]> git.proxmox.com Git - mirror_qemu.git/blob - block/block-copy.c
Merge remote-tracking branch 'remotes/stsquad/tags/pull-for-6.2-020921-1' into staging
[mirror_qemu.git] / block / block-copy.c
1 /*
2 * block_copy API
3 *
4 * Copyright (C) 2013 Proxmox Server Solutions
5 * Copyright (c) 2019 Virtuozzo International GmbH.
6 *
7 * Authors:
8 * Dietmar Maurer (dietmar@proxmox.com)
9 * Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 */
14
15 #include "qemu/osdep.h"
16
17 #include "trace.h"
18 #include "qapi/error.h"
19 #include "block/block-copy.h"
20 #include "sysemu/block-backend.h"
21 #include "qemu/units.h"
22 #include "qemu/coroutine.h"
23 #include "block/aio_task.h"
24 #include "qemu/error-report.h"
25
26 #define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB)
27 #define BLOCK_COPY_MAX_BUFFER (1 * MiB)
28 #define BLOCK_COPY_MAX_MEM (128 * MiB)
29 #define BLOCK_COPY_MAX_WORKERS 64
30 #define BLOCK_COPY_SLICE_TIME 100000000ULL /* ns */
31 #define BLOCK_COPY_CLUSTER_SIZE_DEFAULT (1 << 16)
32
33 typedef enum {
34 COPY_READ_WRITE_CLUSTER,
35 COPY_READ_WRITE,
36 COPY_WRITE_ZEROES,
37 COPY_RANGE_SMALL,
38 COPY_RANGE_FULL
39 } BlockCopyMethod;
40
41 static coroutine_fn int block_copy_task_entry(AioTask *task);
42
43 typedef struct BlockCopyCallState {
44 /* Fields initialized in block_copy_async() and never changed. */
45 BlockCopyState *s;
46 int64_t offset;
47 int64_t bytes;
48 int max_workers;
49 int64_t max_chunk;
50 bool ignore_ratelimit;
51 BlockCopyAsyncCallbackFunc cb;
52 void *cb_opaque;
53 /* Coroutine where async block-copy is running */
54 Coroutine *co;
55
56 /* Fields whose state changes throughout the execution */
57 bool finished; /* atomic */
58 QemuCoSleep sleep; /* TODO: protect API with a lock */
59 bool cancelled; /* atomic */
60 /* To reference all call states from BlockCopyState */
61 QLIST_ENTRY(BlockCopyCallState) list;
62
63 /*
64 * Fields that report information about return values and erros.
65 * Protected by lock in BlockCopyState.
66 */
67 bool error_is_read;
68 /*
69 * @ret is set concurrently by tasks under mutex. Only set once by first
70 * failed task (and untouched if no task failed).
71 * After finishing (call_state->finished is true), it is not modified
72 * anymore and may be safely read without mutex.
73 */
74 int ret;
75 } BlockCopyCallState;
76
77 typedef struct BlockCopyTask {
78 AioTask task;
79
80 /*
81 * Fields initialized in block_copy_task_create()
82 * and never changed.
83 */
84 BlockCopyState *s;
85 BlockCopyCallState *call_state;
86 int64_t offset;
87 /*
88 * @method can also be set again in the while loop of
89 * block_copy_dirty_clusters(), but it is never accessed concurrently
90 * because the only other function that reads it is
91 * block_copy_task_entry() and it is invoked afterwards in the same
92 * iteration.
93 */
94 BlockCopyMethod method;
95
96 /*
97 * Fields whose state changes throughout the execution
98 * Protected by lock in BlockCopyState.
99 */
100 CoQueue wait_queue; /* coroutines blocked on this task */
101 /*
102 * Only protect the case of parallel read while updating @bytes
103 * value in block_copy_task_shrink().
104 */
105 int64_t bytes;
106 QLIST_ENTRY(BlockCopyTask) list;
107 } BlockCopyTask;
108
109 static int64_t task_end(BlockCopyTask *task)
110 {
111 return task->offset + task->bytes;
112 }
113
114 typedef struct BlockCopyState {
115 /*
116 * BdrvChild objects are not owned or managed by block-copy. They are
117 * provided by block-copy user and user is responsible for appropriate
118 * permissions on these children.
119 */
120 BdrvChild *source;
121 BdrvChild *target;
122
123 /*
124 * Fields initialized in block_copy_state_new()
125 * and never changed.
126 */
127 int64_t cluster_size;
128 int64_t max_transfer;
129 uint64_t len;
130 BdrvRequestFlags write_flags;
131
132 /*
133 * Fields whose state changes throughout the execution
134 * Protected by lock.
135 */
136 CoMutex lock;
137 int64_t in_flight_bytes;
138 BlockCopyMethod method;
139 QLIST_HEAD(, BlockCopyTask) tasks; /* All tasks from all block-copy calls */
140 QLIST_HEAD(, BlockCopyCallState) calls;
141 /*
142 * skip_unallocated:
143 *
144 * Used by sync=top jobs, which first scan the source node for unallocated
145 * areas and clear them in the copy_bitmap. During this process, the bitmap
146 * is thus not fully initialized: It may still have bits set for areas that
147 * are unallocated and should actually not be copied.
148 *
149 * This is indicated by skip_unallocated.
150 *
151 * In this case, block_copy() will query the source’s allocation status,
152 * skip unallocated regions, clear them in the copy_bitmap, and invoke
153 * block_copy_reset_unallocated() every time it does.
154 */
155 bool skip_unallocated; /* atomic */
156 /* State fields that use a thread-safe API */
157 BdrvDirtyBitmap *copy_bitmap;
158 ProgressMeter *progress;
159 SharedResource *mem;
160 RateLimit rate_limit;
161 } BlockCopyState;
162
163 /* Called with lock held */
164 static BlockCopyTask *find_conflicting_task(BlockCopyState *s,
165 int64_t offset, int64_t bytes)
166 {
167 BlockCopyTask *t;
168
169 QLIST_FOREACH(t, &s->tasks, list) {
170 if (offset + bytes > t->offset && offset < t->offset + t->bytes) {
171 return t;
172 }
173 }
174
175 return NULL;
176 }
177
178 /*
179 * If there are no intersecting tasks return false. Otherwise, wait for the
180 * first found intersecting tasks to finish and return true.
181 *
182 * Called with lock held. May temporary release the lock.
183 * Return value of 0 proves that lock was NOT released.
184 */
185 static bool coroutine_fn block_copy_wait_one(BlockCopyState *s, int64_t offset,
186 int64_t bytes)
187 {
188 BlockCopyTask *task = find_conflicting_task(s, offset, bytes);
189
190 if (!task) {
191 return false;
192 }
193
194 qemu_co_queue_wait(&task->wait_queue, &s->lock);
195
196 return true;
197 }
198
199 /* Called with lock held */
200 static int64_t block_copy_chunk_size(BlockCopyState *s)
201 {
202 switch (s->method) {
203 case COPY_READ_WRITE_CLUSTER:
204 return s->cluster_size;
205 case COPY_READ_WRITE:
206 case COPY_RANGE_SMALL:
207 return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER),
208 s->max_transfer);
209 case COPY_RANGE_FULL:
210 return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_COPY_RANGE),
211 s->max_transfer);
212 default:
213 /* Cannot have COPY_WRITE_ZEROES here. */
214 abort();
215 }
216 }
217
218 /*
219 * Search for the first dirty area in offset/bytes range and create task at
220 * the beginning of it.
221 */
222 static coroutine_fn BlockCopyTask *
223 block_copy_task_create(BlockCopyState *s, BlockCopyCallState *call_state,
224 int64_t offset, int64_t bytes)
225 {
226 BlockCopyTask *task;
227 int64_t max_chunk;
228
229 QEMU_LOCK_GUARD(&s->lock);
230 max_chunk = MIN_NON_ZERO(block_copy_chunk_size(s), call_state->max_chunk);
231 if (!bdrv_dirty_bitmap_next_dirty_area(s->copy_bitmap,
232 offset, offset + bytes,
233 max_chunk, &offset, &bytes))
234 {
235 return NULL;
236 }
237
238 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
239 bytes = QEMU_ALIGN_UP(bytes, s->cluster_size);
240
241 /* region is dirty, so no existent tasks possible in it */
242 assert(!find_conflicting_task(s, offset, bytes));
243
244 bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
245 s->in_flight_bytes += bytes;
246
247 task = g_new(BlockCopyTask, 1);
248 *task = (BlockCopyTask) {
249 .task.func = block_copy_task_entry,
250 .s = s,
251 .call_state = call_state,
252 .offset = offset,
253 .bytes = bytes,
254 .method = s->method,
255 };
256 qemu_co_queue_init(&task->wait_queue);
257 QLIST_INSERT_HEAD(&s->tasks, task, list);
258
259 return task;
260 }
261
262 /*
263 * block_copy_task_shrink
264 *
265 * Drop the tail of the task to be handled later. Set dirty bits back and
266 * wake up all tasks waiting for us (may be some of them are not intersecting
267 * with shrunk task)
268 */
269 static void coroutine_fn block_copy_task_shrink(BlockCopyTask *task,
270 int64_t new_bytes)
271 {
272 QEMU_LOCK_GUARD(&task->s->lock);
273 if (new_bytes == task->bytes) {
274 return;
275 }
276
277 assert(new_bytes > 0 && new_bytes < task->bytes);
278
279 task->s->in_flight_bytes -= task->bytes - new_bytes;
280 bdrv_set_dirty_bitmap(task->s->copy_bitmap,
281 task->offset + new_bytes, task->bytes - new_bytes);
282
283 task->bytes = new_bytes;
284 qemu_co_queue_restart_all(&task->wait_queue);
285 }
286
287 static void coroutine_fn block_copy_task_end(BlockCopyTask *task, int ret)
288 {
289 QEMU_LOCK_GUARD(&task->s->lock);
290 task->s->in_flight_bytes -= task->bytes;
291 if (ret < 0) {
292 bdrv_set_dirty_bitmap(task->s->copy_bitmap, task->offset, task->bytes);
293 }
294 QLIST_REMOVE(task, list);
295 if (task->s->progress) {
296 progress_set_remaining(task->s->progress,
297 bdrv_get_dirty_count(task->s->copy_bitmap) +
298 task->s->in_flight_bytes);
299 }
300 qemu_co_queue_restart_all(&task->wait_queue);
301 }
302
303 void block_copy_state_free(BlockCopyState *s)
304 {
305 if (!s) {
306 return;
307 }
308
309 ratelimit_destroy(&s->rate_limit);
310 bdrv_release_dirty_bitmap(s->copy_bitmap);
311 shres_destroy(s->mem);
312 g_free(s);
313 }
314
315 static uint32_t block_copy_max_transfer(BdrvChild *source, BdrvChild *target)
316 {
317 return MIN_NON_ZERO(INT_MAX,
318 MIN_NON_ZERO(source->bs->bl.max_transfer,
319 target->bs->bl.max_transfer));
320 }
321
322 void block_copy_set_copy_opts(BlockCopyState *s, bool use_copy_range,
323 bool compress)
324 {
325 /* Keep BDRV_REQ_SERIALISING set (or not set) in block_copy_state_new() */
326 s->write_flags = (s->write_flags & BDRV_REQ_SERIALISING) |
327 (compress ? BDRV_REQ_WRITE_COMPRESSED : 0);
328
329 if (s->max_transfer < s->cluster_size) {
330 /*
331 * copy_range does not respect max_transfer. We don't want to bother
332 * with requests smaller than block-copy cluster size, so fallback to
333 * buffered copying (read and write respect max_transfer on their
334 * behalf).
335 */
336 s->method = COPY_READ_WRITE_CLUSTER;
337 } else if (compress) {
338 /* Compression supports only cluster-size writes and no copy-range. */
339 s->method = COPY_READ_WRITE_CLUSTER;
340 } else {
341 /*
342 * If copy range enabled, start with COPY_RANGE_SMALL, until first
343 * successful copy_range (look at block_copy_do_copy).
344 */
345 s->method = use_copy_range ? COPY_RANGE_SMALL : COPY_READ_WRITE;
346 }
347 }
348
349 static int64_t block_copy_calculate_cluster_size(BlockDriverState *target,
350 Error **errp)
351 {
352 int ret;
353 BlockDriverInfo bdi;
354 bool target_does_cow = bdrv_backing_chain_next(target);
355
356 /*
357 * If there is no backing file on the target, we cannot rely on COW if our
358 * backup cluster size is smaller than the target cluster size. Even for
359 * targets with a backing file, try to avoid COW if possible.
360 */
361 ret = bdrv_get_info(target, &bdi);
362 if (ret == -ENOTSUP && !target_does_cow) {
363 /* Cluster size is not defined */
364 warn_report("The target block device doesn't provide "
365 "information about the block size and it doesn't have a "
366 "backing file. The default block size of %u bytes is "
367 "used. If the actual block size of the target exceeds "
368 "this default, the backup may be unusable",
369 BLOCK_COPY_CLUSTER_SIZE_DEFAULT);
370 return BLOCK_COPY_CLUSTER_SIZE_DEFAULT;
371 } else if (ret < 0 && !target_does_cow) {
372 error_setg_errno(errp, -ret,
373 "Couldn't determine the cluster size of the target image, "
374 "which has no backing file");
375 error_append_hint(errp,
376 "Aborting, since this may create an unusable destination image\n");
377 return ret;
378 } else if (ret < 0 && target_does_cow) {
379 /* Not fatal; just trudge on ahead. */
380 return BLOCK_COPY_CLUSTER_SIZE_DEFAULT;
381 }
382
383 return MAX(BLOCK_COPY_CLUSTER_SIZE_DEFAULT, bdi.cluster_size);
384 }
385
386 BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target,
387 Error **errp)
388 {
389 BlockCopyState *s;
390 int64_t cluster_size;
391 BdrvDirtyBitmap *copy_bitmap;
392 bool is_fleecing;
393
394 cluster_size = block_copy_calculate_cluster_size(target->bs, errp);
395 if (cluster_size < 0) {
396 return NULL;
397 }
398
399 copy_bitmap = bdrv_create_dirty_bitmap(source->bs, cluster_size, NULL,
400 errp);
401 if (!copy_bitmap) {
402 return NULL;
403 }
404 bdrv_disable_dirty_bitmap(copy_bitmap);
405
406 /*
407 * If source is in backing chain of target assume that target is going to be
408 * used for "image fleecing", i.e. it should represent a kind of snapshot of
409 * source at backup-start point in time. And target is going to be read by
410 * somebody (for example, used as NBD export) during backup job.
411 *
412 * In this case, we need to add BDRV_REQ_SERIALISING write flag to avoid
413 * intersection of backup writes and third party reads from target,
414 * otherwise reading from target we may occasionally read already updated by
415 * guest data.
416 *
417 * For more information see commit f8d59dfb40bb and test
418 * tests/qemu-iotests/222
419 */
420 is_fleecing = bdrv_chain_contains(target->bs, source->bs);
421
422 s = g_new(BlockCopyState, 1);
423 *s = (BlockCopyState) {
424 .source = source,
425 .target = target,
426 .copy_bitmap = copy_bitmap,
427 .cluster_size = cluster_size,
428 .len = bdrv_dirty_bitmap_size(copy_bitmap),
429 .write_flags = (is_fleecing ? BDRV_REQ_SERIALISING : 0),
430 .mem = shres_create(BLOCK_COPY_MAX_MEM),
431 .max_transfer = QEMU_ALIGN_DOWN(
432 block_copy_max_transfer(source, target),
433 cluster_size),
434 };
435
436 block_copy_set_copy_opts(s, false, false);
437
438 ratelimit_init(&s->rate_limit);
439 qemu_co_mutex_init(&s->lock);
440 QLIST_INIT(&s->tasks);
441 QLIST_INIT(&s->calls);
442
443 return s;
444 }
445
446 /* Only set before running the job, no need for locking. */
447 void block_copy_set_progress_meter(BlockCopyState *s, ProgressMeter *pm)
448 {
449 s->progress = pm;
450 }
451
452 /*
453 * Takes ownership of @task
454 *
455 * If pool is NULL directly run the task, otherwise schedule it into the pool.
456 *
457 * Returns: task.func return code if pool is NULL
458 * otherwise -ECANCELED if pool status is bad
459 * otherwise 0 (successfully scheduled)
460 */
461 static coroutine_fn int block_copy_task_run(AioTaskPool *pool,
462 BlockCopyTask *task)
463 {
464 if (!pool) {
465 int ret = task->task.func(&task->task);
466
467 g_free(task);
468 return ret;
469 }
470
471 aio_task_pool_wait_slot(pool);
472 if (aio_task_pool_status(pool) < 0) {
473 co_put_to_shres(task->s->mem, task->bytes);
474 block_copy_task_end(task, -ECANCELED);
475 g_free(task);
476 return -ECANCELED;
477 }
478
479 aio_task_pool_start_task(pool, &task->task);
480
481 return 0;
482 }
483
484 /*
485 * block_copy_do_copy
486 *
487 * Do copy of cluster-aligned chunk. Requested region is allowed to exceed
488 * s->len only to cover last cluster when s->len is not aligned to clusters.
489 *
490 * No sync here: nor bitmap neighter intersecting requests handling, only copy.
491 *
492 * @method is an in-out argument, so that copy_range can be either extended to
493 * a full-size buffer or disabled if the copy_range attempt fails. The output
494 * value of @method should be used for subsequent tasks.
495 * Returns 0 on success.
496 */
497 static int coroutine_fn block_copy_do_copy(BlockCopyState *s,
498 int64_t offset, int64_t bytes,
499 BlockCopyMethod *method,
500 bool *error_is_read)
501 {
502 int ret;
503 int64_t nbytes = MIN(offset + bytes, s->len) - offset;
504 void *bounce_buffer = NULL;
505
506 assert(offset >= 0 && bytes > 0 && INT64_MAX - offset >= bytes);
507 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
508 assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
509 assert(offset < s->len);
510 assert(offset + bytes <= s->len ||
511 offset + bytes == QEMU_ALIGN_UP(s->len, s->cluster_size));
512 assert(nbytes < INT_MAX);
513
514 switch (*method) {
515 case COPY_WRITE_ZEROES:
516 ret = bdrv_co_pwrite_zeroes(s->target, offset, nbytes, s->write_flags &
517 ~BDRV_REQ_WRITE_COMPRESSED);
518 if (ret < 0) {
519 trace_block_copy_write_zeroes_fail(s, offset, ret);
520 *error_is_read = false;
521 }
522 return ret;
523
524 case COPY_RANGE_SMALL:
525 case COPY_RANGE_FULL:
526 ret = bdrv_co_copy_range(s->source, offset, s->target, offset, nbytes,
527 0, s->write_flags);
528 if (ret >= 0) {
529 /* Successful copy-range, increase chunk size. */
530 *method = COPY_RANGE_FULL;
531 return 0;
532 }
533
534 trace_block_copy_copy_range_fail(s, offset, ret);
535 *method = COPY_READ_WRITE;
536 /* Fall through to read+write with allocated buffer */
537
538 case COPY_READ_WRITE_CLUSTER:
539 case COPY_READ_WRITE:
540 /*
541 * In case of failed copy_range request above, we may proceed with
542 * buffered request larger than BLOCK_COPY_MAX_BUFFER.
543 * Still, further requests will be properly limited, so don't care too
544 * much. Moreover the most likely case (copy_range is unsupported for
545 * the configuration, so the very first copy_range request fails)
546 * is handled by setting large copy_size only after first successful
547 * copy_range.
548 */
549
550 bounce_buffer = qemu_blockalign(s->source->bs, nbytes);
551
552 ret = bdrv_co_pread(s->source, offset, nbytes, bounce_buffer, 0);
553 if (ret < 0) {
554 trace_block_copy_read_fail(s, offset, ret);
555 *error_is_read = true;
556 goto out;
557 }
558
559 ret = bdrv_co_pwrite(s->target, offset, nbytes, bounce_buffer,
560 s->write_flags);
561 if (ret < 0) {
562 trace_block_copy_write_fail(s, offset, ret);
563 *error_is_read = false;
564 goto out;
565 }
566
567 out:
568 qemu_vfree(bounce_buffer);
569 break;
570
571 default:
572 abort();
573 }
574
575 return ret;
576 }
577
578 static coroutine_fn int block_copy_task_entry(AioTask *task)
579 {
580 BlockCopyTask *t = container_of(task, BlockCopyTask, task);
581 BlockCopyState *s = t->s;
582 bool error_is_read = false;
583 BlockCopyMethod method = t->method;
584 int ret;
585
586 ret = block_copy_do_copy(s, t->offset, t->bytes, &method, &error_is_read);
587
588 WITH_QEMU_LOCK_GUARD(&s->lock) {
589 if (s->method == t->method) {
590 s->method = method;
591 }
592
593 if (ret < 0) {
594 if (!t->call_state->ret) {
595 t->call_state->ret = ret;
596 t->call_state->error_is_read = error_is_read;
597 }
598 } else if (s->progress) {
599 progress_work_done(s->progress, t->bytes);
600 }
601 }
602 co_put_to_shres(s->mem, t->bytes);
603 block_copy_task_end(t, ret);
604
605 return ret;
606 }
607
608 static int block_copy_block_status(BlockCopyState *s, int64_t offset,
609 int64_t bytes, int64_t *pnum)
610 {
611 int64_t num;
612 BlockDriverState *base;
613 int ret;
614
615 if (qatomic_read(&s->skip_unallocated)) {
616 base = bdrv_backing_chain_next(s->source->bs);
617 } else {
618 base = NULL;
619 }
620
621 ret = bdrv_block_status_above(s->source->bs, base, offset, bytes, &num,
622 NULL, NULL);
623 if (ret < 0 || num < s->cluster_size) {
624 /*
625 * On error or if failed to obtain large enough chunk just fallback to
626 * copy one cluster.
627 */
628 num = s->cluster_size;
629 ret = BDRV_BLOCK_ALLOCATED | BDRV_BLOCK_DATA;
630 } else if (offset + num == s->len) {
631 num = QEMU_ALIGN_UP(num, s->cluster_size);
632 } else {
633 num = QEMU_ALIGN_DOWN(num, s->cluster_size);
634 }
635
636 *pnum = num;
637 return ret;
638 }
639
640 /*
641 * Check if the cluster starting at offset is allocated or not.
642 * return via pnum the number of contiguous clusters sharing this allocation.
643 */
644 static int block_copy_is_cluster_allocated(BlockCopyState *s, int64_t offset,
645 int64_t *pnum)
646 {
647 BlockDriverState *bs = s->source->bs;
648 int64_t count, total_count = 0;
649 int64_t bytes = s->len - offset;
650 int ret;
651
652 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
653
654 while (true) {
655 ret = bdrv_is_allocated(bs, offset, bytes, &count);
656 if (ret < 0) {
657 return ret;
658 }
659
660 total_count += count;
661
662 if (ret || count == 0) {
663 /*
664 * ret: partial segment(s) are considered allocated.
665 * otherwise: unallocated tail is treated as an entire segment.
666 */
667 *pnum = DIV_ROUND_UP(total_count, s->cluster_size);
668 return ret;
669 }
670
671 /* Unallocated segment(s) with uncertain following segment(s) */
672 if (total_count >= s->cluster_size) {
673 *pnum = total_count / s->cluster_size;
674 return 0;
675 }
676
677 offset += count;
678 bytes -= count;
679 }
680 }
681
682 /*
683 * Reset bits in copy_bitmap starting at offset if they represent unallocated
684 * data in the image. May reset subsequent contiguous bits.
685 * @return 0 when the cluster at @offset was unallocated,
686 * 1 otherwise, and -ret on error.
687 */
688 int64_t block_copy_reset_unallocated(BlockCopyState *s,
689 int64_t offset, int64_t *count)
690 {
691 int ret;
692 int64_t clusters, bytes;
693
694 ret = block_copy_is_cluster_allocated(s, offset, &clusters);
695 if (ret < 0) {
696 return ret;
697 }
698
699 bytes = clusters * s->cluster_size;
700
701 if (!ret) {
702 qemu_co_mutex_lock(&s->lock);
703 bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
704 if (s->progress) {
705 progress_set_remaining(s->progress,
706 bdrv_get_dirty_count(s->copy_bitmap) +
707 s->in_flight_bytes);
708 }
709 qemu_co_mutex_unlock(&s->lock);
710 }
711
712 *count = bytes;
713 return ret;
714 }
715
716 /*
717 * block_copy_dirty_clusters
718 *
719 * Copy dirty clusters in @offset/@bytes range.
720 * Returns 1 if dirty clusters found and successfully copied, 0 if no dirty
721 * clusters found and -errno on failure.
722 */
723 static int coroutine_fn
724 block_copy_dirty_clusters(BlockCopyCallState *call_state)
725 {
726 BlockCopyState *s = call_state->s;
727 int64_t offset = call_state->offset;
728 int64_t bytes = call_state->bytes;
729
730 int ret = 0;
731 bool found_dirty = false;
732 int64_t end = offset + bytes;
733 AioTaskPool *aio = NULL;
734
735 /*
736 * block_copy() user is responsible for keeping source and target in same
737 * aio context
738 */
739 assert(bdrv_get_aio_context(s->source->bs) ==
740 bdrv_get_aio_context(s->target->bs));
741
742 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
743 assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
744
745 while (bytes && aio_task_pool_status(aio) == 0 &&
746 !qatomic_read(&call_state->cancelled)) {
747 BlockCopyTask *task;
748 int64_t status_bytes;
749
750 task = block_copy_task_create(s, call_state, offset, bytes);
751 if (!task) {
752 /* No more dirty bits in the bitmap */
753 trace_block_copy_skip_range(s, offset, bytes);
754 break;
755 }
756 if (task->offset > offset) {
757 trace_block_copy_skip_range(s, offset, task->offset - offset);
758 }
759
760 found_dirty = true;
761
762 ret = block_copy_block_status(s, task->offset, task->bytes,
763 &status_bytes);
764 assert(ret >= 0); /* never fail */
765 if (status_bytes < task->bytes) {
766 block_copy_task_shrink(task, status_bytes);
767 }
768 if (qatomic_read(&s->skip_unallocated) &&
769 !(ret & BDRV_BLOCK_ALLOCATED)) {
770 block_copy_task_end(task, 0);
771 trace_block_copy_skip_range(s, task->offset, task->bytes);
772 offset = task_end(task);
773 bytes = end - offset;
774 g_free(task);
775 continue;
776 }
777 if (ret & BDRV_BLOCK_ZERO) {
778 task->method = COPY_WRITE_ZEROES;
779 }
780
781 if (!call_state->ignore_ratelimit) {
782 uint64_t ns = ratelimit_calculate_delay(&s->rate_limit, 0);
783 if (ns > 0) {
784 block_copy_task_end(task, -EAGAIN);
785 g_free(task);
786 qemu_co_sleep_ns_wakeable(&call_state->sleep,
787 QEMU_CLOCK_REALTIME, ns);
788 continue;
789 }
790 }
791
792 ratelimit_calculate_delay(&s->rate_limit, task->bytes);
793
794 trace_block_copy_process(s, task->offset);
795
796 co_get_from_shres(s->mem, task->bytes);
797
798 offset = task_end(task);
799 bytes = end - offset;
800
801 if (!aio && bytes) {
802 aio = aio_task_pool_new(call_state->max_workers);
803 }
804
805 ret = block_copy_task_run(aio, task);
806 if (ret < 0) {
807 goto out;
808 }
809 }
810
811 out:
812 if (aio) {
813 aio_task_pool_wait_all(aio);
814
815 /*
816 * We are not really interested in -ECANCELED returned from
817 * block_copy_task_run. If it fails, it means some task already failed
818 * for real reason, let's return first failure.
819 * Still, assert that we don't rewrite failure by success.
820 *
821 * Note: ret may be positive here because of block-status result.
822 */
823 assert(ret >= 0 || aio_task_pool_status(aio) < 0);
824 ret = aio_task_pool_status(aio);
825
826 aio_task_pool_free(aio);
827 }
828
829 return ret < 0 ? ret : found_dirty;
830 }
831
832 void block_copy_kick(BlockCopyCallState *call_state)
833 {
834 qemu_co_sleep_wake(&call_state->sleep);
835 }
836
837 /*
838 * block_copy_common
839 *
840 * Copy requested region, accordingly to dirty bitmap.
841 * Collaborate with parallel block_copy requests: if they succeed it will help
842 * us. If they fail, we will retry not-copied regions. So, if we return error,
843 * it means that some I/O operation failed in context of _this_ block_copy call,
844 * not some parallel operation.
845 */
846 static int coroutine_fn block_copy_common(BlockCopyCallState *call_state)
847 {
848 int ret;
849 BlockCopyState *s = call_state->s;
850
851 qemu_co_mutex_lock(&s->lock);
852 QLIST_INSERT_HEAD(&s->calls, call_state, list);
853 qemu_co_mutex_unlock(&s->lock);
854
855 do {
856 ret = block_copy_dirty_clusters(call_state);
857
858 if (ret == 0 && !qatomic_read(&call_state->cancelled)) {
859 WITH_QEMU_LOCK_GUARD(&s->lock) {
860 /*
861 * Check that there is no task we still need to
862 * wait to complete
863 */
864 ret = block_copy_wait_one(s, call_state->offset,
865 call_state->bytes);
866 if (ret == 0) {
867 /*
868 * No pending tasks, but check again the bitmap in this
869 * same critical section, since a task might have failed
870 * between this and the critical section in
871 * block_copy_dirty_clusters().
872 *
873 * block_copy_wait_one return value 0 also means that it
874 * didn't release the lock. So, we are still in the same
875 * critical section, not interrupted by any concurrent
876 * access to state.
877 */
878 ret = bdrv_dirty_bitmap_next_dirty(s->copy_bitmap,
879 call_state->offset,
880 call_state->bytes) >= 0;
881 }
882 }
883 }
884
885 /*
886 * We retry in two cases:
887 * 1. Some progress done
888 * Something was copied, which means that there were yield points
889 * and some new dirty bits may have appeared (due to failed parallel
890 * block-copy requests).
891 * 2. We have waited for some intersecting block-copy request
892 * It may have failed and produced new dirty bits.
893 */
894 } while (ret > 0 && !qatomic_read(&call_state->cancelled));
895
896 qatomic_store_release(&call_state->finished, true);
897
898 if (call_state->cb) {
899 call_state->cb(call_state->cb_opaque);
900 }
901
902 qemu_co_mutex_lock(&s->lock);
903 QLIST_REMOVE(call_state, list);
904 qemu_co_mutex_unlock(&s->lock);
905
906 return ret;
907 }
908
909 int coroutine_fn block_copy(BlockCopyState *s, int64_t start, int64_t bytes,
910 bool ignore_ratelimit)
911 {
912 BlockCopyCallState call_state = {
913 .s = s,
914 .offset = start,
915 .bytes = bytes,
916 .ignore_ratelimit = ignore_ratelimit,
917 .max_workers = BLOCK_COPY_MAX_WORKERS,
918 };
919
920 return block_copy_common(&call_state);
921 }
922
923 static void coroutine_fn block_copy_async_co_entry(void *opaque)
924 {
925 block_copy_common(opaque);
926 }
927
928 BlockCopyCallState *block_copy_async(BlockCopyState *s,
929 int64_t offset, int64_t bytes,
930 int max_workers, int64_t max_chunk,
931 BlockCopyAsyncCallbackFunc cb,
932 void *cb_opaque)
933 {
934 BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1);
935
936 *call_state = (BlockCopyCallState) {
937 .s = s,
938 .offset = offset,
939 .bytes = bytes,
940 .max_workers = max_workers,
941 .max_chunk = max_chunk,
942 .cb = cb,
943 .cb_opaque = cb_opaque,
944
945 .co = qemu_coroutine_create(block_copy_async_co_entry, call_state),
946 };
947
948 qemu_coroutine_enter(call_state->co);
949
950 return call_state;
951 }
952
953 void block_copy_call_free(BlockCopyCallState *call_state)
954 {
955 if (!call_state) {
956 return;
957 }
958
959 assert(qatomic_read(&call_state->finished));
960 g_free(call_state);
961 }
962
963 bool block_copy_call_finished(BlockCopyCallState *call_state)
964 {
965 return qatomic_read(&call_state->finished);
966 }
967
968 bool block_copy_call_succeeded(BlockCopyCallState *call_state)
969 {
970 return qatomic_load_acquire(&call_state->finished) &&
971 !qatomic_read(&call_state->cancelled) &&
972 call_state->ret == 0;
973 }
974
975 bool block_copy_call_failed(BlockCopyCallState *call_state)
976 {
977 return qatomic_load_acquire(&call_state->finished) &&
978 !qatomic_read(&call_state->cancelled) &&
979 call_state->ret < 0;
980 }
981
982 bool block_copy_call_cancelled(BlockCopyCallState *call_state)
983 {
984 return qatomic_read(&call_state->cancelled);
985 }
986
987 int block_copy_call_status(BlockCopyCallState *call_state, bool *error_is_read)
988 {
989 assert(qatomic_load_acquire(&call_state->finished));
990 if (error_is_read) {
991 *error_is_read = call_state->error_is_read;
992 }
993 return call_state->ret;
994 }
995
996 /*
997 * Note that cancelling and finishing are racy.
998 * User can cancel a block-copy that is already finished.
999 */
1000 void block_copy_call_cancel(BlockCopyCallState *call_state)
1001 {
1002 qatomic_set(&call_state->cancelled, true);
1003 block_copy_kick(call_state);
1004 }
1005
1006 BdrvDirtyBitmap *block_copy_dirty_bitmap(BlockCopyState *s)
1007 {
1008 return s->copy_bitmap;
1009 }
1010
1011 int64_t block_copy_cluster_size(BlockCopyState *s)
1012 {
1013 return s->cluster_size;
1014 }
1015
1016 void block_copy_set_skip_unallocated(BlockCopyState *s, bool skip)
1017 {
1018 qatomic_set(&s->skip_unallocated, skip);
1019 }
1020
1021 void block_copy_set_speed(BlockCopyState *s, uint64_t speed)
1022 {
1023 ratelimit_set_speed(&s->rate_limit, speed, BLOCK_COPY_SLICE_TIME);
1024
1025 /*
1026 * Note: it's good to kick all call states from here, but it should be done
1027 * only from a coroutine, to not crash if s->calls list changed while
1028 * entering one call. So for now, the only user of this function kicks its
1029 * only one call_state by hand.
1030 */
1031 }