]> git.proxmox.com Git - mirror_qemu.git/blob - block/block-copy.c
osdep: Move memalign-related functions to their own header
[mirror_qemu.git] / block / block-copy.c
1 /*
2 * block_copy API
3 *
4 * Copyright (C) 2013 Proxmox Server Solutions
5 * Copyright (c) 2019 Virtuozzo International GmbH.
6 *
7 * Authors:
8 * Dietmar Maurer (dietmar@proxmox.com)
9 * Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 */
14
15 #include "qemu/osdep.h"
16
17 #include "trace.h"
18 #include "qapi/error.h"
19 #include "block/block-copy.h"
20 #include "sysemu/block-backend.h"
21 #include "qemu/units.h"
22 #include "qemu/coroutine.h"
23 #include "block/aio_task.h"
24 #include "qemu/error-report.h"
25 #include "qemu/memalign.h"
26
27 #define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB)
28 #define BLOCK_COPY_MAX_BUFFER (1 * MiB)
29 #define BLOCK_COPY_MAX_MEM (128 * MiB)
30 #define BLOCK_COPY_MAX_WORKERS 64
31 #define BLOCK_COPY_SLICE_TIME 100000000ULL /* ns */
32 #define BLOCK_COPY_CLUSTER_SIZE_DEFAULT (1 << 16)
33
34 typedef enum {
35 COPY_READ_WRITE_CLUSTER,
36 COPY_READ_WRITE,
37 COPY_WRITE_ZEROES,
38 COPY_RANGE_SMALL,
39 COPY_RANGE_FULL
40 } BlockCopyMethod;
41
42 static coroutine_fn int block_copy_task_entry(AioTask *task);
43
44 typedef struct BlockCopyCallState {
45 /* Fields initialized in block_copy_async() and never changed. */
46 BlockCopyState *s;
47 int64_t offset;
48 int64_t bytes;
49 int max_workers;
50 int64_t max_chunk;
51 bool ignore_ratelimit;
52 BlockCopyAsyncCallbackFunc cb;
53 void *cb_opaque;
54 /* Coroutine where async block-copy is running */
55 Coroutine *co;
56
57 /* Fields whose state changes throughout the execution */
58 bool finished; /* atomic */
59 QemuCoSleep sleep; /* TODO: protect API with a lock */
60 bool cancelled; /* atomic */
61 /* To reference all call states from BlockCopyState */
62 QLIST_ENTRY(BlockCopyCallState) list;
63
64 /*
65 * Fields that report information about return values and erros.
66 * Protected by lock in BlockCopyState.
67 */
68 bool error_is_read;
69 /*
70 * @ret is set concurrently by tasks under mutex. Only set once by first
71 * failed task (and untouched if no task failed).
72 * After finishing (call_state->finished is true), it is not modified
73 * anymore and may be safely read without mutex.
74 */
75 int ret;
76 } BlockCopyCallState;
77
78 typedef struct BlockCopyTask {
79 AioTask task;
80
81 /*
82 * Fields initialized in block_copy_task_create()
83 * and never changed.
84 */
85 BlockCopyState *s;
86 BlockCopyCallState *call_state;
87 int64_t offset;
88 /*
89 * @method can also be set again in the while loop of
90 * block_copy_dirty_clusters(), but it is never accessed concurrently
91 * because the only other function that reads it is
92 * block_copy_task_entry() and it is invoked afterwards in the same
93 * iteration.
94 */
95 BlockCopyMethod method;
96
97 /*
98 * Fields whose state changes throughout the execution
99 * Protected by lock in BlockCopyState.
100 */
101 CoQueue wait_queue; /* coroutines blocked on this task */
102 /*
103 * Only protect the case of parallel read while updating @bytes
104 * value in block_copy_task_shrink().
105 */
106 int64_t bytes;
107 QLIST_ENTRY(BlockCopyTask) list;
108 } BlockCopyTask;
109
110 static int64_t task_end(BlockCopyTask *task)
111 {
112 return task->offset + task->bytes;
113 }
114
115 typedef struct BlockCopyState {
116 /*
117 * BdrvChild objects are not owned or managed by block-copy. They are
118 * provided by block-copy user and user is responsible for appropriate
119 * permissions on these children.
120 */
121 BdrvChild *source;
122 BdrvChild *target;
123
124 /*
125 * Fields initialized in block_copy_state_new()
126 * and never changed.
127 */
128 int64_t cluster_size;
129 int64_t max_transfer;
130 uint64_t len;
131 BdrvRequestFlags write_flags;
132
133 /*
134 * Fields whose state changes throughout the execution
135 * Protected by lock.
136 */
137 CoMutex lock;
138 int64_t in_flight_bytes;
139 BlockCopyMethod method;
140 QLIST_HEAD(, BlockCopyTask) tasks; /* All tasks from all block-copy calls */
141 QLIST_HEAD(, BlockCopyCallState) calls;
142 /*
143 * skip_unallocated:
144 *
145 * Used by sync=top jobs, which first scan the source node for unallocated
146 * areas and clear them in the copy_bitmap. During this process, the bitmap
147 * is thus not fully initialized: It may still have bits set for areas that
148 * are unallocated and should actually not be copied.
149 *
150 * This is indicated by skip_unallocated.
151 *
152 * In this case, block_copy() will query the source’s allocation status,
153 * skip unallocated regions, clear them in the copy_bitmap, and invoke
154 * block_copy_reset_unallocated() every time it does.
155 */
156 bool skip_unallocated; /* atomic */
157 /* State fields that use a thread-safe API */
158 BdrvDirtyBitmap *copy_bitmap;
159 ProgressMeter *progress;
160 SharedResource *mem;
161 RateLimit rate_limit;
162 } BlockCopyState;
163
164 /* Called with lock held */
165 static BlockCopyTask *find_conflicting_task(BlockCopyState *s,
166 int64_t offset, int64_t bytes)
167 {
168 BlockCopyTask *t;
169
170 QLIST_FOREACH(t, &s->tasks, list) {
171 if (offset + bytes > t->offset && offset < t->offset + t->bytes) {
172 return t;
173 }
174 }
175
176 return NULL;
177 }
178
179 /*
180 * If there are no intersecting tasks return false. Otherwise, wait for the
181 * first found intersecting tasks to finish and return true.
182 *
183 * Called with lock held. May temporary release the lock.
184 * Return value of 0 proves that lock was NOT released.
185 */
186 static bool coroutine_fn block_copy_wait_one(BlockCopyState *s, int64_t offset,
187 int64_t bytes)
188 {
189 BlockCopyTask *task = find_conflicting_task(s, offset, bytes);
190
191 if (!task) {
192 return false;
193 }
194
195 qemu_co_queue_wait(&task->wait_queue, &s->lock);
196
197 return true;
198 }
199
200 /* Called with lock held */
201 static int64_t block_copy_chunk_size(BlockCopyState *s)
202 {
203 switch (s->method) {
204 case COPY_READ_WRITE_CLUSTER:
205 return s->cluster_size;
206 case COPY_READ_WRITE:
207 case COPY_RANGE_SMALL:
208 return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER),
209 s->max_transfer);
210 case COPY_RANGE_FULL:
211 return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_COPY_RANGE),
212 s->max_transfer);
213 default:
214 /* Cannot have COPY_WRITE_ZEROES here. */
215 abort();
216 }
217 }
218
219 /*
220 * Search for the first dirty area in offset/bytes range and create task at
221 * the beginning of it.
222 */
223 static coroutine_fn BlockCopyTask *
224 block_copy_task_create(BlockCopyState *s, BlockCopyCallState *call_state,
225 int64_t offset, int64_t bytes)
226 {
227 BlockCopyTask *task;
228 int64_t max_chunk;
229
230 QEMU_LOCK_GUARD(&s->lock);
231 max_chunk = MIN_NON_ZERO(block_copy_chunk_size(s), call_state->max_chunk);
232 if (!bdrv_dirty_bitmap_next_dirty_area(s->copy_bitmap,
233 offset, offset + bytes,
234 max_chunk, &offset, &bytes))
235 {
236 return NULL;
237 }
238
239 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
240 bytes = QEMU_ALIGN_UP(bytes, s->cluster_size);
241
242 /* region is dirty, so no existent tasks possible in it */
243 assert(!find_conflicting_task(s, offset, bytes));
244
245 bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
246 s->in_flight_bytes += bytes;
247
248 task = g_new(BlockCopyTask, 1);
249 *task = (BlockCopyTask) {
250 .task.func = block_copy_task_entry,
251 .s = s,
252 .call_state = call_state,
253 .offset = offset,
254 .bytes = bytes,
255 .method = s->method,
256 };
257 qemu_co_queue_init(&task->wait_queue);
258 QLIST_INSERT_HEAD(&s->tasks, task, list);
259
260 return task;
261 }
262
263 /*
264 * block_copy_task_shrink
265 *
266 * Drop the tail of the task to be handled later. Set dirty bits back and
267 * wake up all tasks waiting for us (may be some of them are not intersecting
268 * with shrunk task)
269 */
270 static void coroutine_fn block_copy_task_shrink(BlockCopyTask *task,
271 int64_t new_bytes)
272 {
273 QEMU_LOCK_GUARD(&task->s->lock);
274 if (new_bytes == task->bytes) {
275 return;
276 }
277
278 assert(new_bytes > 0 && new_bytes < task->bytes);
279
280 task->s->in_flight_bytes -= task->bytes - new_bytes;
281 bdrv_set_dirty_bitmap(task->s->copy_bitmap,
282 task->offset + new_bytes, task->bytes - new_bytes);
283
284 task->bytes = new_bytes;
285 qemu_co_queue_restart_all(&task->wait_queue);
286 }
287
288 static void coroutine_fn block_copy_task_end(BlockCopyTask *task, int ret)
289 {
290 QEMU_LOCK_GUARD(&task->s->lock);
291 task->s->in_flight_bytes -= task->bytes;
292 if (ret < 0) {
293 bdrv_set_dirty_bitmap(task->s->copy_bitmap, task->offset, task->bytes);
294 }
295 QLIST_REMOVE(task, list);
296 if (task->s->progress) {
297 progress_set_remaining(task->s->progress,
298 bdrv_get_dirty_count(task->s->copy_bitmap) +
299 task->s->in_flight_bytes);
300 }
301 qemu_co_queue_restart_all(&task->wait_queue);
302 }
303
304 void block_copy_state_free(BlockCopyState *s)
305 {
306 if (!s) {
307 return;
308 }
309
310 ratelimit_destroy(&s->rate_limit);
311 bdrv_release_dirty_bitmap(s->copy_bitmap);
312 shres_destroy(s->mem);
313 g_free(s);
314 }
315
316 static uint32_t block_copy_max_transfer(BdrvChild *source, BdrvChild *target)
317 {
318 return MIN_NON_ZERO(INT_MAX,
319 MIN_NON_ZERO(source->bs->bl.max_transfer,
320 target->bs->bl.max_transfer));
321 }
322
323 void block_copy_set_copy_opts(BlockCopyState *s, bool use_copy_range,
324 bool compress)
325 {
326 /* Keep BDRV_REQ_SERIALISING set (or not set) in block_copy_state_new() */
327 s->write_flags = (s->write_flags & BDRV_REQ_SERIALISING) |
328 (compress ? BDRV_REQ_WRITE_COMPRESSED : 0);
329
330 if (s->max_transfer < s->cluster_size) {
331 /*
332 * copy_range does not respect max_transfer. We don't want to bother
333 * with requests smaller than block-copy cluster size, so fallback to
334 * buffered copying (read and write respect max_transfer on their
335 * behalf).
336 */
337 s->method = COPY_READ_WRITE_CLUSTER;
338 } else if (compress) {
339 /* Compression supports only cluster-size writes and no copy-range. */
340 s->method = COPY_READ_WRITE_CLUSTER;
341 } else {
342 /*
343 * If copy range enabled, start with COPY_RANGE_SMALL, until first
344 * successful copy_range (look at block_copy_do_copy).
345 */
346 s->method = use_copy_range ? COPY_RANGE_SMALL : COPY_READ_WRITE;
347 }
348 }
349
350 static int64_t block_copy_calculate_cluster_size(BlockDriverState *target,
351 Error **errp)
352 {
353 int ret;
354 BlockDriverInfo bdi;
355 bool target_does_cow = bdrv_backing_chain_next(target);
356
357 /*
358 * If there is no backing file on the target, we cannot rely on COW if our
359 * backup cluster size is smaller than the target cluster size. Even for
360 * targets with a backing file, try to avoid COW if possible.
361 */
362 ret = bdrv_get_info(target, &bdi);
363 if (ret == -ENOTSUP && !target_does_cow) {
364 /* Cluster size is not defined */
365 warn_report("The target block device doesn't provide "
366 "information about the block size and it doesn't have a "
367 "backing file. The default block size of %u bytes is "
368 "used. If the actual block size of the target exceeds "
369 "this default, the backup may be unusable",
370 BLOCK_COPY_CLUSTER_SIZE_DEFAULT);
371 return BLOCK_COPY_CLUSTER_SIZE_DEFAULT;
372 } else if (ret < 0 && !target_does_cow) {
373 error_setg_errno(errp, -ret,
374 "Couldn't determine the cluster size of the target image, "
375 "which has no backing file");
376 error_append_hint(errp,
377 "Aborting, since this may create an unusable destination image\n");
378 return ret;
379 } else if (ret < 0 && target_does_cow) {
380 /* Not fatal; just trudge on ahead. */
381 return BLOCK_COPY_CLUSTER_SIZE_DEFAULT;
382 }
383
384 return MAX(BLOCK_COPY_CLUSTER_SIZE_DEFAULT, bdi.cluster_size);
385 }
386
387 BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target,
388 Error **errp)
389 {
390 BlockCopyState *s;
391 int64_t cluster_size;
392 BdrvDirtyBitmap *copy_bitmap;
393 bool is_fleecing;
394
395 cluster_size = block_copy_calculate_cluster_size(target->bs, errp);
396 if (cluster_size < 0) {
397 return NULL;
398 }
399
400 copy_bitmap = bdrv_create_dirty_bitmap(source->bs, cluster_size, NULL,
401 errp);
402 if (!copy_bitmap) {
403 return NULL;
404 }
405 bdrv_disable_dirty_bitmap(copy_bitmap);
406
407 /*
408 * If source is in backing chain of target assume that target is going to be
409 * used for "image fleecing", i.e. it should represent a kind of snapshot of
410 * source at backup-start point in time. And target is going to be read by
411 * somebody (for example, used as NBD export) during backup job.
412 *
413 * In this case, we need to add BDRV_REQ_SERIALISING write flag to avoid
414 * intersection of backup writes and third party reads from target,
415 * otherwise reading from target we may occasionally read already updated by
416 * guest data.
417 *
418 * For more information see commit f8d59dfb40bb and test
419 * tests/qemu-iotests/222
420 */
421 is_fleecing = bdrv_chain_contains(target->bs, source->bs);
422
423 s = g_new(BlockCopyState, 1);
424 *s = (BlockCopyState) {
425 .source = source,
426 .target = target,
427 .copy_bitmap = copy_bitmap,
428 .cluster_size = cluster_size,
429 .len = bdrv_dirty_bitmap_size(copy_bitmap),
430 .write_flags = (is_fleecing ? BDRV_REQ_SERIALISING : 0),
431 .mem = shres_create(BLOCK_COPY_MAX_MEM),
432 .max_transfer = QEMU_ALIGN_DOWN(
433 block_copy_max_transfer(source, target),
434 cluster_size),
435 };
436
437 block_copy_set_copy_opts(s, false, false);
438
439 ratelimit_init(&s->rate_limit);
440 qemu_co_mutex_init(&s->lock);
441 QLIST_INIT(&s->tasks);
442 QLIST_INIT(&s->calls);
443
444 return s;
445 }
446
447 /* Only set before running the job, no need for locking. */
448 void block_copy_set_progress_meter(BlockCopyState *s, ProgressMeter *pm)
449 {
450 s->progress = pm;
451 }
452
453 /*
454 * Takes ownership of @task
455 *
456 * If pool is NULL directly run the task, otherwise schedule it into the pool.
457 *
458 * Returns: task.func return code if pool is NULL
459 * otherwise -ECANCELED if pool status is bad
460 * otherwise 0 (successfully scheduled)
461 */
462 static coroutine_fn int block_copy_task_run(AioTaskPool *pool,
463 BlockCopyTask *task)
464 {
465 if (!pool) {
466 int ret = task->task.func(&task->task);
467
468 g_free(task);
469 return ret;
470 }
471
472 aio_task_pool_wait_slot(pool);
473 if (aio_task_pool_status(pool) < 0) {
474 co_put_to_shres(task->s->mem, task->bytes);
475 block_copy_task_end(task, -ECANCELED);
476 g_free(task);
477 return -ECANCELED;
478 }
479
480 aio_task_pool_start_task(pool, &task->task);
481
482 return 0;
483 }
484
485 /*
486 * block_copy_do_copy
487 *
488 * Do copy of cluster-aligned chunk. Requested region is allowed to exceed
489 * s->len only to cover last cluster when s->len is not aligned to clusters.
490 *
491 * No sync here: nor bitmap neighter intersecting requests handling, only copy.
492 *
493 * @method is an in-out argument, so that copy_range can be either extended to
494 * a full-size buffer or disabled if the copy_range attempt fails. The output
495 * value of @method should be used for subsequent tasks.
496 * Returns 0 on success.
497 */
498 static int coroutine_fn block_copy_do_copy(BlockCopyState *s,
499 int64_t offset, int64_t bytes,
500 BlockCopyMethod *method,
501 bool *error_is_read)
502 {
503 int ret;
504 int64_t nbytes = MIN(offset + bytes, s->len) - offset;
505 void *bounce_buffer = NULL;
506
507 assert(offset >= 0 && bytes > 0 && INT64_MAX - offset >= bytes);
508 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
509 assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
510 assert(offset < s->len);
511 assert(offset + bytes <= s->len ||
512 offset + bytes == QEMU_ALIGN_UP(s->len, s->cluster_size));
513 assert(nbytes < INT_MAX);
514
515 switch (*method) {
516 case COPY_WRITE_ZEROES:
517 ret = bdrv_co_pwrite_zeroes(s->target, offset, nbytes, s->write_flags &
518 ~BDRV_REQ_WRITE_COMPRESSED);
519 if (ret < 0) {
520 trace_block_copy_write_zeroes_fail(s, offset, ret);
521 *error_is_read = false;
522 }
523 return ret;
524
525 case COPY_RANGE_SMALL:
526 case COPY_RANGE_FULL:
527 ret = bdrv_co_copy_range(s->source, offset, s->target, offset, nbytes,
528 0, s->write_flags);
529 if (ret >= 0) {
530 /* Successful copy-range, increase chunk size. */
531 *method = COPY_RANGE_FULL;
532 return 0;
533 }
534
535 trace_block_copy_copy_range_fail(s, offset, ret);
536 *method = COPY_READ_WRITE;
537 /* Fall through to read+write with allocated buffer */
538
539 case COPY_READ_WRITE_CLUSTER:
540 case COPY_READ_WRITE:
541 /*
542 * In case of failed copy_range request above, we may proceed with
543 * buffered request larger than BLOCK_COPY_MAX_BUFFER.
544 * Still, further requests will be properly limited, so don't care too
545 * much. Moreover the most likely case (copy_range is unsupported for
546 * the configuration, so the very first copy_range request fails)
547 * is handled by setting large copy_size only after first successful
548 * copy_range.
549 */
550
551 bounce_buffer = qemu_blockalign(s->source->bs, nbytes);
552
553 ret = bdrv_co_pread(s->source, offset, nbytes, bounce_buffer, 0);
554 if (ret < 0) {
555 trace_block_copy_read_fail(s, offset, ret);
556 *error_is_read = true;
557 goto out;
558 }
559
560 ret = bdrv_co_pwrite(s->target, offset, nbytes, bounce_buffer,
561 s->write_flags);
562 if (ret < 0) {
563 trace_block_copy_write_fail(s, offset, ret);
564 *error_is_read = false;
565 goto out;
566 }
567
568 out:
569 qemu_vfree(bounce_buffer);
570 break;
571
572 default:
573 abort();
574 }
575
576 return ret;
577 }
578
579 static coroutine_fn int block_copy_task_entry(AioTask *task)
580 {
581 BlockCopyTask *t = container_of(task, BlockCopyTask, task);
582 BlockCopyState *s = t->s;
583 bool error_is_read = false;
584 BlockCopyMethod method = t->method;
585 int ret;
586
587 ret = block_copy_do_copy(s, t->offset, t->bytes, &method, &error_is_read);
588
589 WITH_QEMU_LOCK_GUARD(&s->lock) {
590 if (s->method == t->method) {
591 s->method = method;
592 }
593
594 if (ret < 0) {
595 if (!t->call_state->ret) {
596 t->call_state->ret = ret;
597 t->call_state->error_is_read = error_is_read;
598 }
599 } else if (s->progress) {
600 progress_work_done(s->progress, t->bytes);
601 }
602 }
603 co_put_to_shres(s->mem, t->bytes);
604 block_copy_task_end(t, ret);
605
606 return ret;
607 }
608
609 static int block_copy_block_status(BlockCopyState *s, int64_t offset,
610 int64_t bytes, int64_t *pnum)
611 {
612 int64_t num;
613 BlockDriverState *base;
614 int ret;
615
616 if (qatomic_read(&s->skip_unallocated)) {
617 base = bdrv_backing_chain_next(s->source->bs);
618 } else {
619 base = NULL;
620 }
621
622 ret = bdrv_block_status_above(s->source->bs, base, offset, bytes, &num,
623 NULL, NULL);
624 if (ret < 0 || num < s->cluster_size) {
625 /*
626 * On error or if failed to obtain large enough chunk just fallback to
627 * copy one cluster.
628 */
629 num = s->cluster_size;
630 ret = BDRV_BLOCK_ALLOCATED | BDRV_BLOCK_DATA;
631 } else if (offset + num == s->len) {
632 num = QEMU_ALIGN_UP(num, s->cluster_size);
633 } else {
634 num = QEMU_ALIGN_DOWN(num, s->cluster_size);
635 }
636
637 *pnum = num;
638 return ret;
639 }
640
641 /*
642 * Check if the cluster starting at offset is allocated or not.
643 * return via pnum the number of contiguous clusters sharing this allocation.
644 */
645 static int block_copy_is_cluster_allocated(BlockCopyState *s, int64_t offset,
646 int64_t *pnum)
647 {
648 BlockDriverState *bs = s->source->bs;
649 int64_t count, total_count = 0;
650 int64_t bytes = s->len - offset;
651 int ret;
652
653 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
654
655 while (true) {
656 ret = bdrv_is_allocated(bs, offset, bytes, &count);
657 if (ret < 0) {
658 return ret;
659 }
660
661 total_count += count;
662
663 if (ret || count == 0) {
664 /*
665 * ret: partial segment(s) are considered allocated.
666 * otherwise: unallocated tail is treated as an entire segment.
667 */
668 *pnum = DIV_ROUND_UP(total_count, s->cluster_size);
669 return ret;
670 }
671
672 /* Unallocated segment(s) with uncertain following segment(s) */
673 if (total_count >= s->cluster_size) {
674 *pnum = total_count / s->cluster_size;
675 return 0;
676 }
677
678 offset += count;
679 bytes -= count;
680 }
681 }
682
683 /*
684 * Reset bits in copy_bitmap starting at offset if they represent unallocated
685 * data in the image. May reset subsequent contiguous bits.
686 * @return 0 when the cluster at @offset was unallocated,
687 * 1 otherwise, and -ret on error.
688 */
689 int64_t block_copy_reset_unallocated(BlockCopyState *s,
690 int64_t offset, int64_t *count)
691 {
692 int ret;
693 int64_t clusters, bytes;
694
695 ret = block_copy_is_cluster_allocated(s, offset, &clusters);
696 if (ret < 0) {
697 return ret;
698 }
699
700 bytes = clusters * s->cluster_size;
701
702 if (!ret) {
703 qemu_co_mutex_lock(&s->lock);
704 bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
705 if (s->progress) {
706 progress_set_remaining(s->progress,
707 bdrv_get_dirty_count(s->copy_bitmap) +
708 s->in_flight_bytes);
709 }
710 qemu_co_mutex_unlock(&s->lock);
711 }
712
713 *count = bytes;
714 return ret;
715 }
716
717 /*
718 * block_copy_dirty_clusters
719 *
720 * Copy dirty clusters in @offset/@bytes range.
721 * Returns 1 if dirty clusters found and successfully copied, 0 if no dirty
722 * clusters found and -errno on failure.
723 */
724 static int coroutine_fn
725 block_copy_dirty_clusters(BlockCopyCallState *call_state)
726 {
727 BlockCopyState *s = call_state->s;
728 int64_t offset = call_state->offset;
729 int64_t bytes = call_state->bytes;
730
731 int ret = 0;
732 bool found_dirty = false;
733 int64_t end = offset + bytes;
734 AioTaskPool *aio = NULL;
735
736 /*
737 * block_copy() user is responsible for keeping source and target in same
738 * aio context
739 */
740 assert(bdrv_get_aio_context(s->source->bs) ==
741 bdrv_get_aio_context(s->target->bs));
742
743 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
744 assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
745
746 while (bytes && aio_task_pool_status(aio) == 0 &&
747 !qatomic_read(&call_state->cancelled)) {
748 BlockCopyTask *task;
749 int64_t status_bytes;
750
751 task = block_copy_task_create(s, call_state, offset, bytes);
752 if (!task) {
753 /* No more dirty bits in the bitmap */
754 trace_block_copy_skip_range(s, offset, bytes);
755 break;
756 }
757 if (task->offset > offset) {
758 trace_block_copy_skip_range(s, offset, task->offset - offset);
759 }
760
761 found_dirty = true;
762
763 ret = block_copy_block_status(s, task->offset, task->bytes,
764 &status_bytes);
765 assert(ret >= 0); /* never fail */
766 if (status_bytes < task->bytes) {
767 block_copy_task_shrink(task, status_bytes);
768 }
769 if (qatomic_read(&s->skip_unallocated) &&
770 !(ret & BDRV_BLOCK_ALLOCATED)) {
771 block_copy_task_end(task, 0);
772 trace_block_copy_skip_range(s, task->offset, task->bytes);
773 offset = task_end(task);
774 bytes = end - offset;
775 g_free(task);
776 continue;
777 }
778 if (ret & BDRV_BLOCK_ZERO) {
779 task->method = COPY_WRITE_ZEROES;
780 }
781
782 if (!call_state->ignore_ratelimit) {
783 uint64_t ns = ratelimit_calculate_delay(&s->rate_limit, 0);
784 if (ns > 0) {
785 block_copy_task_end(task, -EAGAIN);
786 g_free(task);
787 qemu_co_sleep_ns_wakeable(&call_state->sleep,
788 QEMU_CLOCK_REALTIME, ns);
789 continue;
790 }
791 }
792
793 ratelimit_calculate_delay(&s->rate_limit, task->bytes);
794
795 trace_block_copy_process(s, task->offset);
796
797 co_get_from_shres(s->mem, task->bytes);
798
799 offset = task_end(task);
800 bytes = end - offset;
801
802 if (!aio && bytes) {
803 aio = aio_task_pool_new(call_state->max_workers);
804 }
805
806 ret = block_copy_task_run(aio, task);
807 if (ret < 0) {
808 goto out;
809 }
810 }
811
812 out:
813 if (aio) {
814 aio_task_pool_wait_all(aio);
815
816 /*
817 * We are not really interested in -ECANCELED returned from
818 * block_copy_task_run. If it fails, it means some task already failed
819 * for real reason, let's return first failure.
820 * Still, assert that we don't rewrite failure by success.
821 *
822 * Note: ret may be positive here because of block-status result.
823 */
824 assert(ret >= 0 || aio_task_pool_status(aio) < 0);
825 ret = aio_task_pool_status(aio);
826
827 aio_task_pool_free(aio);
828 }
829
830 return ret < 0 ? ret : found_dirty;
831 }
832
833 void block_copy_kick(BlockCopyCallState *call_state)
834 {
835 qemu_co_sleep_wake(&call_state->sleep);
836 }
837
838 /*
839 * block_copy_common
840 *
841 * Copy requested region, accordingly to dirty bitmap.
842 * Collaborate with parallel block_copy requests: if they succeed it will help
843 * us. If they fail, we will retry not-copied regions. So, if we return error,
844 * it means that some I/O operation failed in context of _this_ block_copy call,
845 * not some parallel operation.
846 */
847 static int coroutine_fn block_copy_common(BlockCopyCallState *call_state)
848 {
849 int ret;
850 BlockCopyState *s = call_state->s;
851
852 qemu_co_mutex_lock(&s->lock);
853 QLIST_INSERT_HEAD(&s->calls, call_state, list);
854 qemu_co_mutex_unlock(&s->lock);
855
856 do {
857 ret = block_copy_dirty_clusters(call_state);
858
859 if (ret == 0 && !qatomic_read(&call_state->cancelled)) {
860 WITH_QEMU_LOCK_GUARD(&s->lock) {
861 /*
862 * Check that there is no task we still need to
863 * wait to complete
864 */
865 ret = block_copy_wait_one(s, call_state->offset,
866 call_state->bytes);
867 if (ret == 0) {
868 /*
869 * No pending tasks, but check again the bitmap in this
870 * same critical section, since a task might have failed
871 * between this and the critical section in
872 * block_copy_dirty_clusters().
873 *
874 * block_copy_wait_one return value 0 also means that it
875 * didn't release the lock. So, we are still in the same
876 * critical section, not interrupted by any concurrent
877 * access to state.
878 */
879 ret = bdrv_dirty_bitmap_next_dirty(s->copy_bitmap,
880 call_state->offset,
881 call_state->bytes) >= 0;
882 }
883 }
884 }
885
886 /*
887 * We retry in two cases:
888 * 1. Some progress done
889 * Something was copied, which means that there were yield points
890 * and some new dirty bits may have appeared (due to failed parallel
891 * block-copy requests).
892 * 2. We have waited for some intersecting block-copy request
893 * It may have failed and produced new dirty bits.
894 */
895 } while (ret > 0 && !qatomic_read(&call_state->cancelled));
896
897 qatomic_store_release(&call_state->finished, true);
898
899 if (call_state->cb) {
900 call_state->cb(call_state->cb_opaque);
901 }
902
903 qemu_co_mutex_lock(&s->lock);
904 QLIST_REMOVE(call_state, list);
905 qemu_co_mutex_unlock(&s->lock);
906
907 return ret;
908 }
909
910 int coroutine_fn block_copy(BlockCopyState *s, int64_t start, int64_t bytes,
911 bool ignore_ratelimit)
912 {
913 BlockCopyCallState call_state = {
914 .s = s,
915 .offset = start,
916 .bytes = bytes,
917 .ignore_ratelimit = ignore_ratelimit,
918 .max_workers = BLOCK_COPY_MAX_WORKERS,
919 };
920
921 return block_copy_common(&call_state);
922 }
923
924 static void coroutine_fn block_copy_async_co_entry(void *opaque)
925 {
926 block_copy_common(opaque);
927 }
928
929 BlockCopyCallState *block_copy_async(BlockCopyState *s,
930 int64_t offset, int64_t bytes,
931 int max_workers, int64_t max_chunk,
932 BlockCopyAsyncCallbackFunc cb,
933 void *cb_opaque)
934 {
935 BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1);
936
937 *call_state = (BlockCopyCallState) {
938 .s = s,
939 .offset = offset,
940 .bytes = bytes,
941 .max_workers = max_workers,
942 .max_chunk = max_chunk,
943 .cb = cb,
944 .cb_opaque = cb_opaque,
945
946 .co = qemu_coroutine_create(block_copy_async_co_entry, call_state),
947 };
948
949 qemu_coroutine_enter(call_state->co);
950
951 return call_state;
952 }
953
954 void block_copy_call_free(BlockCopyCallState *call_state)
955 {
956 if (!call_state) {
957 return;
958 }
959
960 assert(qatomic_read(&call_state->finished));
961 g_free(call_state);
962 }
963
964 bool block_copy_call_finished(BlockCopyCallState *call_state)
965 {
966 return qatomic_read(&call_state->finished);
967 }
968
969 bool block_copy_call_succeeded(BlockCopyCallState *call_state)
970 {
971 return qatomic_load_acquire(&call_state->finished) &&
972 !qatomic_read(&call_state->cancelled) &&
973 call_state->ret == 0;
974 }
975
976 bool block_copy_call_failed(BlockCopyCallState *call_state)
977 {
978 return qatomic_load_acquire(&call_state->finished) &&
979 !qatomic_read(&call_state->cancelled) &&
980 call_state->ret < 0;
981 }
982
983 bool block_copy_call_cancelled(BlockCopyCallState *call_state)
984 {
985 return qatomic_read(&call_state->cancelled);
986 }
987
988 int block_copy_call_status(BlockCopyCallState *call_state, bool *error_is_read)
989 {
990 assert(qatomic_load_acquire(&call_state->finished));
991 if (error_is_read) {
992 *error_is_read = call_state->error_is_read;
993 }
994 return call_state->ret;
995 }
996
997 /*
998 * Note that cancelling and finishing are racy.
999 * User can cancel a block-copy that is already finished.
1000 */
1001 void block_copy_call_cancel(BlockCopyCallState *call_state)
1002 {
1003 qatomic_set(&call_state->cancelled, true);
1004 block_copy_kick(call_state);
1005 }
1006
1007 BdrvDirtyBitmap *block_copy_dirty_bitmap(BlockCopyState *s)
1008 {
1009 return s->copy_bitmap;
1010 }
1011
1012 int64_t block_copy_cluster_size(BlockCopyState *s)
1013 {
1014 return s->cluster_size;
1015 }
1016
1017 void block_copy_set_skip_unallocated(BlockCopyState *s, bool skip)
1018 {
1019 qatomic_set(&s->skip_unallocated, skip);
1020 }
1021
1022 void block_copy_set_speed(BlockCopyState *s, uint64_t speed)
1023 {
1024 ratelimit_set_speed(&s->rate_limit, speed, BLOCK_COPY_SLICE_TIME);
1025
1026 /*
1027 * Note: it's good to kick all call states from here, but it should be done
1028 * only from a coroutine, to not crash if s->calls list changed while
1029 * entering one call. So for now, the only user of this function kicks its
1030 * only one call_state by hand.
1031 */
1032 }