]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/cfq-iosched.c
[PATCH] cfq-iosched: kill cfq_exit_lock
[mirror_ubuntu-artful-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@suse.de>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/hash.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15
16 /*
17 * tunables
18 */
19 static const int cfq_quantum = 4; /* max queue in one round of service */
20 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
21 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
22 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
23
24 static const int cfq_slice_sync = HZ / 10;
25 static int cfq_slice_async = HZ / 25;
26 static const int cfq_slice_async_rq = 2;
27 static int cfq_slice_idle = HZ / 125;
28
29 #define CFQ_IDLE_GRACE (HZ / 10)
30 #define CFQ_SLICE_SCALE (5)
31
32 #define CFQ_KEY_ASYNC (0)
33
34 /*
35 * for the hash of cfqq inside the cfqd
36 */
37 #define CFQ_QHASH_SHIFT 6
38 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
39 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
40
41 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
42
43 #define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
44 #define RQ_CFQQ(rq) ((rq)->elevator_private2)
45
46 static kmem_cache_t *cfq_pool;
47 static kmem_cache_t *cfq_ioc_pool;
48
49 static atomic_t ioc_count = ATOMIC_INIT(0);
50 static struct completion *ioc_gone;
51
52 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
53 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
54 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
55
56 #define ASYNC (0)
57 #define SYNC (1)
58
59 #define cfq_cfqq_dispatched(cfqq) \
60 ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
61
62 #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
63
64 #define cfq_cfqq_sync(cfqq) \
65 (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
66
67 #define sample_valid(samples) ((samples) > 80)
68
69 /*
70 * Per block device queue structure
71 */
72 struct cfq_data {
73 request_queue_t *queue;
74
75 /*
76 * rr list of queues with requests and the count of them
77 */
78 struct list_head rr_list[CFQ_PRIO_LISTS];
79 struct list_head busy_rr;
80 struct list_head cur_rr;
81 struct list_head idle_rr;
82 unsigned int busy_queues;
83
84 /*
85 * non-ordered list of empty cfqq's
86 */
87 struct list_head empty_list;
88
89 /*
90 * cfqq lookup hash
91 */
92 struct hlist_head *cfq_hash;
93
94 int rq_in_driver;
95 int hw_tag;
96
97 /*
98 * idle window management
99 */
100 struct timer_list idle_slice_timer;
101 struct work_struct unplug_work;
102
103 struct cfq_queue *active_queue;
104 struct cfq_io_context *active_cic;
105 int cur_prio, cur_end_prio;
106 unsigned int dispatch_slice;
107
108 struct timer_list idle_class_timer;
109
110 sector_t last_sector;
111 unsigned long last_end_request;
112
113 /*
114 * tunables, see top of file
115 */
116 unsigned int cfq_quantum;
117 unsigned int cfq_fifo_expire[2];
118 unsigned int cfq_back_penalty;
119 unsigned int cfq_back_max;
120 unsigned int cfq_slice[2];
121 unsigned int cfq_slice_async_rq;
122 unsigned int cfq_slice_idle;
123
124 struct list_head cic_list;
125 };
126
127 /*
128 * Per process-grouping structure
129 */
130 struct cfq_queue {
131 /* reference count */
132 atomic_t ref;
133 /* parent cfq_data */
134 struct cfq_data *cfqd;
135 /* cfqq lookup hash */
136 struct hlist_node cfq_hash;
137 /* hash key */
138 unsigned int key;
139 /* on either rr or empty list of cfqd */
140 struct list_head cfq_list;
141 /* sorted list of pending requests */
142 struct rb_root sort_list;
143 /* if fifo isn't expired, next request to serve */
144 struct request *next_rq;
145 /* requests queued in sort_list */
146 int queued[2];
147 /* currently allocated requests */
148 int allocated[2];
149 /* fifo list of requests in sort_list */
150 struct list_head fifo;
151
152 unsigned long slice_start;
153 unsigned long slice_end;
154 unsigned long slice_left;
155 unsigned long service_last;
156
157 /* number of requests that are on the dispatch list */
158 int on_dispatch[2];
159
160 /* io prio of this group */
161 unsigned short ioprio, org_ioprio;
162 unsigned short ioprio_class, org_ioprio_class;
163
164 /* various state flags, see below */
165 unsigned int flags;
166 };
167
168 enum cfqq_state_flags {
169 CFQ_CFQQ_FLAG_on_rr = 0,
170 CFQ_CFQQ_FLAG_wait_request,
171 CFQ_CFQQ_FLAG_must_alloc,
172 CFQ_CFQQ_FLAG_must_alloc_slice,
173 CFQ_CFQQ_FLAG_must_dispatch,
174 CFQ_CFQQ_FLAG_fifo_expire,
175 CFQ_CFQQ_FLAG_idle_window,
176 CFQ_CFQQ_FLAG_prio_changed,
177 };
178
179 #define CFQ_CFQQ_FNS(name) \
180 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
181 { \
182 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
183 } \
184 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
185 { \
186 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
187 } \
188 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
189 { \
190 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
191 }
192
193 CFQ_CFQQ_FNS(on_rr);
194 CFQ_CFQQ_FNS(wait_request);
195 CFQ_CFQQ_FNS(must_alloc);
196 CFQ_CFQQ_FNS(must_alloc_slice);
197 CFQ_CFQQ_FNS(must_dispatch);
198 CFQ_CFQQ_FNS(fifo_expire);
199 CFQ_CFQQ_FNS(idle_window);
200 CFQ_CFQQ_FNS(prio_changed);
201 #undef CFQ_CFQQ_FNS
202
203 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
204 static void cfq_dispatch_insert(request_queue_t *, struct request *);
205 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
206
207 /*
208 * scheduler run of queue, if there are requests pending and no one in the
209 * driver that will restart queueing
210 */
211 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
212 {
213 if (cfqd->busy_queues)
214 kblockd_schedule_work(&cfqd->unplug_work);
215 }
216
217 static int cfq_queue_empty(request_queue_t *q)
218 {
219 struct cfq_data *cfqd = q->elevator->elevator_data;
220
221 return !cfqd->busy_queues;
222 }
223
224 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw)
225 {
226 if (rw == READ || rw == WRITE_SYNC)
227 return task->pid;
228
229 return CFQ_KEY_ASYNC;
230 }
231
232 /*
233 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
234 * We choose the request that is closest to the head right now. Distance
235 * behind the head is penalized and only allowed to a certain extent.
236 */
237 static struct request *
238 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
239 {
240 sector_t last, s1, s2, d1 = 0, d2 = 0;
241 unsigned long back_max;
242 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
243 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
244 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
245
246 if (rq1 == NULL || rq1 == rq2)
247 return rq2;
248 if (rq2 == NULL)
249 return rq1;
250
251 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
252 return rq1;
253 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
254 return rq2;
255
256 s1 = rq1->sector;
257 s2 = rq2->sector;
258
259 last = cfqd->last_sector;
260
261 /*
262 * by definition, 1KiB is 2 sectors
263 */
264 back_max = cfqd->cfq_back_max * 2;
265
266 /*
267 * Strict one way elevator _except_ in the case where we allow
268 * short backward seeks which are biased as twice the cost of a
269 * similar forward seek.
270 */
271 if (s1 >= last)
272 d1 = s1 - last;
273 else if (s1 + back_max >= last)
274 d1 = (last - s1) * cfqd->cfq_back_penalty;
275 else
276 wrap |= CFQ_RQ1_WRAP;
277
278 if (s2 >= last)
279 d2 = s2 - last;
280 else if (s2 + back_max >= last)
281 d2 = (last - s2) * cfqd->cfq_back_penalty;
282 else
283 wrap |= CFQ_RQ2_WRAP;
284
285 /* Found required data */
286
287 /*
288 * By doing switch() on the bit mask "wrap" we avoid having to
289 * check two variables for all permutations: --> faster!
290 */
291 switch (wrap) {
292 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
293 if (d1 < d2)
294 return rq1;
295 else if (d2 < d1)
296 return rq2;
297 else {
298 if (s1 >= s2)
299 return rq1;
300 else
301 return rq2;
302 }
303
304 case CFQ_RQ2_WRAP:
305 return rq1;
306 case CFQ_RQ1_WRAP:
307 return rq2;
308 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
309 default:
310 /*
311 * Since both rqs are wrapped,
312 * start with the one that's further behind head
313 * (--> only *one* back seek required),
314 * since back seek takes more time than forward.
315 */
316 if (s1 <= s2)
317 return rq1;
318 else
319 return rq2;
320 }
321 }
322
323 /*
324 * would be nice to take fifo expire time into account as well
325 */
326 static struct request *
327 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
328 struct request *last)
329 {
330 struct rb_node *rbnext = rb_next(&last->rb_node);
331 struct rb_node *rbprev = rb_prev(&last->rb_node);
332 struct request *next = NULL, *prev = NULL;
333
334 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
335
336 if (rbprev)
337 prev = rb_entry_rq(rbprev);
338
339 if (rbnext)
340 next = rb_entry_rq(rbnext);
341 else {
342 rbnext = rb_first(&cfqq->sort_list);
343 if (rbnext && rbnext != &last->rb_node)
344 next = rb_entry_rq(rbnext);
345 }
346
347 return cfq_choose_req(cfqd, next, prev);
348 }
349
350 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
351 {
352 struct cfq_data *cfqd = cfqq->cfqd;
353 struct list_head *list, *entry;
354
355 BUG_ON(!cfq_cfqq_on_rr(cfqq));
356
357 list_del(&cfqq->cfq_list);
358
359 if (cfq_class_rt(cfqq))
360 list = &cfqd->cur_rr;
361 else if (cfq_class_idle(cfqq))
362 list = &cfqd->idle_rr;
363 else {
364 /*
365 * if cfqq has requests in flight, don't allow it to be
366 * found in cfq_set_active_queue before it has finished them.
367 * this is done to increase fairness between a process that
368 * has lots of io pending vs one that only generates one
369 * sporadically or synchronously
370 */
371 if (cfq_cfqq_dispatched(cfqq))
372 list = &cfqd->busy_rr;
373 else
374 list = &cfqd->rr_list[cfqq->ioprio];
375 }
376
377 /*
378 * if queue was preempted, just add to front to be fair. busy_rr
379 * isn't sorted, but insert at the back for fairness.
380 */
381 if (preempted || list == &cfqd->busy_rr) {
382 if (preempted)
383 list = list->prev;
384
385 list_add_tail(&cfqq->cfq_list, list);
386 return;
387 }
388
389 /*
390 * sort by when queue was last serviced
391 */
392 entry = list;
393 while ((entry = entry->prev) != list) {
394 struct cfq_queue *__cfqq = list_entry_cfqq(entry);
395
396 if (!__cfqq->service_last)
397 break;
398 if (time_before(__cfqq->service_last, cfqq->service_last))
399 break;
400 }
401
402 list_add(&cfqq->cfq_list, entry);
403 }
404
405 /*
406 * add to busy list of queues for service, trying to be fair in ordering
407 * the pending list according to last request service
408 */
409 static inline void
410 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
411 {
412 BUG_ON(cfq_cfqq_on_rr(cfqq));
413 cfq_mark_cfqq_on_rr(cfqq);
414 cfqd->busy_queues++;
415
416 cfq_resort_rr_list(cfqq, 0);
417 }
418
419 static inline void
420 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
421 {
422 BUG_ON(!cfq_cfqq_on_rr(cfqq));
423 cfq_clear_cfqq_on_rr(cfqq);
424 list_move(&cfqq->cfq_list, &cfqd->empty_list);
425
426 BUG_ON(!cfqd->busy_queues);
427 cfqd->busy_queues--;
428 }
429
430 /*
431 * rb tree support functions
432 */
433 static inline void cfq_del_rq_rb(struct request *rq)
434 {
435 struct cfq_queue *cfqq = RQ_CFQQ(rq);
436 struct cfq_data *cfqd = cfqq->cfqd;
437 const int sync = rq_is_sync(rq);
438
439 BUG_ON(!cfqq->queued[sync]);
440 cfqq->queued[sync]--;
441
442 elv_rb_del(&cfqq->sort_list, rq);
443
444 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
445 cfq_del_cfqq_rr(cfqd, cfqq);
446 }
447
448 static void cfq_add_rq_rb(struct request *rq)
449 {
450 struct cfq_queue *cfqq = RQ_CFQQ(rq);
451 struct cfq_data *cfqd = cfqq->cfqd;
452 struct request *__alias;
453
454 cfqq->queued[rq_is_sync(rq)]++;
455
456 /*
457 * looks a little odd, but the first insert might return an alias.
458 * if that happens, put the alias on the dispatch list
459 */
460 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
461 cfq_dispatch_insert(cfqd->queue, __alias);
462 }
463
464 static inline void
465 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
466 {
467 elv_rb_del(&cfqq->sort_list, rq);
468 cfqq->queued[rq_is_sync(rq)]--;
469 cfq_add_rq_rb(rq);
470 }
471
472 static struct request *
473 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
474 {
475 struct task_struct *tsk = current;
476 pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio));
477 struct cfq_queue *cfqq;
478
479 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
480 if (cfqq) {
481 sector_t sector = bio->bi_sector + bio_sectors(bio);
482
483 return elv_rb_find(&cfqq->sort_list, sector);
484 }
485
486 return NULL;
487 }
488
489 static void cfq_activate_request(request_queue_t *q, struct request *rq)
490 {
491 struct cfq_data *cfqd = q->elevator->elevator_data;
492
493 cfqd->rq_in_driver++;
494
495 /*
496 * If the depth is larger 1, it really could be queueing. But lets
497 * make the mark a little higher - idling could still be good for
498 * low queueing, and a low queueing number could also just indicate
499 * a SCSI mid layer like behaviour where limit+1 is often seen.
500 */
501 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
502 cfqd->hw_tag = 1;
503 }
504
505 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
506 {
507 struct cfq_data *cfqd = q->elevator->elevator_data;
508
509 WARN_ON(!cfqd->rq_in_driver);
510 cfqd->rq_in_driver--;
511 }
512
513 static void cfq_remove_request(struct request *rq)
514 {
515 struct cfq_queue *cfqq = RQ_CFQQ(rq);
516
517 if (cfqq->next_rq == rq)
518 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
519
520 list_del_init(&rq->queuelist);
521 cfq_del_rq_rb(rq);
522 }
523
524 static int
525 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
526 {
527 struct cfq_data *cfqd = q->elevator->elevator_data;
528 struct request *__rq;
529
530 __rq = cfq_find_rq_fmerge(cfqd, bio);
531 if (__rq && elv_rq_merge_ok(__rq, bio)) {
532 *req = __rq;
533 return ELEVATOR_FRONT_MERGE;
534 }
535
536 return ELEVATOR_NO_MERGE;
537 }
538
539 static void cfq_merged_request(request_queue_t *q, struct request *req,
540 int type)
541 {
542 if (type == ELEVATOR_FRONT_MERGE) {
543 struct cfq_queue *cfqq = RQ_CFQQ(req);
544
545 cfq_reposition_rq_rb(cfqq, req);
546 }
547 }
548
549 static void
550 cfq_merged_requests(request_queue_t *q, struct request *rq,
551 struct request *next)
552 {
553 /*
554 * reposition in fifo if next is older than rq
555 */
556 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
557 time_before(next->start_time, rq->start_time))
558 list_move(&rq->queuelist, &next->queuelist);
559
560 cfq_remove_request(next);
561 }
562
563 static inline void
564 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
565 {
566 if (cfqq) {
567 /*
568 * stop potential idle class queues waiting service
569 */
570 del_timer(&cfqd->idle_class_timer);
571
572 cfqq->slice_start = jiffies;
573 cfqq->slice_end = 0;
574 cfqq->slice_left = 0;
575 cfq_clear_cfqq_must_alloc_slice(cfqq);
576 cfq_clear_cfqq_fifo_expire(cfqq);
577 }
578
579 cfqd->active_queue = cfqq;
580 }
581
582 /*
583 * current cfqq expired its slice (or was too idle), select new one
584 */
585 static void
586 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
587 int preempted)
588 {
589 unsigned long now = jiffies;
590
591 if (cfq_cfqq_wait_request(cfqq))
592 del_timer(&cfqd->idle_slice_timer);
593
594 if (!preempted && !cfq_cfqq_dispatched(cfqq)) {
595 cfqq->service_last = now;
596 cfq_schedule_dispatch(cfqd);
597 }
598
599 cfq_clear_cfqq_must_dispatch(cfqq);
600 cfq_clear_cfqq_wait_request(cfqq);
601
602 /*
603 * store what was left of this slice, if the queue idled out
604 * or was preempted
605 */
606 if (time_after(cfqq->slice_end, now))
607 cfqq->slice_left = cfqq->slice_end - now;
608 else
609 cfqq->slice_left = 0;
610
611 if (cfq_cfqq_on_rr(cfqq))
612 cfq_resort_rr_list(cfqq, preempted);
613
614 if (cfqq == cfqd->active_queue)
615 cfqd->active_queue = NULL;
616
617 if (cfqd->active_cic) {
618 put_io_context(cfqd->active_cic->ioc);
619 cfqd->active_cic = NULL;
620 }
621
622 cfqd->dispatch_slice = 0;
623 }
624
625 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
626 {
627 struct cfq_queue *cfqq = cfqd->active_queue;
628
629 if (cfqq)
630 __cfq_slice_expired(cfqd, cfqq, preempted);
631 }
632
633 /*
634 * 0
635 * 0,1
636 * 0,1,2
637 * 0,1,2,3
638 * 0,1,2,3,4
639 * 0,1,2,3,4,5
640 * 0,1,2,3,4,5,6
641 * 0,1,2,3,4,5,6,7
642 */
643 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
644 {
645 int prio, wrap;
646
647 prio = -1;
648 wrap = 0;
649 do {
650 int p;
651
652 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
653 if (!list_empty(&cfqd->rr_list[p])) {
654 prio = p;
655 break;
656 }
657 }
658
659 if (prio != -1)
660 break;
661 cfqd->cur_prio = 0;
662 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
663 cfqd->cur_end_prio = 0;
664 if (wrap)
665 break;
666 wrap = 1;
667 }
668 } while (1);
669
670 if (unlikely(prio == -1))
671 return -1;
672
673 BUG_ON(prio >= CFQ_PRIO_LISTS);
674
675 list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
676
677 cfqd->cur_prio = prio + 1;
678 if (cfqd->cur_prio > cfqd->cur_end_prio) {
679 cfqd->cur_end_prio = cfqd->cur_prio;
680 cfqd->cur_prio = 0;
681 }
682 if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
683 cfqd->cur_prio = 0;
684 cfqd->cur_end_prio = 0;
685 }
686
687 return prio;
688 }
689
690 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
691 {
692 struct cfq_queue *cfqq = NULL;
693
694 if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1) {
695 /*
696 * if current list is non-empty, grab first entry. if it is
697 * empty, get next prio level and grab first entry then if any
698 * are spliced
699 */
700 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
701 } else if (!list_empty(&cfqd->busy_rr)) {
702 /*
703 * If no new queues are available, check if the busy list has
704 * some before falling back to idle io.
705 */
706 cfqq = list_entry_cfqq(cfqd->busy_rr.next);
707 } else if (!list_empty(&cfqd->idle_rr)) {
708 /*
709 * if we have idle queues and no rt or be queues had pending
710 * requests, either allow immediate service if the grace period
711 * has passed or arm the idle grace timer
712 */
713 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
714
715 if (time_after_eq(jiffies, end))
716 cfqq = list_entry_cfqq(cfqd->idle_rr.next);
717 else
718 mod_timer(&cfqd->idle_class_timer, end);
719 }
720
721 __cfq_set_active_queue(cfqd, cfqq);
722 return cfqq;
723 }
724
725 #define CIC_SEEKY(cic) ((cic)->seek_mean > (128 * 1024))
726
727 static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
728
729 {
730 struct cfq_io_context *cic;
731 unsigned long sl;
732
733 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
734 WARN_ON(cfqq != cfqd->active_queue);
735
736 /*
737 * idle is disabled, either manually or by past process history
738 */
739 if (!cfqd->cfq_slice_idle)
740 return 0;
741 if (!cfq_cfqq_idle_window(cfqq))
742 return 0;
743 /*
744 * task has exited, don't wait
745 */
746 cic = cfqd->active_cic;
747 if (!cic || !cic->ioc->task)
748 return 0;
749
750 cfq_mark_cfqq_must_dispatch(cfqq);
751 cfq_mark_cfqq_wait_request(cfqq);
752
753 sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
754
755 /*
756 * we don't want to idle for seeks, but we do want to allow
757 * fair distribution of slice time for a process doing back-to-back
758 * seeks. so allow a little bit of time for him to submit a new rq
759 */
760 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
761 sl = min(sl, msecs_to_jiffies(2));
762
763 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
764 return 1;
765 }
766
767 static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
768 {
769 struct cfq_data *cfqd = q->elevator->elevator_data;
770 struct cfq_queue *cfqq = RQ_CFQQ(rq);
771
772 cfq_remove_request(rq);
773 cfqq->on_dispatch[rq_is_sync(rq)]++;
774 elv_dispatch_sort(q, rq);
775
776 rq = list_entry(q->queue_head.prev, struct request, queuelist);
777 cfqd->last_sector = rq->sector + rq->nr_sectors;
778 }
779
780 /*
781 * return expired entry, or NULL to just start from scratch in rbtree
782 */
783 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
784 {
785 struct cfq_data *cfqd = cfqq->cfqd;
786 struct request *rq;
787 int fifo;
788
789 if (cfq_cfqq_fifo_expire(cfqq))
790 return NULL;
791 if (list_empty(&cfqq->fifo))
792 return NULL;
793
794 fifo = cfq_cfqq_class_sync(cfqq);
795 rq = rq_entry_fifo(cfqq->fifo.next);
796
797 if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
798 cfq_mark_cfqq_fifo_expire(cfqq);
799 return rq;
800 }
801
802 return NULL;
803 }
804
805 /*
806 * Scale schedule slice based on io priority. Use the sync time slice only
807 * if a queue is marked sync and has sync io queued. A sync queue with async
808 * io only, should not get full sync slice length.
809 */
810 static inline int
811 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
812 {
813 const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
814
815 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
816
817 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
818 }
819
820 static inline void
821 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
822 {
823 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
824 }
825
826 static inline int
827 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
828 {
829 const int base_rq = cfqd->cfq_slice_async_rq;
830
831 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
832
833 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
834 }
835
836 /*
837 * get next queue for service
838 */
839 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
840 {
841 unsigned long now = jiffies;
842 struct cfq_queue *cfqq;
843
844 cfqq = cfqd->active_queue;
845 if (!cfqq)
846 goto new_queue;
847
848 /*
849 * slice has expired
850 */
851 if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
852 goto expire;
853
854 /*
855 * if queue has requests, dispatch one. if not, check if
856 * enough slice is left to wait for one
857 */
858 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
859 goto keep_queue;
860 else if (cfq_cfqq_dispatched(cfqq)) {
861 cfqq = NULL;
862 goto keep_queue;
863 } else if (cfq_cfqq_class_sync(cfqq)) {
864 if (cfq_arm_slice_timer(cfqd, cfqq))
865 return NULL;
866 }
867
868 expire:
869 cfq_slice_expired(cfqd, 0);
870 new_queue:
871 cfqq = cfq_set_active_queue(cfqd);
872 keep_queue:
873 return cfqq;
874 }
875
876 static int
877 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
878 int max_dispatch)
879 {
880 int dispatched = 0;
881
882 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
883
884 do {
885 struct request *rq;
886
887 /*
888 * follow expired path, else get first next available
889 */
890 if ((rq = cfq_check_fifo(cfqq)) == NULL)
891 rq = cfqq->next_rq;
892
893 /*
894 * finally, insert request into driver dispatch list
895 */
896 cfq_dispatch_insert(cfqd->queue, rq);
897
898 cfqd->dispatch_slice++;
899 dispatched++;
900
901 if (!cfqd->active_cic) {
902 atomic_inc(&RQ_CIC(rq)->ioc->refcount);
903 cfqd->active_cic = RQ_CIC(rq);
904 }
905
906 if (RB_EMPTY_ROOT(&cfqq->sort_list))
907 break;
908
909 } while (dispatched < max_dispatch);
910
911 /*
912 * if slice end isn't set yet, set it.
913 */
914 if (!cfqq->slice_end)
915 cfq_set_prio_slice(cfqd, cfqq);
916
917 /*
918 * expire an async queue immediately if it has used up its slice. idle
919 * queue always expire after 1 dispatch round.
920 */
921 if ((!cfq_cfqq_sync(cfqq) &&
922 cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
923 cfq_class_idle(cfqq) ||
924 !cfq_cfqq_idle_window(cfqq))
925 cfq_slice_expired(cfqd, 0);
926
927 return dispatched;
928 }
929
930 static int
931 cfq_forced_dispatch_cfqqs(struct list_head *list)
932 {
933 struct cfq_queue *cfqq, *next;
934 int dispatched;
935
936 dispatched = 0;
937 list_for_each_entry_safe(cfqq, next, list, cfq_list) {
938 while (cfqq->next_rq) {
939 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
940 dispatched++;
941 }
942 BUG_ON(!list_empty(&cfqq->fifo));
943 }
944
945 return dispatched;
946 }
947
948 static int
949 cfq_forced_dispatch(struct cfq_data *cfqd)
950 {
951 int i, dispatched = 0;
952
953 for (i = 0; i < CFQ_PRIO_LISTS; i++)
954 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
955
956 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
957 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
958 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
959
960 cfq_slice_expired(cfqd, 0);
961
962 BUG_ON(cfqd->busy_queues);
963
964 return dispatched;
965 }
966
967 static int
968 cfq_dispatch_requests(request_queue_t *q, int force)
969 {
970 struct cfq_data *cfqd = q->elevator->elevator_data;
971 struct cfq_queue *cfqq, *prev_cfqq;
972 int dispatched;
973
974 if (!cfqd->busy_queues)
975 return 0;
976
977 if (unlikely(force))
978 return cfq_forced_dispatch(cfqd);
979
980 dispatched = 0;
981 prev_cfqq = NULL;
982 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
983 int max_dispatch;
984
985 /*
986 * Don't repeat dispatch from the previous queue.
987 */
988 if (prev_cfqq == cfqq)
989 break;
990
991 cfq_clear_cfqq_must_dispatch(cfqq);
992 cfq_clear_cfqq_wait_request(cfqq);
993 del_timer(&cfqd->idle_slice_timer);
994
995 max_dispatch = cfqd->cfq_quantum;
996 if (cfq_class_idle(cfqq))
997 max_dispatch = 1;
998
999 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1000
1001 /*
1002 * If the dispatch cfqq has idling enabled and is still
1003 * the active queue, break out.
1004 */
1005 if (cfq_cfqq_idle_window(cfqq) && cfqd->active_queue)
1006 break;
1007
1008 prev_cfqq = cfqq;
1009 }
1010
1011 return dispatched;
1012 }
1013
1014 /*
1015 * task holds one reference to the queue, dropped when task exits. each rq
1016 * in-flight on this queue also holds a reference, dropped when rq is freed.
1017 *
1018 * queue lock must be held here.
1019 */
1020 static void cfq_put_queue(struct cfq_queue *cfqq)
1021 {
1022 struct cfq_data *cfqd = cfqq->cfqd;
1023
1024 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1025
1026 if (!atomic_dec_and_test(&cfqq->ref))
1027 return;
1028
1029 BUG_ON(rb_first(&cfqq->sort_list));
1030 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1031 BUG_ON(cfq_cfqq_on_rr(cfqq));
1032
1033 if (unlikely(cfqd->active_queue == cfqq))
1034 __cfq_slice_expired(cfqd, cfqq, 0);
1035
1036 /*
1037 * it's on the empty list and still hashed
1038 */
1039 list_del(&cfqq->cfq_list);
1040 hlist_del(&cfqq->cfq_hash);
1041 kmem_cache_free(cfq_pool, cfqq);
1042 }
1043
1044 static inline struct cfq_queue *
1045 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1046 const int hashval)
1047 {
1048 struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1049 struct hlist_node *entry;
1050 struct cfq_queue *__cfqq;
1051
1052 hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1053 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1054
1055 if (__cfqq->key == key && (__p == prio || !prio))
1056 return __cfqq;
1057 }
1058
1059 return NULL;
1060 }
1061
1062 static struct cfq_queue *
1063 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1064 {
1065 return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1066 }
1067
1068 static void cfq_free_io_context(struct io_context *ioc)
1069 {
1070 struct cfq_io_context *__cic;
1071 struct rb_node *n;
1072 int freed = 0;
1073
1074 while ((n = rb_first(&ioc->cic_root)) != NULL) {
1075 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1076 rb_erase(&__cic->rb_node, &ioc->cic_root);
1077 kmem_cache_free(cfq_ioc_pool, __cic);
1078 freed++;
1079 }
1080
1081 if (atomic_sub_and_test(freed, &ioc_count) && ioc_gone)
1082 complete(ioc_gone);
1083 }
1084
1085 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1086 {
1087 if (unlikely(cfqq == cfqd->active_queue))
1088 __cfq_slice_expired(cfqd, cfqq, 0);
1089
1090 cfq_put_queue(cfqq);
1091 }
1092
1093 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1094 struct cfq_io_context *cic)
1095 {
1096 list_del_init(&cic->queue_list);
1097 smp_wmb();
1098 cic->key = NULL;
1099
1100 if (cic->cfqq[ASYNC]) {
1101 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1102 cic->cfqq[ASYNC] = NULL;
1103 }
1104
1105 if (cic->cfqq[SYNC]) {
1106 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1107 cic->cfqq[SYNC] = NULL;
1108 }
1109 }
1110
1111
1112 /*
1113 * Called with interrupts disabled
1114 */
1115 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1116 {
1117 struct cfq_data *cfqd = cic->key;
1118
1119 if (cfqd) {
1120 request_queue_t *q = cfqd->queue;
1121
1122 spin_lock_irq(q->queue_lock);
1123 __cfq_exit_single_io_context(cfqd, cic);
1124 spin_unlock_irq(q->queue_lock);
1125 }
1126 }
1127
1128 static void cfq_exit_io_context(struct io_context *ioc)
1129 {
1130 struct cfq_io_context *__cic;
1131 struct rb_node *n;
1132
1133 /*
1134 * put the reference this task is holding to the various queues
1135 */
1136
1137 n = rb_first(&ioc->cic_root);
1138 while (n != NULL) {
1139 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1140
1141 cfq_exit_single_io_context(__cic);
1142 n = rb_next(n);
1143 }
1144 }
1145
1146 static struct cfq_io_context *
1147 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1148 {
1149 struct cfq_io_context *cic = kmem_cache_alloc(cfq_ioc_pool, gfp_mask);
1150
1151 if (cic) {
1152 memset(cic, 0, sizeof(*cic));
1153 cic->last_end_request = jiffies;
1154 INIT_LIST_HEAD(&cic->queue_list);
1155 cic->dtor = cfq_free_io_context;
1156 cic->exit = cfq_exit_io_context;
1157 atomic_inc(&ioc_count);
1158 }
1159
1160 return cic;
1161 }
1162
1163 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1164 {
1165 struct task_struct *tsk = current;
1166 int ioprio_class;
1167
1168 if (!cfq_cfqq_prio_changed(cfqq))
1169 return;
1170
1171 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1172 switch (ioprio_class) {
1173 default:
1174 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1175 case IOPRIO_CLASS_NONE:
1176 /*
1177 * no prio set, place us in the middle of the BE classes
1178 */
1179 cfqq->ioprio = task_nice_ioprio(tsk);
1180 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1181 break;
1182 case IOPRIO_CLASS_RT:
1183 cfqq->ioprio = task_ioprio(tsk);
1184 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1185 break;
1186 case IOPRIO_CLASS_BE:
1187 cfqq->ioprio = task_ioprio(tsk);
1188 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1189 break;
1190 case IOPRIO_CLASS_IDLE:
1191 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1192 cfqq->ioprio = 7;
1193 cfq_clear_cfqq_idle_window(cfqq);
1194 break;
1195 }
1196
1197 /*
1198 * keep track of original prio settings in case we have to temporarily
1199 * elevate the priority of this queue
1200 */
1201 cfqq->org_ioprio = cfqq->ioprio;
1202 cfqq->org_ioprio_class = cfqq->ioprio_class;
1203
1204 if (cfq_cfqq_on_rr(cfqq))
1205 cfq_resort_rr_list(cfqq, 0);
1206
1207 cfq_clear_cfqq_prio_changed(cfqq);
1208 }
1209
1210 static inline void changed_ioprio(struct cfq_io_context *cic)
1211 {
1212 struct cfq_data *cfqd = cic->key;
1213 struct cfq_queue *cfqq;
1214
1215 if (unlikely(!cfqd))
1216 return;
1217
1218 spin_lock(cfqd->queue->queue_lock);
1219
1220 cfqq = cic->cfqq[ASYNC];
1221 if (cfqq) {
1222 struct cfq_queue *new_cfqq;
1223 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1224 GFP_ATOMIC);
1225 if (new_cfqq) {
1226 cic->cfqq[ASYNC] = new_cfqq;
1227 cfq_put_queue(cfqq);
1228 }
1229 }
1230
1231 cfqq = cic->cfqq[SYNC];
1232 if (cfqq)
1233 cfq_mark_cfqq_prio_changed(cfqq);
1234
1235 spin_unlock(cfqd->queue->queue_lock);
1236 }
1237
1238 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1239 {
1240 struct cfq_io_context *cic;
1241 struct rb_node *n;
1242
1243 ioc->ioprio_changed = 0;
1244
1245 n = rb_first(&ioc->cic_root);
1246 while (n != NULL) {
1247 cic = rb_entry(n, struct cfq_io_context, rb_node);
1248
1249 changed_ioprio(cic);
1250 n = rb_next(n);
1251 }
1252 }
1253
1254 static struct cfq_queue *
1255 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1256 gfp_t gfp_mask)
1257 {
1258 const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1259 struct cfq_queue *cfqq, *new_cfqq = NULL;
1260 unsigned short ioprio;
1261
1262 retry:
1263 ioprio = tsk->ioprio;
1264 cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1265
1266 if (!cfqq) {
1267 if (new_cfqq) {
1268 cfqq = new_cfqq;
1269 new_cfqq = NULL;
1270 } else if (gfp_mask & __GFP_WAIT) {
1271 /*
1272 * Inform the allocator of the fact that we will
1273 * just repeat this allocation if it fails, to allow
1274 * the allocator to do whatever it needs to attempt to
1275 * free memory.
1276 */
1277 spin_unlock_irq(cfqd->queue->queue_lock);
1278 new_cfqq = kmem_cache_alloc(cfq_pool, gfp_mask|__GFP_NOFAIL);
1279 spin_lock_irq(cfqd->queue->queue_lock);
1280 goto retry;
1281 } else {
1282 cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1283 if (!cfqq)
1284 goto out;
1285 }
1286
1287 memset(cfqq, 0, sizeof(*cfqq));
1288
1289 INIT_HLIST_NODE(&cfqq->cfq_hash);
1290 INIT_LIST_HEAD(&cfqq->cfq_list);
1291 INIT_LIST_HEAD(&cfqq->fifo);
1292
1293 cfqq->key = key;
1294 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1295 atomic_set(&cfqq->ref, 0);
1296 cfqq->cfqd = cfqd;
1297 cfqq->service_last = 0;
1298 /*
1299 * set ->slice_left to allow preemption for a new process
1300 */
1301 cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1302 cfq_mark_cfqq_idle_window(cfqq);
1303 cfq_mark_cfqq_prio_changed(cfqq);
1304 cfq_init_prio_data(cfqq);
1305 }
1306
1307 if (new_cfqq)
1308 kmem_cache_free(cfq_pool, new_cfqq);
1309
1310 atomic_inc(&cfqq->ref);
1311 out:
1312 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1313 return cfqq;
1314 }
1315
1316 static void
1317 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1318 {
1319 WARN_ON(!list_empty(&cic->queue_list));
1320 rb_erase(&cic->rb_node, &ioc->cic_root);
1321 kmem_cache_free(cfq_ioc_pool, cic);
1322 atomic_dec(&ioc_count);
1323 }
1324
1325 static struct cfq_io_context *
1326 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1327 {
1328 struct rb_node *n;
1329 struct cfq_io_context *cic;
1330 void *k, *key = cfqd;
1331
1332 restart:
1333 n = ioc->cic_root.rb_node;
1334 while (n) {
1335 cic = rb_entry(n, struct cfq_io_context, rb_node);
1336 /* ->key must be copied to avoid race with cfq_exit_queue() */
1337 k = cic->key;
1338 if (unlikely(!k)) {
1339 cfq_drop_dead_cic(ioc, cic);
1340 goto restart;
1341 }
1342
1343 if (key < k)
1344 n = n->rb_left;
1345 else if (key > k)
1346 n = n->rb_right;
1347 else
1348 return cic;
1349 }
1350
1351 return NULL;
1352 }
1353
1354 static inline void
1355 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1356 struct cfq_io_context *cic)
1357 {
1358 struct rb_node **p;
1359 struct rb_node *parent;
1360 struct cfq_io_context *__cic;
1361 void *k;
1362
1363 cic->ioc = ioc;
1364 cic->key = cfqd;
1365
1366 restart:
1367 parent = NULL;
1368 p = &ioc->cic_root.rb_node;
1369 while (*p) {
1370 parent = *p;
1371 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1372 /* ->key must be copied to avoid race with cfq_exit_queue() */
1373 k = __cic->key;
1374 if (unlikely(!k)) {
1375 cfq_drop_dead_cic(ioc, __cic);
1376 goto restart;
1377 }
1378
1379 if (cic->key < k)
1380 p = &(*p)->rb_left;
1381 else if (cic->key > k)
1382 p = &(*p)->rb_right;
1383 else
1384 BUG();
1385 }
1386
1387 rb_link_node(&cic->rb_node, parent, p);
1388 rb_insert_color(&cic->rb_node, &ioc->cic_root);
1389
1390 spin_lock_irq(cfqd->queue->queue_lock);
1391 list_add(&cic->queue_list, &cfqd->cic_list);
1392 spin_unlock_irq(cfqd->queue->queue_lock);
1393 }
1394
1395 /*
1396 * Setup general io context and cfq io context. There can be several cfq
1397 * io contexts per general io context, if this process is doing io to more
1398 * than one device managed by cfq.
1399 */
1400 static struct cfq_io_context *
1401 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1402 {
1403 struct io_context *ioc = NULL;
1404 struct cfq_io_context *cic;
1405
1406 might_sleep_if(gfp_mask & __GFP_WAIT);
1407
1408 ioc = get_io_context(gfp_mask);
1409 if (!ioc)
1410 return NULL;
1411
1412 cic = cfq_cic_rb_lookup(cfqd, ioc);
1413 if (cic)
1414 goto out;
1415
1416 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1417 if (cic == NULL)
1418 goto err;
1419
1420 cfq_cic_link(cfqd, ioc, cic);
1421 out:
1422 smp_read_barrier_depends();
1423 if (unlikely(ioc->ioprio_changed))
1424 cfq_ioc_set_ioprio(ioc);
1425
1426 return cic;
1427 err:
1428 put_io_context(ioc);
1429 return NULL;
1430 }
1431
1432 static void
1433 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1434 {
1435 unsigned long elapsed, ttime;
1436
1437 /*
1438 * if this context already has stuff queued, thinktime is from
1439 * last queue not last end
1440 */
1441 #if 0
1442 if (time_after(cic->last_end_request, cic->last_queue))
1443 elapsed = jiffies - cic->last_end_request;
1444 else
1445 elapsed = jiffies - cic->last_queue;
1446 #else
1447 elapsed = jiffies - cic->last_end_request;
1448 #endif
1449
1450 ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1451
1452 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1453 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1454 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1455 }
1456
1457 static void
1458 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1459 struct request *rq)
1460 {
1461 sector_t sdist;
1462 u64 total;
1463
1464 if (cic->last_request_pos < rq->sector)
1465 sdist = rq->sector - cic->last_request_pos;
1466 else
1467 sdist = cic->last_request_pos - rq->sector;
1468
1469 /*
1470 * Don't allow the seek distance to get too large from the
1471 * odd fragment, pagein, etc
1472 */
1473 if (cic->seek_samples <= 60) /* second&third seek */
1474 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1475 else
1476 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1477
1478 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1479 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1480 total = cic->seek_total + (cic->seek_samples/2);
1481 do_div(total, cic->seek_samples);
1482 cic->seek_mean = (sector_t)total;
1483 }
1484
1485 /*
1486 * Disable idle window if the process thinks too long or seeks so much that
1487 * it doesn't matter
1488 */
1489 static void
1490 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1491 struct cfq_io_context *cic)
1492 {
1493 int enable_idle = cfq_cfqq_idle_window(cfqq);
1494
1495 if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1496 (cfqd->hw_tag && CIC_SEEKY(cic)))
1497 enable_idle = 0;
1498 else if (sample_valid(cic->ttime_samples)) {
1499 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1500 enable_idle = 0;
1501 else
1502 enable_idle = 1;
1503 }
1504
1505 if (enable_idle)
1506 cfq_mark_cfqq_idle_window(cfqq);
1507 else
1508 cfq_clear_cfqq_idle_window(cfqq);
1509 }
1510
1511
1512 /*
1513 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1514 * no or if we aren't sure, a 1 will cause a preempt.
1515 */
1516 static int
1517 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1518 struct request *rq)
1519 {
1520 struct cfq_queue *cfqq = cfqd->active_queue;
1521
1522 if (cfq_class_idle(new_cfqq))
1523 return 0;
1524
1525 if (!cfqq)
1526 return 0;
1527
1528 if (cfq_class_idle(cfqq))
1529 return 1;
1530 if (!cfq_cfqq_wait_request(new_cfqq))
1531 return 0;
1532 /*
1533 * if it doesn't have slice left, forget it
1534 */
1535 if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1536 return 0;
1537 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1538 return 1;
1539
1540 return 0;
1541 }
1542
1543 /*
1544 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1545 * let it have half of its nominal slice.
1546 */
1547 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1548 {
1549 struct cfq_queue *__cfqq, *next;
1550
1551 list_for_each_entry_safe(__cfqq, next, &cfqd->cur_rr, cfq_list)
1552 cfq_resort_rr_list(__cfqq, 1);
1553
1554 if (!cfqq->slice_left)
1555 cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1556
1557 cfqq->slice_end = cfqq->slice_left + jiffies;
1558 cfq_slice_expired(cfqd, 1);
1559 __cfq_set_active_queue(cfqd, cfqq);
1560 }
1561
1562 /*
1563 * should really be a ll_rw_blk.c helper
1564 */
1565 static void cfq_start_queueing(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1566 {
1567 request_queue_t *q = cfqd->queue;
1568
1569 if (!blk_queue_plugged(q))
1570 q->request_fn(q);
1571 else
1572 __generic_unplug_device(q);
1573 }
1574
1575 /*
1576 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1577 * something we should do about it
1578 */
1579 static void
1580 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1581 struct request *rq)
1582 {
1583 struct cfq_io_context *cic = RQ_CIC(rq);
1584
1585 /*
1586 * check if this request is a better next-serve candidate)) {
1587 */
1588 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
1589 BUG_ON(!cfqq->next_rq);
1590
1591 /*
1592 * we never wait for an async request and we don't allow preemption
1593 * of an async request. so just return early
1594 */
1595 if (!rq_is_sync(rq)) {
1596 /*
1597 * sync process issued an async request, if it's waiting
1598 * then expire it and kick rq handling.
1599 */
1600 if (cic == cfqd->active_cic &&
1601 del_timer(&cfqd->idle_slice_timer)) {
1602 cfq_slice_expired(cfqd, 0);
1603 cfq_start_queueing(cfqd, cfqq);
1604 }
1605 return;
1606 }
1607
1608 cfq_update_io_thinktime(cfqd, cic);
1609 cfq_update_io_seektime(cfqd, cic, rq);
1610 cfq_update_idle_window(cfqd, cfqq, cic);
1611
1612 cic->last_queue = jiffies;
1613 cic->last_request_pos = rq->sector + rq->nr_sectors;
1614
1615 if (cfqq == cfqd->active_queue) {
1616 /*
1617 * if we are waiting for a request for this queue, let it rip
1618 * immediately and flag that we must not expire this queue
1619 * just now
1620 */
1621 if (cfq_cfqq_wait_request(cfqq)) {
1622 cfq_mark_cfqq_must_dispatch(cfqq);
1623 del_timer(&cfqd->idle_slice_timer);
1624 cfq_start_queueing(cfqd, cfqq);
1625 }
1626 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1627 /*
1628 * not the active queue - expire current slice if it is
1629 * idle and has expired it's mean thinktime or this new queue
1630 * has some old slice time left and is of higher priority
1631 */
1632 cfq_preempt_queue(cfqd, cfqq);
1633 cfq_mark_cfqq_must_dispatch(cfqq);
1634 cfq_start_queueing(cfqd, cfqq);
1635 }
1636 }
1637
1638 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1639 {
1640 struct cfq_data *cfqd = q->elevator->elevator_data;
1641 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1642
1643 cfq_init_prio_data(cfqq);
1644
1645 cfq_add_rq_rb(rq);
1646
1647 if (!cfq_cfqq_on_rr(cfqq))
1648 cfq_add_cfqq_rr(cfqd, cfqq);
1649
1650 list_add_tail(&rq->queuelist, &cfqq->fifo);
1651
1652 cfq_rq_enqueued(cfqd, cfqq, rq);
1653 }
1654
1655 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1656 {
1657 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1658 struct cfq_data *cfqd = cfqq->cfqd;
1659 const int sync = rq_is_sync(rq);
1660 unsigned long now;
1661
1662 now = jiffies;
1663
1664 WARN_ON(!cfqd->rq_in_driver);
1665 WARN_ON(!cfqq->on_dispatch[sync]);
1666 cfqd->rq_in_driver--;
1667 cfqq->on_dispatch[sync]--;
1668
1669 if (!cfq_class_idle(cfqq))
1670 cfqd->last_end_request = now;
1671
1672 if (!cfq_cfqq_dispatched(cfqq)) {
1673 if (cfq_cfqq_on_rr(cfqq)) {
1674 cfqq->service_last = now;
1675 cfq_resort_rr_list(cfqq, 0);
1676 }
1677 }
1678
1679 if (sync)
1680 RQ_CIC(rq)->last_end_request = now;
1681
1682 /*
1683 * If this is the active queue, check if it needs to be expired,
1684 * or if we want to idle in case it has no pending requests.
1685 */
1686 if (cfqd->active_queue == cfqq) {
1687 if (time_after(now, cfqq->slice_end))
1688 cfq_slice_expired(cfqd, 0);
1689 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1690 if (!cfq_arm_slice_timer(cfqd, cfqq))
1691 cfq_schedule_dispatch(cfqd);
1692 }
1693 }
1694 }
1695
1696 /*
1697 * we temporarily boost lower priority queues if they are holding fs exclusive
1698 * resources. they are boosted to normal prio (CLASS_BE/4)
1699 */
1700 static void cfq_prio_boost(struct cfq_queue *cfqq)
1701 {
1702 const int ioprio_class = cfqq->ioprio_class;
1703 const int ioprio = cfqq->ioprio;
1704
1705 if (has_fs_excl()) {
1706 /*
1707 * boost idle prio on transactions that would lock out other
1708 * users of the filesystem
1709 */
1710 if (cfq_class_idle(cfqq))
1711 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1712 if (cfqq->ioprio > IOPRIO_NORM)
1713 cfqq->ioprio = IOPRIO_NORM;
1714 } else {
1715 /*
1716 * check if we need to unboost the queue
1717 */
1718 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1719 cfqq->ioprio_class = cfqq->org_ioprio_class;
1720 if (cfqq->ioprio != cfqq->org_ioprio)
1721 cfqq->ioprio = cfqq->org_ioprio;
1722 }
1723
1724 /*
1725 * refile between round-robin lists if we moved the priority class
1726 */
1727 if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
1728 cfq_cfqq_on_rr(cfqq))
1729 cfq_resort_rr_list(cfqq, 0);
1730 }
1731
1732 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1733 {
1734 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1735 !cfq_cfqq_must_alloc_slice(cfqq)) {
1736 cfq_mark_cfqq_must_alloc_slice(cfqq);
1737 return ELV_MQUEUE_MUST;
1738 }
1739
1740 return ELV_MQUEUE_MAY;
1741 }
1742
1743 static int cfq_may_queue(request_queue_t *q, int rw)
1744 {
1745 struct cfq_data *cfqd = q->elevator->elevator_data;
1746 struct task_struct *tsk = current;
1747 struct cfq_queue *cfqq;
1748
1749 /*
1750 * don't force setup of a queue from here, as a call to may_queue
1751 * does not necessarily imply that a request actually will be queued.
1752 * so just lookup a possibly existing queue, or return 'may queue'
1753 * if that fails
1754 */
1755 cfqq = cfq_find_cfq_hash(cfqd, cfq_queue_pid(tsk, rw), tsk->ioprio);
1756 if (cfqq) {
1757 cfq_init_prio_data(cfqq);
1758 cfq_prio_boost(cfqq);
1759
1760 return __cfq_may_queue(cfqq);
1761 }
1762
1763 return ELV_MQUEUE_MAY;
1764 }
1765
1766 /*
1767 * queue lock held here
1768 */
1769 static void cfq_put_request(request_queue_t *q, struct request *rq)
1770 {
1771 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1772
1773 if (cfqq) {
1774 const int rw = rq_data_dir(rq);
1775
1776 BUG_ON(!cfqq->allocated[rw]);
1777 cfqq->allocated[rw]--;
1778
1779 put_io_context(RQ_CIC(rq)->ioc);
1780
1781 rq->elevator_private = NULL;
1782 rq->elevator_private2 = NULL;
1783
1784 cfq_put_queue(cfqq);
1785 }
1786 }
1787
1788 /*
1789 * Allocate cfq data structures associated with this request.
1790 */
1791 static int
1792 cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1793 {
1794 struct cfq_data *cfqd = q->elevator->elevator_data;
1795 struct task_struct *tsk = current;
1796 struct cfq_io_context *cic;
1797 const int rw = rq_data_dir(rq);
1798 pid_t key = cfq_queue_pid(tsk, rw);
1799 struct cfq_queue *cfqq;
1800 unsigned long flags;
1801 int is_sync = key != CFQ_KEY_ASYNC;
1802
1803 might_sleep_if(gfp_mask & __GFP_WAIT);
1804
1805 cic = cfq_get_io_context(cfqd, gfp_mask);
1806
1807 spin_lock_irqsave(q->queue_lock, flags);
1808
1809 if (!cic)
1810 goto queue_fail;
1811
1812 if (!cic->cfqq[is_sync]) {
1813 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
1814 if (!cfqq)
1815 goto queue_fail;
1816
1817 cic->cfqq[is_sync] = cfqq;
1818 } else
1819 cfqq = cic->cfqq[is_sync];
1820
1821 cfqq->allocated[rw]++;
1822 cfq_clear_cfqq_must_alloc(cfqq);
1823 atomic_inc(&cfqq->ref);
1824
1825 spin_unlock_irqrestore(q->queue_lock, flags);
1826
1827 rq->elevator_private = cic;
1828 rq->elevator_private2 = cfqq;
1829 return 0;
1830
1831 queue_fail:
1832 if (cic)
1833 put_io_context(cic->ioc);
1834
1835 cfq_schedule_dispatch(cfqd);
1836 spin_unlock_irqrestore(q->queue_lock, flags);
1837 return 1;
1838 }
1839
1840 static void cfq_kick_queue(void *data)
1841 {
1842 request_queue_t *q = data;
1843 unsigned long flags;
1844
1845 spin_lock_irqsave(q->queue_lock, flags);
1846 blk_remove_plug(q);
1847 q->request_fn(q);
1848 spin_unlock_irqrestore(q->queue_lock, flags);
1849 }
1850
1851 /*
1852 * Timer running if the active_queue is currently idling inside its time slice
1853 */
1854 static void cfq_idle_slice_timer(unsigned long data)
1855 {
1856 struct cfq_data *cfqd = (struct cfq_data *) data;
1857 struct cfq_queue *cfqq;
1858 unsigned long flags;
1859
1860 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1861
1862 if ((cfqq = cfqd->active_queue) != NULL) {
1863 unsigned long now = jiffies;
1864
1865 /*
1866 * expired
1867 */
1868 if (time_after(now, cfqq->slice_end))
1869 goto expire;
1870
1871 /*
1872 * only expire and reinvoke request handler, if there are
1873 * other queues with pending requests
1874 */
1875 if (!cfqd->busy_queues)
1876 goto out_cont;
1877
1878 /*
1879 * not expired and it has a request pending, let it dispatch
1880 */
1881 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
1882 cfq_mark_cfqq_must_dispatch(cfqq);
1883 goto out_kick;
1884 }
1885 }
1886 expire:
1887 cfq_slice_expired(cfqd, 0);
1888 out_kick:
1889 cfq_schedule_dispatch(cfqd);
1890 out_cont:
1891 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1892 }
1893
1894 /*
1895 * Timer running if an idle class queue is waiting for service
1896 */
1897 static void cfq_idle_class_timer(unsigned long data)
1898 {
1899 struct cfq_data *cfqd = (struct cfq_data *) data;
1900 unsigned long flags, end;
1901
1902 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1903
1904 /*
1905 * race with a non-idle queue, reset timer
1906 */
1907 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
1908 if (!time_after_eq(jiffies, end))
1909 mod_timer(&cfqd->idle_class_timer, end);
1910 else
1911 cfq_schedule_dispatch(cfqd);
1912
1913 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1914 }
1915
1916 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
1917 {
1918 del_timer_sync(&cfqd->idle_slice_timer);
1919 del_timer_sync(&cfqd->idle_class_timer);
1920 blk_sync_queue(cfqd->queue);
1921 }
1922
1923 static void cfq_exit_queue(elevator_t *e)
1924 {
1925 struct cfq_data *cfqd = e->elevator_data;
1926 request_queue_t *q = cfqd->queue;
1927
1928 cfq_shutdown_timer_wq(cfqd);
1929
1930 spin_lock_irq(q->queue_lock);
1931
1932 if (cfqd->active_queue)
1933 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
1934
1935 while (!list_empty(&cfqd->cic_list)) {
1936 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
1937 struct cfq_io_context,
1938 queue_list);
1939
1940 __cfq_exit_single_io_context(cfqd, cic);
1941 }
1942
1943 spin_unlock_irq(q->queue_lock);
1944
1945 cfq_shutdown_timer_wq(cfqd);
1946
1947 kfree(cfqd->cfq_hash);
1948 kfree(cfqd);
1949 }
1950
1951 static void *cfq_init_queue(request_queue_t *q, elevator_t *e)
1952 {
1953 struct cfq_data *cfqd;
1954 int i;
1955
1956 cfqd = kmalloc(sizeof(*cfqd), GFP_KERNEL);
1957 if (!cfqd)
1958 return NULL;
1959
1960 memset(cfqd, 0, sizeof(*cfqd));
1961
1962 for (i = 0; i < CFQ_PRIO_LISTS; i++)
1963 INIT_LIST_HEAD(&cfqd->rr_list[i]);
1964
1965 INIT_LIST_HEAD(&cfqd->busy_rr);
1966 INIT_LIST_HEAD(&cfqd->cur_rr);
1967 INIT_LIST_HEAD(&cfqd->idle_rr);
1968 INIT_LIST_HEAD(&cfqd->empty_list);
1969 INIT_LIST_HEAD(&cfqd->cic_list);
1970
1971 cfqd->cfq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL);
1972 if (!cfqd->cfq_hash)
1973 goto out_free;
1974
1975 for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
1976 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
1977
1978 cfqd->queue = q;
1979
1980 init_timer(&cfqd->idle_slice_timer);
1981 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
1982 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
1983
1984 init_timer(&cfqd->idle_class_timer);
1985 cfqd->idle_class_timer.function = cfq_idle_class_timer;
1986 cfqd->idle_class_timer.data = (unsigned long) cfqd;
1987
1988 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue, q);
1989
1990 cfqd->cfq_quantum = cfq_quantum;
1991 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
1992 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1993 cfqd->cfq_back_max = cfq_back_max;
1994 cfqd->cfq_back_penalty = cfq_back_penalty;
1995 cfqd->cfq_slice[0] = cfq_slice_async;
1996 cfqd->cfq_slice[1] = cfq_slice_sync;
1997 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
1998 cfqd->cfq_slice_idle = cfq_slice_idle;
1999
2000 return cfqd;
2001 out_free:
2002 kfree(cfqd);
2003 return NULL;
2004 }
2005
2006 static void cfq_slab_kill(void)
2007 {
2008 if (cfq_pool)
2009 kmem_cache_destroy(cfq_pool);
2010 if (cfq_ioc_pool)
2011 kmem_cache_destroy(cfq_ioc_pool);
2012 }
2013
2014 static int __init cfq_slab_setup(void)
2015 {
2016 cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2017 NULL, NULL);
2018 if (!cfq_pool)
2019 goto fail;
2020
2021 cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2022 sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2023 if (!cfq_ioc_pool)
2024 goto fail;
2025
2026 return 0;
2027 fail:
2028 cfq_slab_kill();
2029 return -ENOMEM;
2030 }
2031
2032 /*
2033 * sysfs parts below -->
2034 */
2035
2036 static ssize_t
2037 cfq_var_show(unsigned int var, char *page)
2038 {
2039 return sprintf(page, "%d\n", var);
2040 }
2041
2042 static ssize_t
2043 cfq_var_store(unsigned int *var, const char *page, size_t count)
2044 {
2045 char *p = (char *) page;
2046
2047 *var = simple_strtoul(p, &p, 10);
2048 return count;
2049 }
2050
2051 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2052 static ssize_t __FUNC(elevator_t *e, char *page) \
2053 { \
2054 struct cfq_data *cfqd = e->elevator_data; \
2055 unsigned int __data = __VAR; \
2056 if (__CONV) \
2057 __data = jiffies_to_msecs(__data); \
2058 return cfq_var_show(__data, (page)); \
2059 }
2060 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2061 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2062 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2063 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2064 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2065 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2066 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2067 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2068 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2069 #undef SHOW_FUNCTION
2070
2071 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2072 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2073 { \
2074 struct cfq_data *cfqd = e->elevator_data; \
2075 unsigned int __data; \
2076 int ret = cfq_var_store(&__data, (page), count); \
2077 if (__data < (MIN)) \
2078 __data = (MIN); \
2079 else if (__data > (MAX)) \
2080 __data = (MAX); \
2081 if (__CONV) \
2082 *(__PTR) = msecs_to_jiffies(__data); \
2083 else \
2084 *(__PTR) = __data; \
2085 return ret; \
2086 }
2087 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2088 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2089 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2090 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2091 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2092 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2093 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2094 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2095 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2096 #undef STORE_FUNCTION
2097
2098 #define CFQ_ATTR(name) \
2099 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2100
2101 static struct elv_fs_entry cfq_attrs[] = {
2102 CFQ_ATTR(quantum),
2103 CFQ_ATTR(fifo_expire_sync),
2104 CFQ_ATTR(fifo_expire_async),
2105 CFQ_ATTR(back_seek_max),
2106 CFQ_ATTR(back_seek_penalty),
2107 CFQ_ATTR(slice_sync),
2108 CFQ_ATTR(slice_async),
2109 CFQ_ATTR(slice_async_rq),
2110 CFQ_ATTR(slice_idle),
2111 __ATTR_NULL
2112 };
2113
2114 static struct elevator_type iosched_cfq = {
2115 .ops = {
2116 .elevator_merge_fn = cfq_merge,
2117 .elevator_merged_fn = cfq_merged_request,
2118 .elevator_merge_req_fn = cfq_merged_requests,
2119 .elevator_dispatch_fn = cfq_dispatch_requests,
2120 .elevator_add_req_fn = cfq_insert_request,
2121 .elevator_activate_req_fn = cfq_activate_request,
2122 .elevator_deactivate_req_fn = cfq_deactivate_request,
2123 .elevator_queue_empty_fn = cfq_queue_empty,
2124 .elevator_completed_req_fn = cfq_completed_request,
2125 .elevator_former_req_fn = elv_rb_former_request,
2126 .elevator_latter_req_fn = elv_rb_latter_request,
2127 .elevator_set_req_fn = cfq_set_request,
2128 .elevator_put_req_fn = cfq_put_request,
2129 .elevator_may_queue_fn = cfq_may_queue,
2130 .elevator_init_fn = cfq_init_queue,
2131 .elevator_exit_fn = cfq_exit_queue,
2132 .trim = cfq_free_io_context,
2133 },
2134 .elevator_attrs = cfq_attrs,
2135 .elevator_name = "cfq",
2136 .elevator_owner = THIS_MODULE,
2137 };
2138
2139 static int __init cfq_init(void)
2140 {
2141 int ret;
2142
2143 /*
2144 * could be 0 on HZ < 1000 setups
2145 */
2146 if (!cfq_slice_async)
2147 cfq_slice_async = 1;
2148 if (!cfq_slice_idle)
2149 cfq_slice_idle = 1;
2150
2151 if (cfq_slab_setup())
2152 return -ENOMEM;
2153
2154 ret = elv_register(&iosched_cfq);
2155 if (ret)
2156 cfq_slab_kill();
2157
2158 return ret;
2159 }
2160
2161 static void __exit cfq_exit(void)
2162 {
2163 DECLARE_COMPLETION(all_gone);
2164 elv_unregister(&iosched_cfq);
2165 ioc_gone = &all_gone;
2166 /* ioc_gone's update must be visible before reading ioc_count */
2167 smp_wmb();
2168 if (atomic_read(&ioc_count))
2169 wait_for_completion(ioc_gone);
2170 synchronize_rcu();
2171 cfq_slab_kill();
2172 }
2173
2174 module_init(cfq_init);
2175 module_exit(cfq_exit);
2176
2177 MODULE_AUTHOR("Jens Axboe");
2178 MODULE_LICENSE("GPL");
2179 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");