]> git.proxmox.com Git - mirror_qemu.git/blob - block/block-copy.c
block/block-copy: add block_copy_reset()
[mirror_qemu.git] / block / block-copy.c
1 /*
2 * block_copy API
3 *
4 * Copyright (C) 2013 Proxmox Server Solutions
5 * Copyright (c) 2019 Virtuozzo International GmbH.
6 *
7 * Authors:
8 * Dietmar Maurer (dietmar@proxmox.com)
9 * Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 */
14
15 #include "qemu/osdep.h"
16
17 #include "trace.h"
18 #include "qapi/error.h"
19 #include "block/block-copy.h"
20 #include "sysemu/block-backend.h"
21 #include "qemu/units.h"
22 #include "qemu/coroutine.h"
23 #include "block/aio_task.h"
24 #include "qemu/error-report.h"
25
26 #define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB)
27 #define BLOCK_COPY_MAX_BUFFER (1 * MiB)
28 #define BLOCK_COPY_MAX_MEM (128 * MiB)
29 #define BLOCK_COPY_MAX_WORKERS 64
30 #define BLOCK_COPY_SLICE_TIME 100000000ULL /* ns */
31 #define BLOCK_COPY_CLUSTER_SIZE_DEFAULT (1 << 16)
32
33 typedef enum {
34 COPY_READ_WRITE_CLUSTER,
35 COPY_READ_WRITE,
36 COPY_WRITE_ZEROES,
37 COPY_RANGE_SMALL,
38 COPY_RANGE_FULL
39 } BlockCopyMethod;
40
41 static coroutine_fn int block_copy_task_entry(AioTask *task);
42
43 typedef struct BlockCopyCallState {
44 /* Fields initialized in block_copy_async() and never changed. */
45 BlockCopyState *s;
46 int64_t offset;
47 int64_t bytes;
48 int max_workers;
49 int64_t max_chunk;
50 bool ignore_ratelimit;
51 BlockCopyAsyncCallbackFunc cb;
52 void *cb_opaque;
53 /* Coroutine where async block-copy is running */
54 Coroutine *co;
55
56 /* Fields whose state changes throughout the execution */
57 bool finished; /* atomic */
58 QemuCoSleep sleep; /* TODO: protect API with a lock */
59 bool cancelled; /* atomic */
60 /* To reference all call states from BlockCopyState */
61 QLIST_ENTRY(BlockCopyCallState) list;
62
63 /*
64 * Fields that report information about return values and erros.
65 * Protected by lock in BlockCopyState.
66 */
67 bool error_is_read;
68 /*
69 * @ret is set concurrently by tasks under mutex. Only set once by first
70 * failed task (and untouched if no task failed).
71 * After finishing (call_state->finished is true), it is not modified
72 * anymore and may be safely read without mutex.
73 */
74 int ret;
75 } BlockCopyCallState;
76
77 typedef struct BlockCopyTask {
78 AioTask task;
79
80 /*
81 * Fields initialized in block_copy_task_create()
82 * and never changed.
83 */
84 BlockCopyState *s;
85 BlockCopyCallState *call_state;
86 int64_t offset;
87 /*
88 * @method can also be set again in the while loop of
89 * block_copy_dirty_clusters(), but it is never accessed concurrently
90 * because the only other function that reads it is
91 * block_copy_task_entry() and it is invoked afterwards in the same
92 * iteration.
93 */
94 BlockCopyMethod method;
95
96 /*
97 * Fields whose state changes throughout the execution
98 * Protected by lock in BlockCopyState.
99 */
100 CoQueue wait_queue; /* coroutines blocked on this task */
101 /*
102 * Only protect the case of parallel read while updating @bytes
103 * value in block_copy_task_shrink().
104 */
105 int64_t bytes;
106 QLIST_ENTRY(BlockCopyTask) list;
107 } BlockCopyTask;
108
109 static int64_t task_end(BlockCopyTask *task)
110 {
111 return task->offset + task->bytes;
112 }
113
114 typedef struct BlockCopyState {
115 /*
116 * BdrvChild objects are not owned or managed by block-copy. They are
117 * provided by block-copy user and user is responsible for appropriate
118 * permissions on these children.
119 */
120 BdrvChild *source;
121 BdrvChild *target;
122
123 /*
124 * Fields initialized in block_copy_state_new()
125 * and never changed.
126 */
127 int64_t cluster_size;
128 int64_t max_transfer;
129 uint64_t len;
130 BdrvRequestFlags write_flags;
131
132 /*
133 * Fields whose state changes throughout the execution
134 * Protected by lock.
135 */
136 CoMutex lock;
137 int64_t in_flight_bytes;
138 BlockCopyMethod method;
139 QLIST_HEAD(, BlockCopyTask) tasks; /* All tasks from all block-copy calls */
140 QLIST_HEAD(, BlockCopyCallState) calls;
141 /*
142 * skip_unallocated:
143 *
144 * Used by sync=top jobs, which first scan the source node for unallocated
145 * areas and clear them in the copy_bitmap. During this process, the bitmap
146 * is thus not fully initialized: It may still have bits set for areas that
147 * are unallocated and should actually not be copied.
148 *
149 * This is indicated by skip_unallocated.
150 *
151 * In this case, block_copy() will query the source’s allocation status,
152 * skip unallocated regions, clear them in the copy_bitmap, and invoke
153 * block_copy_reset_unallocated() every time it does.
154 */
155 bool skip_unallocated; /* atomic */
156 /* State fields that use a thread-safe API */
157 BdrvDirtyBitmap *copy_bitmap;
158 ProgressMeter *progress;
159 SharedResource *mem;
160 RateLimit rate_limit;
161 } BlockCopyState;
162
163 /* Called with lock held */
164 static BlockCopyTask *find_conflicting_task(BlockCopyState *s,
165 int64_t offset, int64_t bytes)
166 {
167 BlockCopyTask *t;
168
169 QLIST_FOREACH(t, &s->tasks, list) {
170 if (offset + bytes > t->offset && offset < t->offset + t->bytes) {
171 return t;
172 }
173 }
174
175 return NULL;
176 }
177
178 /*
179 * If there are no intersecting tasks return false. Otherwise, wait for the
180 * first found intersecting tasks to finish and return true.
181 *
182 * Called with lock held. May temporary release the lock.
183 * Return value of 0 proves that lock was NOT released.
184 */
185 static bool coroutine_fn block_copy_wait_one(BlockCopyState *s, int64_t offset,
186 int64_t bytes)
187 {
188 BlockCopyTask *task = find_conflicting_task(s, offset, bytes);
189
190 if (!task) {
191 return false;
192 }
193
194 qemu_co_queue_wait(&task->wait_queue, &s->lock);
195
196 return true;
197 }
198
199 /* Called with lock held */
200 static int64_t block_copy_chunk_size(BlockCopyState *s)
201 {
202 switch (s->method) {
203 case COPY_READ_WRITE_CLUSTER:
204 return s->cluster_size;
205 case COPY_READ_WRITE:
206 case COPY_RANGE_SMALL:
207 return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER),
208 s->max_transfer);
209 case COPY_RANGE_FULL:
210 return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_COPY_RANGE),
211 s->max_transfer);
212 default:
213 /* Cannot have COPY_WRITE_ZEROES here. */
214 abort();
215 }
216 }
217
218 /*
219 * Search for the first dirty area in offset/bytes range and create task at
220 * the beginning of it.
221 */
222 static coroutine_fn BlockCopyTask *
223 block_copy_task_create(BlockCopyState *s, BlockCopyCallState *call_state,
224 int64_t offset, int64_t bytes)
225 {
226 BlockCopyTask *task;
227 int64_t max_chunk;
228
229 QEMU_LOCK_GUARD(&s->lock);
230 max_chunk = MIN_NON_ZERO(block_copy_chunk_size(s), call_state->max_chunk);
231 if (!bdrv_dirty_bitmap_next_dirty_area(s->copy_bitmap,
232 offset, offset + bytes,
233 max_chunk, &offset, &bytes))
234 {
235 return NULL;
236 }
237
238 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
239 bytes = QEMU_ALIGN_UP(bytes, s->cluster_size);
240
241 /* region is dirty, so no existent tasks possible in it */
242 assert(!find_conflicting_task(s, offset, bytes));
243
244 bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
245 s->in_flight_bytes += bytes;
246
247 task = g_new(BlockCopyTask, 1);
248 *task = (BlockCopyTask) {
249 .task.func = block_copy_task_entry,
250 .s = s,
251 .call_state = call_state,
252 .offset = offset,
253 .bytes = bytes,
254 .method = s->method,
255 };
256 qemu_co_queue_init(&task->wait_queue);
257 QLIST_INSERT_HEAD(&s->tasks, task, list);
258
259 return task;
260 }
261
262 /*
263 * block_copy_task_shrink
264 *
265 * Drop the tail of the task to be handled later. Set dirty bits back and
266 * wake up all tasks waiting for us (may be some of them are not intersecting
267 * with shrunk task)
268 */
269 static void coroutine_fn block_copy_task_shrink(BlockCopyTask *task,
270 int64_t new_bytes)
271 {
272 QEMU_LOCK_GUARD(&task->s->lock);
273 if (new_bytes == task->bytes) {
274 return;
275 }
276
277 assert(new_bytes > 0 && new_bytes < task->bytes);
278
279 task->s->in_flight_bytes -= task->bytes - new_bytes;
280 bdrv_set_dirty_bitmap(task->s->copy_bitmap,
281 task->offset + new_bytes, task->bytes - new_bytes);
282
283 task->bytes = new_bytes;
284 qemu_co_queue_restart_all(&task->wait_queue);
285 }
286
287 static void coroutine_fn block_copy_task_end(BlockCopyTask *task, int ret)
288 {
289 QEMU_LOCK_GUARD(&task->s->lock);
290 task->s->in_flight_bytes -= task->bytes;
291 if (ret < 0) {
292 bdrv_set_dirty_bitmap(task->s->copy_bitmap, task->offset, task->bytes);
293 }
294 QLIST_REMOVE(task, list);
295 if (task->s->progress) {
296 progress_set_remaining(task->s->progress,
297 bdrv_get_dirty_count(task->s->copy_bitmap) +
298 task->s->in_flight_bytes);
299 }
300 qemu_co_queue_restart_all(&task->wait_queue);
301 }
302
303 void block_copy_state_free(BlockCopyState *s)
304 {
305 if (!s) {
306 return;
307 }
308
309 ratelimit_destroy(&s->rate_limit);
310 bdrv_release_dirty_bitmap(s->copy_bitmap);
311 shres_destroy(s->mem);
312 g_free(s);
313 }
314
315 static uint32_t block_copy_max_transfer(BdrvChild *source, BdrvChild *target)
316 {
317 return MIN_NON_ZERO(INT_MAX,
318 MIN_NON_ZERO(source->bs->bl.max_transfer,
319 target->bs->bl.max_transfer));
320 }
321
322 void block_copy_set_copy_opts(BlockCopyState *s, bool use_copy_range,
323 bool compress)
324 {
325 /* Keep BDRV_REQ_SERIALISING set (or not set) in block_copy_state_new() */
326 s->write_flags = (s->write_flags & BDRV_REQ_SERIALISING) |
327 (compress ? BDRV_REQ_WRITE_COMPRESSED : 0);
328
329 if (s->max_transfer < s->cluster_size) {
330 /*
331 * copy_range does not respect max_transfer. We don't want to bother
332 * with requests smaller than block-copy cluster size, so fallback to
333 * buffered copying (read and write respect max_transfer on their
334 * behalf).
335 */
336 s->method = COPY_READ_WRITE_CLUSTER;
337 } else if (compress) {
338 /* Compression supports only cluster-size writes and no copy-range. */
339 s->method = COPY_READ_WRITE_CLUSTER;
340 } else {
341 /*
342 * If copy range enabled, start with COPY_RANGE_SMALL, until first
343 * successful copy_range (look at block_copy_do_copy).
344 */
345 s->method = use_copy_range ? COPY_RANGE_SMALL : COPY_READ_WRITE;
346 }
347 }
348
349 static int64_t block_copy_calculate_cluster_size(BlockDriverState *target,
350 Error **errp)
351 {
352 int ret;
353 BlockDriverInfo bdi;
354 bool target_does_cow = bdrv_backing_chain_next(target);
355
356 /*
357 * If there is no backing file on the target, we cannot rely on COW if our
358 * backup cluster size is smaller than the target cluster size. Even for
359 * targets with a backing file, try to avoid COW if possible.
360 */
361 ret = bdrv_get_info(target, &bdi);
362 if (ret == -ENOTSUP && !target_does_cow) {
363 /* Cluster size is not defined */
364 warn_report("The target block device doesn't provide "
365 "information about the block size and it doesn't have a "
366 "backing file. The default block size of %u bytes is "
367 "used. If the actual block size of the target exceeds "
368 "this default, the backup may be unusable",
369 BLOCK_COPY_CLUSTER_SIZE_DEFAULT);
370 return BLOCK_COPY_CLUSTER_SIZE_DEFAULT;
371 } else if (ret < 0 && !target_does_cow) {
372 error_setg_errno(errp, -ret,
373 "Couldn't determine the cluster size of the target image, "
374 "which has no backing file");
375 error_append_hint(errp,
376 "Aborting, since this may create an unusable destination image\n");
377 return ret;
378 } else if (ret < 0 && target_does_cow) {
379 /* Not fatal; just trudge on ahead. */
380 return BLOCK_COPY_CLUSTER_SIZE_DEFAULT;
381 }
382
383 return MAX(BLOCK_COPY_CLUSTER_SIZE_DEFAULT, bdi.cluster_size);
384 }
385
386 BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target,
387 const BdrvDirtyBitmap *bitmap,
388 Error **errp)
389 {
390 ERRP_GUARD();
391 BlockCopyState *s;
392 int64_t cluster_size;
393 BdrvDirtyBitmap *copy_bitmap;
394 bool is_fleecing;
395
396 cluster_size = block_copy_calculate_cluster_size(target->bs, errp);
397 if (cluster_size < 0) {
398 return NULL;
399 }
400
401 copy_bitmap = bdrv_create_dirty_bitmap(source->bs, cluster_size, NULL,
402 errp);
403 if (!copy_bitmap) {
404 return NULL;
405 }
406 bdrv_disable_dirty_bitmap(copy_bitmap);
407 if (bitmap) {
408 if (!bdrv_merge_dirty_bitmap(copy_bitmap, bitmap, NULL, errp)) {
409 error_prepend(errp, "Failed to merge bitmap '%s' to internal "
410 "copy-bitmap: ", bdrv_dirty_bitmap_name(bitmap));
411 bdrv_release_dirty_bitmap(copy_bitmap);
412 return NULL;
413 }
414 } else {
415 bdrv_set_dirty_bitmap(copy_bitmap, 0,
416 bdrv_dirty_bitmap_size(copy_bitmap));
417 }
418
419 /*
420 * If source is in backing chain of target assume that target is going to be
421 * used for "image fleecing", i.e. it should represent a kind of snapshot of
422 * source at backup-start point in time. And target is going to be read by
423 * somebody (for example, used as NBD export) during backup job.
424 *
425 * In this case, we need to add BDRV_REQ_SERIALISING write flag to avoid
426 * intersection of backup writes and third party reads from target,
427 * otherwise reading from target we may occasionally read already updated by
428 * guest data.
429 *
430 * For more information see commit f8d59dfb40bb and test
431 * tests/qemu-iotests/222
432 */
433 is_fleecing = bdrv_chain_contains(target->bs, source->bs);
434
435 s = g_new(BlockCopyState, 1);
436 *s = (BlockCopyState) {
437 .source = source,
438 .target = target,
439 .copy_bitmap = copy_bitmap,
440 .cluster_size = cluster_size,
441 .len = bdrv_dirty_bitmap_size(copy_bitmap),
442 .write_flags = (is_fleecing ? BDRV_REQ_SERIALISING : 0),
443 .mem = shres_create(BLOCK_COPY_MAX_MEM),
444 .max_transfer = QEMU_ALIGN_DOWN(
445 block_copy_max_transfer(source, target),
446 cluster_size),
447 };
448
449 block_copy_set_copy_opts(s, false, false);
450
451 ratelimit_init(&s->rate_limit);
452 qemu_co_mutex_init(&s->lock);
453 QLIST_INIT(&s->tasks);
454 QLIST_INIT(&s->calls);
455
456 return s;
457 }
458
459 /* Only set before running the job, no need for locking. */
460 void block_copy_set_progress_meter(BlockCopyState *s, ProgressMeter *pm)
461 {
462 s->progress = pm;
463 }
464
465 /*
466 * Takes ownership of @task
467 *
468 * If pool is NULL directly run the task, otherwise schedule it into the pool.
469 *
470 * Returns: task.func return code if pool is NULL
471 * otherwise -ECANCELED if pool status is bad
472 * otherwise 0 (successfully scheduled)
473 */
474 static coroutine_fn int block_copy_task_run(AioTaskPool *pool,
475 BlockCopyTask *task)
476 {
477 if (!pool) {
478 int ret = task->task.func(&task->task);
479
480 g_free(task);
481 return ret;
482 }
483
484 aio_task_pool_wait_slot(pool);
485 if (aio_task_pool_status(pool) < 0) {
486 co_put_to_shres(task->s->mem, task->bytes);
487 block_copy_task_end(task, -ECANCELED);
488 g_free(task);
489 return -ECANCELED;
490 }
491
492 aio_task_pool_start_task(pool, &task->task);
493
494 return 0;
495 }
496
497 /*
498 * block_copy_do_copy
499 *
500 * Do copy of cluster-aligned chunk. Requested region is allowed to exceed
501 * s->len only to cover last cluster when s->len is not aligned to clusters.
502 *
503 * No sync here: nor bitmap neighter intersecting requests handling, only copy.
504 *
505 * @method is an in-out argument, so that copy_range can be either extended to
506 * a full-size buffer or disabled if the copy_range attempt fails. The output
507 * value of @method should be used for subsequent tasks.
508 * Returns 0 on success.
509 */
510 static int coroutine_fn block_copy_do_copy(BlockCopyState *s,
511 int64_t offset, int64_t bytes,
512 BlockCopyMethod *method,
513 bool *error_is_read)
514 {
515 int ret;
516 int64_t nbytes = MIN(offset + bytes, s->len) - offset;
517 void *bounce_buffer = NULL;
518
519 assert(offset >= 0 && bytes > 0 && INT64_MAX - offset >= bytes);
520 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
521 assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
522 assert(offset < s->len);
523 assert(offset + bytes <= s->len ||
524 offset + bytes == QEMU_ALIGN_UP(s->len, s->cluster_size));
525 assert(nbytes < INT_MAX);
526
527 switch (*method) {
528 case COPY_WRITE_ZEROES:
529 ret = bdrv_co_pwrite_zeroes(s->target, offset, nbytes, s->write_flags &
530 ~BDRV_REQ_WRITE_COMPRESSED);
531 if (ret < 0) {
532 trace_block_copy_write_zeroes_fail(s, offset, ret);
533 *error_is_read = false;
534 }
535 return ret;
536
537 case COPY_RANGE_SMALL:
538 case COPY_RANGE_FULL:
539 ret = bdrv_co_copy_range(s->source, offset, s->target, offset, nbytes,
540 0, s->write_flags);
541 if (ret >= 0) {
542 /* Successful copy-range, increase chunk size. */
543 *method = COPY_RANGE_FULL;
544 return 0;
545 }
546
547 trace_block_copy_copy_range_fail(s, offset, ret);
548 *method = COPY_READ_WRITE;
549 /* Fall through to read+write with allocated buffer */
550
551 case COPY_READ_WRITE_CLUSTER:
552 case COPY_READ_WRITE:
553 /*
554 * In case of failed copy_range request above, we may proceed with
555 * buffered request larger than BLOCK_COPY_MAX_BUFFER.
556 * Still, further requests will be properly limited, so don't care too
557 * much. Moreover the most likely case (copy_range is unsupported for
558 * the configuration, so the very first copy_range request fails)
559 * is handled by setting large copy_size only after first successful
560 * copy_range.
561 */
562
563 bounce_buffer = qemu_blockalign(s->source->bs, nbytes);
564
565 ret = bdrv_co_pread(s->source, offset, nbytes, bounce_buffer, 0);
566 if (ret < 0) {
567 trace_block_copy_read_fail(s, offset, ret);
568 *error_is_read = true;
569 goto out;
570 }
571
572 ret = bdrv_co_pwrite(s->target, offset, nbytes, bounce_buffer,
573 s->write_flags);
574 if (ret < 0) {
575 trace_block_copy_write_fail(s, offset, ret);
576 *error_is_read = false;
577 goto out;
578 }
579
580 out:
581 qemu_vfree(bounce_buffer);
582 break;
583
584 default:
585 abort();
586 }
587
588 return ret;
589 }
590
591 static coroutine_fn int block_copy_task_entry(AioTask *task)
592 {
593 BlockCopyTask *t = container_of(task, BlockCopyTask, task);
594 BlockCopyState *s = t->s;
595 bool error_is_read = false;
596 BlockCopyMethod method = t->method;
597 int ret;
598
599 ret = block_copy_do_copy(s, t->offset, t->bytes, &method, &error_is_read);
600
601 WITH_QEMU_LOCK_GUARD(&s->lock) {
602 if (s->method == t->method) {
603 s->method = method;
604 }
605
606 if (ret < 0) {
607 if (!t->call_state->ret) {
608 t->call_state->ret = ret;
609 t->call_state->error_is_read = error_is_read;
610 }
611 } else if (s->progress) {
612 progress_work_done(s->progress, t->bytes);
613 }
614 }
615 co_put_to_shres(s->mem, t->bytes);
616 block_copy_task_end(t, ret);
617
618 return ret;
619 }
620
621 static int block_copy_block_status(BlockCopyState *s, int64_t offset,
622 int64_t bytes, int64_t *pnum)
623 {
624 int64_t num;
625 BlockDriverState *base;
626 int ret;
627
628 if (qatomic_read(&s->skip_unallocated)) {
629 base = bdrv_backing_chain_next(s->source->bs);
630 } else {
631 base = NULL;
632 }
633
634 ret = bdrv_block_status_above(s->source->bs, base, offset, bytes, &num,
635 NULL, NULL);
636 if (ret < 0 || num < s->cluster_size) {
637 /*
638 * On error or if failed to obtain large enough chunk just fallback to
639 * copy one cluster.
640 */
641 num = s->cluster_size;
642 ret = BDRV_BLOCK_ALLOCATED | BDRV_BLOCK_DATA;
643 } else if (offset + num == s->len) {
644 num = QEMU_ALIGN_UP(num, s->cluster_size);
645 } else {
646 num = QEMU_ALIGN_DOWN(num, s->cluster_size);
647 }
648
649 *pnum = num;
650 return ret;
651 }
652
653 /*
654 * Check if the cluster starting at offset is allocated or not.
655 * return via pnum the number of contiguous clusters sharing this allocation.
656 */
657 static int block_copy_is_cluster_allocated(BlockCopyState *s, int64_t offset,
658 int64_t *pnum)
659 {
660 BlockDriverState *bs = s->source->bs;
661 int64_t count, total_count = 0;
662 int64_t bytes = s->len - offset;
663 int ret;
664
665 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
666
667 while (true) {
668 ret = bdrv_is_allocated(bs, offset, bytes, &count);
669 if (ret < 0) {
670 return ret;
671 }
672
673 total_count += count;
674
675 if (ret || count == 0) {
676 /*
677 * ret: partial segment(s) are considered allocated.
678 * otherwise: unallocated tail is treated as an entire segment.
679 */
680 *pnum = DIV_ROUND_UP(total_count, s->cluster_size);
681 return ret;
682 }
683
684 /* Unallocated segment(s) with uncertain following segment(s) */
685 if (total_count >= s->cluster_size) {
686 *pnum = total_count / s->cluster_size;
687 return 0;
688 }
689
690 offset += count;
691 bytes -= count;
692 }
693 }
694
695 void block_copy_reset(BlockCopyState *s, int64_t offset, int64_t bytes)
696 {
697 QEMU_LOCK_GUARD(&s->lock);
698
699 bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
700 if (s->progress) {
701 progress_set_remaining(s->progress,
702 bdrv_get_dirty_count(s->copy_bitmap) +
703 s->in_flight_bytes);
704 }
705 }
706
707 /*
708 * Reset bits in copy_bitmap starting at offset if they represent unallocated
709 * data in the image. May reset subsequent contiguous bits.
710 * @return 0 when the cluster at @offset was unallocated,
711 * 1 otherwise, and -ret on error.
712 */
713 int64_t block_copy_reset_unallocated(BlockCopyState *s,
714 int64_t offset, int64_t *count)
715 {
716 int ret;
717 int64_t clusters, bytes;
718
719 ret = block_copy_is_cluster_allocated(s, offset, &clusters);
720 if (ret < 0) {
721 return ret;
722 }
723
724 bytes = clusters * s->cluster_size;
725
726 if (!ret) {
727 block_copy_reset(s, offset, bytes);
728 }
729
730 *count = bytes;
731 return ret;
732 }
733
734 /*
735 * block_copy_dirty_clusters
736 *
737 * Copy dirty clusters in @offset/@bytes range.
738 * Returns 1 if dirty clusters found and successfully copied, 0 if no dirty
739 * clusters found and -errno on failure.
740 */
741 static int coroutine_fn
742 block_copy_dirty_clusters(BlockCopyCallState *call_state)
743 {
744 BlockCopyState *s = call_state->s;
745 int64_t offset = call_state->offset;
746 int64_t bytes = call_state->bytes;
747
748 int ret = 0;
749 bool found_dirty = false;
750 int64_t end = offset + bytes;
751 AioTaskPool *aio = NULL;
752
753 /*
754 * block_copy() user is responsible for keeping source and target in same
755 * aio context
756 */
757 assert(bdrv_get_aio_context(s->source->bs) ==
758 bdrv_get_aio_context(s->target->bs));
759
760 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
761 assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
762
763 while (bytes && aio_task_pool_status(aio) == 0 &&
764 !qatomic_read(&call_state->cancelled)) {
765 BlockCopyTask *task;
766 int64_t status_bytes;
767
768 task = block_copy_task_create(s, call_state, offset, bytes);
769 if (!task) {
770 /* No more dirty bits in the bitmap */
771 trace_block_copy_skip_range(s, offset, bytes);
772 break;
773 }
774 if (task->offset > offset) {
775 trace_block_copy_skip_range(s, offset, task->offset - offset);
776 }
777
778 found_dirty = true;
779
780 ret = block_copy_block_status(s, task->offset, task->bytes,
781 &status_bytes);
782 assert(ret >= 0); /* never fail */
783 if (status_bytes < task->bytes) {
784 block_copy_task_shrink(task, status_bytes);
785 }
786 if (qatomic_read(&s->skip_unallocated) &&
787 !(ret & BDRV_BLOCK_ALLOCATED)) {
788 block_copy_task_end(task, 0);
789 trace_block_copy_skip_range(s, task->offset, task->bytes);
790 offset = task_end(task);
791 bytes = end - offset;
792 g_free(task);
793 continue;
794 }
795 if (ret & BDRV_BLOCK_ZERO) {
796 task->method = COPY_WRITE_ZEROES;
797 }
798
799 if (!call_state->ignore_ratelimit) {
800 uint64_t ns = ratelimit_calculate_delay(&s->rate_limit, 0);
801 if (ns > 0) {
802 block_copy_task_end(task, -EAGAIN);
803 g_free(task);
804 qemu_co_sleep_ns_wakeable(&call_state->sleep,
805 QEMU_CLOCK_REALTIME, ns);
806 continue;
807 }
808 }
809
810 ratelimit_calculate_delay(&s->rate_limit, task->bytes);
811
812 trace_block_copy_process(s, task->offset);
813
814 co_get_from_shres(s->mem, task->bytes);
815
816 offset = task_end(task);
817 bytes = end - offset;
818
819 if (!aio && bytes) {
820 aio = aio_task_pool_new(call_state->max_workers);
821 }
822
823 ret = block_copy_task_run(aio, task);
824 if (ret < 0) {
825 goto out;
826 }
827 }
828
829 out:
830 if (aio) {
831 aio_task_pool_wait_all(aio);
832
833 /*
834 * We are not really interested in -ECANCELED returned from
835 * block_copy_task_run. If it fails, it means some task already failed
836 * for real reason, let's return first failure.
837 * Still, assert that we don't rewrite failure by success.
838 *
839 * Note: ret may be positive here because of block-status result.
840 */
841 assert(ret >= 0 || aio_task_pool_status(aio) < 0);
842 ret = aio_task_pool_status(aio);
843
844 aio_task_pool_free(aio);
845 }
846
847 return ret < 0 ? ret : found_dirty;
848 }
849
850 void block_copy_kick(BlockCopyCallState *call_state)
851 {
852 qemu_co_sleep_wake(&call_state->sleep);
853 }
854
855 /*
856 * block_copy_common
857 *
858 * Copy requested region, accordingly to dirty bitmap.
859 * Collaborate with parallel block_copy requests: if they succeed it will help
860 * us. If they fail, we will retry not-copied regions. So, if we return error,
861 * it means that some I/O operation failed in context of _this_ block_copy call,
862 * not some parallel operation.
863 */
864 static int coroutine_fn block_copy_common(BlockCopyCallState *call_state)
865 {
866 int ret;
867 BlockCopyState *s = call_state->s;
868
869 qemu_co_mutex_lock(&s->lock);
870 QLIST_INSERT_HEAD(&s->calls, call_state, list);
871 qemu_co_mutex_unlock(&s->lock);
872
873 do {
874 ret = block_copy_dirty_clusters(call_state);
875
876 if (ret == 0 && !qatomic_read(&call_state->cancelled)) {
877 WITH_QEMU_LOCK_GUARD(&s->lock) {
878 /*
879 * Check that there is no task we still need to
880 * wait to complete
881 */
882 ret = block_copy_wait_one(s, call_state->offset,
883 call_state->bytes);
884 if (ret == 0) {
885 /*
886 * No pending tasks, but check again the bitmap in this
887 * same critical section, since a task might have failed
888 * between this and the critical section in
889 * block_copy_dirty_clusters().
890 *
891 * block_copy_wait_one return value 0 also means that it
892 * didn't release the lock. So, we are still in the same
893 * critical section, not interrupted by any concurrent
894 * access to state.
895 */
896 ret = bdrv_dirty_bitmap_next_dirty(s->copy_bitmap,
897 call_state->offset,
898 call_state->bytes) >= 0;
899 }
900 }
901 }
902
903 /*
904 * We retry in two cases:
905 * 1. Some progress done
906 * Something was copied, which means that there were yield points
907 * and some new dirty bits may have appeared (due to failed parallel
908 * block-copy requests).
909 * 2. We have waited for some intersecting block-copy request
910 * It may have failed and produced new dirty bits.
911 */
912 } while (ret > 0 && !qatomic_read(&call_state->cancelled));
913
914 qatomic_store_release(&call_state->finished, true);
915
916 if (call_state->cb) {
917 call_state->cb(call_state->cb_opaque);
918 }
919
920 qemu_co_mutex_lock(&s->lock);
921 QLIST_REMOVE(call_state, list);
922 qemu_co_mutex_unlock(&s->lock);
923
924 return ret;
925 }
926
927 int coroutine_fn block_copy(BlockCopyState *s, int64_t start, int64_t bytes,
928 bool ignore_ratelimit)
929 {
930 BlockCopyCallState call_state = {
931 .s = s,
932 .offset = start,
933 .bytes = bytes,
934 .ignore_ratelimit = ignore_ratelimit,
935 .max_workers = BLOCK_COPY_MAX_WORKERS,
936 };
937
938 return block_copy_common(&call_state);
939 }
940
941 static void coroutine_fn block_copy_async_co_entry(void *opaque)
942 {
943 block_copy_common(opaque);
944 }
945
946 BlockCopyCallState *block_copy_async(BlockCopyState *s,
947 int64_t offset, int64_t bytes,
948 int max_workers, int64_t max_chunk,
949 BlockCopyAsyncCallbackFunc cb,
950 void *cb_opaque)
951 {
952 BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1);
953
954 *call_state = (BlockCopyCallState) {
955 .s = s,
956 .offset = offset,
957 .bytes = bytes,
958 .max_workers = max_workers,
959 .max_chunk = max_chunk,
960 .cb = cb,
961 .cb_opaque = cb_opaque,
962
963 .co = qemu_coroutine_create(block_copy_async_co_entry, call_state),
964 };
965
966 qemu_coroutine_enter(call_state->co);
967
968 return call_state;
969 }
970
971 void block_copy_call_free(BlockCopyCallState *call_state)
972 {
973 if (!call_state) {
974 return;
975 }
976
977 assert(qatomic_read(&call_state->finished));
978 g_free(call_state);
979 }
980
981 bool block_copy_call_finished(BlockCopyCallState *call_state)
982 {
983 return qatomic_read(&call_state->finished);
984 }
985
986 bool block_copy_call_succeeded(BlockCopyCallState *call_state)
987 {
988 return qatomic_load_acquire(&call_state->finished) &&
989 !qatomic_read(&call_state->cancelled) &&
990 call_state->ret == 0;
991 }
992
993 bool block_copy_call_failed(BlockCopyCallState *call_state)
994 {
995 return qatomic_load_acquire(&call_state->finished) &&
996 !qatomic_read(&call_state->cancelled) &&
997 call_state->ret < 0;
998 }
999
1000 bool block_copy_call_cancelled(BlockCopyCallState *call_state)
1001 {
1002 return qatomic_read(&call_state->cancelled);
1003 }
1004
1005 int block_copy_call_status(BlockCopyCallState *call_state, bool *error_is_read)
1006 {
1007 assert(qatomic_load_acquire(&call_state->finished));
1008 if (error_is_read) {
1009 *error_is_read = call_state->error_is_read;
1010 }
1011 return call_state->ret;
1012 }
1013
1014 /*
1015 * Note that cancelling and finishing are racy.
1016 * User can cancel a block-copy that is already finished.
1017 */
1018 void block_copy_call_cancel(BlockCopyCallState *call_state)
1019 {
1020 qatomic_set(&call_state->cancelled, true);
1021 block_copy_kick(call_state);
1022 }
1023
1024 BdrvDirtyBitmap *block_copy_dirty_bitmap(BlockCopyState *s)
1025 {
1026 return s->copy_bitmap;
1027 }
1028
1029 int64_t block_copy_cluster_size(BlockCopyState *s)
1030 {
1031 return s->cluster_size;
1032 }
1033
1034 void block_copy_set_skip_unallocated(BlockCopyState *s, bool skip)
1035 {
1036 qatomic_set(&s->skip_unallocated, skip);
1037 }
1038
1039 void block_copy_set_speed(BlockCopyState *s, uint64_t speed)
1040 {
1041 ratelimit_set_speed(&s->rate_limit, speed, BLOCK_COPY_SLICE_TIME);
1042
1043 /*
1044 * Note: it's good to kick all call states from here, but it should be done
1045 * only from a coroutine, to not crash if s->calls list changed while
1046 * entering one call. So for now, the only user of this function kicks its
1047 * only one call_state by hand.
1048 */
1049 }