instead.
1018 */
1019 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1020 throtl_start_new_slice(tg, rw);
1021 else {
1022 if (time_before(tg->slice_end[rw],
1023 jiffies + tg->td->throtl_slice))
1024 throtl_extend_slice(tg, rw,
1025 jiffies + tg->td->throtl_slice);
1026 }
1027
1028 if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
1029 tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
1030 if (wait)
1031 *wait = 0;
1032 return true;
1033 }
1034
1035 max_wait = max(bps_wait, iops_wait);
1036
1037 if (wait)
1038 *wait = max_wait;
1039
1040 if (time_before(tg->slice_end[rw], jiffies + max_wait))
1041 throtl_extend_slice(tg, rw, jiffies + max_wait);
1042
1043 return false;
1044 }
1045
1046 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1047 {
1048 bool rw = bio_data_dir(bio);
1049 unsigned int bio_size = throtl_bio_data_size(bio);
1050
1051 /* Charge the bio to the group */
1052 tg->bytes_disp[rw] += bio_size;
1053 tg->io_disp[rw]++;
1054 tg->last_bytes_disp[rw] += bio_size;
1055 tg->last_io_disp[rw]++;
1056
1057 /*
1058 * BIO_THROTTLED is used to prevent the same bio to be throttled
1059 * more than once as a throttled bio will go through blk-throtl the
1060 * second time when it eventually gets issued. Set it when a bio
1061 * is being charged to a tg.
1062 */
1063 if (!bio_flagged(bio, BIO_THROTTLED))
1064 bio_set_flag(bio, BIO_THROTTLED);
1065 }
1066
1067 /**
1068 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1069 * @bio: bio to add
1070 * @qn: qnode to use
1071 * @tg: the target throtl_grp
1072 *
1073 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
1074 * tg->qnode_on_self[] is used.
1075 */
1076 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1077 struct throtl_grp *tg)
1078 {
1079 struct throtl_service_queue *sq = &tg->service_queue;
1080 bool rw = bio_data_dir(bio);
1081
1082 if (!qn)
1083 qn = &tg->qnode_on_self[rw];
1084
1085 /*
1086 * If @tg doesn't currently have any bios queued in the same
1087 * direction, queueing @bio can change when @tg should be
1088 * dispatched. Mark that @tg was empty. This is automatically
1089 * cleared on the next tg_update_disptime().
1090 */
1091 if (!sq->nr_queued[rw])
1092 tg->flags |= THROTL_TG_WAS_EMPTY;
1093
1094 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1095
1096 sq->nr_queued[rw]++;
1097 throtl_enqueue_tg(tg);
1098 }
1099
1100 static void tg_update_disptime(struct throtl_grp *tg)
1101 {
1102 struct throtl_service_queue *sq = &tg->service_queue;
1103 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1104 struct bio *bio;
1105
1106 bio = throtl_peek_queued(&sq->queued[READ]);
1107 if (bio)
1108 tg_may_dispatch(tg, bio, &read_wait);
1109
1110 bio = throtl_peek_queued(&sq->queued[WRITE]);
1111 if (bio)
1112 tg_may_dispatch(tg, bio, &write_wait);
1113
1114 min_wait = min(read_wait, write_wait);
1115 disptime = jiffies + min_wait;
1116
1117 /* Update dispatch time */
1118 throtl_dequeue_tg(tg);
1119 tg->disptime = disptime;
1120 throtl_enqueue_tg(tg);
1121
1122 /* see throtl_add_bio_tg() */
1123 tg->flags &= ~THROTL_TG_WAS_EMPTY;
1124 }
1125
1126 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1127 struct throtl_grp *parent_tg, bool rw)
1128 {
1129 if (throtl_slice_used(parent_tg, rw)) {
1130 throtl_start_new_slice_with_credit(parent_tg, rw,
1131 child_tg->slice_start[rw]);
1132 }
1133
1134 }
1135
1136 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1137 {
1138 struct throtl_service_queue *sq = &tg->service_queue;
1139 struct throtl_service_queue *parent_sq = sq->parent_sq;
1140 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1141 struct throtl_grp *tg_to_put = NULL;
1142 struct bio *bio;
1143
1144 /*
1145 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1146 * from @tg may put its reference and @parent_sq might end up
1147 * getting released prematurely. Remember the tg to put and put it
1148 * after @bio is transferred to @parent_sq.
1149 */
1150 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1151 sq->nr_queued[rw]--;
1152
1153 throtl_charge_bio(tg, bio);
1154
1155 /*
1156 * If our parent is another tg, we just need to transfer @bio to
1157 * the parent using throtl_add_bio_tg(). If our parent is
1158 * @td->service_queue, @bio is ready to be issued. Put it on its
1159 * bio_lists[] and decrease total number queued. The caller is
1160 * responsible for issuing these bios.
1161 */
1162 if (parent_tg) {
1163 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1164 start_parent_slice_with_credit(tg, parent_tg, rw);
1165 } else {
1166 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1167 &parent_sq->queued[rw]);
1168 BUG_ON(tg->td->nr_queued[rw] <= 0);
1169 tg->td->nr_queued[rw]--;
1170 }
1171
1172 throtl_trim_slice(tg, rw);
1173
1174 if (tg_to_put)
1175 blkg_put(tg_to_blkg(tg_to_put));
1176 }
1177
1178 static int throtl_dispatch_tg(struct throtl_grp *tg)
1179 {
1180 struct throtl_service_queue *sq = &tg->service_queue;
1181 unsigned int nr_reads = 0, nr_writes = 0;
1182 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1183 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1184 struct bio *bio;
1185
1186 /* Try to dispatch 75% READS and 25% WRITES */
1187
1188 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1189 tg_may_dispatch(tg, bio, NULL)) {
1190
1191 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1192 nr_reads++;
1193
1194 if (nr_reads >= max_nr_reads)
1195 break;
1196 }
1197
1198 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1199 tg_may_dispatch(tg, bio, NULL)) {
1200
1201 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1202 nr_writes++;
1203
1204 if (nr_writes >= max_nr_writes)
1205 break;
1206 }
1207
1208 return nr_reads + nr_writes;
1209 }
1210
1211 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1212 {
1213 unsigned int nr_disp = 0;
1214
1215 while (1) {
1216 struct throtl_grp *tg;
1217 struct throtl_service_queue *sq;
1218
1219 if (!parent_sq->nr_pending)
1220 break;
1221
1222 tg = throtl_rb_first(parent_sq);
1223 if (!tg)
1224 break;
1225
1226 if (time_before(jiffies, tg->disptime))
1227 break;
1228
1229 throtl_dequeue_tg(tg);
1230
1231 nr_disp += throtl_dispatch_tg(tg);
1232
1233 sq = &tg->service_queue;
1234 if (sq->nr_queued[0] || sq->nr_queued[1])
1235 tg_update_disptime(tg);
1236
1237 if (nr_disp >= THROTL_QUANTUM)
1238 break;
1239 }
1240
1241 return nr_disp;
1242 }
1243
1244 static bool throtl_can_upgrade(struct throtl_data *td,
1245 struct throtl_grp *this_tg);
1246 /**
1247 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1248 * @t: the pending_timer member of the throtl_service_queue being serviced
1249 *
1250 * This timer is armed when a child throtl_grp with active bio's become
1251 * pending and queued on the service_queue's pending_tree and expires when
1252 * the first child throtl_grp should be dispatched. This function
1253 * dispatches bio's from the children throtl_grps to the parent
1254 * service_queue.
1255 *
1256 * If the parent's parent is another throtl_grp, dispatching is propagated
1257 * by either arming its pending_timer or repeating dispatch directly. If
1258 * the top-level service_tree is reached, throtl_data->dispatch_work is
1259 * kicked so that the ready bio's are issued.
1260 */
1261 static void throtl_pending_timer_fn(struct timer_list *t)
1262 {
1263 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1264 struct throtl_grp *tg = sq_to_tg(sq);
1265 struct throtl_data *td = sq_to_td(sq);
1266 struct request_queue *q = td->queue;
1267 struct throtl_service_queue *parent_sq;
1268 bool dispatched;
1269 int ret;
1270
1271 spin_lock_irq(&q->queue_lock);
1272 if (throtl_can_upgrade(td, NULL))
1273 throtl_upgrade_state(td);
1274
1275 again:
1276 parent_sq = sq->parent_sq;
1277 dispatched = false;
1278
1279 while (true) {
1280 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1281 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1282 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1283
1284 ret = throtl_select_dispatch(sq);
1285 if (ret) {
1286 throtl_log(sq, "bios disp=%u", ret);
1287 dispatched = true;
1288 }
1289
1290 if (throtl_schedule_next_dispatch(sq, false))
1291 break;
1292
1293 /* this dispatch windows is still open, relax and repeat */
1294 spin_unlock_irq(&q->queue_lock);
1295 cpu_relax();
1296 spin_lock_irq(&q->queue_lock);
1297 }
1298
1299 if (!dispatched)
1300 goto out_unlock;
1301
1302 if (parent_sq) {
1303 /* @parent_sq is another throl_grp, propagate dispatch */
1304 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1305 tg_update_disptime(tg);
1306 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1307 /* window is already open, repeat dispatching */
1308 sq = parent_sq;
1309 tg = sq_to_tg(sq);
1310 goto again;
1311 }
1312 }
1313 } else {
1314 /* reached the top-level, queue issuing */
1315 queue_work(kthrotld_workqueue, &td->dispatch_work);
1316 }
1317 out_unlock:
1318 spin_unlock_irq(&q->queue_lock);
1319 }
1320
1321 /**
1322 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1323 * @work: work item being executed
1324 *
1325 * This function is queued for execution when bios reach the bio_lists[]
1326 * of throtl_data->service_queue. Those bios are ready and issued by this
1327 * function.
1328 */
1329 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1330 {
1331 struct throtl_data *td = container_of(work, struct throtl_data,
1332 dispatch_work);
1333 struct throtl_service_queue *td_sq = &td->service_queue;
1334 struct request_queue *q = td->queue;
1335 struct bio_list bio_list_on_stack;
1336 struct bio *bio;
1337 struct blk_plug plug;
1338 int rw;
1339
1340 bio_list_init(&bio_list_on_stack);
1341
1342 spin_lock_irq(&q->queue_lock);
1343 for (rw = READ; rw <= WRITE; rw++)
1344 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1345 bio_list_add(&bio_list_on_stack, bio);
1346 spin_unlock_irq(&q->queue_lock);
1347
1348 if (!bio_list_empty(&bio_list_on_stack)) {
1349 blk_start_plug(&plug);
1350 while ((bio = bio_list_pop(&bio_list_on_stack)))
1351 submit_bio_noacct(bio);
1352 blk_finish_plug(&plug);
1353 }
1354 }
1355
1356 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1357 int off)
1358 {
1359 struct throtl_grp *tg = pd_to_tg(pd);
1360 u64 v = *(u64 *)((void *)tg + off);
1361
1362 if (v == U64_MAX)
1363 return 0;
1364 return __blkg_prfill_u64(sf, pd, v);
1365 }
1366
1367 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1368 int off)
1369 {
1370 struct throtl_grp *tg = pd_to_tg(pd);
1371 unsigned int v = *(unsigned int *)((void *)tg + off);
1372
1373 if (v == UINT_MAX)
1374 return 0;
1375 return __blkg_prfill_u64(sf, pd, v);
1376 }
1377
1378 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1379 {
1380 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1381 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1382 return 0;
1383 }
1384
1385 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1386 {
1387 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1388 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1389 return 0;
1390 }
1391
1392 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1393 {
1394 struct throtl_service_queue *sq = &tg->service_queue;
1395 struct cgroup_subsys_state *pos_css;
1396 struct blkcg_gq *blkg;
1397
1398 throtl_log(&tg->service_queue,
1399 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1400 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1401 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1402
1403 /*
1404 * Update has_rules[] flags for the updated tg's subtree. A tg is
1405 * considered to have rules if either the tg itself or any of its
1406 * ancestors has rules. This identifies groups without any
1407 * restrictions in the whole hierarchy and allows them to bypass
1408 * blk-throttle.
1409 */
1410 blkg_for_each_descendant_pre(blkg, pos_css,
1411 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1412 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1413 struct throtl_grp *parent_tg;
1414
1415 tg_update_has_rules(this_tg);
1416 /* ignore root/second level */
1417 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1418 !blkg->parent->parent)
1419 continue;
1420 parent_tg = blkg_to_tg(blkg->parent);
1421 /*
1422 * make sure all children has lower idle time threshold and
1423 * higher latency target
1424 */
1425 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1426 parent_tg->idletime_threshold);
1427 this_tg->latency_target = max(this_tg->latency_target,
1428 parent_tg->latency_target);
1429 }
1430
1431 /*
1432 * We're already holding queue_lock and know @tg is valid. Let's
1433 * apply the new config directly.
1434 *
1435 * Restart the slices for both READ and WRITES. It might happen
1436 * that a group's limit are dropped suddenly and we don't want to
1437 * account recently dispatched IO with new low rate.
1438 */
1439 throtl_start_new_slice(tg, READ);
1440 throtl_start_new_slice(tg, WRITE);
1441
1442 if (tg->flags & THROTL_TG_PENDING) {
1443 tg_update_disptime(tg);
1444 throtl_schedule_next_dispatch(sq->parent_sq, true);
1445 }
1446 }
1447
1448 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1449 char *buf, size_t nbytes, loff_t off, bool is_u64)
1450 {
1451 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1452 struct blkg_conf_ctx ctx;
1453 struct throtl_grp *tg;
1454 int ret;
1455 u64 v;
1456
1457 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1458 if (ret)
1459 return ret;
1460
1461 ret = -EINVAL;
1462 if (sscanf(ctx.body, "%llu", &v) != 1)
1463 goto out_finish;
1464 if (!v)
1465 v = U64_MAX;
1466
1467 tg = blkg_to_tg(ctx.blkg);
1468
1469 if (is_u64)
1470 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1471 else
1472 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1473
1474 tg_conf_updated(tg, false);
1475 ret = 0;
1476 out_finish:
1477 blkg_conf_finish(&ctx);
1478 return ret ?: nbytes;
1479 }
1480
1481 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1482 char *buf, size_t nbytes, loff_t off)
1483 {
1484 return tg_set_conf(of, buf, nbytes, off, true);
1485 }
1486
1487 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1488 char *buf, size_t nbytes, loff_t off)
1489 {
1490 return tg_set_conf(of, buf, nbytes, off, false);
1491 }
1492
1493 static int tg_print_rwstat(struct seq_file *sf, void *v)
1494 {
1495 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1496 blkg_prfill_rwstat, &blkcg_policy_throtl,
1497 seq_cft(sf)->private, true);
1498 return 0;
1499 }
1500
1501 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1502 struct blkg_policy_data *pd, int off)
1503 {
1504 struct blkg_rwstat_sample sum;
1505
1506 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1507 &sum);
1508 return __blkg_prfill_rwstat(sf, pd, &sum);
1509 }
1510
1511 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1512 {
1513 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1514 tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1515 seq_cft(sf)->private, true);
1516 return 0;
1517 }
1518
1519 static struct cftype throtl_legacy_files[] = {
1520 {
1521 .name = "throttle.read_bps_device",
1522 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1523 .seq_show = tg_print_conf_u64,
1524 .write = tg_set_conf_u64,
1525 },
1526 {
1527 .name = "throttle.write_bps_device",
1528 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1529 .seq_show = tg_print_conf_u64,
1530 .write = tg_set_conf_u64,
1531 },
1532 {
1533 .name = "throttle.read_iops_device",
1534 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1535 .seq_show = tg_print_conf_uint,
1536 .write = tg_set_conf_uint,
1537 },
1538 {
1539 .name = "throttle.write_iops_device",
1540 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1541 .seq_show = tg_print_conf_uint,
1542 .write = tg_set_conf_uint,
1543 },
1544 {
1545 .name = "throttle.io_service_bytes",
1546 .private = offsetof(struct throtl_grp, stat_bytes),
1547 .seq_show = tg_print_rwstat,
1548 },
1549 {
1550 .name = "throttle.io_service_bytes_recursive",
1551 .private = offsetof(struct throtl_grp, stat_bytes),
1552 .seq_show = tg_print_rwstat_recursive,
1553 },
1554 {
1555 .name = "throttle.io_serviced",
1556 .private = offsetof(struct throtl_grp, stat_ios),
1557 .seq_show = tg_print_rwstat,
1558 },
1559 {
1560 .name = "throttle.io_serviced_recursive",
1561 .private = offsetof(struct throtl_grp, stat_ios),
1562 .seq_show = tg_print_rwstat_recursive,
1563 },
1564 { } /* terminate */
1565 };
1566
1567 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1568 int off)
1569 {
1570 struct throtl_grp *tg = pd_to_tg(pd);
1571 const char *dname = blkg_dev_name(pd->blkg);
1572 char bufs[4][21] = { "max", "max", "max", "max" };
1573 u64 bps_dft;
1574 unsigned int iops_dft;
1575 char idle_time[26] = "";
1576 char latency_time[26] = "";
1577
1578 if (!dname)
1579 return 0;
1580
1581 if (off == LIMIT_LOW) {
1582 bps_dft = 0;
1583 iops_dft = 0;
1584 } else {
1585 bps_dft = U64_MAX;
1586 iops_dft = UINT_MAX;
1587 }
1588
1589 if (tg->bps_conf[READ][off] == bps_dft &&
1590 tg->bps_conf[WRITE][off] == bps_dft &&
1591 tg->iops_conf[READ][off] == iops_dft &&
1592 tg->iops_conf[WRITE][off] == iops_dft &&
1593 (off != LIMIT_LOW ||
1594 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1595 tg->latency_target_conf == DFL_LATENCY_TARGET)))
1596 return 0;
1597
1598 if (tg->bps_conf[READ][off] != U64_MAX)
1599 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1600 tg->bps_conf[READ][off]);
1601 if (tg->bps_conf[WRITE][off] != U64_MAX)
1602 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1603 tg->bps_conf[WRITE][off]);
1604 if (tg->iops_conf[READ][off] != UINT_MAX)
1605 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1606 tg->iops_conf[READ][off]);
1607 if (tg->iops_conf[WRITE][off] != UINT_MAX)
1608 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1609 tg->iops_conf[WRITE][off]);
1610 if (off == LIMIT_LOW) {
1611 if (tg->idletime_threshold_conf == ULONG_MAX)
1612 strcpy(idle_time, " idle=max");
1613 else
1614 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1615 tg->idletime_threshold_conf);
1616
1617 if (tg->latency_target_conf == ULONG_MAX)
1618 strcpy(latency_time, " latency=max");
1619 else
1620 snprintf(latency_time, sizeof(latency_time),
1621 " latency=%lu", tg->latency_target_conf);
1622 }
1623
1624 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1625 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1626 latency_time);
1627 return 0;
1628 }
1629
1630 static int tg_print_limit(struct seq_file *sf, void *v)
1631 {
1632 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1633 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1634 return 0;
1635 }
1636
1637 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1638 char *buf, size_t nbytes, loff_t off)
1639 {
1640 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1641 struct blkg_conf_ctx ctx;
1642 struct throtl_grp *tg;
1643 u64 v[4];
1644 unsigned long idle_time;
1645 unsigned long latency_time;
1646 int ret;
1647 int index = of_cft(of)->private;
1648
1649 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1650 if (ret)
1651 return ret;
1652
1653 tg = blkg_to_tg(ctx.blkg);
1654
1655 v[0] = tg->bps_conf[READ][index];
1656 v[1] = tg->bps_conf[WRITE][index];
1657 v[2] = tg->iops_conf[READ][index];
1658 v[3] = tg->iops_conf[WRITE][index];
1659
1660 idle_time = tg->idletime_threshold_conf;
1661 latency_time = tg->latency_target_conf;
1662 while (true) {
1663 char tok[27]; /* wiops=18446744073709551616 */
1664 char *p;
1665 u64 val = U64_MAX;
1666 int len;
1667
1668 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1669 break;
1670 if (tok[0] == '\0')
1671 break;
1672 ctx.body += len;
1673
1674 ret = -EINVAL;
1675 p = tok;
1676 strsep(&p, "=");
1677 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1678 goto out_finish;
1679
1680 ret = -ERANGE;
1681 if (!val)
1682 goto out_finish;
1683
1684 ret = -EINVAL;
1685 if (!strcmp(tok, "rbps") && val > 1)
1686 v[0] = val;
1687 else if (!strcmp(tok, "wbps") && val > 1)
1688 v[1] = val;
1689 else if (!strcmp(tok, "riops") && val > 1)
1690 v[2] = min_t(u64, val, UINT_MAX);
1691 else if (!strcmp(tok, "wiops") && val > 1)
1692 v[3] = min_t(u64, val, UINT_MAX);
1693 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1694 idle_time = val;
1695 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1696 latency_time = val;
1697 else
1698 goto out_finish;
1699 }
1700
1701 tg->bps_conf[READ][index] = v[0];
1702 tg->bps_conf[WRITE][index] = v[1];
1703 tg->iops_conf[READ][index] = v[2];
1704 tg->iops_conf[WRITE][index] = v[3];
1705
1706 if (index == LIMIT_MAX) {
1707 tg->bps[READ][index] = v[0];
1708 tg->bps[WRITE][index] = v[1];
1709 tg->iops[READ][index] = v[2];
1710 tg->iops[WRITE][index] = v[3];
1711 }
1712 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1713 tg->bps_conf[READ][LIMIT_MAX]);
1714 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1715 tg->bps_conf[WRITE][LIMIT_MAX]);
1716 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1717 tg->iops_conf[READ][LIMIT_MAX]);
1718 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1719 tg->iops_conf[WRITE][LIMIT_MAX]);
1720 tg->idletime_threshold_conf = idle_time;
1721 tg->latency_target_conf = latency_time;
1722
1723 /* force user to configure all settings for low limit */
1724 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1725 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1726 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1727 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1728 tg->bps[READ][LIMIT_LOW] = 0;
1729 tg->bps[WRITE][LIMIT_LOW] = 0;
1730 tg->iops[READ][LIMIT_LOW] = 0;
1731 tg->iops[WRITE][LIMIT_LOW] = 0;
1732 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1733 tg->latency_target = DFL_LATENCY_TARGET;
1734 } else if (index == LIMIT_LOW) {
1735 tg->idletime_threshold = tg->idletime_threshold_conf;
1736 tg->latency_target = tg->latency_target_conf;
1737 }
1738
1739 blk_throtl_update_limit_valid(tg->td);
1740 if (tg->td->limit_valid[LIMIT_LOW]) {
1741 if (index == LIMIT_LOW)
1742 tg->td->limit_index = LIMIT_LOW;
1743 } else
1744 tg->td->limit_index = LIMIT_MAX;
1745 tg_conf_updated(tg, index == LIMIT_LOW &&
1746 tg->td->limit_valid[LIMIT_LOW]);
1747 ret = 0;
1748 out_finish:
1749 blkg_conf_finish(&ctx);
1750 return ret ?: nbytes;
1751 }
1752
1753 static struct cftype throtl_files[] = {
1754 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1755 {
1756 .name = "low",
1757 .flags = CFTYPE_NOT_ON_ROOT,
1758 .seq_show = tg_print_limit,
1759 .write = tg_set_limit,
1760 .private = LIMIT_LOW,
1761 },
1762 #endif
1763 {
1764 .name = "max",
1765 .flags = CFTYPE_NOT_ON_ROOT,
1766 .seq_show = tg_print_limit,
1767 .write = tg_set_limit,
1768 .private = LIMIT_MAX,
1769 },
1770 { } /* terminate */
1771 };
1772
1773 static void throtl_shutdown_wq(struct request_queue *q)
1774 {
1775 struct throtl_data *td = q->td;
1776
1777 cancel_work_sync(&td->dispatch_work);
1778 }
1779
1780 static struct blkcg_policy blkcg_policy_throtl = {
1781 .dfl_cftypes = throtl_files,
1782 .legacy_cftypes = throtl_legacy_files,
1783
1784 .pd_alloc_fn = throtl_pd_alloc,
1785 .pd_init_fn = throtl_pd_init,
1786 .pd_online_fn = throtl_pd_online,
1787 .pd_offline_fn = throtl_pd_offline,
1788 .pd_free_fn = throtl_pd_free,
1789 };
1790
1791 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1792 {
1793 unsigned long rtime = jiffies, wtime = jiffies;
1794
1795 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1796 rtime = tg->last_low_overflow_time[READ];
1797 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1798 wtime = tg->last_low_overflow_time[WRITE];
1799 return min(rtime, wtime);
1800 }
1801
1802 /* tg should not be an intermediate node */
1803 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1804 {
1805 struct throtl_service_queue *parent_sq;
1806 struct throtl_grp *parent = tg;
1807 unsigned long ret = __tg_last_low_overflow_time(tg);
1808
1809 while (true) {
1810 parent_sq = parent->service_queue.parent_sq;
1811 parent = sq_to_tg(parent_sq);
1812 if (!parent)
1813 break;
1814
1815 /*
1816 * The parent doesn't have low limit, it always reaches low
1817 * limit. Its overflow time is useless for children
1818 */
1819 if (!parent->bps[READ][LIMIT_LOW] &&
1820 !parent->iops[READ][LIMIT_LOW] &&
1821 !parent->bps[WRITE][LIMIT_LOW] &&
1822 !parent->iops[WRITE][LIMIT_LOW])
1823 continue;
1824 if (time_after(__tg_last_low_overflow_time(parent), ret))
1825 ret = __tg_last_low_overflow_time(parent);
1826 }
1827 return ret;
1828 }
1829
1830 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1831 {
1832 /*
1833 * cgroup is idle if:
1834 * - single idle is too long, longer than a fixed value (in case user
1835 * configure a too big threshold) or 4 times of idletime threshold
1836 * - average think time is more than threshold
1837 * - IO latency is largely below threshold
1838 */
1839 unsigned long time;
1840 bool ret;
1841
1842 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1843 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1844 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1845 (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1846 tg->avg_idletime > tg->idletime_threshold ||
1847 (tg->latency_target && tg->bio_cnt &&
1848 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1849 throtl_log(&tg->service_queue,
1850 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1851 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1852 tg->bio_cnt, ret, tg->td->scale);
1853 return ret;
1854 }
1855
1856 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1857 {
1858 struct throtl_service_queue *sq = &tg->service_queue;
1859 bool read_limit, write_limit;
1860
1861 /*
1862 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1863 * reaches), it's ok to upgrade to next limit
1864 */
1865 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1866 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1867 if (!read_limit && !write_limit)
1868 return true;
1869 if (read_limit && sq->nr_queued[READ] &&
1870 (!write_limit || sq->nr_queued[WRITE]))
1871 return true;
1872 if (write_limit && sq->nr_queued[WRITE] &&
1873 (!read_limit || sq->nr_queued[READ]))
1874 return true;
1875
1876 if (time_after_eq(jiffies,
1877 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1878 throtl_tg_is_idle(tg))
1879 return true;
1880 return false;
1881 }
1882
1883 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1884 {
1885 while (true) {
1886 if (throtl_tg_can_upgrade(tg))
1887 return true;
1888 tg = sq_to_tg(tg->service_queue.parent_sq);
1889 if (!tg || !tg_to_blkg(tg)->parent)
1890 return false;
1891 }
1892 return false;
1893 }
1894
1895 static bool throtl_can_upgrade(struct throtl_data *td,
1896 struct throtl_grp *this_tg)
1897 {
1898 struct cgroup_subsys_state *pos_css;
1899 struct blkcg_gq *blkg;
1900
1901 if (td->limit_index != LIMIT_LOW)
1902 return false;
1903
1904 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1905 return false;
1906
1907 rcu_read_lock();
1908 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1909 struct throtl_grp *tg = blkg_to_tg(blkg);
1910
1911 if (tg == this_tg)
1912 continue;
1913 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1914 continue;
1915 if (!throtl_hierarchy_can_upgrade(tg)) {
1916 rcu_read_unlock();
1917 return false;
1918 }
1919 }
1920 rcu_read_unlock();
1921 return true;
1922 }
1923
1924 static void throtl_upgrade_check(struct throtl_grp *tg)
1925 {
1926 unsigned long now = jiffies;
1927
1928 if (tg->td->limit_index != LIMIT_LOW)
1929 return;
1930
1931 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1932 return;
1933
1934 tg->last_check_time = now;
1935
1936 if (!time_after_eq(now,
1937 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1938 return;
1939
1940 if (throtl_can_upgrade(tg->td, NULL))
1941 throtl_upgrade_state(tg->td);
1942 }
1943
1944 static void throtl_upgrade_state(struct throtl_data *td)
1945 {
1946 struct cgroup_subsys_state *pos_css;
1947 struct blkcg_gq *blkg;
1948
1949 throtl_log(&td->service_queue, "upgrade to max");
1950 td->limit_index = LIMIT_MAX;
1951 td->low_upgrade_time = jiffies;
1952 td->scale = 0;
1953 rcu_read_lock();
1954 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1955 struct throtl_grp *tg = blkg_to_tg(blkg);
1956 struct throtl_service_queue *sq = &tg->service_queue;
1957
1958 tg->disptime = jiffies - 1;
1959 throtl_select_dispatch(sq);
1960 throtl_schedule_next_dispatch(sq, true);
1961 }
1962 rcu_read_unlock();
1963 throtl_select_dispatch(&td->service_queue);
1964 throtl_schedule_next_dispatch(&td->service_queue, true);
1965 queue_work(kthrotld_workqueue, &td->dispatch_work);
1966 }
1967
1968 static void throtl_downgrade_state(struct throtl_data *td)
1969 {
1970 td->scale /= 2;
1971
1972 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1973 if (td->scale) {
1974 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1975 return;
1976 }
1977
1978 td->limit_index = LIMIT_LOW;
1979 td->low_downgrade_time = jiffies;
1980 }
1981
1982 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1983 {
1984 struct throtl_data *td = tg->td;
1985 unsigned long now = jiffies;
1986
1987 /*
1988 * If cgroup is below low limit, consider downgrade and throttle other
1989 * cgroups
1990 */
1991 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1992 time_after_eq(now, tg_last_low_overflow_time(tg) +
1993 td->throtl_slice) &&
1994 (!throtl_tg_is_idle(tg) ||
1995 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1996 return true;
1997 return false;
1998 }
1999
2000 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
2001 {
2002 while (true) {
2003 if (!throtl_tg_can_downgrade(tg))
2004 return false;
2005 tg = sq_to_tg(tg->service_queue.parent_sq);
2006 if (!tg || !tg_to_blkg(tg)->parent)
2007 break;
2008 }
2009 return true;
2010 }
2011
2012 static void throtl_downgrade_check(struct throtl_grp *tg)
2013 {
2014 uint64_t bps;
2015 unsigned int iops;
2016 unsigned long elapsed_time;
2017 unsigned long now = jiffies;
2018
2019 if (tg->td->limit_index != LIMIT_MAX ||
2020 !tg->td->limit_valid[LIMIT_LOW])
2021 return;
2022 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
2023 return;
2024 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
2025 return;
2026
2027 elapsed_time = now - tg->last_check_time;
2028 tg->last_check_time = now;
2029
2030 if (time_before(now, tg_last_low_overflow_time(tg) +
2031 tg->td->throtl_slice))
2032 return;
2033
2034 if (tg->bps[READ][LIMIT_LOW]) {
2035 bps = tg->last_bytes_disp[READ] * HZ;
2036 do_div(bps, elapsed_time);
2037 if (bps >= tg->bps[READ][LIMIT_LOW])
2038 tg->last_low_overflow_time[READ] = now;
2039 }
2040
2041 if (tg->bps[WRITE][LIMIT_LOW]) {
2042 bps = tg->last_bytes_disp[WRITE] * HZ;
2043 do_div(bps, elapsed_time);
2044 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2045 tg->last_low_overflow_time[WRITE] = now;
2046 }
2047
2048 if (tg->iops[READ][LIMIT_LOW]) {
2049 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2050 if (iops >= tg->iops[READ][LIMIT_LOW])
2051 tg->last_low_overflow_time[READ] = now;
2052 }
2053
2054 if (tg->iops[WRITE][LIMIT_LOW]) {
2055 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2056 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2057 tg->last_low_overflow_time[WRITE] = now;
2058 }
2059
2060 /*
2061 * If cgroup is below low limit, consider downgrade and throttle other
2062 * cgroups
2063 */
2064 if (throtl_hierarchy_can_downgrade(tg))
2065 throtl_downgrade_state(tg->td);
2066
2067 tg->last_bytes_disp[READ] = 0;
2068 tg->last_bytes_disp[WRITE] = 0;
2069 tg->last_io_disp[READ] = 0;
2070 tg->last_io_disp[WRITE] = 0;
2071 }
2072
2073 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2074 {
2075 unsigned long now;
2076 unsigned long last_finish_time = tg->last_finish_time;
2077
2078 if (last_finish_time == 0)
2079 return;
2080
2081 now = ktime_get_ns() >> 10;
2082 if (now <= last_finish_time ||
2083 last_finish_time == tg->checked_last_finish_time)
2084 return;
2085
2086 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2087 tg->checked_last_finish_time = last_finish_time;
2088 }
2089
2090 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2091 static void throtl_update_latency_buckets(struct throtl_data *td)
2092 {
2093 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2094 int i, cpu, rw;
2095 unsigned long last_latency[2] = { 0 };
2096 unsigned long latency[2];
2097
2098 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2099 return;
2100 if (time_before(jiffies, td->last_calculate_time + HZ))
2101 return;
2102 td->last_calculate_time = jiffies;
2103
2104 memset(avg_latency, 0, sizeof(avg_latency));
2105 for (rw = READ; rw <= WRITE; rw++) {
2106 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2107 struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2108
2109 for_each_possible_cpu(cpu) {
2110 struct latency_bucket *bucket;
2111
2112 /* this isn't race free, but ok in practice */
2113 bucket = per_cpu_ptr(td->latency_buckets[rw],
2114 cpu);
2115 tmp->total_latency += bucket[i].total_latency;
2116 tmp->samples += bucket[i].samples;
2117 bucket[i].total_latency = 0;
2118 bucket[i].samples = 0;
2119 }
2120
2121 if (tmp->samples >= 32) {
2122 int samples = tmp->samples;
2123
2124 latency[rw] = tmp->total_latency;
2125
2126 tmp->total_latency = 0;
2127 tmp->samples = 0;
2128 latency[rw] /= samples;
2129 if (latency[rw] == 0)
2130 continue;
2131 avg_latency[rw][i].latency = latency[rw];
2132 }
2133 }
2134 }
2135
2136 for (rw = READ; rw <= WRITE; rw++) {
2137 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2138 if (!avg_latency[rw][i].latency) {
2139 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2140 td->avg_buckets[rw][i].latency =
2141 last_latency[rw];
2142 continue;
2143 }
2144
2145 if (!td->avg_buckets[rw][i].valid)
2146 latency[rw] = avg_latency[rw][i].latency;
2147 else
2148 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2149 avg_latency[rw][i].latency) >> 3;
2150
2151 td->avg_buckets[rw][i].latency = max(latency[rw],
2152 last_latency[rw]);
2153 td->avg_buckets[rw][i].valid = true;
2154 last_latency[rw] = td->avg_buckets[rw][i].latency;
2155 }
2156 }
2157
2158 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2159 throtl_log(&td->service_queue,
2160 "Latency bucket %d: read latency=%ld, read valid=%d, "
2161 "write latency=%ld, write valid=%d", i,
2162 td->avg_buckets[READ][i].latency,
2163 td->avg_buckets[READ][i].valid,
2164 td->avg_buckets[WRITE][i].latency,
2165 td->avg_buckets[WRITE][i].valid);
2166 }
2167 #else
2168 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2169 {
2170 }
2171 #endif
2172
2173 bool blk_throtl_bio(struct bio *bio)
2174 {
2175 struct request_queue *q = bio->bi_disk->queue;
2176 struct blkcg_gq *blkg = bio->bi_blkg;
2177 struct throtl_qnode *qn = NULL;
2178 struct throtl_grp *tg = blkg_to_tg(blkg);
2179 struct throtl_service_queue *sq;
2180 bool rw = bio_data_dir(bio);
2181 bool throttled = false;
2182 struct throtl_data *td = tg->td;
2183
2184 rcu_read_lock();
2185
2186 /* see throtl_charge_bio() */
2187 if (bio_flagged(bio, BIO_THROTTLED))
2188 goto out;
2189
2190 if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2191 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2192 bio->bi_iter.bi_size);
2193 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2194 }
2195
2196 if (!tg->has_rules[rw])
2197 goto out;
2198
2199 spin_lock_irq(&q->queue_lock);
2200
2201 throtl_update_latency_buckets(td);
2202
2203 blk_throtl_update_idletime(tg);
2204
2205 sq = &tg->service_queue;
2206
2207 again:
2208 while (true) {
2209 if (tg->last_low_overflow_time[rw] == 0)
2210 tg->last_low_overflow_time[rw] = jiffies;
2211 throtl_downgrade_check(tg);
2212 throtl_upgrade_check(tg);
2213 /* throtl is FIFO - if bios are already queued, should queue */
2214 if (sq->nr_queued[rw])
2215 break;
2216
2217 /* if above limits, break to queue */
2218 if (!tg_may_dispatch(tg, bio, NULL)) {
2219 tg->last_low_overflow_time[rw] = jiffies;
2220 if (throtl_can_upgrade(td, tg)) {
2221 throtl_upgrade_state(td);
2222 goto again;
2223 }
2224 break;
2225 }
2226
2227 /* within limits, let's charge and dispatch directly */
2228 throtl_charge_bio(tg, bio);
2229
2230 /*
2231 * We need to trim slice even when bios are not being queued
2232 * otherwise it might happen that a bio is not queued for
2233 * a long time and slice keeps on extending and trim is not
2234 * called for a long time. Now if limits are reduced suddenly
2235 * we take into account all the IO dispatched so far at new
2236 * low rate and * newly queued IO gets a really long dispatch
2237 * time.
2238 *
2239 * So keep on trimming slice even if bio is not queued.
2240 */
2241 throtl_trim_slice(tg, rw);
2242
2243 /*
2244 * @bio passed through this layer without being throttled.
2245 * Climb up the ladder. If we're already at the top, it
2246 * can be executed directly.
2247 */
2248 qn = &tg->qnode_on_parent[rw];
2249 sq = sq->parent_sq;
2250 tg = sq_to_tg(sq);
2251 if (!tg)
2252 goto out_unlock;
2253 }
2254
2255 /* out-of-limit, queue to @tg */
2256 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2257 rw == READ ? 'R' : 'W',
2258 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2259 tg_bps_limit(tg, rw),
2260 tg->io_disp[rw], tg_iops_limit(tg, rw),
2261 sq->nr_queued[READ], sq->nr_queued[WRITE]);
2262
2263 tg->last_low_overflow_time[rw] = jiffies;
2264
2265 td->nr_queued[rw]++;
2266 throtl_add_bio_tg(bio, qn, tg);
2267 throttled = true;
2268
2269 /*
2270 * Update @tg's dispatch time and force schedule dispatch if @tg
2271 * was empty before @bio. The forced scheduling isn't likely to
2272 * cause undue delay as @bio is likely to be dispatched directly if
2273 * its @tg's disptime is not in the future.
2274 */
2275 if (tg->flags & THROTL_TG_WAS_EMPTY) {
2276 tg_update_disptime(tg);
2277 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2278 }
2279
2280 out_unlock:
2281 spin_unlock_irq(&q->queue_lock);
2282 out:
2283 bio_set_flag(bio, BIO_THROTTLED);
2284
2285 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2286 if (throttled || !td->track_bio_latency)
2287 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2288 #endif
2289 rcu_read_unlock();
2290 return throttled;
2291 }
2292
2293 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2294 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2295 int op, unsigned long time)
2296 {
2297 struct latency_bucket *latency;
2298 int index;
2299
2300 if (!td || td->limit_index != LIMIT_LOW ||
2301 !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2302 !blk_queue_nonrot(td->queue))
2303 return;
2304
2305 index = request_bucket_index(size);
2306
2307 latency = get_cpu_ptr(td->latency_buckets[op]);
2308 latency[index].total_latency += time;
2309 latency[index].samples++;
2310 put_cpu_ptr(td->latency_buckets[op]);
2311 }
2312
2313 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2314 {
2315 struct request_queue *q = rq->q;
2316 struct throtl_data *td = q->td;
2317
2318 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2319 time_ns >> 10);
2320 }
2321
2322 void blk_throtl_bio_endio(struct bio *bio)
2323 {
2324 struct blkcg_gq *blkg;
2325 struct throtl_grp *tg;
2326 u64 finish_time_ns;
2327 unsigned long finish_time;
2328 unsigned long start_time;
2329 unsigned long lat;
2330 int rw = bio_data_dir(bio);
2331
2332 blkg = bio->bi_blkg;
2333 if (!blkg)
2334 return;
2335 tg = blkg_to_tg(blkg);
2336 if (!tg->td->limit_valid[LIMIT_LOW])
2337 return;
2338
2339 finish_time_ns = ktime_get_ns();
2340 tg->last_finish_time = finish_time_ns >> 10;
2341
2342 start_time = bio_issue_time(&bio->bi_issue) >> 10;
2343 finish_time = __bio_issue_time(finish_time_ns) >> 10;
2344 if (!start_time || finish_time <= start_time)
2345 return;
2346
2347 lat = finish_time - start_time;
2348 /* this is only for bio based driver */
2349 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2350 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2351 bio_op(bio), lat);
2352
2353 if (tg->latency_target && lat >= tg->td->filtered_latency) {
2354 int bucket;
2355 unsigned int threshold;
2356
2357 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2358 threshold = tg->td->avg_buckets[rw][bucket].latency +
2359 tg->latency_target;
2360 if (lat > threshold)
2361 tg->bad_bio_cnt++;
2362 /*
2363 * Not race free, could get wrong count, which means cgroups
2364 * will be throttled
2365 */
2366 tg->bio_cnt++;
2367 }
2368
2369 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2370 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2371 tg->bio_cnt /= 2;
2372 tg->bad_bio_cnt /= 2;
2373 }
2374 }
2375 #endif
2376
2377 int blk_throtl_init(struct request_queue *q)
2378 {
2379 struct throtl_data *td;
2380 int ret;
2381
2382 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2383 if (!td)
2384 return -ENOMEM;
2385 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2386 LATENCY_BUCKET_SIZE, __alignof__(u64));
2387 if (!td->latency_buckets[READ]) {
2388 kfree(td);
2389 return -ENOMEM;
2390 }
2391 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2392 LATENCY_BUCKET_SIZE, __alignof__(u64));
2393 if (!td->latency_buckets[WRITE]) {
2394 free_percpu(td->latency_buckets[READ]);
2395 kfree(td);
2396 return -ENOMEM;
2397 }
2398
2399 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2400 throtl_service_queue_init(&td->service_queue);
2401
2402 q->td = td;
2403 td->queue = q;
2404
2405 td->limit_valid[LIMIT_MAX] = true;
2406 td->limit_index = LIMIT_MAX;
2407 td->low_upgrade_time = jiffies;
2408 td->low_downgrade_time = jiffies;
2409
2410 /* activate policy */
2411 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2412 if (ret) {
2413 free_percpu(td->latency_buckets[READ]);
2414 free_percpu(td->latency_buckets[WRITE]);
2415 kfree(td);
2416 }
2417 return ret;
2418 }
2419
2420 void blk_throtl_exit(struct request_queue *q)
2421 {
2422 BUG_ON(!q->td);
2423 throtl_shutdown_wq(q);
2424 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2425 free_percpu(q->td->latency_buckets[READ]);
2426 free_percpu(q->td->latency_buckets[WRITE]);
2427 kfree(q->td);
2428 }
2429
2430 void blk_throtl_register_queue(struct request_queue *q)
2431 {
2432 struct throtl_data *td;
2433 int i;
2434
2435 td = q->td;
2436 BUG_ON(!td);
2437
2438 if (blk_queue_nonrot(q)) {
2439 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2440 td->filtered_latency = LATENCY_FILTERED_SSD;
2441 } else {
2442 td->throtl_slice = DFL_THROTL_SLICE_HD;
2443 td->filtered_latency = LATENCY_FILTERED_HD;
2444 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2445 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2446 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2447 }
2448 }
2449 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2450 /* if no low limit, use previous default */
2451 td->throtl_slice = DFL_THROTL_SLICE_HD;
2452 #endif
2453
2454 td->track_bio_latency = !queue_is_mq(q);
2455 if (!td->track_bio_latency)
2456 blk_stat_enable_accounting(q);
2457 }
2458
2459 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2460 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2461 {
2462 if (!q->td)
2463 return -EINVAL;
2464 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2465 }
2466
2467 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2468 const char *page, size_t count)
2469 {
2470 unsigned long v;
2471 unsigned long t;
2472
2473 if (!q->td)
2474 return -EINVAL;
2475 if (kstrtoul(page, 10, &v))
2476 return -EINVAL;
2477 t = msecs_to_jiffies(v);
2478 if (t == 0 || t > MAX_THROTL_SLICE)
2479 return -EINVAL;
2480 q->td->throtl_slice = t;
2481 return count;
2482 }
2483 #endif
2484
2485 static int __init throtl_init(void)
2486 {
2487 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2488 if (!kthrotld_workqueue)
2489 panic("Failed to create kthrotld\n");
2490
2491 return blkcg_policy_register(&blkcg_policy_throtl);
2492 }
2493
2494 module_init(throtl_init);