]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-throttle.c
blkcg: make blkg_[rw]stat_recursive_sum() to be able to index into blkcg_gq
[mirror_ubuntu-bionic-kernel.git] / block / blk-throttle.c
1 /*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include <linux/blk-cgroup.h>
13 #include "blk.h"
14
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum = 8;
17
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum = 32;
20
21 /* Throttling is performed over 100ms slice and after that slice is renewed */
22 static unsigned long throtl_slice = HZ/10; /* 100 ms */
23
24 static struct blkcg_policy blkcg_policy_throtl;
25
26 /* A workqueue to queue throttle related work */
27 static struct workqueue_struct *kthrotld_workqueue;
28
29 /*
30 * To implement hierarchical throttling, throtl_grps form a tree and bios
31 * are dispatched upwards level by level until they reach the top and get
32 * issued. When dispatching bios from the children and local group at each
33 * level, if the bios are dispatched into a single bio_list, there's a risk
34 * of a local or child group which can queue many bios at once filling up
35 * the list starving others.
36 *
37 * To avoid such starvation, dispatched bios are queued separately
38 * according to where they came from. When they are again dispatched to
39 * the parent, they're popped in round-robin order so that no single source
40 * hogs the dispatch window.
41 *
42 * throtl_qnode is used to keep the queued bios separated by their sources.
43 * Bios are queued to throtl_qnode which in turn is queued to
44 * throtl_service_queue and then dispatched in round-robin order.
45 *
46 * It's also used to track the reference counts on blkg's. A qnode always
47 * belongs to a throtl_grp and gets queued on itself or the parent, so
48 * incrementing the reference of the associated throtl_grp when a qnode is
49 * queued and decrementing when dequeued is enough to keep the whole blkg
50 * tree pinned while bios are in flight.
51 */
52 struct throtl_qnode {
53 struct list_head node; /* service_queue->queued[] */
54 struct bio_list bios; /* queued bios */
55 struct throtl_grp *tg; /* tg this qnode belongs to */
56 };
57
58 struct throtl_service_queue {
59 struct throtl_service_queue *parent_sq; /* the parent service_queue */
60
61 /*
62 * Bios queued directly to this service_queue or dispatched from
63 * children throtl_grp's.
64 */
65 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
66 unsigned int nr_queued[2]; /* number of queued bios */
67
68 /*
69 * RB tree of active children throtl_grp's, which are sorted by
70 * their ->disptime.
71 */
72 struct rb_root pending_tree; /* RB tree of active tgs */
73 struct rb_node *first_pending; /* first node in the tree */
74 unsigned int nr_pending; /* # queued in the tree */
75 unsigned long first_pending_disptime; /* disptime of the first tg */
76 struct timer_list pending_timer; /* fires on first_pending_disptime */
77 };
78
79 enum tg_state_flags {
80 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
81 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
82 };
83
84 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
85
86 struct throtl_grp {
87 /* must be the first member */
88 struct blkg_policy_data pd;
89
90 /* active throtl group service_queue member */
91 struct rb_node rb_node;
92
93 /* throtl_data this group belongs to */
94 struct throtl_data *td;
95
96 /* this group's service queue */
97 struct throtl_service_queue service_queue;
98
99 /*
100 * qnode_on_self is used when bios are directly queued to this
101 * throtl_grp so that local bios compete fairly with bios
102 * dispatched from children. qnode_on_parent is used when bios are
103 * dispatched from this throtl_grp into its parent and will compete
104 * with the sibling qnode_on_parents and the parent's
105 * qnode_on_self.
106 */
107 struct throtl_qnode qnode_on_self[2];
108 struct throtl_qnode qnode_on_parent[2];
109
110 /*
111 * Dispatch time in jiffies. This is the estimated time when group
112 * will unthrottle and is ready to dispatch more bio. It is used as
113 * key to sort active groups in service tree.
114 */
115 unsigned long disptime;
116
117 unsigned int flags;
118
119 /* are there any throtl rules between this group and td? */
120 bool has_rules[2];
121
122 /* bytes per second rate limits */
123 uint64_t bps[2];
124
125 /* IOPS limits */
126 unsigned int iops[2];
127
128 /* Number of bytes disptached in current slice */
129 uint64_t bytes_disp[2];
130 /* Number of bio's dispatched in current slice */
131 unsigned int io_disp[2];
132
133 /* When did we start a new slice */
134 unsigned long slice_start[2];
135 unsigned long slice_end[2];
136
137 /* total bytes transferred */
138 struct blkg_rwstat service_bytes;
139 /* total IOs serviced, post merge */
140 struct blkg_rwstat serviced;
141 };
142
143 struct throtl_data
144 {
145 /* service tree for active throtl groups */
146 struct throtl_service_queue service_queue;
147
148 struct request_queue *queue;
149
150 /* Total Number of queued bios on READ and WRITE lists */
151 unsigned int nr_queued[2];
152
153 /*
154 * number of total undestroyed groups
155 */
156 unsigned int nr_undestroyed_grps;
157
158 /* Work for dispatching throttled bios */
159 struct work_struct dispatch_work;
160 };
161
162 static void throtl_pending_timer_fn(unsigned long arg);
163
164 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
165 {
166 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
167 }
168
169 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
170 {
171 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
172 }
173
174 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
175 {
176 return pd_to_blkg(&tg->pd);
177 }
178
179 /**
180 * sq_to_tg - return the throl_grp the specified service queue belongs to
181 * @sq: the throtl_service_queue of interest
182 *
183 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
184 * embedded in throtl_data, %NULL is returned.
185 */
186 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
187 {
188 if (sq && sq->parent_sq)
189 return container_of(sq, struct throtl_grp, service_queue);
190 else
191 return NULL;
192 }
193
194 /**
195 * sq_to_td - return throtl_data the specified service queue belongs to
196 * @sq: the throtl_service_queue of interest
197 *
198 * A service_queue can be embeded in either a throtl_grp or throtl_data.
199 * Determine the associated throtl_data accordingly and return it.
200 */
201 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
202 {
203 struct throtl_grp *tg = sq_to_tg(sq);
204
205 if (tg)
206 return tg->td;
207 else
208 return container_of(sq, struct throtl_data, service_queue);
209 }
210
211 /**
212 * throtl_log - log debug message via blktrace
213 * @sq: the service_queue being reported
214 * @fmt: printf format string
215 * @args: printf args
216 *
217 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
218 * throtl_grp; otherwise, just "throtl".
219 *
220 * TODO: this should be made a function and name formatting should happen
221 * after testing whether blktrace is enabled.
222 */
223 #define throtl_log(sq, fmt, args...) do { \
224 struct throtl_grp *__tg = sq_to_tg((sq)); \
225 struct throtl_data *__td = sq_to_td((sq)); \
226 \
227 (void)__td; \
228 if ((__tg)) { \
229 char __pbuf[128]; \
230 \
231 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \
232 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
233 } else { \
234 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
235 } \
236 } while (0)
237
238 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
239 {
240 INIT_LIST_HEAD(&qn->node);
241 bio_list_init(&qn->bios);
242 qn->tg = tg;
243 }
244
245 /**
246 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
247 * @bio: bio being added
248 * @qn: qnode to add bio to
249 * @queued: the service_queue->queued[] list @qn belongs to
250 *
251 * Add @bio to @qn and put @qn on @queued if it's not already on.
252 * @qn->tg's reference count is bumped when @qn is activated. See the
253 * comment on top of throtl_qnode definition for details.
254 */
255 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
256 struct list_head *queued)
257 {
258 bio_list_add(&qn->bios, bio);
259 if (list_empty(&qn->node)) {
260 list_add_tail(&qn->node, queued);
261 blkg_get(tg_to_blkg(qn->tg));
262 }
263 }
264
265 /**
266 * throtl_peek_queued - peek the first bio on a qnode list
267 * @queued: the qnode list to peek
268 */
269 static struct bio *throtl_peek_queued(struct list_head *queued)
270 {
271 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
272 struct bio *bio;
273
274 if (list_empty(queued))
275 return NULL;
276
277 bio = bio_list_peek(&qn->bios);
278 WARN_ON_ONCE(!bio);
279 return bio;
280 }
281
282 /**
283 * throtl_pop_queued - pop the first bio form a qnode list
284 * @queued: the qnode list to pop a bio from
285 * @tg_to_put: optional out argument for throtl_grp to put
286 *
287 * Pop the first bio from the qnode list @queued. After popping, the first
288 * qnode is removed from @queued if empty or moved to the end of @queued so
289 * that the popping order is round-robin.
290 *
291 * When the first qnode is removed, its associated throtl_grp should be put
292 * too. If @tg_to_put is NULL, this function automatically puts it;
293 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
294 * responsible for putting it.
295 */
296 static struct bio *throtl_pop_queued(struct list_head *queued,
297 struct throtl_grp **tg_to_put)
298 {
299 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
300 struct bio *bio;
301
302 if (list_empty(queued))
303 return NULL;
304
305 bio = bio_list_pop(&qn->bios);
306 WARN_ON_ONCE(!bio);
307
308 if (bio_list_empty(&qn->bios)) {
309 list_del_init(&qn->node);
310 if (tg_to_put)
311 *tg_to_put = qn->tg;
312 else
313 blkg_put(tg_to_blkg(qn->tg));
314 } else {
315 list_move_tail(&qn->node, queued);
316 }
317
318 return bio;
319 }
320
321 /* init a service_queue, assumes the caller zeroed it */
322 static void throtl_service_queue_init(struct throtl_service_queue *sq)
323 {
324 INIT_LIST_HEAD(&sq->queued[0]);
325 INIT_LIST_HEAD(&sq->queued[1]);
326 sq->pending_tree = RB_ROOT;
327 setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
328 (unsigned long)sq);
329 }
330
331 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
332 {
333 struct throtl_grp *tg;
334 int rw;
335
336 tg = kzalloc_node(sizeof(*tg), gfp, node);
337 if (!tg)
338 goto err;
339
340 if (blkg_rwstat_init(&tg->service_bytes, gfp) ||
341 blkg_rwstat_init(&tg->serviced, gfp))
342 goto err_free_tg;
343
344 throtl_service_queue_init(&tg->service_queue);
345
346 for (rw = READ; rw <= WRITE; rw++) {
347 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
348 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
349 }
350
351 RB_CLEAR_NODE(&tg->rb_node);
352 tg->bps[READ] = -1;
353 tg->bps[WRITE] = -1;
354 tg->iops[READ] = -1;
355 tg->iops[WRITE] = -1;
356
357 return &tg->pd;
358
359 err_free_tg:
360 blkg_rwstat_exit(&tg->serviced);
361 blkg_rwstat_exit(&tg->service_bytes);
362 kfree(tg);
363 err:
364 return NULL;
365 }
366
367 static void throtl_pd_init(struct blkg_policy_data *pd)
368 {
369 struct throtl_grp *tg = pd_to_tg(pd);
370 struct blkcg_gq *blkg = tg_to_blkg(tg);
371 struct throtl_data *td = blkg->q->td;
372 struct throtl_service_queue *sq = &tg->service_queue;
373
374 /*
375 * If on the default hierarchy, we switch to properly hierarchical
376 * behavior where limits on a given throtl_grp are applied to the
377 * whole subtree rather than just the group itself. e.g. If 16M
378 * read_bps limit is set on the root group, the whole system can't
379 * exceed 16M for the device.
380 *
381 * If not on the default hierarchy, the broken flat hierarchy
382 * behavior is retained where all throtl_grps are treated as if
383 * they're all separate root groups right below throtl_data.
384 * Limits of a group don't interact with limits of other groups
385 * regardless of the position of the group in the hierarchy.
386 */
387 sq->parent_sq = &td->service_queue;
388 if (cgroup_on_dfl(blkg->blkcg->css.cgroup) && blkg->parent)
389 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
390 tg->td = td;
391 }
392
393 /*
394 * Set has_rules[] if @tg or any of its parents have limits configured.
395 * This doesn't require walking up to the top of the hierarchy as the
396 * parent's has_rules[] is guaranteed to be correct.
397 */
398 static void tg_update_has_rules(struct throtl_grp *tg)
399 {
400 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
401 int rw;
402
403 for (rw = READ; rw <= WRITE; rw++)
404 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
405 (tg->bps[rw] != -1 || tg->iops[rw] != -1);
406 }
407
408 static void throtl_pd_online(struct blkg_policy_data *pd)
409 {
410 /*
411 * We don't want new groups to escape the limits of its ancestors.
412 * Update has_rules[] after a new group is brought online.
413 */
414 tg_update_has_rules(pd_to_tg(pd));
415 }
416
417 static void throtl_pd_free(struct blkg_policy_data *pd)
418 {
419 struct throtl_grp *tg = pd_to_tg(pd);
420
421 del_timer_sync(&tg->service_queue.pending_timer);
422 blkg_rwstat_exit(&tg->serviced);
423 blkg_rwstat_exit(&tg->service_bytes);
424 kfree(tg);
425 }
426
427 static void throtl_pd_reset_stats(struct blkg_policy_data *pd)
428 {
429 struct throtl_grp *tg = pd_to_tg(pd);
430
431 blkg_rwstat_reset(&tg->service_bytes);
432 blkg_rwstat_reset(&tg->serviced);
433 }
434
435 static struct throtl_grp *
436 throtl_rb_first(struct throtl_service_queue *parent_sq)
437 {
438 /* Service tree is empty */
439 if (!parent_sq->nr_pending)
440 return NULL;
441
442 if (!parent_sq->first_pending)
443 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
444
445 if (parent_sq->first_pending)
446 return rb_entry_tg(parent_sq->first_pending);
447
448 return NULL;
449 }
450
451 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
452 {
453 rb_erase(n, root);
454 RB_CLEAR_NODE(n);
455 }
456
457 static void throtl_rb_erase(struct rb_node *n,
458 struct throtl_service_queue *parent_sq)
459 {
460 if (parent_sq->first_pending == n)
461 parent_sq->first_pending = NULL;
462 rb_erase_init(n, &parent_sq->pending_tree);
463 --parent_sq->nr_pending;
464 }
465
466 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
467 {
468 struct throtl_grp *tg;
469
470 tg = throtl_rb_first(parent_sq);
471 if (!tg)
472 return;
473
474 parent_sq->first_pending_disptime = tg->disptime;
475 }
476
477 static void tg_service_queue_add(struct throtl_grp *tg)
478 {
479 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
480 struct rb_node **node = &parent_sq->pending_tree.rb_node;
481 struct rb_node *parent = NULL;
482 struct throtl_grp *__tg;
483 unsigned long key = tg->disptime;
484 int left = 1;
485
486 while (*node != NULL) {
487 parent = *node;
488 __tg = rb_entry_tg(parent);
489
490 if (time_before(key, __tg->disptime))
491 node = &parent->rb_left;
492 else {
493 node = &parent->rb_right;
494 left = 0;
495 }
496 }
497
498 if (left)
499 parent_sq->first_pending = &tg->rb_node;
500
501 rb_link_node(&tg->rb_node, parent, node);
502 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
503 }
504
505 static void __throtl_enqueue_tg(struct throtl_grp *tg)
506 {
507 tg_service_queue_add(tg);
508 tg->flags |= THROTL_TG_PENDING;
509 tg->service_queue.parent_sq->nr_pending++;
510 }
511
512 static void throtl_enqueue_tg(struct throtl_grp *tg)
513 {
514 if (!(tg->flags & THROTL_TG_PENDING))
515 __throtl_enqueue_tg(tg);
516 }
517
518 static void __throtl_dequeue_tg(struct throtl_grp *tg)
519 {
520 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
521 tg->flags &= ~THROTL_TG_PENDING;
522 }
523
524 static void throtl_dequeue_tg(struct throtl_grp *tg)
525 {
526 if (tg->flags & THROTL_TG_PENDING)
527 __throtl_dequeue_tg(tg);
528 }
529
530 /* Call with queue lock held */
531 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
532 unsigned long expires)
533 {
534 mod_timer(&sq->pending_timer, expires);
535 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
536 expires - jiffies, jiffies);
537 }
538
539 /**
540 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
541 * @sq: the service_queue to schedule dispatch for
542 * @force: force scheduling
543 *
544 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
545 * dispatch time of the first pending child. Returns %true if either timer
546 * is armed or there's no pending child left. %false if the current
547 * dispatch window is still open and the caller should continue
548 * dispatching.
549 *
550 * If @force is %true, the dispatch timer is always scheduled and this
551 * function is guaranteed to return %true. This is to be used when the
552 * caller can't dispatch itself and needs to invoke pending_timer
553 * unconditionally. Note that forced scheduling is likely to induce short
554 * delay before dispatch starts even if @sq->first_pending_disptime is not
555 * in the future and thus shouldn't be used in hot paths.
556 */
557 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
558 bool force)
559 {
560 /* any pending children left? */
561 if (!sq->nr_pending)
562 return true;
563
564 update_min_dispatch_time(sq);
565
566 /* is the next dispatch time in the future? */
567 if (force || time_after(sq->first_pending_disptime, jiffies)) {
568 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
569 return true;
570 }
571
572 /* tell the caller to continue dispatching */
573 return false;
574 }
575
576 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
577 bool rw, unsigned long start)
578 {
579 tg->bytes_disp[rw] = 0;
580 tg->io_disp[rw] = 0;
581
582 /*
583 * Previous slice has expired. We must have trimmed it after last
584 * bio dispatch. That means since start of last slice, we never used
585 * that bandwidth. Do try to make use of that bandwidth while giving
586 * credit.
587 */
588 if (time_after_eq(start, tg->slice_start[rw]))
589 tg->slice_start[rw] = start;
590
591 tg->slice_end[rw] = jiffies + throtl_slice;
592 throtl_log(&tg->service_queue,
593 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
594 rw == READ ? 'R' : 'W', tg->slice_start[rw],
595 tg->slice_end[rw], jiffies);
596 }
597
598 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
599 {
600 tg->bytes_disp[rw] = 0;
601 tg->io_disp[rw] = 0;
602 tg->slice_start[rw] = jiffies;
603 tg->slice_end[rw] = jiffies + throtl_slice;
604 throtl_log(&tg->service_queue,
605 "[%c] new slice start=%lu end=%lu jiffies=%lu",
606 rw == READ ? 'R' : 'W', tg->slice_start[rw],
607 tg->slice_end[rw], jiffies);
608 }
609
610 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
611 unsigned long jiffy_end)
612 {
613 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
614 }
615
616 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
617 unsigned long jiffy_end)
618 {
619 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
620 throtl_log(&tg->service_queue,
621 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
622 rw == READ ? 'R' : 'W', tg->slice_start[rw],
623 tg->slice_end[rw], jiffies);
624 }
625
626 /* Determine if previously allocated or extended slice is complete or not */
627 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
628 {
629 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
630 return false;
631
632 return 1;
633 }
634
635 /* Trim the used slices and adjust slice start accordingly */
636 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
637 {
638 unsigned long nr_slices, time_elapsed, io_trim;
639 u64 bytes_trim, tmp;
640
641 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
642
643 /*
644 * If bps are unlimited (-1), then time slice don't get
645 * renewed. Don't try to trim the slice if slice is used. A new
646 * slice will start when appropriate.
647 */
648 if (throtl_slice_used(tg, rw))
649 return;
650
651 /*
652 * A bio has been dispatched. Also adjust slice_end. It might happen
653 * that initially cgroup limit was very low resulting in high
654 * slice_end, but later limit was bumped up and bio was dispached
655 * sooner, then we need to reduce slice_end. A high bogus slice_end
656 * is bad because it does not allow new slice to start.
657 */
658
659 throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
660
661 time_elapsed = jiffies - tg->slice_start[rw];
662
663 nr_slices = time_elapsed / throtl_slice;
664
665 if (!nr_slices)
666 return;
667 tmp = tg->bps[rw] * throtl_slice * nr_slices;
668 do_div(tmp, HZ);
669 bytes_trim = tmp;
670
671 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
672
673 if (!bytes_trim && !io_trim)
674 return;
675
676 if (tg->bytes_disp[rw] >= bytes_trim)
677 tg->bytes_disp[rw] -= bytes_trim;
678 else
679 tg->bytes_disp[rw] = 0;
680
681 if (tg->io_disp[rw] >= io_trim)
682 tg->io_disp[rw] -= io_trim;
683 else
684 tg->io_disp[rw] = 0;
685
686 tg->slice_start[rw] += nr_slices * throtl_slice;
687
688 throtl_log(&tg->service_queue,
689 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
690 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
691 tg->slice_start[rw], tg->slice_end[rw], jiffies);
692 }
693
694 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
695 unsigned long *wait)
696 {
697 bool rw = bio_data_dir(bio);
698 unsigned int io_allowed;
699 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
700 u64 tmp;
701
702 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
703
704 /* Slice has just started. Consider one slice interval */
705 if (!jiffy_elapsed)
706 jiffy_elapsed_rnd = throtl_slice;
707
708 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
709
710 /*
711 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
712 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
713 * will allow dispatch after 1 second and after that slice should
714 * have been trimmed.
715 */
716
717 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
718 do_div(tmp, HZ);
719
720 if (tmp > UINT_MAX)
721 io_allowed = UINT_MAX;
722 else
723 io_allowed = tmp;
724
725 if (tg->io_disp[rw] + 1 <= io_allowed) {
726 if (wait)
727 *wait = 0;
728 return true;
729 }
730
731 /* Calc approx time to dispatch */
732 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
733
734 if (jiffy_wait > jiffy_elapsed)
735 jiffy_wait = jiffy_wait - jiffy_elapsed;
736 else
737 jiffy_wait = 1;
738
739 if (wait)
740 *wait = jiffy_wait;
741 return 0;
742 }
743
744 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
745 unsigned long *wait)
746 {
747 bool rw = bio_data_dir(bio);
748 u64 bytes_allowed, extra_bytes, tmp;
749 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
750
751 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
752
753 /* Slice has just started. Consider one slice interval */
754 if (!jiffy_elapsed)
755 jiffy_elapsed_rnd = throtl_slice;
756
757 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
758
759 tmp = tg->bps[rw] * jiffy_elapsed_rnd;
760 do_div(tmp, HZ);
761 bytes_allowed = tmp;
762
763 if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
764 if (wait)
765 *wait = 0;
766 return true;
767 }
768
769 /* Calc approx time to dispatch */
770 extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
771 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
772
773 if (!jiffy_wait)
774 jiffy_wait = 1;
775
776 /*
777 * This wait time is without taking into consideration the rounding
778 * up we did. Add that time also.
779 */
780 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
781 if (wait)
782 *wait = jiffy_wait;
783 return 0;
784 }
785
786 /*
787 * Returns whether one can dispatch a bio or not. Also returns approx number
788 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
789 */
790 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
791 unsigned long *wait)
792 {
793 bool rw = bio_data_dir(bio);
794 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
795
796 /*
797 * Currently whole state machine of group depends on first bio
798 * queued in the group bio list. So one should not be calling
799 * this function with a different bio if there are other bios
800 * queued.
801 */
802 BUG_ON(tg->service_queue.nr_queued[rw] &&
803 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
804
805 /* If tg->bps = -1, then BW is unlimited */
806 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
807 if (wait)
808 *wait = 0;
809 return true;
810 }
811
812 /*
813 * If previous slice expired, start a new one otherwise renew/extend
814 * existing slice to make sure it is at least throtl_slice interval
815 * long since now.
816 */
817 if (throtl_slice_used(tg, rw))
818 throtl_start_new_slice(tg, rw);
819 else {
820 if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
821 throtl_extend_slice(tg, rw, jiffies + throtl_slice);
822 }
823
824 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
825 tg_with_in_iops_limit(tg, bio, &iops_wait)) {
826 if (wait)
827 *wait = 0;
828 return 1;
829 }
830
831 max_wait = max(bps_wait, iops_wait);
832
833 if (wait)
834 *wait = max_wait;
835
836 if (time_before(tg->slice_end[rw], jiffies + max_wait))
837 throtl_extend_slice(tg, rw, jiffies + max_wait);
838
839 return 0;
840 }
841
842 static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
843 int rw)
844 {
845 struct throtl_grp *tg = blkg_to_tg(blkg);
846 unsigned long flags;
847
848 /*
849 * Disabling interrupts to provide mutual exclusion between two
850 * writes on same cpu. It probably is not needed for 64bit. Not
851 * optimizing that case yet.
852 */
853 local_irq_save(flags);
854
855 blkg_rwstat_add(&tg->serviced, rw, 1);
856 blkg_rwstat_add(&tg->service_bytes, rw, bytes);
857
858 local_irq_restore(flags);
859 }
860
861 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
862 {
863 bool rw = bio_data_dir(bio);
864
865 /* Charge the bio to the group */
866 tg->bytes_disp[rw] += bio->bi_iter.bi_size;
867 tg->io_disp[rw]++;
868
869 /*
870 * REQ_THROTTLED is used to prevent the same bio to be throttled
871 * more than once as a throttled bio will go through blk-throtl the
872 * second time when it eventually gets issued. Set it when a bio
873 * is being charged to a tg.
874 *
875 * Dispatch stats aren't recursive and each @bio should only be
876 * accounted by the @tg it was originally associated with. Let's
877 * update the stats when setting REQ_THROTTLED for the first time
878 * which is guaranteed to be for the @bio's original tg.
879 */
880 if (!(bio->bi_rw & REQ_THROTTLED)) {
881 bio->bi_rw |= REQ_THROTTLED;
882 throtl_update_dispatch_stats(tg_to_blkg(tg),
883 bio->bi_iter.bi_size, bio->bi_rw);
884 }
885 }
886
887 /**
888 * throtl_add_bio_tg - add a bio to the specified throtl_grp
889 * @bio: bio to add
890 * @qn: qnode to use
891 * @tg: the target throtl_grp
892 *
893 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
894 * tg->qnode_on_self[] is used.
895 */
896 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
897 struct throtl_grp *tg)
898 {
899 struct throtl_service_queue *sq = &tg->service_queue;
900 bool rw = bio_data_dir(bio);
901
902 if (!qn)
903 qn = &tg->qnode_on_self[rw];
904
905 /*
906 * If @tg doesn't currently have any bios queued in the same
907 * direction, queueing @bio can change when @tg should be
908 * dispatched. Mark that @tg was empty. This is automatically
909 * cleaered on the next tg_update_disptime().
910 */
911 if (!sq->nr_queued[rw])
912 tg->flags |= THROTL_TG_WAS_EMPTY;
913
914 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
915
916 sq->nr_queued[rw]++;
917 throtl_enqueue_tg(tg);
918 }
919
920 static void tg_update_disptime(struct throtl_grp *tg)
921 {
922 struct throtl_service_queue *sq = &tg->service_queue;
923 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
924 struct bio *bio;
925
926 if ((bio = throtl_peek_queued(&sq->queued[READ])))
927 tg_may_dispatch(tg, bio, &read_wait);
928
929 if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
930 tg_may_dispatch(tg, bio, &write_wait);
931
932 min_wait = min(read_wait, write_wait);
933 disptime = jiffies + min_wait;
934
935 /* Update dispatch time */
936 throtl_dequeue_tg(tg);
937 tg->disptime = disptime;
938 throtl_enqueue_tg(tg);
939
940 /* see throtl_add_bio_tg() */
941 tg->flags &= ~THROTL_TG_WAS_EMPTY;
942 }
943
944 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
945 struct throtl_grp *parent_tg, bool rw)
946 {
947 if (throtl_slice_used(parent_tg, rw)) {
948 throtl_start_new_slice_with_credit(parent_tg, rw,
949 child_tg->slice_start[rw]);
950 }
951
952 }
953
954 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
955 {
956 struct throtl_service_queue *sq = &tg->service_queue;
957 struct throtl_service_queue *parent_sq = sq->parent_sq;
958 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
959 struct throtl_grp *tg_to_put = NULL;
960 struct bio *bio;
961
962 /*
963 * @bio is being transferred from @tg to @parent_sq. Popping a bio
964 * from @tg may put its reference and @parent_sq might end up
965 * getting released prematurely. Remember the tg to put and put it
966 * after @bio is transferred to @parent_sq.
967 */
968 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
969 sq->nr_queued[rw]--;
970
971 throtl_charge_bio(tg, bio);
972
973 /*
974 * If our parent is another tg, we just need to transfer @bio to
975 * the parent using throtl_add_bio_tg(). If our parent is
976 * @td->service_queue, @bio is ready to be issued. Put it on its
977 * bio_lists[] and decrease total number queued. The caller is
978 * responsible for issuing these bios.
979 */
980 if (parent_tg) {
981 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
982 start_parent_slice_with_credit(tg, parent_tg, rw);
983 } else {
984 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
985 &parent_sq->queued[rw]);
986 BUG_ON(tg->td->nr_queued[rw] <= 0);
987 tg->td->nr_queued[rw]--;
988 }
989
990 throtl_trim_slice(tg, rw);
991
992 if (tg_to_put)
993 blkg_put(tg_to_blkg(tg_to_put));
994 }
995
996 static int throtl_dispatch_tg(struct throtl_grp *tg)
997 {
998 struct throtl_service_queue *sq = &tg->service_queue;
999 unsigned int nr_reads = 0, nr_writes = 0;
1000 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1001 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1002 struct bio *bio;
1003
1004 /* Try to dispatch 75% READS and 25% WRITES */
1005
1006 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1007 tg_may_dispatch(tg, bio, NULL)) {
1008
1009 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1010 nr_reads++;
1011
1012 if (nr_reads >= max_nr_reads)
1013 break;
1014 }
1015
1016 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1017 tg_may_dispatch(tg, bio, NULL)) {
1018
1019 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1020 nr_writes++;
1021
1022 if (nr_writes >= max_nr_writes)
1023 break;
1024 }
1025
1026 return nr_reads + nr_writes;
1027 }
1028
1029 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1030 {
1031 unsigned int nr_disp = 0;
1032
1033 while (1) {
1034 struct throtl_grp *tg = throtl_rb_first(parent_sq);
1035 struct throtl_service_queue *sq = &tg->service_queue;
1036
1037 if (!tg)
1038 break;
1039
1040 if (time_before(jiffies, tg->disptime))
1041 break;
1042
1043 throtl_dequeue_tg(tg);
1044
1045 nr_disp += throtl_dispatch_tg(tg);
1046
1047 if (sq->nr_queued[0] || sq->nr_queued[1])
1048 tg_update_disptime(tg);
1049
1050 if (nr_disp >= throtl_quantum)
1051 break;
1052 }
1053
1054 return nr_disp;
1055 }
1056
1057 /**
1058 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1059 * @arg: the throtl_service_queue being serviced
1060 *
1061 * This timer is armed when a child throtl_grp with active bio's become
1062 * pending and queued on the service_queue's pending_tree and expires when
1063 * the first child throtl_grp should be dispatched. This function
1064 * dispatches bio's from the children throtl_grps to the parent
1065 * service_queue.
1066 *
1067 * If the parent's parent is another throtl_grp, dispatching is propagated
1068 * by either arming its pending_timer or repeating dispatch directly. If
1069 * the top-level service_tree is reached, throtl_data->dispatch_work is
1070 * kicked so that the ready bio's are issued.
1071 */
1072 static void throtl_pending_timer_fn(unsigned long arg)
1073 {
1074 struct throtl_service_queue *sq = (void *)arg;
1075 struct throtl_grp *tg = sq_to_tg(sq);
1076 struct throtl_data *td = sq_to_td(sq);
1077 struct request_queue *q = td->queue;
1078 struct throtl_service_queue *parent_sq;
1079 bool dispatched;
1080 int ret;
1081
1082 spin_lock_irq(q->queue_lock);
1083 again:
1084 parent_sq = sq->parent_sq;
1085 dispatched = false;
1086
1087 while (true) {
1088 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1089 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1090 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1091
1092 ret = throtl_select_dispatch(sq);
1093 if (ret) {
1094 throtl_log(sq, "bios disp=%u", ret);
1095 dispatched = true;
1096 }
1097
1098 if (throtl_schedule_next_dispatch(sq, false))
1099 break;
1100
1101 /* this dispatch windows is still open, relax and repeat */
1102 spin_unlock_irq(q->queue_lock);
1103 cpu_relax();
1104 spin_lock_irq(q->queue_lock);
1105 }
1106
1107 if (!dispatched)
1108 goto out_unlock;
1109
1110 if (parent_sq) {
1111 /* @parent_sq is another throl_grp, propagate dispatch */
1112 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1113 tg_update_disptime(tg);
1114 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1115 /* window is already open, repeat dispatching */
1116 sq = parent_sq;
1117 tg = sq_to_tg(sq);
1118 goto again;
1119 }
1120 }
1121 } else {
1122 /* reached the top-level, queue issueing */
1123 queue_work(kthrotld_workqueue, &td->dispatch_work);
1124 }
1125 out_unlock:
1126 spin_unlock_irq(q->queue_lock);
1127 }
1128
1129 /**
1130 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1131 * @work: work item being executed
1132 *
1133 * This function is queued for execution when bio's reach the bio_lists[]
1134 * of throtl_data->service_queue. Those bio's are ready and issued by this
1135 * function.
1136 */
1137 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1138 {
1139 struct throtl_data *td = container_of(work, struct throtl_data,
1140 dispatch_work);
1141 struct throtl_service_queue *td_sq = &td->service_queue;
1142 struct request_queue *q = td->queue;
1143 struct bio_list bio_list_on_stack;
1144 struct bio *bio;
1145 struct blk_plug plug;
1146 int rw;
1147
1148 bio_list_init(&bio_list_on_stack);
1149
1150 spin_lock_irq(q->queue_lock);
1151 for (rw = READ; rw <= WRITE; rw++)
1152 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1153 bio_list_add(&bio_list_on_stack, bio);
1154 spin_unlock_irq(q->queue_lock);
1155
1156 if (!bio_list_empty(&bio_list_on_stack)) {
1157 blk_start_plug(&plug);
1158 while((bio = bio_list_pop(&bio_list_on_stack)))
1159 generic_make_request(bio);
1160 blk_finish_plug(&plug);
1161 }
1162 }
1163
1164 static int tg_print_rwstat(struct seq_file *sf, void *v)
1165 {
1166 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1167 &blkcg_policy_throtl, seq_cft(sf)->private, true);
1168 return 0;
1169 }
1170
1171 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1172 int off)
1173 {
1174 struct throtl_grp *tg = pd_to_tg(pd);
1175 u64 v = *(u64 *)((void *)tg + off);
1176
1177 if (v == -1)
1178 return 0;
1179 return __blkg_prfill_u64(sf, pd, v);
1180 }
1181
1182 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1183 int off)
1184 {
1185 struct throtl_grp *tg = pd_to_tg(pd);
1186 unsigned int v = *(unsigned int *)((void *)tg + off);
1187
1188 if (v == -1)
1189 return 0;
1190 return __blkg_prfill_u64(sf, pd, v);
1191 }
1192
1193 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1194 {
1195 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1196 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1197 return 0;
1198 }
1199
1200 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1201 {
1202 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1203 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1204 return 0;
1205 }
1206
1207 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1208 char *buf, size_t nbytes, loff_t off, bool is_u64)
1209 {
1210 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1211 struct blkg_conf_ctx ctx;
1212 struct throtl_grp *tg;
1213 struct throtl_service_queue *sq;
1214 struct blkcg_gq *blkg;
1215 struct cgroup_subsys_state *pos_css;
1216 int ret;
1217
1218 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1219 if (ret)
1220 return ret;
1221
1222 tg = blkg_to_tg(ctx.blkg);
1223 sq = &tg->service_queue;
1224
1225 if (!ctx.v)
1226 ctx.v = -1;
1227
1228 if (is_u64)
1229 *(u64 *)((void *)tg + of_cft(of)->private) = ctx.v;
1230 else
1231 *(unsigned int *)((void *)tg + of_cft(of)->private) = ctx.v;
1232
1233 throtl_log(&tg->service_queue,
1234 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1235 tg->bps[READ], tg->bps[WRITE],
1236 tg->iops[READ], tg->iops[WRITE]);
1237
1238 /*
1239 * Update has_rules[] flags for the updated tg's subtree. A tg is
1240 * considered to have rules if either the tg itself or any of its
1241 * ancestors has rules. This identifies groups without any
1242 * restrictions in the whole hierarchy and allows them to bypass
1243 * blk-throttle.
1244 */
1245 blkg_for_each_descendant_pre(blkg, pos_css, ctx.blkg)
1246 tg_update_has_rules(blkg_to_tg(blkg));
1247
1248 /*
1249 * We're already holding queue_lock and know @tg is valid. Let's
1250 * apply the new config directly.
1251 *
1252 * Restart the slices for both READ and WRITES. It might happen
1253 * that a group's limit are dropped suddenly and we don't want to
1254 * account recently dispatched IO with new low rate.
1255 */
1256 throtl_start_new_slice(tg, 0);
1257 throtl_start_new_slice(tg, 1);
1258
1259 if (tg->flags & THROTL_TG_PENDING) {
1260 tg_update_disptime(tg);
1261 throtl_schedule_next_dispatch(sq->parent_sq, true);
1262 }
1263
1264 blkg_conf_finish(&ctx);
1265 return nbytes;
1266 }
1267
1268 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1269 char *buf, size_t nbytes, loff_t off)
1270 {
1271 return tg_set_conf(of, buf, nbytes, off, true);
1272 }
1273
1274 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1275 char *buf, size_t nbytes, loff_t off)
1276 {
1277 return tg_set_conf(of, buf, nbytes, off, false);
1278 }
1279
1280 static struct cftype throtl_files[] = {
1281 {
1282 .name = "throttle.read_bps_device",
1283 .private = offsetof(struct throtl_grp, bps[READ]),
1284 .seq_show = tg_print_conf_u64,
1285 .write = tg_set_conf_u64,
1286 },
1287 {
1288 .name = "throttle.write_bps_device",
1289 .private = offsetof(struct throtl_grp, bps[WRITE]),
1290 .seq_show = tg_print_conf_u64,
1291 .write = tg_set_conf_u64,
1292 },
1293 {
1294 .name = "throttle.read_iops_device",
1295 .private = offsetof(struct throtl_grp, iops[READ]),
1296 .seq_show = tg_print_conf_uint,
1297 .write = tg_set_conf_uint,
1298 },
1299 {
1300 .name = "throttle.write_iops_device",
1301 .private = offsetof(struct throtl_grp, iops[WRITE]),
1302 .seq_show = tg_print_conf_uint,
1303 .write = tg_set_conf_uint,
1304 },
1305 {
1306 .name = "throttle.io_service_bytes",
1307 .private = offsetof(struct throtl_grp, service_bytes),
1308 .seq_show = tg_print_rwstat,
1309 },
1310 {
1311 .name = "throttle.io_serviced",
1312 .private = offsetof(struct throtl_grp, serviced),
1313 .seq_show = tg_print_rwstat,
1314 },
1315 { } /* terminate */
1316 };
1317
1318 static void throtl_shutdown_wq(struct request_queue *q)
1319 {
1320 struct throtl_data *td = q->td;
1321
1322 cancel_work_sync(&td->dispatch_work);
1323 }
1324
1325 static struct blkcg_policy blkcg_policy_throtl = {
1326 .cftypes = throtl_files,
1327
1328 .pd_alloc_fn = throtl_pd_alloc,
1329 .pd_init_fn = throtl_pd_init,
1330 .pd_online_fn = throtl_pd_online,
1331 .pd_free_fn = throtl_pd_free,
1332 .pd_reset_stats_fn = throtl_pd_reset_stats,
1333 };
1334
1335 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
1336 struct bio *bio)
1337 {
1338 struct throtl_qnode *qn = NULL;
1339 struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
1340 struct throtl_service_queue *sq;
1341 bool rw = bio_data_dir(bio);
1342 bool throttled = false;
1343
1344 WARN_ON_ONCE(!rcu_read_lock_held());
1345
1346 /* see throtl_charge_bio() */
1347 if ((bio->bi_rw & REQ_THROTTLED) || !tg->has_rules[rw])
1348 goto out;
1349
1350 spin_lock_irq(q->queue_lock);
1351
1352 if (unlikely(blk_queue_bypass(q)))
1353 goto out_unlock;
1354
1355 sq = &tg->service_queue;
1356
1357 while (true) {
1358 /* throtl is FIFO - if bios are already queued, should queue */
1359 if (sq->nr_queued[rw])
1360 break;
1361
1362 /* if above limits, break to queue */
1363 if (!tg_may_dispatch(tg, bio, NULL))
1364 break;
1365
1366 /* within limits, let's charge and dispatch directly */
1367 throtl_charge_bio(tg, bio);
1368
1369 /*
1370 * We need to trim slice even when bios are not being queued
1371 * otherwise it might happen that a bio is not queued for
1372 * a long time and slice keeps on extending and trim is not
1373 * called for a long time. Now if limits are reduced suddenly
1374 * we take into account all the IO dispatched so far at new
1375 * low rate and * newly queued IO gets a really long dispatch
1376 * time.
1377 *
1378 * So keep on trimming slice even if bio is not queued.
1379 */
1380 throtl_trim_slice(tg, rw);
1381
1382 /*
1383 * @bio passed through this layer without being throttled.
1384 * Climb up the ladder. If we''re already at the top, it
1385 * can be executed directly.
1386 */
1387 qn = &tg->qnode_on_parent[rw];
1388 sq = sq->parent_sq;
1389 tg = sq_to_tg(sq);
1390 if (!tg)
1391 goto out_unlock;
1392 }
1393
1394 /* out-of-limit, queue to @tg */
1395 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1396 rw == READ ? 'R' : 'W',
1397 tg->bytes_disp[rw], bio->bi_iter.bi_size, tg->bps[rw],
1398 tg->io_disp[rw], tg->iops[rw],
1399 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1400
1401 bio_associate_current(bio);
1402 tg->td->nr_queued[rw]++;
1403 throtl_add_bio_tg(bio, qn, tg);
1404 throttled = true;
1405
1406 /*
1407 * Update @tg's dispatch time and force schedule dispatch if @tg
1408 * was empty before @bio. The forced scheduling isn't likely to
1409 * cause undue delay as @bio is likely to be dispatched directly if
1410 * its @tg's disptime is not in the future.
1411 */
1412 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1413 tg_update_disptime(tg);
1414 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1415 }
1416
1417 out_unlock:
1418 spin_unlock_irq(q->queue_lock);
1419 out:
1420 /*
1421 * As multiple blk-throtls may stack in the same issue path, we
1422 * don't want bios to leave with the flag set. Clear the flag if
1423 * being issued.
1424 */
1425 if (!throttled)
1426 bio->bi_rw &= ~REQ_THROTTLED;
1427 return throttled;
1428 }
1429
1430 /*
1431 * Dispatch all bios from all children tg's queued on @parent_sq. On
1432 * return, @parent_sq is guaranteed to not have any active children tg's
1433 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1434 */
1435 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
1436 {
1437 struct throtl_grp *tg;
1438
1439 while ((tg = throtl_rb_first(parent_sq))) {
1440 struct throtl_service_queue *sq = &tg->service_queue;
1441 struct bio *bio;
1442
1443 throtl_dequeue_tg(tg);
1444
1445 while ((bio = throtl_peek_queued(&sq->queued[READ])))
1446 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1447 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1448 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1449 }
1450 }
1451
1452 /**
1453 * blk_throtl_drain - drain throttled bios
1454 * @q: request_queue to drain throttled bios for
1455 *
1456 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1457 */
1458 void blk_throtl_drain(struct request_queue *q)
1459 __releases(q->queue_lock) __acquires(q->queue_lock)
1460 {
1461 struct throtl_data *td = q->td;
1462 struct blkcg_gq *blkg;
1463 struct cgroup_subsys_state *pos_css;
1464 struct bio *bio;
1465 int rw;
1466
1467 queue_lockdep_assert_held(q);
1468 rcu_read_lock();
1469
1470 /*
1471 * Drain each tg while doing post-order walk on the blkg tree, so
1472 * that all bios are propagated to td->service_queue. It'd be
1473 * better to walk service_queue tree directly but blkg walk is
1474 * easier.
1475 */
1476 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1477 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1478
1479 /* finally, transfer bios from top-level tg's into the td */
1480 tg_drain_bios(&td->service_queue);
1481
1482 rcu_read_unlock();
1483 spin_unlock_irq(q->queue_lock);
1484
1485 /* all bios now should be in td->service_queue, issue them */
1486 for (rw = READ; rw <= WRITE; rw++)
1487 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
1488 NULL)))
1489 generic_make_request(bio);
1490
1491 spin_lock_irq(q->queue_lock);
1492 }
1493
1494 int blk_throtl_init(struct request_queue *q)
1495 {
1496 struct throtl_data *td;
1497 int ret;
1498
1499 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1500 if (!td)
1501 return -ENOMEM;
1502
1503 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1504 throtl_service_queue_init(&td->service_queue);
1505
1506 q->td = td;
1507 td->queue = q;
1508
1509 /* activate policy */
1510 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1511 if (ret)
1512 kfree(td);
1513 return ret;
1514 }
1515
1516 void blk_throtl_exit(struct request_queue *q)
1517 {
1518 BUG_ON(!q->td);
1519 throtl_shutdown_wq(q);
1520 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1521 kfree(q->td);
1522 }
1523
1524 static int __init throtl_init(void)
1525 {
1526 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1527 if (!kthrotld_workqueue)
1528 panic("Failed to create kthrotld\n");
1529
1530 return blkcg_policy_register(&blkcg_policy_throtl);
1531 }
1532
1533 module_init(throtl_init);