]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/cfq-iosched.c
42028e7128a7e71940d2c18aa0fd906fa15892f7
[mirror_ubuntu-artful-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
17
18 /*
19 * tunables
20 */
21 /* max queue in one round of service */
22 static const int cfq_quantum = 8;
23 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max = 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty = 2;
28 static const int cfq_slice_sync = HZ / 10;
29 static int cfq_slice_async = HZ / 25;
30 static const int cfq_slice_async_rq = 2;
31 static int cfq_slice_idle = HZ / 125;
32 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33 static const int cfq_hist_divisor = 4;
34
35 /*
36 * offset from end of service tree
37 */
38 #define CFQ_IDLE_DELAY (HZ / 5)
39
40 /*
41 * below this threshold, we consider thinktime immediate
42 */
43 #define CFQ_MIN_TT (2)
44
45 #define CFQ_SLICE_SCALE (5)
46 #define CFQ_HW_QUEUE_MIN (5)
47 #define CFQ_SERVICE_SHIFT 12
48
49 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
50 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
51 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
52 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
53
54 #define RQ_CIC(rq) \
55 ((struct cfq_io_context *) (rq)->elevator_private)
56 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
57
58 static struct kmem_cache *cfq_pool;
59 static struct kmem_cache *cfq_ioc_pool;
60
61 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
62 static struct completion *ioc_gone;
63 static DEFINE_SPINLOCK(ioc_gone_lock);
64
65 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
66 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
67 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
68
69 #define sample_valid(samples) ((samples) > 80)
70 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
71
72 /*
73 * Most of our rbtree usage is for sorting with min extraction, so
74 * if we cache the leftmost node we don't have to walk down the tree
75 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
76 * move this into the elevator for the rq sorting as well.
77 */
78 struct cfq_rb_root {
79 struct rb_root rb;
80 struct rb_node *left;
81 unsigned count;
82 unsigned total_weight;
83 u64 min_vdisktime;
84 struct rb_node *active;
85 };
86 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
87 .count = 0, .min_vdisktime = 0, }
88
89 /*
90 * Per process-grouping structure
91 */
92 struct cfq_queue {
93 /* reference count */
94 atomic_t ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
117
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
120 unsigned int allocated_slice;
121 unsigned int slice_dispatch;
122 /* time when first request from queue completed and slice started. */
123 unsigned long slice_start;
124 unsigned long slice_end;
125 long slice_resid;
126
127 /* pending metadata requests */
128 int meta_pending;
129 /* number of requests that are on the dispatch list or inside driver */
130 int dispatched;
131
132 /* io prio of this group */
133 unsigned short ioprio, org_ioprio;
134 unsigned short ioprio_class, org_ioprio_class;
135
136 pid_t pid;
137
138 u32 seek_history;
139 sector_t last_request_pos;
140
141 struct cfq_rb_root *service_tree;
142 struct cfq_queue *new_cfqq;
143 struct cfq_group *cfqg;
144 struct cfq_group *orig_cfqg;
145 };
146
147 /*
148 * First index in the service_trees.
149 * IDLE is handled separately, so it has negative index
150 */
151 enum wl_prio_t {
152 BE_WORKLOAD = 0,
153 RT_WORKLOAD = 1,
154 IDLE_WORKLOAD = 2,
155 };
156
157 /*
158 * Second index in the service_trees.
159 */
160 enum wl_type_t {
161 ASYNC_WORKLOAD = 0,
162 SYNC_NOIDLE_WORKLOAD = 1,
163 SYNC_WORKLOAD = 2
164 };
165
166 /* This is per cgroup per device grouping structure */
167 struct cfq_group {
168 /* group service_tree member */
169 struct rb_node rb_node;
170
171 /* group service_tree key */
172 u64 vdisktime;
173 unsigned int weight;
174 bool on_st;
175
176 /* number of cfqq currently on this group */
177 int nr_cfqq;
178
179 /* Per group busy queus average. Useful for workload slice calc. */
180 unsigned int busy_queues_avg[2];
181 /*
182 * rr lists of queues with requests, onle rr for each priority class.
183 * Counts are embedded in the cfq_rb_root
184 */
185 struct cfq_rb_root service_trees[2][3];
186 struct cfq_rb_root service_tree_idle;
187
188 unsigned long saved_workload_slice;
189 enum wl_type_t saved_workload;
190 enum wl_prio_t saved_serving_prio;
191 struct blkio_group blkg;
192 #ifdef CONFIG_CFQ_GROUP_IOSCHED
193 struct hlist_node cfqd_node;
194 atomic_t ref;
195 #endif
196 };
197
198 /*
199 * Per block device queue structure
200 */
201 struct cfq_data {
202 struct request_queue *queue;
203 /* Root service tree for cfq_groups */
204 struct cfq_rb_root grp_service_tree;
205 struct cfq_group root_group;
206
207 /*
208 * The priority currently being served
209 */
210 enum wl_prio_t serving_prio;
211 enum wl_type_t serving_type;
212 unsigned long workload_expires;
213 struct cfq_group *serving_group;
214 bool noidle_tree_requires_idle;
215
216 /*
217 * Each priority tree is sorted by next_request position. These
218 * trees are used when determining if two or more queues are
219 * interleaving requests (see cfq_close_cooperator).
220 */
221 struct rb_root prio_trees[CFQ_PRIO_LISTS];
222
223 unsigned int busy_queues;
224
225 int rq_in_driver;
226 int rq_in_flight[2];
227
228 /*
229 * queue-depth detection
230 */
231 int rq_queued;
232 int hw_tag;
233 /*
234 * hw_tag can be
235 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
236 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
237 * 0 => no NCQ
238 */
239 int hw_tag_est_depth;
240 unsigned int hw_tag_samples;
241
242 /*
243 * idle window management
244 */
245 struct timer_list idle_slice_timer;
246 struct work_struct unplug_work;
247
248 struct cfq_queue *active_queue;
249 struct cfq_io_context *active_cic;
250
251 /*
252 * async queue for each priority case
253 */
254 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
255 struct cfq_queue *async_idle_cfqq;
256
257 sector_t last_position;
258
259 /*
260 * tunables, see top of file
261 */
262 unsigned int cfq_quantum;
263 unsigned int cfq_fifo_expire[2];
264 unsigned int cfq_back_penalty;
265 unsigned int cfq_back_max;
266 unsigned int cfq_slice[2];
267 unsigned int cfq_slice_async_rq;
268 unsigned int cfq_slice_idle;
269 unsigned int cfq_latency;
270 unsigned int cfq_group_isolation;
271
272 struct list_head cic_list;
273
274 /*
275 * Fallback dummy cfqq for extreme OOM conditions
276 */
277 struct cfq_queue oom_cfqq;
278
279 unsigned long last_delayed_sync;
280
281 /* List of cfq groups being managed on this device*/
282 struct hlist_head cfqg_list;
283 struct rcu_head rcu;
284 };
285
286 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
287
288 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
289 enum wl_prio_t prio,
290 enum wl_type_t type)
291 {
292 if (!cfqg)
293 return NULL;
294
295 if (prio == IDLE_WORKLOAD)
296 return &cfqg->service_tree_idle;
297
298 return &cfqg->service_trees[prio][type];
299 }
300
301 enum cfqq_state_flags {
302 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
303 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
304 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
305 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
306 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
307 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
308 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
309 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
310 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
311 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
312 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
313 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
314 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
315 };
316
317 #define CFQ_CFQQ_FNS(name) \
318 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
319 { \
320 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
321 } \
322 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
323 { \
324 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
325 } \
326 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
327 { \
328 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
329 }
330
331 CFQ_CFQQ_FNS(on_rr);
332 CFQ_CFQQ_FNS(wait_request);
333 CFQ_CFQQ_FNS(must_dispatch);
334 CFQ_CFQQ_FNS(must_alloc_slice);
335 CFQ_CFQQ_FNS(fifo_expire);
336 CFQ_CFQQ_FNS(idle_window);
337 CFQ_CFQQ_FNS(prio_changed);
338 CFQ_CFQQ_FNS(slice_new);
339 CFQ_CFQQ_FNS(sync);
340 CFQ_CFQQ_FNS(coop);
341 CFQ_CFQQ_FNS(split_coop);
342 CFQ_CFQQ_FNS(deep);
343 CFQ_CFQQ_FNS(wait_busy);
344 #undef CFQ_CFQQ_FNS
345
346 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
347 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
348 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
349 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
350 blkg_path(&(cfqq)->cfqg->blkg), ##args);
351
352 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
353 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
354 blkg_path(&(cfqg)->blkg), ##args); \
355
356 #else
357 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
358 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
359 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
360 #endif
361 #define cfq_log(cfqd, fmt, args...) \
362 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
363
364 /* Traverses through cfq group service trees */
365 #define for_each_cfqg_st(cfqg, i, j, st) \
366 for (i = 0; i <= IDLE_WORKLOAD; i++) \
367 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
368 : &cfqg->service_tree_idle; \
369 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
370 (i == IDLE_WORKLOAD && j == 0); \
371 j++, st = i < IDLE_WORKLOAD ? \
372 &cfqg->service_trees[i][j]: NULL) \
373
374
375 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
376 {
377 if (cfq_class_idle(cfqq))
378 return IDLE_WORKLOAD;
379 if (cfq_class_rt(cfqq))
380 return RT_WORKLOAD;
381 return BE_WORKLOAD;
382 }
383
384
385 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
386 {
387 if (!cfq_cfqq_sync(cfqq))
388 return ASYNC_WORKLOAD;
389 if (!cfq_cfqq_idle_window(cfqq))
390 return SYNC_NOIDLE_WORKLOAD;
391 return SYNC_WORKLOAD;
392 }
393
394 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
395 struct cfq_data *cfqd,
396 struct cfq_group *cfqg)
397 {
398 if (wl == IDLE_WORKLOAD)
399 return cfqg->service_tree_idle.count;
400
401 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
402 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
403 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
404 }
405
406 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
407 struct cfq_group *cfqg)
408 {
409 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
410 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
411 }
412
413 static void cfq_dispatch_insert(struct request_queue *, struct request *);
414 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
415 struct io_context *, gfp_t);
416 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
417 struct io_context *);
418
419 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
420 bool is_sync)
421 {
422 return cic->cfqq[is_sync];
423 }
424
425 static inline void cic_set_cfqq(struct cfq_io_context *cic,
426 struct cfq_queue *cfqq, bool is_sync)
427 {
428 cic->cfqq[is_sync] = cfqq;
429 }
430
431 /*
432 * We regard a request as SYNC, if it's either a read or has the SYNC bit
433 * set (in which case it could also be direct WRITE).
434 */
435 static inline bool cfq_bio_sync(struct bio *bio)
436 {
437 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
438 }
439
440 /*
441 * scheduler run of queue, if there are requests pending and no one in the
442 * driver that will restart queueing
443 */
444 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
445 {
446 if (cfqd->busy_queues) {
447 cfq_log(cfqd, "schedule dispatch");
448 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
449 }
450 }
451
452 static int cfq_queue_empty(struct request_queue *q)
453 {
454 struct cfq_data *cfqd = q->elevator->elevator_data;
455
456 return !cfqd->rq_queued;
457 }
458
459 /*
460 * Scale schedule slice based on io priority. Use the sync time slice only
461 * if a queue is marked sync and has sync io queued. A sync queue with async
462 * io only, should not get full sync slice length.
463 */
464 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
465 unsigned short prio)
466 {
467 const int base_slice = cfqd->cfq_slice[sync];
468
469 WARN_ON(prio >= IOPRIO_BE_NR);
470
471 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
472 }
473
474 static inline int
475 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
476 {
477 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
478 }
479
480 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
481 {
482 u64 d = delta << CFQ_SERVICE_SHIFT;
483
484 d = d * BLKIO_WEIGHT_DEFAULT;
485 do_div(d, cfqg->weight);
486 return d;
487 }
488
489 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
490 {
491 s64 delta = (s64)(vdisktime - min_vdisktime);
492 if (delta > 0)
493 min_vdisktime = vdisktime;
494
495 return min_vdisktime;
496 }
497
498 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
499 {
500 s64 delta = (s64)(vdisktime - min_vdisktime);
501 if (delta < 0)
502 min_vdisktime = vdisktime;
503
504 return min_vdisktime;
505 }
506
507 static void update_min_vdisktime(struct cfq_rb_root *st)
508 {
509 u64 vdisktime = st->min_vdisktime;
510 struct cfq_group *cfqg;
511
512 if (st->active) {
513 cfqg = rb_entry_cfqg(st->active);
514 vdisktime = cfqg->vdisktime;
515 }
516
517 if (st->left) {
518 cfqg = rb_entry_cfqg(st->left);
519 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
520 }
521
522 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
523 }
524
525 /*
526 * get averaged number of queues of RT/BE priority.
527 * average is updated, with a formula that gives more weight to higher numbers,
528 * to quickly follows sudden increases and decrease slowly
529 */
530
531 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
532 struct cfq_group *cfqg, bool rt)
533 {
534 unsigned min_q, max_q;
535 unsigned mult = cfq_hist_divisor - 1;
536 unsigned round = cfq_hist_divisor / 2;
537 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
538
539 min_q = min(cfqg->busy_queues_avg[rt], busy);
540 max_q = max(cfqg->busy_queues_avg[rt], busy);
541 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
542 cfq_hist_divisor;
543 return cfqg->busy_queues_avg[rt];
544 }
545
546 static inline unsigned
547 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
548 {
549 struct cfq_rb_root *st = &cfqd->grp_service_tree;
550
551 return cfq_target_latency * cfqg->weight / st->total_weight;
552 }
553
554 static inline void
555 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
556 {
557 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
558 if (cfqd->cfq_latency) {
559 /*
560 * interested queues (we consider only the ones with the same
561 * priority class in the cfq group)
562 */
563 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
564 cfq_class_rt(cfqq));
565 unsigned sync_slice = cfqd->cfq_slice[1];
566 unsigned expect_latency = sync_slice * iq;
567 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
568
569 if (expect_latency > group_slice) {
570 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
571 /* scale low_slice according to IO priority
572 * and sync vs async */
573 unsigned low_slice =
574 min(slice, base_low_slice * slice / sync_slice);
575 /* the adapted slice value is scaled to fit all iqs
576 * into the target latency */
577 slice = max(slice * group_slice / expect_latency,
578 low_slice);
579 }
580 }
581 cfqq->slice_start = jiffies;
582 cfqq->slice_end = jiffies + slice;
583 cfqq->allocated_slice = slice;
584 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
585 }
586
587 /*
588 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
589 * isn't valid until the first request from the dispatch is activated
590 * and the slice time set.
591 */
592 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
593 {
594 if (cfq_cfqq_slice_new(cfqq))
595 return 0;
596 if (time_before(jiffies, cfqq->slice_end))
597 return 0;
598
599 return 1;
600 }
601
602 /*
603 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
604 * We choose the request that is closest to the head right now. Distance
605 * behind the head is penalized and only allowed to a certain extent.
606 */
607 static struct request *
608 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
609 {
610 sector_t s1, s2, d1 = 0, d2 = 0;
611 unsigned long back_max;
612 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
613 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
614 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
615
616 if (rq1 == NULL || rq1 == rq2)
617 return rq2;
618 if (rq2 == NULL)
619 return rq1;
620
621 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
622 return rq1;
623 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
624 return rq2;
625 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
626 return rq1;
627 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
628 return rq2;
629
630 s1 = blk_rq_pos(rq1);
631 s2 = blk_rq_pos(rq2);
632
633 /*
634 * by definition, 1KiB is 2 sectors
635 */
636 back_max = cfqd->cfq_back_max * 2;
637
638 /*
639 * Strict one way elevator _except_ in the case where we allow
640 * short backward seeks which are biased as twice the cost of a
641 * similar forward seek.
642 */
643 if (s1 >= last)
644 d1 = s1 - last;
645 else if (s1 + back_max >= last)
646 d1 = (last - s1) * cfqd->cfq_back_penalty;
647 else
648 wrap |= CFQ_RQ1_WRAP;
649
650 if (s2 >= last)
651 d2 = s2 - last;
652 else if (s2 + back_max >= last)
653 d2 = (last - s2) * cfqd->cfq_back_penalty;
654 else
655 wrap |= CFQ_RQ2_WRAP;
656
657 /* Found required data */
658
659 /*
660 * By doing switch() on the bit mask "wrap" we avoid having to
661 * check two variables for all permutations: --> faster!
662 */
663 switch (wrap) {
664 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
665 if (d1 < d2)
666 return rq1;
667 else if (d2 < d1)
668 return rq2;
669 else {
670 if (s1 >= s2)
671 return rq1;
672 else
673 return rq2;
674 }
675
676 case CFQ_RQ2_WRAP:
677 return rq1;
678 case CFQ_RQ1_WRAP:
679 return rq2;
680 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
681 default:
682 /*
683 * Since both rqs are wrapped,
684 * start with the one that's further behind head
685 * (--> only *one* back seek required),
686 * since back seek takes more time than forward.
687 */
688 if (s1 <= s2)
689 return rq1;
690 else
691 return rq2;
692 }
693 }
694
695 /*
696 * The below is leftmost cache rbtree addon
697 */
698 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
699 {
700 /* Service tree is empty */
701 if (!root->count)
702 return NULL;
703
704 if (!root->left)
705 root->left = rb_first(&root->rb);
706
707 if (root->left)
708 return rb_entry(root->left, struct cfq_queue, rb_node);
709
710 return NULL;
711 }
712
713 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
714 {
715 if (!root->left)
716 root->left = rb_first(&root->rb);
717
718 if (root->left)
719 return rb_entry_cfqg(root->left);
720
721 return NULL;
722 }
723
724 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
725 {
726 rb_erase(n, root);
727 RB_CLEAR_NODE(n);
728 }
729
730 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
731 {
732 if (root->left == n)
733 root->left = NULL;
734 rb_erase_init(n, &root->rb);
735 --root->count;
736 }
737
738 /*
739 * would be nice to take fifo expire time into account as well
740 */
741 static struct request *
742 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
743 struct request *last)
744 {
745 struct rb_node *rbnext = rb_next(&last->rb_node);
746 struct rb_node *rbprev = rb_prev(&last->rb_node);
747 struct request *next = NULL, *prev = NULL;
748
749 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
750
751 if (rbprev)
752 prev = rb_entry_rq(rbprev);
753
754 if (rbnext)
755 next = rb_entry_rq(rbnext);
756 else {
757 rbnext = rb_first(&cfqq->sort_list);
758 if (rbnext && rbnext != &last->rb_node)
759 next = rb_entry_rq(rbnext);
760 }
761
762 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
763 }
764
765 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
766 struct cfq_queue *cfqq)
767 {
768 /*
769 * just an approximation, should be ok.
770 */
771 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
772 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
773 }
774
775 static inline s64
776 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
777 {
778 return cfqg->vdisktime - st->min_vdisktime;
779 }
780
781 static void
782 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
783 {
784 struct rb_node **node = &st->rb.rb_node;
785 struct rb_node *parent = NULL;
786 struct cfq_group *__cfqg;
787 s64 key = cfqg_key(st, cfqg);
788 int left = 1;
789
790 while (*node != NULL) {
791 parent = *node;
792 __cfqg = rb_entry_cfqg(parent);
793
794 if (key < cfqg_key(st, __cfqg))
795 node = &parent->rb_left;
796 else {
797 node = &parent->rb_right;
798 left = 0;
799 }
800 }
801
802 if (left)
803 st->left = &cfqg->rb_node;
804
805 rb_link_node(&cfqg->rb_node, parent, node);
806 rb_insert_color(&cfqg->rb_node, &st->rb);
807 }
808
809 static void
810 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
811 {
812 struct cfq_rb_root *st = &cfqd->grp_service_tree;
813 struct cfq_group *__cfqg;
814 struct rb_node *n;
815
816 cfqg->nr_cfqq++;
817 if (cfqg->on_st)
818 return;
819
820 /*
821 * Currently put the group at the end. Later implement something
822 * so that groups get lesser vtime based on their weights, so that
823 * if group does not loose all if it was not continously backlogged.
824 */
825 n = rb_last(&st->rb);
826 if (n) {
827 __cfqg = rb_entry_cfqg(n);
828 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
829 } else
830 cfqg->vdisktime = st->min_vdisktime;
831
832 __cfq_group_service_tree_add(st, cfqg);
833 cfqg->on_st = true;
834 st->total_weight += cfqg->weight;
835 }
836
837 static void
838 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
839 {
840 struct cfq_rb_root *st = &cfqd->grp_service_tree;
841
842 if (st->active == &cfqg->rb_node)
843 st->active = NULL;
844
845 BUG_ON(cfqg->nr_cfqq < 1);
846 cfqg->nr_cfqq--;
847
848 /* If there are other cfq queues under this group, don't delete it */
849 if (cfqg->nr_cfqq)
850 return;
851
852 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
853 cfqg->on_st = false;
854 st->total_weight -= cfqg->weight;
855 if (!RB_EMPTY_NODE(&cfqg->rb_node))
856 cfq_rb_erase(&cfqg->rb_node, st);
857 cfqg->saved_workload_slice = 0;
858 blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
859 }
860
861 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
862 {
863 unsigned int slice_used;
864
865 /*
866 * Queue got expired before even a single request completed or
867 * got expired immediately after first request completion.
868 */
869 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
870 /*
871 * Also charge the seek time incurred to the group, otherwise
872 * if there are mutiple queues in the group, each can dispatch
873 * a single request on seeky media and cause lots of seek time
874 * and group will never know it.
875 */
876 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
877 1);
878 } else {
879 slice_used = jiffies - cfqq->slice_start;
880 if (slice_used > cfqq->allocated_slice)
881 slice_used = cfqq->allocated_slice;
882 }
883
884 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
885 return slice_used;
886 }
887
888 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
889 struct cfq_queue *cfqq)
890 {
891 struct cfq_rb_root *st = &cfqd->grp_service_tree;
892 unsigned int used_sl, charge_sl;
893 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
894 - cfqg->service_tree_idle.count;
895
896 BUG_ON(nr_sync < 0);
897 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
898
899 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
900 charge_sl = cfqq->allocated_slice;
901
902 /* Can't update vdisktime while group is on service tree */
903 cfq_rb_erase(&cfqg->rb_node, st);
904 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
905 __cfq_group_service_tree_add(st, cfqg);
906
907 /* This group is being expired. Save the context */
908 if (time_after(cfqd->workload_expires, jiffies)) {
909 cfqg->saved_workload_slice = cfqd->workload_expires
910 - jiffies;
911 cfqg->saved_workload = cfqd->serving_type;
912 cfqg->saved_serving_prio = cfqd->serving_prio;
913 } else
914 cfqg->saved_workload_slice = 0;
915
916 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
917 st->min_vdisktime);
918 blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
919 }
920
921 #ifdef CONFIG_CFQ_GROUP_IOSCHED
922 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
923 {
924 if (blkg)
925 return container_of(blkg, struct cfq_group, blkg);
926 return NULL;
927 }
928
929 void
930 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
931 {
932 cfqg_of_blkg(blkg)->weight = weight;
933 }
934
935 static struct cfq_group *
936 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
937 {
938 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
939 struct cfq_group *cfqg = NULL;
940 void *key = cfqd;
941 int i, j;
942 struct cfq_rb_root *st;
943 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
944 unsigned int major, minor;
945
946 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
947 if (cfqg || !create)
948 goto done;
949
950 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
951 if (!cfqg)
952 goto done;
953
954 cfqg->weight = blkcg->weight;
955 for_each_cfqg_st(cfqg, i, j, st)
956 *st = CFQ_RB_ROOT;
957 RB_CLEAR_NODE(&cfqg->rb_node);
958
959 /*
960 * Take the initial reference that will be released on destroy
961 * This can be thought of a joint reference by cgroup and
962 * elevator which will be dropped by either elevator exit
963 * or cgroup deletion path depending on who is exiting first.
964 */
965 atomic_set(&cfqg->ref, 1);
966
967 /* Add group onto cgroup list */
968 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
969 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
970 MKDEV(major, minor));
971
972 /* Add group on cfqd list */
973 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
974
975 done:
976 return cfqg;
977 }
978
979 /*
980 * Search for the cfq group current task belongs to. If create = 1, then also
981 * create the cfq group if it does not exist. request_queue lock must be held.
982 */
983 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
984 {
985 struct cgroup *cgroup;
986 struct cfq_group *cfqg = NULL;
987
988 rcu_read_lock();
989 cgroup = task_cgroup(current, blkio_subsys_id);
990 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
991 if (!cfqg && create)
992 cfqg = &cfqd->root_group;
993 rcu_read_unlock();
994 return cfqg;
995 }
996
997 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
998 {
999 /* Currently, all async queues are mapped to root group */
1000 if (!cfq_cfqq_sync(cfqq))
1001 cfqg = &cfqq->cfqd->root_group;
1002
1003 cfqq->cfqg = cfqg;
1004 /* cfqq reference on cfqg */
1005 atomic_inc(&cfqq->cfqg->ref);
1006 }
1007
1008 static void cfq_put_cfqg(struct cfq_group *cfqg)
1009 {
1010 struct cfq_rb_root *st;
1011 int i, j;
1012
1013 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1014 if (!atomic_dec_and_test(&cfqg->ref))
1015 return;
1016 for_each_cfqg_st(cfqg, i, j, st)
1017 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1018 kfree(cfqg);
1019 }
1020
1021 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1022 {
1023 /* Something wrong if we are trying to remove same group twice */
1024 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1025
1026 hlist_del_init(&cfqg->cfqd_node);
1027
1028 /*
1029 * Put the reference taken at the time of creation so that when all
1030 * queues are gone, group can be destroyed.
1031 */
1032 cfq_put_cfqg(cfqg);
1033 }
1034
1035 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1036 {
1037 struct hlist_node *pos, *n;
1038 struct cfq_group *cfqg;
1039
1040 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1041 /*
1042 * If cgroup removal path got to blk_group first and removed
1043 * it from cgroup list, then it will take care of destroying
1044 * cfqg also.
1045 */
1046 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1047 cfq_destroy_cfqg(cfqd, cfqg);
1048 }
1049 }
1050
1051 /*
1052 * Blk cgroup controller notification saying that blkio_group object is being
1053 * delinked as associated cgroup object is going away. That also means that
1054 * no new IO will come in this group. So get rid of this group as soon as
1055 * any pending IO in the group is finished.
1056 *
1057 * This function is called under rcu_read_lock(). key is the rcu protected
1058 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1059 * read lock.
1060 *
1061 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1062 * it should not be NULL as even if elevator was exiting, cgroup deltion
1063 * path got to it first.
1064 */
1065 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1066 {
1067 unsigned long flags;
1068 struct cfq_data *cfqd = key;
1069
1070 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1071 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1072 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1073 }
1074
1075 #else /* GROUP_IOSCHED */
1076 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1077 {
1078 return &cfqd->root_group;
1079 }
1080 static inline void
1081 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1082 cfqq->cfqg = cfqg;
1083 }
1084
1085 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1086 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1087
1088 #endif /* GROUP_IOSCHED */
1089
1090 /*
1091 * The cfqd->service_trees holds all pending cfq_queue's that have
1092 * requests waiting to be processed. It is sorted in the order that
1093 * we will service the queues.
1094 */
1095 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1096 bool add_front)
1097 {
1098 struct rb_node **p, *parent;
1099 struct cfq_queue *__cfqq;
1100 unsigned long rb_key;
1101 struct cfq_rb_root *service_tree;
1102 int left;
1103 int new_cfqq = 1;
1104 int group_changed = 0;
1105
1106 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1107 if (!cfqd->cfq_group_isolation
1108 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1109 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1110 /* Move this cfq to root group */
1111 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1112 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1113 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1114 cfqq->orig_cfqg = cfqq->cfqg;
1115 cfqq->cfqg = &cfqd->root_group;
1116 atomic_inc(&cfqd->root_group.ref);
1117 group_changed = 1;
1118 } else if (!cfqd->cfq_group_isolation
1119 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1120 /* cfqq is sequential now needs to go to its original group */
1121 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1122 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1123 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1124 cfq_put_cfqg(cfqq->cfqg);
1125 cfqq->cfqg = cfqq->orig_cfqg;
1126 cfqq->orig_cfqg = NULL;
1127 group_changed = 1;
1128 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1129 }
1130 #endif
1131
1132 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1133 cfqq_type(cfqq));
1134 if (cfq_class_idle(cfqq)) {
1135 rb_key = CFQ_IDLE_DELAY;
1136 parent = rb_last(&service_tree->rb);
1137 if (parent && parent != &cfqq->rb_node) {
1138 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1139 rb_key += __cfqq->rb_key;
1140 } else
1141 rb_key += jiffies;
1142 } else if (!add_front) {
1143 /*
1144 * Get our rb key offset. Subtract any residual slice
1145 * value carried from last service. A negative resid
1146 * count indicates slice overrun, and this should position
1147 * the next service time further away in the tree.
1148 */
1149 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1150 rb_key -= cfqq->slice_resid;
1151 cfqq->slice_resid = 0;
1152 } else {
1153 rb_key = -HZ;
1154 __cfqq = cfq_rb_first(service_tree);
1155 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1156 }
1157
1158 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1159 new_cfqq = 0;
1160 /*
1161 * same position, nothing more to do
1162 */
1163 if (rb_key == cfqq->rb_key &&
1164 cfqq->service_tree == service_tree)
1165 return;
1166
1167 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1168 cfqq->service_tree = NULL;
1169 }
1170
1171 left = 1;
1172 parent = NULL;
1173 cfqq->service_tree = service_tree;
1174 p = &service_tree->rb.rb_node;
1175 while (*p) {
1176 struct rb_node **n;
1177
1178 parent = *p;
1179 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1180
1181 /*
1182 * sort by key, that represents service time.
1183 */
1184 if (time_before(rb_key, __cfqq->rb_key))
1185 n = &(*p)->rb_left;
1186 else {
1187 n = &(*p)->rb_right;
1188 left = 0;
1189 }
1190
1191 p = n;
1192 }
1193
1194 if (left)
1195 service_tree->left = &cfqq->rb_node;
1196
1197 cfqq->rb_key = rb_key;
1198 rb_link_node(&cfqq->rb_node, parent, p);
1199 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1200 service_tree->count++;
1201 if ((add_front || !new_cfqq) && !group_changed)
1202 return;
1203 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1204 }
1205
1206 static struct cfq_queue *
1207 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1208 sector_t sector, struct rb_node **ret_parent,
1209 struct rb_node ***rb_link)
1210 {
1211 struct rb_node **p, *parent;
1212 struct cfq_queue *cfqq = NULL;
1213
1214 parent = NULL;
1215 p = &root->rb_node;
1216 while (*p) {
1217 struct rb_node **n;
1218
1219 parent = *p;
1220 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1221
1222 /*
1223 * Sort strictly based on sector. Smallest to the left,
1224 * largest to the right.
1225 */
1226 if (sector > blk_rq_pos(cfqq->next_rq))
1227 n = &(*p)->rb_right;
1228 else if (sector < blk_rq_pos(cfqq->next_rq))
1229 n = &(*p)->rb_left;
1230 else
1231 break;
1232 p = n;
1233 cfqq = NULL;
1234 }
1235
1236 *ret_parent = parent;
1237 if (rb_link)
1238 *rb_link = p;
1239 return cfqq;
1240 }
1241
1242 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1243 {
1244 struct rb_node **p, *parent;
1245 struct cfq_queue *__cfqq;
1246
1247 if (cfqq->p_root) {
1248 rb_erase(&cfqq->p_node, cfqq->p_root);
1249 cfqq->p_root = NULL;
1250 }
1251
1252 if (cfq_class_idle(cfqq))
1253 return;
1254 if (!cfqq->next_rq)
1255 return;
1256
1257 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1258 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1259 blk_rq_pos(cfqq->next_rq), &parent, &p);
1260 if (!__cfqq) {
1261 rb_link_node(&cfqq->p_node, parent, p);
1262 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1263 } else
1264 cfqq->p_root = NULL;
1265 }
1266
1267 /*
1268 * Update cfqq's position in the service tree.
1269 */
1270 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1271 {
1272 /*
1273 * Resorting requires the cfqq to be on the RR list already.
1274 */
1275 if (cfq_cfqq_on_rr(cfqq)) {
1276 cfq_service_tree_add(cfqd, cfqq, 0);
1277 cfq_prio_tree_add(cfqd, cfqq);
1278 }
1279 }
1280
1281 /*
1282 * add to busy list of queues for service, trying to be fair in ordering
1283 * the pending list according to last request service
1284 */
1285 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1286 {
1287 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1288 BUG_ON(cfq_cfqq_on_rr(cfqq));
1289 cfq_mark_cfqq_on_rr(cfqq);
1290 cfqd->busy_queues++;
1291
1292 cfq_resort_rr_list(cfqd, cfqq);
1293 }
1294
1295 /*
1296 * Called when the cfqq no longer has requests pending, remove it from
1297 * the service tree.
1298 */
1299 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1300 {
1301 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1302 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1303 cfq_clear_cfqq_on_rr(cfqq);
1304
1305 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1306 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1307 cfqq->service_tree = NULL;
1308 }
1309 if (cfqq->p_root) {
1310 rb_erase(&cfqq->p_node, cfqq->p_root);
1311 cfqq->p_root = NULL;
1312 }
1313
1314 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1315 BUG_ON(!cfqd->busy_queues);
1316 cfqd->busy_queues--;
1317 }
1318
1319 /*
1320 * rb tree support functions
1321 */
1322 static void cfq_del_rq_rb(struct request *rq)
1323 {
1324 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1325 const int sync = rq_is_sync(rq);
1326
1327 BUG_ON(!cfqq->queued[sync]);
1328 cfqq->queued[sync]--;
1329
1330 elv_rb_del(&cfqq->sort_list, rq);
1331
1332 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1333 /*
1334 * Queue will be deleted from service tree when we actually
1335 * expire it later. Right now just remove it from prio tree
1336 * as it is empty.
1337 */
1338 if (cfqq->p_root) {
1339 rb_erase(&cfqq->p_node, cfqq->p_root);
1340 cfqq->p_root = NULL;
1341 }
1342 }
1343 }
1344
1345 static void cfq_add_rq_rb(struct request *rq)
1346 {
1347 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1348 struct cfq_data *cfqd = cfqq->cfqd;
1349 struct request *__alias, *prev;
1350
1351 cfqq->queued[rq_is_sync(rq)]++;
1352
1353 /*
1354 * looks a little odd, but the first insert might return an alias.
1355 * if that happens, put the alias on the dispatch list
1356 */
1357 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1358 cfq_dispatch_insert(cfqd->queue, __alias);
1359
1360 if (!cfq_cfqq_on_rr(cfqq))
1361 cfq_add_cfqq_rr(cfqd, cfqq);
1362
1363 /*
1364 * check if this request is a better next-serve candidate
1365 */
1366 prev = cfqq->next_rq;
1367 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1368
1369 /*
1370 * adjust priority tree position, if ->next_rq changes
1371 */
1372 if (prev != cfqq->next_rq)
1373 cfq_prio_tree_add(cfqd, cfqq);
1374
1375 BUG_ON(!cfqq->next_rq);
1376 }
1377
1378 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1379 {
1380 elv_rb_del(&cfqq->sort_list, rq);
1381 cfqq->queued[rq_is_sync(rq)]--;
1382 cfq_add_rq_rb(rq);
1383 }
1384
1385 static struct request *
1386 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1387 {
1388 struct task_struct *tsk = current;
1389 struct cfq_io_context *cic;
1390 struct cfq_queue *cfqq;
1391
1392 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1393 if (!cic)
1394 return NULL;
1395
1396 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1397 if (cfqq) {
1398 sector_t sector = bio->bi_sector + bio_sectors(bio);
1399
1400 return elv_rb_find(&cfqq->sort_list, sector);
1401 }
1402
1403 return NULL;
1404 }
1405
1406 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1407 {
1408 struct cfq_data *cfqd = q->elevator->elevator_data;
1409
1410 cfqd->rq_in_driver++;
1411 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1412 cfqd->rq_in_driver);
1413
1414 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1415 }
1416
1417 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1418 {
1419 struct cfq_data *cfqd = q->elevator->elevator_data;
1420
1421 WARN_ON(!cfqd->rq_in_driver);
1422 cfqd->rq_in_driver--;
1423 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1424 cfqd->rq_in_driver);
1425 }
1426
1427 static void cfq_remove_request(struct request *rq)
1428 {
1429 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1430
1431 if (cfqq->next_rq == rq)
1432 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1433
1434 list_del_init(&rq->queuelist);
1435 cfq_del_rq_rb(rq);
1436
1437 cfqq->cfqd->rq_queued--;
1438 if (rq_is_meta(rq)) {
1439 WARN_ON(!cfqq->meta_pending);
1440 cfqq->meta_pending--;
1441 }
1442 }
1443
1444 static int cfq_merge(struct request_queue *q, struct request **req,
1445 struct bio *bio)
1446 {
1447 struct cfq_data *cfqd = q->elevator->elevator_data;
1448 struct request *__rq;
1449
1450 __rq = cfq_find_rq_fmerge(cfqd, bio);
1451 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1452 *req = __rq;
1453 return ELEVATOR_FRONT_MERGE;
1454 }
1455
1456 return ELEVATOR_NO_MERGE;
1457 }
1458
1459 static void cfq_merged_request(struct request_queue *q, struct request *req,
1460 int type)
1461 {
1462 if (type == ELEVATOR_FRONT_MERGE) {
1463 struct cfq_queue *cfqq = RQ_CFQQ(req);
1464
1465 cfq_reposition_rq_rb(cfqq, req);
1466 }
1467 }
1468
1469 static void
1470 cfq_merged_requests(struct request_queue *q, struct request *rq,
1471 struct request *next)
1472 {
1473 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1474 /*
1475 * reposition in fifo if next is older than rq
1476 */
1477 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1478 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1479 list_move(&rq->queuelist, &next->queuelist);
1480 rq_set_fifo_time(rq, rq_fifo_time(next));
1481 }
1482
1483 if (cfqq->next_rq == next)
1484 cfqq->next_rq = rq;
1485 cfq_remove_request(next);
1486 }
1487
1488 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1489 struct bio *bio)
1490 {
1491 struct cfq_data *cfqd = q->elevator->elevator_data;
1492 struct cfq_io_context *cic;
1493 struct cfq_queue *cfqq;
1494
1495 /*
1496 * Disallow merge of a sync bio into an async request.
1497 */
1498 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1499 return false;
1500
1501 /*
1502 * Lookup the cfqq that this bio will be queued with. Allow
1503 * merge only if rq is queued there.
1504 */
1505 cic = cfq_cic_lookup(cfqd, current->io_context);
1506 if (!cic)
1507 return false;
1508
1509 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1510 return cfqq == RQ_CFQQ(rq);
1511 }
1512
1513 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1514 struct cfq_queue *cfqq)
1515 {
1516 if (cfqq) {
1517 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1518 cfqd->serving_prio, cfqd->serving_type);
1519 cfqq->slice_start = 0;
1520 cfqq->dispatch_start = jiffies;
1521 cfqq->allocated_slice = 0;
1522 cfqq->slice_end = 0;
1523 cfqq->slice_dispatch = 0;
1524
1525 cfq_clear_cfqq_wait_request(cfqq);
1526 cfq_clear_cfqq_must_dispatch(cfqq);
1527 cfq_clear_cfqq_must_alloc_slice(cfqq);
1528 cfq_clear_cfqq_fifo_expire(cfqq);
1529 cfq_mark_cfqq_slice_new(cfqq);
1530
1531 del_timer(&cfqd->idle_slice_timer);
1532 }
1533
1534 cfqd->active_queue = cfqq;
1535 }
1536
1537 /*
1538 * current cfqq expired its slice (or was too idle), select new one
1539 */
1540 static void
1541 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1542 bool timed_out)
1543 {
1544 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1545
1546 if (cfq_cfqq_wait_request(cfqq))
1547 del_timer(&cfqd->idle_slice_timer);
1548
1549 cfq_clear_cfqq_wait_request(cfqq);
1550 cfq_clear_cfqq_wait_busy(cfqq);
1551
1552 /*
1553 * If this cfqq is shared between multiple processes, check to
1554 * make sure that those processes are still issuing I/Os within
1555 * the mean seek distance. If not, it may be time to break the
1556 * queues apart again.
1557 */
1558 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1559 cfq_mark_cfqq_split_coop(cfqq);
1560
1561 /*
1562 * store what was left of this slice, if the queue idled/timed out
1563 */
1564 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1565 cfqq->slice_resid = cfqq->slice_end - jiffies;
1566 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1567 }
1568
1569 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1570
1571 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1572 cfq_del_cfqq_rr(cfqd, cfqq);
1573
1574 cfq_resort_rr_list(cfqd, cfqq);
1575
1576 if (cfqq == cfqd->active_queue)
1577 cfqd->active_queue = NULL;
1578
1579 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1580 cfqd->grp_service_tree.active = NULL;
1581
1582 if (cfqd->active_cic) {
1583 put_io_context(cfqd->active_cic->ioc);
1584 cfqd->active_cic = NULL;
1585 }
1586 }
1587
1588 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1589 {
1590 struct cfq_queue *cfqq = cfqd->active_queue;
1591
1592 if (cfqq)
1593 __cfq_slice_expired(cfqd, cfqq, timed_out);
1594 }
1595
1596 /*
1597 * Get next queue for service. Unless we have a queue preemption,
1598 * we'll simply select the first cfqq in the service tree.
1599 */
1600 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1601 {
1602 struct cfq_rb_root *service_tree =
1603 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1604 cfqd->serving_type);
1605
1606 if (!cfqd->rq_queued)
1607 return NULL;
1608
1609 /* There is nothing to dispatch */
1610 if (!service_tree)
1611 return NULL;
1612 if (RB_EMPTY_ROOT(&service_tree->rb))
1613 return NULL;
1614 return cfq_rb_first(service_tree);
1615 }
1616
1617 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1618 {
1619 struct cfq_group *cfqg;
1620 struct cfq_queue *cfqq;
1621 int i, j;
1622 struct cfq_rb_root *st;
1623
1624 if (!cfqd->rq_queued)
1625 return NULL;
1626
1627 cfqg = cfq_get_next_cfqg(cfqd);
1628 if (!cfqg)
1629 return NULL;
1630
1631 for_each_cfqg_st(cfqg, i, j, st)
1632 if ((cfqq = cfq_rb_first(st)) != NULL)
1633 return cfqq;
1634 return NULL;
1635 }
1636
1637 /*
1638 * Get and set a new active queue for service.
1639 */
1640 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1641 struct cfq_queue *cfqq)
1642 {
1643 if (!cfqq)
1644 cfqq = cfq_get_next_queue(cfqd);
1645
1646 __cfq_set_active_queue(cfqd, cfqq);
1647 return cfqq;
1648 }
1649
1650 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1651 struct request *rq)
1652 {
1653 if (blk_rq_pos(rq) >= cfqd->last_position)
1654 return blk_rq_pos(rq) - cfqd->last_position;
1655 else
1656 return cfqd->last_position - blk_rq_pos(rq);
1657 }
1658
1659 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1660 struct request *rq)
1661 {
1662 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1663 }
1664
1665 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1666 struct cfq_queue *cur_cfqq)
1667 {
1668 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1669 struct rb_node *parent, *node;
1670 struct cfq_queue *__cfqq;
1671 sector_t sector = cfqd->last_position;
1672
1673 if (RB_EMPTY_ROOT(root))
1674 return NULL;
1675
1676 /*
1677 * First, if we find a request starting at the end of the last
1678 * request, choose it.
1679 */
1680 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1681 if (__cfqq)
1682 return __cfqq;
1683
1684 /*
1685 * If the exact sector wasn't found, the parent of the NULL leaf
1686 * will contain the closest sector.
1687 */
1688 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1689 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1690 return __cfqq;
1691
1692 if (blk_rq_pos(__cfqq->next_rq) < sector)
1693 node = rb_next(&__cfqq->p_node);
1694 else
1695 node = rb_prev(&__cfqq->p_node);
1696 if (!node)
1697 return NULL;
1698
1699 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1700 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1701 return __cfqq;
1702
1703 return NULL;
1704 }
1705
1706 /*
1707 * cfqd - obvious
1708 * cur_cfqq - passed in so that we don't decide that the current queue is
1709 * closely cooperating with itself.
1710 *
1711 * So, basically we're assuming that that cur_cfqq has dispatched at least
1712 * one request, and that cfqd->last_position reflects a position on the disk
1713 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1714 * assumption.
1715 */
1716 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1717 struct cfq_queue *cur_cfqq)
1718 {
1719 struct cfq_queue *cfqq;
1720
1721 if (cfq_class_idle(cur_cfqq))
1722 return NULL;
1723 if (!cfq_cfqq_sync(cur_cfqq))
1724 return NULL;
1725 if (CFQQ_SEEKY(cur_cfqq))
1726 return NULL;
1727
1728 /*
1729 * Don't search priority tree if it's the only queue in the group.
1730 */
1731 if (cur_cfqq->cfqg->nr_cfqq == 1)
1732 return NULL;
1733
1734 /*
1735 * We should notice if some of the queues are cooperating, eg
1736 * working closely on the same area of the disk. In that case,
1737 * we can group them together and don't waste time idling.
1738 */
1739 cfqq = cfqq_close(cfqd, cur_cfqq);
1740 if (!cfqq)
1741 return NULL;
1742
1743 /* If new queue belongs to different cfq_group, don't choose it */
1744 if (cur_cfqq->cfqg != cfqq->cfqg)
1745 return NULL;
1746
1747 /*
1748 * It only makes sense to merge sync queues.
1749 */
1750 if (!cfq_cfqq_sync(cfqq))
1751 return NULL;
1752 if (CFQQ_SEEKY(cfqq))
1753 return NULL;
1754
1755 /*
1756 * Do not merge queues of different priority classes
1757 */
1758 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1759 return NULL;
1760
1761 return cfqq;
1762 }
1763
1764 /*
1765 * Determine whether we should enforce idle window for this queue.
1766 */
1767
1768 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1769 {
1770 enum wl_prio_t prio = cfqq_prio(cfqq);
1771 struct cfq_rb_root *service_tree = cfqq->service_tree;
1772
1773 BUG_ON(!service_tree);
1774 BUG_ON(!service_tree->count);
1775
1776 /* We never do for idle class queues. */
1777 if (prio == IDLE_WORKLOAD)
1778 return false;
1779
1780 /* We do for queues that were marked with idle window flag. */
1781 if (cfq_cfqq_idle_window(cfqq) &&
1782 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1783 return true;
1784
1785 /*
1786 * Otherwise, we do only if they are the last ones
1787 * in their service tree.
1788 */
1789 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1790 return 1;
1791 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1792 service_tree->count);
1793 return 0;
1794 }
1795
1796 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1797 {
1798 struct cfq_queue *cfqq = cfqd->active_queue;
1799 struct cfq_io_context *cic;
1800 unsigned long sl;
1801
1802 /*
1803 * SSD device without seek penalty, disable idling. But only do so
1804 * for devices that support queuing, otherwise we still have a problem
1805 * with sync vs async workloads.
1806 */
1807 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1808 return;
1809
1810 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1811 WARN_ON(cfq_cfqq_slice_new(cfqq));
1812
1813 /*
1814 * idle is disabled, either manually or by past process history
1815 */
1816 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1817 return;
1818
1819 /*
1820 * still active requests from this queue, don't idle
1821 */
1822 if (cfqq->dispatched)
1823 return;
1824
1825 /*
1826 * task has exited, don't wait
1827 */
1828 cic = cfqd->active_cic;
1829 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1830 return;
1831
1832 /*
1833 * If our average think time is larger than the remaining time
1834 * slice, then don't idle. This avoids overrunning the allotted
1835 * time slice.
1836 */
1837 if (sample_valid(cic->ttime_samples) &&
1838 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1839 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1840 cic->ttime_mean);
1841 return;
1842 }
1843
1844 cfq_mark_cfqq_wait_request(cfqq);
1845
1846 sl = cfqd->cfq_slice_idle;
1847
1848 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1849 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1850 }
1851
1852 /*
1853 * Move request from internal lists to the request queue dispatch list.
1854 */
1855 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1856 {
1857 struct cfq_data *cfqd = q->elevator->elevator_data;
1858 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1859
1860 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1861
1862 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1863 cfq_remove_request(rq);
1864 cfqq->dispatched++;
1865 elv_dispatch_sort(q, rq);
1866
1867 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1868 blkiocg_update_request_dispatch_stats(&cfqq->cfqg->blkg, rq);
1869 }
1870
1871 /*
1872 * return expired entry, or NULL to just start from scratch in rbtree
1873 */
1874 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1875 {
1876 struct request *rq = NULL;
1877
1878 if (cfq_cfqq_fifo_expire(cfqq))
1879 return NULL;
1880
1881 cfq_mark_cfqq_fifo_expire(cfqq);
1882
1883 if (list_empty(&cfqq->fifo))
1884 return NULL;
1885
1886 rq = rq_entry_fifo(cfqq->fifo.next);
1887 if (time_before(jiffies, rq_fifo_time(rq)))
1888 rq = NULL;
1889
1890 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1891 return rq;
1892 }
1893
1894 static inline int
1895 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1896 {
1897 const int base_rq = cfqd->cfq_slice_async_rq;
1898
1899 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1900
1901 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1902 }
1903
1904 /*
1905 * Must be called with the queue_lock held.
1906 */
1907 static int cfqq_process_refs(struct cfq_queue *cfqq)
1908 {
1909 int process_refs, io_refs;
1910
1911 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1912 process_refs = atomic_read(&cfqq->ref) - io_refs;
1913 BUG_ON(process_refs < 0);
1914 return process_refs;
1915 }
1916
1917 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1918 {
1919 int process_refs, new_process_refs;
1920 struct cfq_queue *__cfqq;
1921
1922 /* Avoid a circular list and skip interim queue merges */
1923 while ((__cfqq = new_cfqq->new_cfqq)) {
1924 if (__cfqq == cfqq)
1925 return;
1926 new_cfqq = __cfqq;
1927 }
1928
1929 process_refs = cfqq_process_refs(cfqq);
1930 /*
1931 * If the process for the cfqq has gone away, there is no
1932 * sense in merging the queues.
1933 */
1934 if (process_refs == 0)
1935 return;
1936
1937 /*
1938 * Merge in the direction of the lesser amount of work.
1939 */
1940 new_process_refs = cfqq_process_refs(new_cfqq);
1941 if (new_process_refs >= process_refs) {
1942 cfqq->new_cfqq = new_cfqq;
1943 atomic_add(process_refs, &new_cfqq->ref);
1944 } else {
1945 new_cfqq->new_cfqq = cfqq;
1946 atomic_add(new_process_refs, &cfqq->ref);
1947 }
1948 }
1949
1950 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1951 struct cfq_group *cfqg, enum wl_prio_t prio)
1952 {
1953 struct cfq_queue *queue;
1954 int i;
1955 bool key_valid = false;
1956 unsigned long lowest_key = 0;
1957 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1958
1959 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
1960 /* select the one with lowest rb_key */
1961 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
1962 if (queue &&
1963 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1964 lowest_key = queue->rb_key;
1965 cur_best = i;
1966 key_valid = true;
1967 }
1968 }
1969
1970 return cur_best;
1971 }
1972
1973 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1974 {
1975 unsigned slice;
1976 unsigned count;
1977 struct cfq_rb_root *st;
1978 unsigned group_slice;
1979
1980 if (!cfqg) {
1981 cfqd->serving_prio = IDLE_WORKLOAD;
1982 cfqd->workload_expires = jiffies + 1;
1983 return;
1984 }
1985
1986 /* Choose next priority. RT > BE > IDLE */
1987 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1988 cfqd->serving_prio = RT_WORKLOAD;
1989 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
1990 cfqd->serving_prio = BE_WORKLOAD;
1991 else {
1992 cfqd->serving_prio = IDLE_WORKLOAD;
1993 cfqd->workload_expires = jiffies + 1;
1994 return;
1995 }
1996
1997 /*
1998 * For RT and BE, we have to choose also the type
1999 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2000 * expiration time
2001 */
2002 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2003 count = st->count;
2004
2005 /*
2006 * check workload expiration, and that we still have other queues ready
2007 */
2008 if (count && !time_after(jiffies, cfqd->workload_expires))
2009 return;
2010
2011 /* otherwise select new workload type */
2012 cfqd->serving_type =
2013 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2014 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2015 count = st->count;
2016
2017 /*
2018 * the workload slice is computed as a fraction of target latency
2019 * proportional to the number of queues in that workload, over
2020 * all the queues in the same priority class
2021 */
2022 group_slice = cfq_group_slice(cfqd, cfqg);
2023
2024 slice = group_slice * count /
2025 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2026 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2027
2028 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2029 unsigned int tmp;
2030
2031 /*
2032 * Async queues are currently system wide. Just taking
2033 * proportion of queues with-in same group will lead to higher
2034 * async ratio system wide as generally root group is going
2035 * to have higher weight. A more accurate thing would be to
2036 * calculate system wide asnc/sync ratio.
2037 */
2038 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2039 tmp = tmp/cfqd->busy_queues;
2040 slice = min_t(unsigned, slice, tmp);
2041
2042 /* async workload slice is scaled down according to
2043 * the sync/async slice ratio. */
2044 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2045 } else
2046 /* sync workload slice is at least 2 * cfq_slice_idle */
2047 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2048
2049 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2050 cfq_log(cfqd, "workload slice:%d", slice);
2051 cfqd->workload_expires = jiffies + slice;
2052 cfqd->noidle_tree_requires_idle = false;
2053 }
2054
2055 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2056 {
2057 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2058 struct cfq_group *cfqg;
2059
2060 if (RB_EMPTY_ROOT(&st->rb))
2061 return NULL;
2062 cfqg = cfq_rb_first_group(st);
2063 st->active = &cfqg->rb_node;
2064 update_min_vdisktime(st);
2065 return cfqg;
2066 }
2067
2068 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2069 {
2070 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2071
2072 cfqd->serving_group = cfqg;
2073
2074 /* Restore the workload type data */
2075 if (cfqg->saved_workload_slice) {
2076 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2077 cfqd->serving_type = cfqg->saved_workload;
2078 cfqd->serving_prio = cfqg->saved_serving_prio;
2079 } else
2080 cfqd->workload_expires = jiffies - 1;
2081
2082 choose_service_tree(cfqd, cfqg);
2083 }
2084
2085 /*
2086 * Select a queue for service. If we have a current active queue,
2087 * check whether to continue servicing it, or retrieve and set a new one.
2088 */
2089 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2090 {
2091 struct cfq_queue *cfqq, *new_cfqq = NULL;
2092
2093 cfqq = cfqd->active_queue;
2094 if (!cfqq)
2095 goto new_queue;
2096
2097 if (!cfqd->rq_queued)
2098 return NULL;
2099
2100 /*
2101 * We were waiting for group to get backlogged. Expire the queue
2102 */
2103 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2104 goto expire;
2105
2106 /*
2107 * The active queue has run out of time, expire it and select new.
2108 */
2109 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2110 /*
2111 * If slice had not expired at the completion of last request
2112 * we might not have turned on wait_busy flag. Don't expire
2113 * the queue yet. Allow the group to get backlogged.
2114 *
2115 * The very fact that we have used the slice, that means we
2116 * have been idling all along on this queue and it should be
2117 * ok to wait for this request to complete.
2118 */
2119 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2120 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2121 cfqq = NULL;
2122 goto keep_queue;
2123 } else
2124 goto expire;
2125 }
2126
2127 /*
2128 * The active queue has requests and isn't expired, allow it to
2129 * dispatch.
2130 */
2131 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2132 goto keep_queue;
2133
2134 /*
2135 * If another queue has a request waiting within our mean seek
2136 * distance, let it run. The expire code will check for close
2137 * cooperators and put the close queue at the front of the service
2138 * tree. If possible, merge the expiring queue with the new cfqq.
2139 */
2140 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2141 if (new_cfqq) {
2142 if (!cfqq->new_cfqq)
2143 cfq_setup_merge(cfqq, new_cfqq);
2144 goto expire;
2145 }
2146
2147 /*
2148 * No requests pending. If the active queue still has requests in
2149 * flight or is idling for a new request, allow either of these
2150 * conditions to happen (or time out) before selecting a new queue.
2151 */
2152 if (timer_pending(&cfqd->idle_slice_timer) ||
2153 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2154 cfqq = NULL;
2155 goto keep_queue;
2156 }
2157
2158 expire:
2159 cfq_slice_expired(cfqd, 0);
2160 new_queue:
2161 /*
2162 * Current queue expired. Check if we have to switch to a new
2163 * service tree
2164 */
2165 if (!new_cfqq)
2166 cfq_choose_cfqg(cfqd);
2167
2168 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2169 keep_queue:
2170 return cfqq;
2171 }
2172
2173 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2174 {
2175 int dispatched = 0;
2176
2177 while (cfqq->next_rq) {
2178 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2179 dispatched++;
2180 }
2181
2182 BUG_ON(!list_empty(&cfqq->fifo));
2183
2184 /* By default cfqq is not expired if it is empty. Do it explicitly */
2185 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2186 return dispatched;
2187 }
2188
2189 /*
2190 * Drain our current requests. Used for barriers and when switching
2191 * io schedulers on-the-fly.
2192 */
2193 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2194 {
2195 struct cfq_queue *cfqq;
2196 int dispatched = 0;
2197
2198 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2199 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2200
2201 cfq_slice_expired(cfqd, 0);
2202 BUG_ON(cfqd->busy_queues);
2203
2204 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2205 return dispatched;
2206 }
2207
2208 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2209 struct cfq_queue *cfqq)
2210 {
2211 /* the queue hasn't finished any request, can't estimate */
2212 if (cfq_cfqq_slice_new(cfqq))
2213 return 1;
2214 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2215 cfqq->slice_end))
2216 return 1;
2217
2218 return 0;
2219 }
2220
2221 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2222 {
2223 unsigned int max_dispatch;
2224
2225 /*
2226 * Drain async requests before we start sync IO
2227 */
2228 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2229 return false;
2230
2231 /*
2232 * If this is an async queue and we have sync IO in flight, let it wait
2233 */
2234 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2235 return false;
2236
2237 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2238 if (cfq_class_idle(cfqq))
2239 max_dispatch = 1;
2240
2241 /*
2242 * Does this cfqq already have too much IO in flight?
2243 */
2244 if (cfqq->dispatched >= max_dispatch) {
2245 /*
2246 * idle queue must always only have a single IO in flight
2247 */
2248 if (cfq_class_idle(cfqq))
2249 return false;
2250
2251 /*
2252 * We have other queues, don't allow more IO from this one
2253 */
2254 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2255 return false;
2256
2257 /*
2258 * Sole queue user, no limit
2259 */
2260 if (cfqd->busy_queues == 1)
2261 max_dispatch = -1;
2262 else
2263 /*
2264 * Normally we start throttling cfqq when cfq_quantum/2
2265 * requests have been dispatched. But we can drive
2266 * deeper queue depths at the beginning of slice
2267 * subjected to upper limit of cfq_quantum.
2268 * */
2269 max_dispatch = cfqd->cfq_quantum;
2270 }
2271
2272 /*
2273 * Async queues must wait a bit before being allowed dispatch.
2274 * We also ramp up the dispatch depth gradually for async IO,
2275 * based on the last sync IO we serviced
2276 */
2277 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2278 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2279 unsigned int depth;
2280
2281 depth = last_sync / cfqd->cfq_slice[1];
2282 if (!depth && !cfqq->dispatched)
2283 depth = 1;
2284 if (depth < max_dispatch)
2285 max_dispatch = depth;
2286 }
2287
2288 /*
2289 * If we're below the current max, allow a dispatch
2290 */
2291 return cfqq->dispatched < max_dispatch;
2292 }
2293
2294 /*
2295 * Dispatch a request from cfqq, moving them to the request queue
2296 * dispatch list.
2297 */
2298 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2299 {
2300 struct request *rq;
2301
2302 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2303
2304 if (!cfq_may_dispatch(cfqd, cfqq))
2305 return false;
2306
2307 /*
2308 * follow expired path, else get first next available
2309 */
2310 rq = cfq_check_fifo(cfqq);
2311 if (!rq)
2312 rq = cfqq->next_rq;
2313
2314 /*
2315 * insert request into driver dispatch list
2316 */
2317 cfq_dispatch_insert(cfqd->queue, rq);
2318
2319 if (!cfqd->active_cic) {
2320 struct cfq_io_context *cic = RQ_CIC(rq);
2321
2322 atomic_long_inc(&cic->ioc->refcount);
2323 cfqd->active_cic = cic;
2324 }
2325
2326 return true;
2327 }
2328
2329 /*
2330 * Find the cfqq that we need to service and move a request from that to the
2331 * dispatch list
2332 */
2333 static int cfq_dispatch_requests(struct request_queue *q, int force)
2334 {
2335 struct cfq_data *cfqd = q->elevator->elevator_data;
2336 struct cfq_queue *cfqq;
2337
2338 if (!cfqd->busy_queues)
2339 return 0;
2340
2341 if (unlikely(force))
2342 return cfq_forced_dispatch(cfqd);
2343
2344 cfqq = cfq_select_queue(cfqd);
2345 if (!cfqq)
2346 return 0;
2347
2348 /*
2349 * Dispatch a request from this cfqq, if it is allowed
2350 */
2351 if (!cfq_dispatch_request(cfqd, cfqq))
2352 return 0;
2353
2354 cfqq->slice_dispatch++;
2355 cfq_clear_cfqq_must_dispatch(cfqq);
2356
2357 /*
2358 * expire an async queue immediately if it has used up its slice. idle
2359 * queue always expire after 1 dispatch round.
2360 */
2361 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2362 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2363 cfq_class_idle(cfqq))) {
2364 cfqq->slice_end = jiffies + 1;
2365 cfq_slice_expired(cfqd, 0);
2366 }
2367
2368 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2369 return 1;
2370 }
2371
2372 /*
2373 * task holds one reference to the queue, dropped when task exits. each rq
2374 * in-flight on this queue also holds a reference, dropped when rq is freed.
2375 *
2376 * Each cfq queue took a reference on the parent group. Drop it now.
2377 * queue lock must be held here.
2378 */
2379 static void cfq_put_queue(struct cfq_queue *cfqq)
2380 {
2381 struct cfq_data *cfqd = cfqq->cfqd;
2382 struct cfq_group *cfqg, *orig_cfqg;
2383
2384 BUG_ON(atomic_read(&cfqq->ref) <= 0);
2385
2386 if (!atomic_dec_and_test(&cfqq->ref))
2387 return;
2388
2389 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2390 BUG_ON(rb_first(&cfqq->sort_list));
2391 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2392 cfqg = cfqq->cfqg;
2393 orig_cfqg = cfqq->orig_cfqg;
2394
2395 if (unlikely(cfqd->active_queue == cfqq)) {
2396 __cfq_slice_expired(cfqd, cfqq, 0);
2397 cfq_schedule_dispatch(cfqd);
2398 }
2399
2400 BUG_ON(cfq_cfqq_on_rr(cfqq));
2401 kmem_cache_free(cfq_pool, cfqq);
2402 cfq_put_cfqg(cfqg);
2403 if (orig_cfqg)
2404 cfq_put_cfqg(orig_cfqg);
2405 }
2406
2407 /*
2408 * Must always be called with the rcu_read_lock() held
2409 */
2410 static void
2411 __call_for_each_cic(struct io_context *ioc,
2412 void (*func)(struct io_context *, struct cfq_io_context *))
2413 {
2414 struct cfq_io_context *cic;
2415 struct hlist_node *n;
2416
2417 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2418 func(ioc, cic);
2419 }
2420
2421 /*
2422 * Call func for each cic attached to this ioc.
2423 */
2424 static void
2425 call_for_each_cic(struct io_context *ioc,
2426 void (*func)(struct io_context *, struct cfq_io_context *))
2427 {
2428 rcu_read_lock();
2429 __call_for_each_cic(ioc, func);
2430 rcu_read_unlock();
2431 }
2432
2433 static void cfq_cic_free_rcu(struct rcu_head *head)
2434 {
2435 struct cfq_io_context *cic;
2436
2437 cic = container_of(head, struct cfq_io_context, rcu_head);
2438
2439 kmem_cache_free(cfq_ioc_pool, cic);
2440 elv_ioc_count_dec(cfq_ioc_count);
2441
2442 if (ioc_gone) {
2443 /*
2444 * CFQ scheduler is exiting, grab exit lock and check
2445 * the pending io context count. If it hits zero,
2446 * complete ioc_gone and set it back to NULL
2447 */
2448 spin_lock(&ioc_gone_lock);
2449 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2450 complete(ioc_gone);
2451 ioc_gone = NULL;
2452 }
2453 spin_unlock(&ioc_gone_lock);
2454 }
2455 }
2456
2457 static void cfq_cic_free(struct cfq_io_context *cic)
2458 {
2459 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2460 }
2461
2462 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2463 {
2464 unsigned long flags;
2465
2466 BUG_ON(!cic->dead_key);
2467
2468 spin_lock_irqsave(&ioc->lock, flags);
2469 radix_tree_delete(&ioc->radix_root, cic->dead_key);
2470 hlist_del_rcu(&cic->cic_list);
2471 spin_unlock_irqrestore(&ioc->lock, flags);
2472
2473 cfq_cic_free(cic);
2474 }
2475
2476 /*
2477 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2478 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2479 * and ->trim() which is called with the task lock held
2480 */
2481 static void cfq_free_io_context(struct io_context *ioc)
2482 {
2483 /*
2484 * ioc->refcount is zero here, or we are called from elv_unregister(),
2485 * so no more cic's are allowed to be linked into this ioc. So it
2486 * should be ok to iterate over the known list, we will see all cic's
2487 * since no new ones are added.
2488 */
2489 __call_for_each_cic(ioc, cic_free_func);
2490 }
2491
2492 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2493 {
2494 struct cfq_queue *__cfqq, *next;
2495
2496 if (unlikely(cfqq == cfqd->active_queue)) {
2497 __cfq_slice_expired(cfqd, cfqq, 0);
2498 cfq_schedule_dispatch(cfqd);
2499 }
2500
2501 /*
2502 * If this queue was scheduled to merge with another queue, be
2503 * sure to drop the reference taken on that queue (and others in
2504 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2505 */
2506 __cfqq = cfqq->new_cfqq;
2507 while (__cfqq) {
2508 if (__cfqq == cfqq) {
2509 WARN(1, "cfqq->new_cfqq loop detected\n");
2510 break;
2511 }
2512 next = __cfqq->new_cfqq;
2513 cfq_put_queue(__cfqq);
2514 __cfqq = next;
2515 }
2516
2517 cfq_put_queue(cfqq);
2518 }
2519
2520 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2521 struct cfq_io_context *cic)
2522 {
2523 struct io_context *ioc = cic->ioc;
2524
2525 list_del_init(&cic->queue_list);
2526
2527 /*
2528 * Make sure key == NULL is seen for dead queues
2529 */
2530 smp_wmb();
2531 cic->dead_key = (unsigned long) cic->key;
2532 cic->key = NULL;
2533
2534 if (ioc->ioc_data == cic)
2535 rcu_assign_pointer(ioc->ioc_data, NULL);
2536
2537 if (cic->cfqq[BLK_RW_ASYNC]) {
2538 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2539 cic->cfqq[BLK_RW_ASYNC] = NULL;
2540 }
2541
2542 if (cic->cfqq[BLK_RW_SYNC]) {
2543 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2544 cic->cfqq[BLK_RW_SYNC] = NULL;
2545 }
2546 }
2547
2548 static void cfq_exit_single_io_context(struct io_context *ioc,
2549 struct cfq_io_context *cic)
2550 {
2551 struct cfq_data *cfqd = cic->key;
2552
2553 if (cfqd) {
2554 struct request_queue *q = cfqd->queue;
2555 unsigned long flags;
2556
2557 spin_lock_irqsave(q->queue_lock, flags);
2558
2559 /*
2560 * Ensure we get a fresh copy of the ->key to prevent
2561 * race between exiting task and queue
2562 */
2563 smp_read_barrier_depends();
2564 if (cic->key)
2565 __cfq_exit_single_io_context(cfqd, cic);
2566
2567 spin_unlock_irqrestore(q->queue_lock, flags);
2568 }
2569 }
2570
2571 /*
2572 * The process that ioc belongs to has exited, we need to clean up
2573 * and put the internal structures we have that belongs to that process.
2574 */
2575 static void cfq_exit_io_context(struct io_context *ioc)
2576 {
2577 call_for_each_cic(ioc, cfq_exit_single_io_context);
2578 }
2579
2580 static struct cfq_io_context *
2581 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2582 {
2583 struct cfq_io_context *cic;
2584
2585 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2586 cfqd->queue->node);
2587 if (cic) {
2588 cic->last_end_request = jiffies;
2589 INIT_LIST_HEAD(&cic->queue_list);
2590 INIT_HLIST_NODE(&cic->cic_list);
2591 cic->dtor = cfq_free_io_context;
2592 cic->exit = cfq_exit_io_context;
2593 elv_ioc_count_inc(cfq_ioc_count);
2594 }
2595
2596 return cic;
2597 }
2598
2599 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2600 {
2601 struct task_struct *tsk = current;
2602 int ioprio_class;
2603
2604 if (!cfq_cfqq_prio_changed(cfqq))
2605 return;
2606
2607 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2608 switch (ioprio_class) {
2609 default:
2610 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2611 case IOPRIO_CLASS_NONE:
2612 /*
2613 * no prio set, inherit CPU scheduling settings
2614 */
2615 cfqq->ioprio = task_nice_ioprio(tsk);
2616 cfqq->ioprio_class = task_nice_ioclass(tsk);
2617 break;
2618 case IOPRIO_CLASS_RT:
2619 cfqq->ioprio = task_ioprio(ioc);
2620 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2621 break;
2622 case IOPRIO_CLASS_BE:
2623 cfqq->ioprio = task_ioprio(ioc);
2624 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2625 break;
2626 case IOPRIO_CLASS_IDLE:
2627 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2628 cfqq->ioprio = 7;
2629 cfq_clear_cfqq_idle_window(cfqq);
2630 break;
2631 }
2632
2633 /*
2634 * keep track of original prio settings in case we have to temporarily
2635 * elevate the priority of this queue
2636 */
2637 cfqq->org_ioprio = cfqq->ioprio;
2638 cfqq->org_ioprio_class = cfqq->ioprio_class;
2639 cfq_clear_cfqq_prio_changed(cfqq);
2640 }
2641
2642 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2643 {
2644 struct cfq_data *cfqd = cic->key;
2645 struct cfq_queue *cfqq;
2646 unsigned long flags;
2647
2648 if (unlikely(!cfqd))
2649 return;
2650
2651 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2652
2653 cfqq = cic->cfqq[BLK_RW_ASYNC];
2654 if (cfqq) {
2655 struct cfq_queue *new_cfqq;
2656 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2657 GFP_ATOMIC);
2658 if (new_cfqq) {
2659 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2660 cfq_put_queue(cfqq);
2661 }
2662 }
2663
2664 cfqq = cic->cfqq[BLK_RW_SYNC];
2665 if (cfqq)
2666 cfq_mark_cfqq_prio_changed(cfqq);
2667
2668 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2669 }
2670
2671 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2672 {
2673 call_for_each_cic(ioc, changed_ioprio);
2674 ioc->ioprio_changed = 0;
2675 }
2676
2677 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2678 pid_t pid, bool is_sync)
2679 {
2680 RB_CLEAR_NODE(&cfqq->rb_node);
2681 RB_CLEAR_NODE(&cfqq->p_node);
2682 INIT_LIST_HEAD(&cfqq->fifo);
2683
2684 atomic_set(&cfqq->ref, 0);
2685 cfqq->cfqd = cfqd;
2686
2687 cfq_mark_cfqq_prio_changed(cfqq);
2688
2689 if (is_sync) {
2690 if (!cfq_class_idle(cfqq))
2691 cfq_mark_cfqq_idle_window(cfqq);
2692 cfq_mark_cfqq_sync(cfqq);
2693 }
2694 cfqq->pid = pid;
2695 }
2696
2697 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2698 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2699 {
2700 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2701 struct cfq_data *cfqd = cic->key;
2702 unsigned long flags;
2703 struct request_queue *q;
2704
2705 if (unlikely(!cfqd))
2706 return;
2707
2708 q = cfqd->queue;
2709
2710 spin_lock_irqsave(q->queue_lock, flags);
2711
2712 if (sync_cfqq) {
2713 /*
2714 * Drop reference to sync queue. A new sync queue will be
2715 * assigned in new group upon arrival of a fresh request.
2716 */
2717 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2718 cic_set_cfqq(cic, NULL, 1);
2719 cfq_put_queue(sync_cfqq);
2720 }
2721
2722 spin_unlock_irqrestore(q->queue_lock, flags);
2723 }
2724
2725 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2726 {
2727 call_for_each_cic(ioc, changed_cgroup);
2728 ioc->cgroup_changed = 0;
2729 }
2730 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2731
2732 static struct cfq_queue *
2733 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2734 struct io_context *ioc, gfp_t gfp_mask)
2735 {
2736 struct cfq_queue *cfqq, *new_cfqq = NULL;
2737 struct cfq_io_context *cic;
2738 struct cfq_group *cfqg;
2739
2740 retry:
2741 cfqg = cfq_get_cfqg(cfqd, 1);
2742 cic = cfq_cic_lookup(cfqd, ioc);
2743 /* cic always exists here */
2744 cfqq = cic_to_cfqq(cic, is_sync);
2745
2746 /*
2747 * Always try a new alloc if we fell back to the OOM cfqq
2748 * originally, since it should just be a temporary situation.
2749 */
2750 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2751 cfqq = NULL;
2752 if (new_cfqq) {
2753 cfqq = new_cfqq;
2754 new_cfqq = NULL;
2755 } else if (gfp_mask & __GFP_WAIT) {
2756 spin_unlock_irq(cfqd->queue->queue_lock);
2757 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2758 gfp_mask | __GFP_ZERO,
2759 cfqd->queue->node);
2760 spin_lock_irq(cfqd->queue->queue_lock);
2761 if (new_cfqq)
2762 goto retry;
2763 } else {
2764 cfqq = kmem_cache_alloc_node(cfq_pool,
2765 gfp_mask | __GFP_ZERO,
2766 cfqd->queue->node);
2767 }
2768
2769 if (cfqq) {
2770 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2771 cfq_init_prio_data(cfqq, ioc);
2772 cfq_link_cfqq_cfqg(cfqq, cfqg);
2773 cfq_log_cfqq(cfqd, cfqq, "alloced");
2774 } else
2775 cfqq = &cfqd->oom_cfqq;
2776 }
2777
2778 if (new_cfqq)
2779 kmem_cache_free(cfq_pool, new_cfqq);
2780
2781 return cfqq;
2782 }
2783
2784 static struct cfq_queue **
2785 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2786 {
2787 switch (ioprio_class) {
2788 case IOPRIO_CLASS_RT:
2789 return &cfqd->async_cfqq[0][ioprio];
2790 case IOPRIO_CLASS_BE:
2791 return &cfqd->async_cfqq[1][ioprio];
2792 case IOPRIO_CLASS_IDLE:
2793 return &cfqd->async_idle_cfqq;
2794 default:
2795 BUG();
2796 }
2797 }
2798
2799 static struct cfq_queue *
2800 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2801 gfp_t gfp_mask)
2802 {
2803 const int ioprio = task_ioprio(ioc);
2804 const int ioprio_class = task_ioprio_class(ioc);
2805 struct cfq_queue **async_cfqq = NULL;
2806 struct cfq_queue *cfqq = NULL;
2807
2808 if (!is_sync) {
2809 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2810 cfqq = *async_cfqq;
2811 }
2812
2813 if (!cfqq)
2814 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2815
2816 /*
2817 * pin the queue now that it's allocated, scheduler exit will prune it
2818 */
2819 if (!is_sync && !(*async_cfqq)) {
2820 atomic_inc(&cfqq->ref);
2821 *async_cfqq = cfqq;
2822 }
2823
2824 atomic_inc(&cfqq->ref);
2825 return cfqq;
2826 }
2827
2828 /*
2829 * We drop cfq io contexts lazily, so we may find a dead one.
2830 */
2831 static void
2832 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2833 struct cfq_io_context *cic)
2834 {
2835 unsigned long flags;
2836
2837 WARN_ON(!list_empty(&cic->queue_list));
2838
2839 spin_lock_irqsave(&ioc->lock, flags);
2840
2841 BUG_ON(ioc->ioc_data == cic);
2842
2843 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2844 hlist_del_rcu(&cic->cic_list);
2845 spin_unlock_irqrestore(&ioc->lock, flags);
2846
2847 cfq_cic_free(cic);
2848 }
2849
2850 static struct cfq_io_context *
2851 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2852 {
2853 struct cfq_io_context *cic;
2854 unsigned long flags;
2855 void *k;
2856
2857 if (unlikely(!ioc))
2858 return NULL;
2859
2860 rcu_read_lock();
2861
2862 /*
2863 * we maintain a last-hit cache, to avoid browsing over the tree
2864 */
2865 cic = rcu_dereference(ioc->ioc_data);
2866 if (cic && cic->key == cfqd) {
2867 rcu_read_unlock();
2868 return cic;
2869 }
2870
2871 do {
2872 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2873 rcu_read_unlock();
2874 if (!cic)
2875 break;
2876 /* ->key must be copied to avoid race with cfq_exit_queue() */
2877 k = cic->key;
2878 if (unlikely(!k)) {
2879 cfq_drop_dead_cic(cfqd, ioc, cic);
2880 rcu_read_lock();
2881 continue;
2882 }
2883
2884 spin_lock_irqsave(&ioc->lock, flags);
2885 rcu_assign_pointer(ioc->ioc_data, cic);
2886 spin_unlock_irqrestore(&ioc->lock, flags);
2887 break;
2888 } while (1);
2889
2890 return cic;
2891 }
2892
2893 /*
2894 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2895 * the process specific cfq io context when entered from the block layer.
2896 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2897 */
2898 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2899 struct cfq_io_context *cic, gfp_t gfp_mask)
2900 {
2901 unsigned long flags;
2902 int ret;
2903
2904 ret = radix_tree_preload(gfp_mask);
2905 if (!ret) {
2906 cic->ioc = ioc;
2907 cic->key = cfqd;
2908
2909 spin_lock_irqsave(&ioc->lock, flags);
2910 ret = radix_tree_insert(&ioc->radix_root,
2911 (unsigned long) cfqd, cic);
2912 if (!ret)
2913 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2914 spin_unlock_irqrestore(&ioc->lock, flags);
2915
2916 radix_tree_preload_end();
2917
2918 if (!ret) {
2919 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2920 list_add(&cic->queue_list, &cfqd->cic_list);
2921 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2922 }
2923 }
2924
2925 if (ret)
2926 printk(KERN_ERR "cfq: cic link failed!\n");
2927
2928 return ret;
2929 }
2930
2931 /*
2932 * Setup general io context and cfq io context. There can be several cfq
2933 * io contexts per general io context, if this process is doing io to more
2934 * than one device managed by cfq.
2935 */
2936 static struct cfq_io_context *
2937 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2938 {
2939 struct io_context *ioc = NULL;
2940 struct cfq_io_context *cic;
2941
2942 might_sleep_if(gfp_mask & __GFP_WAIT);
2943
2944 ioc = get_io_context(gfp_mask, cfqd->queue->node);
2945 if (!ioc)
2946 return NULL;
2947
2948 cic = cfq_cic_lookup(cfqd, ioc);
2949 if (cic)
2950 goto out;
2951
2952 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2953 if (cic == NULL)
2954 goto err;
2955
2956 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2957 goto err_free;
2958
2959 out:
2960 smp_read_barrier_depends();
2961 if (unlikely(ioc->ioprio_changed))
2962 cfq_ioc_set_ioprio(ioc);
2963
2964 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2965 if (unlikely(ioc->cgroup_changed))
2966 cfq_ioc_set_cgroup(ioc);
2967 #endif
2968 return cic;
2969 err_free:
2970 cfq_cic_free(cic);
2971 err:
2972 put_io_context(ioc);
2973 return NULL;
2974 }
2975
2976 static void
2977 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2978 {
2979 unsigned long elapsed = jiffies - cic->last_end_request;
2980 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2981
2982 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2983 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2984 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2985 }
2986
2987 static void
2988 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2989 struct request *rq)
2990 {
2991 sector_t sdist = 0;
2992 sector_t n_sec = blk_rq_sectors(rq);
2993 if (cfqq->last_request_pos) {
2994 if (cfqq->last_request_pos < blk_rq_pos(rq))
2995 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2996 else
2997 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2998 }
2999
3000 cfqq->seek_history <<= 1;
3001 if (blk_queue_nonrot(cfqd->queue))
3002 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3003 else
3004 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3005 }
3006
3007 /*
3008 * Disable idle window if the process thinks too long or seeks so much that
3009 * it doesn't matter
3010 */
3011 static void
3012 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3013 struct cfq_io_context *cic)
3014 {
3015 int old_idle, enable_idle;
3016
3017 /*
3018 * Don't idle for async or idle io prio class
3019 */
3020 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3021 return;
3022
3023 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3024
3025 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3026 cfq_mark_cfqq_deep(cfqq);
3027
3028 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3029 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3030 enable_idle = 0;
3031 else if (sample_valid(cic->ttime_samples)) {
3032 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3033 enable_idle = 0;
3034 else
3035 enable_idle = 1;
3036 }
3037
3038 if (old_idle != enable_idle) {
3039 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3040 if (enable_idle)
3041 cfq_mark_cfqq_idle_window(cfqq);
3042 else
3043 cfq_clear_cfqq_idle_window(cfqq);
3044 }
3045 }
3046
3047 /*
3048 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3049 * no or if we aren't sure, a 1 will cause a preempt.
3050 */
3051 static bool
3052 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3053 struct request *rq)
3054 {
3055 struct cfq_queue *cfqq;
3056
3057 cfqq = cfqd->active_queue;
3058 if (!cfqq)
3059 return false;
3060
3061 if (cfq_class_idle(new_cfqq))
3062 return false;
3063
3064 if (cfq_class_idle(cfqq))
3065 return true;
3066
3067 /*
3068 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3069 */
3070 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3071 return false;
3072
3073 /*
3074 * if the new request is sync, but the currently running queue is
3075 * not, let the sync request have priority.
3076 */
3077 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3078 return true;
3079
3080 if (new_cfqq->cfqg != cfqq->cfqg)
3081 return false;
3082
3083 if (cfq_slice_used(cfqq))
3084 return true;
3085
3086 /* Allow preemption only if we are idling on sync-noidle tree */
3087 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3088 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3089 new_cfqq->service_tree->count == 2 &&
3090 RB_EMPTY_ROOT(&cfqq->sort_list))
3091 return true;
3092
3093 /*
3094 * So both queues are sync. Let the new request get disk time if
3095 * it's a metadata request and the current queue is doing regular IO.
3096 */
3097 if (rq_is_meta(rq) && !cfqq->meta_pending)
3098 return true;
3099
3100 /*
3101 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3102 */
3103 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3104 return true;
3105
3106 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3107 return false;
3108
3109 /*
3110 * if this request is as-good as one we would expect from the
3111 * current cfqq, let it preempt
3112 */
3113 if (cfq_rq_close(cfqd, cfqq, rq))
3114 return true;
3115
3116 return false;
3117 }
3118
3119 /*
3120 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3121 * let it have half of its nominal slice.
3122 */
3123 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3124 {
3125 cfq_log_cfqq(cfqd, cfqq, "preempt");
3126 cfq_slice_expired(cfqd, 1);
3127
3128 /*
3129 * Put the new queue at the front of the of the current list,
3130 * so we know that it will be selected next.
3131 */
3132 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3133
3134 cfq_service_tree_add(cfqd, cfqq, 1);
3135
3136 cfqq->slice_end = 0;
3137 cfq_mark_cfqq_slice_new(cfqq);
3138 }
3139
3140 /*
3141 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3142 * something we should do about it
3143 */
3144 static void
3145 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3146 struct request *rq)
3147 {
3148 struct cfq_io_context *cic = RQ_CIC(rq);
3149
3150 cfqd->rq_queued++;
3151 if (rq_is_meta(rq))
3152 cfqq->meta_pending++;
3153
3154 cfq_update_io_thinktime(cfqd, cic);
3155 cfq_update_io_seektime(cfqd, cfqq, rq);
3156 cfq_update_idle_window(cfqd, cfqq, cic);
3157
3158 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3159
3160 if (cfqq == cfqd->active_queue) {
3161 /*
3162 * Remember that we saw a request from this process, but
3163 * don't start queuing just yet. Otherwise we risk seeing lots
3164 * of tiny requests, because we disrupt the normal plugging
3165 * and merging. If the request is already larger than a single
3166 * page, let it rip immediately. For that case we assume that
3167 * merging is already done. Ditto for a busy system that
3168 * has other work pending, don't risk delaying until the
3169 * idle timer unplug to continue working.
3170 */
3171 if (cfq_cfqq_wait_request(cfqq)) {
3172 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3173 cfqd->busy_queues > 1) {
3174 del_timer(&cfqd->idle_slice_timer);
3175 cfq_clear_cfqq_wait_request(cfqq);
3176 __blk_run_queue(cfqd->queue);
3177 } else
3178 cfq_mark_cfqq_must_dispatch(cfqq);
3179 }
3180 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3181 /*
3182 * not the active queue - expire current slice if it is
3183 * idle and has expired it's mean thinktime or this new queue
3184 * has some old slice time left and is of higher priority or
3185 * this new queue is RT and the current one is BE
3186 */
3187 cfq_preempt_queue(cfqd, cfqq);
3188 __blk_run_queue(cfqd->queue);
3189 }
3190 }
3191
3192 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3193 {
3194 struct cfq_data *cfqd = q->elevator->elevator_data;
3195 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3196
3197 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3198 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3199
3200 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3201 list_add_tail(&rq->queuelist, &cfqq->fifo);
3202 cfq_add_rq_rb(rq);
3203
3204 cfq_rq_enqueued(cfqd, cfqq, rq);
3205 }
3206
3207 /*
3208 * Update hw_tag based on peak queue depth over 50 samples under
3209 * sufficient load.
3210 */
3211 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3212 {
3213 struct cfq_queue *cfqq = cfqd->active_queue;
3214
3215 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3216 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3217
3218 if (cfqd->hw_tag == 1)
3219 return;
3220
3221 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3222 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3223 return;
3224
3225 /*
3226 * If active queue hasn't enough requests and can idle, cfq might not
3227 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3228 * case
3229 */
3230 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3231 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3232 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3233 return;
3234
3235 if (cfqd->hw_tag_samples++ < 50)
3236 return;
3237
3238 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3239 cfqd->hw_tag = 1;
3240 else
3241 cfqd->hw_tag = 0;
3242 }
3243
3244 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3245 {
3246 struct cfq_io_context *cic = cfqd->active_cic;
3247
3248 /* If there are other queues in the group, don't wait */
3249 if (cfqq->cfqg->nr_cfqq > 1)
3250 return false;
3251
3252 if (cfq_slice_used(cfqq))
3253 return true;
3254
3255 /* if slice left is less than think time, wait busy */
3256 if (cic && sample_valid(cic->ttime_samples)
3257 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3258 return true;
3259
3260 /*
3261 * If think times is less than a jiffy than ttime_mean=0 and above
3262 * will not be true. It might happen that slice has not expired yet
3263 * but will expire soon (4-5 ns) during select_queue(). To cover the
3264 * case where think time is less than a jiffy, mark the queue wait
3265 * busy if only 1 jiffy is left in the slice.
3266 */
3267 if (cfqq->slice_end - jiffies == 1)
3268 return true;
3269
3270 return false;
3271 }
3272
3273 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3274 {
3275 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3276 struct cfq_data *cfqd = cfqq->cfqd;
3277 const int sync = rq_is_sync(rq);
3278 unsigned long now;
3279
3280 now = jiffies;
3281 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3282
3283 cfq_update_hw_tag(cfqd);
3284
3285 WARN_ON(!cfqd->rq_in_driver);
3286 WARN_ON(!cfqq->dispatched);
3287 cfqd->rq_in_driver--;
3288 cfqq->dispatched--;
3289 blkiocg_update_request_completion_stats(&cfqq->cfqg->blkg, rq);
3290
3291 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3292
3293 if (sync) {
3294 RQ_CIC(rq)->last_end_request = now;
3295 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3296 cfqd->last_delayed_sync = now;
3297 }
3298
3299 /*
3300 * If this is the active queue, check if it needs to be expired,
3301 * or if we want to idle in case it has no pending requests.
3302 */
3303 if (cfqd->active_queue == cfqq) {
3304 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3305
3306 if (cfq_cfqq_slice_new(cfqq)) {
3307 cfq_set_prio_slice(cfqd, cfqq);
3308 cfq_clear_cfqq_slice_new(cfqq);
3309 }
3310
3311 /*
3312 * Should we wait for next request to come in before we expire
3313 * the queue.
3314 */
3315 if (cfq_should_wait_busy(cfqd, cfqq)) {
3316 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3317 cfq_mark_cfqq_wait_busy(cfqq);
3318 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3319 }
3320
3321 /*
3322 * Idling is not enabled on:
3323 * - expired queues
3324 * - idle-priority queues
3325 * - async queues
3326 * - queues with still some requests queued
3327 * - when there is a close cooperator
3328 */
3329 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3330 cfq_slice_expired(cfqd, 1);
3331 else if (sync && cfqq_empty &&
3332 !cfq_close_cooperator(cfqd, cfqq)) {
3333 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3334 /*
3335 * Idling is enabled for SYNC_WORKLOAD.
3336 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3337 * only if we processed at least one !rq_noidle request
3338 */
3339 if (cfqd->serving_type == SYNC_WORKLOAD
3340 || cfqd->noidle_tree_requires_idle
3341 || cfqq->cfqg->nr_cfqq == 1)
3342 cfq_arm_slice_timer(cfqd);
3343 }
3344 }
3345
3346 if (!cfqd->rq_in_driver)
3347 cfq_schedule_dispatch(cfqd);
3348 }
3349
3350 /*
3351 * we temporarily boost lower priority queues if they are holding fs exclusive
3352 * resources. they are boosted to normal prio (CLASS_BE/4)
3353 */
3354 static void cfq_prio_boost(struct cfq_queue *cfqq)
3355 {
3356 if (has_fs_excl()) {
3357 /*
3358 * boost idle prio on transactions that would lock out other
3359 * users of the filesystem
3360 */
3361 if (cfq_class_idle(cfqq))
3362 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3363 if (cfqq->ioprio > IOPRIO_NORM)
3364 cfqq->ioprio = IOPRIO_NORM;
3365 } else {
3366 /*
3367 * unboost the queue (if needed)
3368 */
3369 cfqq->ioprio_class = cfqq->org_ioprio_class;
3370 cfqq->ioprio = cfqq->org_ioprio;
3371 }
3372 }
3373
3374 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3375 {
3376 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3377 cfq_mark_cfqq_must_alloc_slice(cfqq);
3378 return ELV_MQUEUE_MUST;
3379 }
3380
3381 return ELV_MQUEUE_MAY;
3382 }
3383
3384 static int cfq_may_queue(struct request_queue *q, int rw)
3385 {
3386 struct cfq_data *cfqd = q->elevator->elevator_data;
3387 struct task_struct *tsk = current;
3388 struct cfq_io_context *cic;
3389 struct cfq_queue *cfqq;
3390
3391 /*
3392 * don't force setup of a queue from here, as a call to may_queue
3393 * does not necessarily imply that a request actually will be queued.
3394 * so just lookup a possibly existing queue, or return 'may queue'
3395 * if that fails
3396 */
3397 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3398 if (!cic)
3399 return ELV_MQUEUE_MAY;
3400
3401 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3402 if (cfqq) {
3403 cfq_init_prio_data(cfqq, cic->ioc);
3404 cfq_prio_boost(cfqq);
3405
3406 return __cfq_may_queue(cfqq);
3407 }
3408
3409 return ELV_MQUEUE_MAY;
3410 }
3411
3412 /*
3413 * queue lock held here
3414 */
3415 static void cfq_put_request(struct request *rq)
3416 {
3417 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3418
3419 if (cfqq) {
3420 const int rw = rq_data_dir(rq);
3421
3422 BUG_ON(!cfqq->allocated[rw]);
3423 cfqq->allocated[rw]--;
3424
3425 put_io_context(RQ_CIC(rq)->ioc);
3426
3427 rq->elevator_private = NULL;
3428 rq->elevator_private2 = NULL;
3429
3430 cfq_put_queue(cfqq);
3431 }
3432 }
3433
3434 static struct cfq_queue *
3435 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3436 struct cfq_queue *cfqq)
3437 {
3438 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3439 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3440 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3441 cfq_put_queue(cfqq);
3442 return cic_to_cfqq(cic, 1);
3443 }
3444
3445 /*
3446 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3447 * was the last process referring to said cfqq.
3448 */
3449 static struct cfq_queue *
3450 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3451 {
3452 if (cfqq_process_refs(cfqq) == 1) {
3453 cfqq->pid = current->pid;
3454 cfq_clear_cfqq_coop(cfqq);
3455 cfq_clear_cfqq_split_coop(cfqq);
3456 return cfqq;
3457 }
3458
3459 cic_set_cfqq(cic, NULL, 1);
3460 cfq_put_queue(cfqq);
3461 return NULL;
3462 }
3463 /*
3464 * Allocate cfq data structures associated with this request.
3465 */
3466 static int
3467 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3468 {
3469 struct cfq_data *cfqd = q->elevator->elevator_data;
3470 struct cfq_io_context *cic;
3471 const int rw = rq_data_dir(rq);
3472 const bool is_sync = rq_is_sync(rq);
3473 struct cfq_queue *cfqq;
3474 unsigned long flags;
3475
3476 might_sleep_if(gfp_mask & __GFP_WAIT);
3477
3478 cic = cfq_get_io_context(cfqd, gfp_mask);
3479
3480 spin_lock_irqsave(q->queue_lock, flags);
3481
3482 if (!cic)
3483 goto queue_fail;
3484
3485 new_queue:
3486 cfqq = cic_to_cfqq(cic, is_sync);
3487 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3488 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3489 cic_set_cfqq(cic, cfqq, is_sync);
3490 } else {
3491 /*
3492 * If the queue was seeky for too long, break it apart.
3493 */
3494 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3495 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3496 cfqq = split_cfqq(cic, cfqq);
3497 if (!cfqq)
3498 goto new_queue;
3499 }
3500
3501 /*
3502 * Check to see if this queue is scheduled to merge with
3503 * another, closely cooperating queue. The merging of
3504 * queues happens here as it must be done in process context.
3505 * The reference on new_cfqq was taken in merge_cfqqs.
3506 */
3507 if (cfqq->new_cfqq)
3508 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3509 }
3510
3511 cfqq->allocated[rw]++;
3512 atomic_inc(&cfqq->ref);
3513
3514 spin_unlock_irqrestore(q->queue_lock, flags);
3515
3516 rq->elevator_private = cic;
3517 rq->elevator_private2 = cfqq;
3518 return 0;
3519
3520 queue_fail:
3521 if (cic)
3522 put_io_context(cic->ioc);
3523
3524 cfq_schedule_dispatch(cfqd);
3525 spin_unlock_irqrestore(q->queue_lock, flags);
3526 cfq_log(cfqd, "set_request fail");
3527 return 1;
3528 }
3529
3530 static void cfq_kick_queue(struct work_struct *work)
3531 {
3532 struct cfq_data *cfqd =
3533 container_of(work, struct cfq_data, unplug_work);
3534 struct request_queue *q = cfqd->queue;
3535
3536 spin_lock_irq(q->queue_lock);
3537 __blk_run_queue(cfqd->queue);
3538 spin_unlock_irq(q->queue_lock);
3539 }
3540
3541 /*
3542 * Timer running if the active_queue is currently idling inside its time slice
3543 */
3544 static void cfq_idle_slice_timer(unsigned long data)
3545 {
3546 struct cfq_data *cfqd = (struct cfq_data *) data;
3547 struct cfq_queue *cfqq;
3548 unsigned long flags;
3549 int timed_out = 1;
3550
3551 cfq_log(cfqd, "idle timer fired");
3552
3553 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3554
3555 cfqq = cfqd->active_queue;
3556 if (cfqq) {
3557 timed_out = 0;
3558
3559 /*
3560 * We saw a request before the queue expired, let it through
3561 */
3562 if (cfq_cfqq_must_dispatch(cfqq))
3563 goto out_kick;
3564
3565 /*
3566 * expired
3567 */
3568 if (cfq_slice_used(cfqq))
3569 goto expire;
3570
3571 /*
3572 * only expire and reinvoke request handler, if there are
3573 * other queues with pending requests
3574 */
3575 if (!cfqd->busy_queues)
3576 goto out_cont;
3577
3578 /*
3579 * not expired and it has a request pending, let it dispatch
3580 */
3581 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3582 goto out_kick;
3583
3584 /*
3585 * Queue depth flag is reset only when the idle didn't succeed
3586 */
3587 cfq_clear_cfqq_deep(cfqq);
3588 }
3589 expire:
3590 cfq_slice_expired(cfqd, timed_out);
3591 out_kick:
3592 cfq_schedule_dispatch(cfqd);
3593 out_cont:
3594 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3595 }
3596
3597 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3598 {
3599 del_timer_sync(&cfqd->idle_slice_timer);
3600 cancel_work_sync(&cfqd->unplug_work);
3601 }
3602
3603 static void cfq_put_async_queues(struct cfq_data *cfqd)
3604 {
3605 int i;
3606
3607 for (i = 0; i < IOPRIO_BE_NR; i++) {
3608 if (cfqd->async_cfqq[0][i])
3609 cfq_put_queue(cfqd->async_cfqq[0][i]);
3610 if (cfqd->async_cfqq[1][i])
3611 cfq_put_queue(cfqd->async_cfqq[1][i]);
3612 }
3613
3614 if (cfqd->async_idle_cfqq)
3615 cfq_put_queue(cfqd->async_idle_cfqq);
3616 }
3617
3618 static void cfq_cfqd_free(struct rcu_head *head)
3619 {
3620 kfree(container_of(head, struct cfq_data, rcu));
3621 }
3622
3623 static void cfq_exit_queue(struct elevator_queue *e)
3624 {
3625 struct cfq_data *cfqd = e->elevator_data;
3626 struct request_queue *q = cfqd->queue;
3627
3628 cfq_shutdown_timer_wq(cfqd);
3629
3630 spin_lock_irq(q->queue_lock);
3631
3632 if (cfqd->active_queue)
3633 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3634
3635 while (!list_empty(&cfqd->cic_list)) {
3636 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3637 struct cfq_io_context,
3638 queue_list);
3639
3640 __cfq_exit_single_io_context(cfqd, cic);
3641 }
3642
3643 cfq_put_async_queues(cfqd);
3644 cfq_release_cfq_groups(cfqd);
3645 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3646
3647 spin_unlock_irq(q->queue_lock);
3648
3649 cfq_shutdown_timer_wq(cfqd);
3650
3651 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3652 call_rcu(&cfqd->rcu, cfq_cfqd_free);
3653 }
3654
3655 static void *cfq_init_queue(struct request_queue *q)
3656 {
3657 struct cfq_data *cfqd;
3658 int i, j;
3659 struct cfq_group *cfqg;
3660 struct cfq_rb_root *st;
3661
3662 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3663 if (!cfqd)
3664 return NULL;
3665
3666 /* Init root service tree */
3667 cfqd->grp_service_tree = CFQ_RB_ROOT;
3668
3669 /* Init root group */
3670 cfqg = &cfqd->root_group;
3671 for_each_cfqg_st(cfqg, i, j, st)
3672 *st = CFQ_RB_ROOT;
3673 RB_CLEAR_NODE(&cfqg->rb_node);
3674
3675 /* Give preference to root group over other groups */
3676 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3677
3678 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3679 /*
3680 * Take a reference to root group which we never drop. This is just
3681 * to make sure that cfq_put_cfqg() does not try to kfree root group
3682 */
3683 atomic_set(&cfqg->ref, 1);
3684 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3685 0);
3686 #endif
3687 /*
3688 * Not strictly needed (since RB_ROOT just clears the node and we
3689 * zeroed cfqd on alloc), but better be safe in case someone decides
3690 * to add magic to the rb code
3691 */
3692 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3693 cfqd->prio_trees[i] = RB_ROOT;
3694
3695 /*
3696 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3697 * Grab a permanent reference to it, so that the normal code flow
3698 * will not attempt to free it.
3699 */
3700 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3701 atomic_inc(&cfqd->oom_cfqq.ref);
3702 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3703
3704 INIT_LIST_HEAD(&cfqd->cic_list);
3705
3706 cfqd->queue = q;
3707
3708 init_timer(&cfqd->idle_slice_timer);
3709 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3710 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3711
3712 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3713
3714 cfqd->cfq_quantum = cfq_quantum;
3715 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3716 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3717 cfqd->cfq_back_max = cfq_back_max;
3718 cfqd->cfq_back_penalty = cfq_back_penalty;
3719 cfqd->cfq_slice[0] = cfq_slice_async;
3720 cfqd->cfq_slice[1] = cfq_slice_sync;
3721 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3722 cfqd->cfq_slice_idle = cfq_slice_idle;
3723 cfqd->cfq_latency = 1;
3724 cfqd->cfq_group_isolation = 0;
3725 cfqd->hw_tag = -1;
3726 /*
3727 * we optimistically start assuming sync ops weren't delayed in last
3728 * second, in order to have larger depth for async operations.
3729 */
3730 cfqd->last_delayed_sync = jiffies - HZ;
3731 INIT_RCU_HEAD(&cfqd->rcu);
3732 return cfqd;
3733 }
3734
3735 static void cfq_slab_kill(void)
3736 {
3737 /*
3738 * Caller already ensured that pending RCU callbacks are completed,
3739 * so we should have no busy allocations at this point.
3740 */
3741 if (cfq_pool)
3742 kmem_cache_destroy(cfq_pool);
3743 if (cfq_ioc_pool)
3744 kmem_cache_destroy(cfq_ioc_pool);
3745 }
3746
3747 static int __init cfq_slab_setup(void)
3748 {
3749 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3750 if (!cfq_pool)
3751 goto fail;
3752
3753 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3754 if (!cfq_ioc_pool)
3755 goto fail;
3756
3757 return 0;
3758 fail:
3759 cfq_slab_kill();
3760 return -ENOMEM;
3761 }
3762
3763 /*
3764 * sysfs parts below -->
3765 */
3766 static ssize_t
3767 cfq_var_show(unsigned int var, char *page)
3768 {
3769 return sprintf(page, "%d\n", var);
3770 }
3771
3772 static ssize_t
3773 cfq_var_store(unsigned int *var, const char *page, size_t count)
3774 {
3775 char *p = (char *) page;
3776
3777 *var = simple_strtoul(p, &p, 10);
3778 return count;
3779 }
3780
3781 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3782 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3783 { \
3784 struct cfq_data *cfqd = e->elevator_data; \
3785 unsigned int __data = __VAR; \
3786 if (__CONV) \
3787 __data = jiffies_to_msecs(__data); \
3788 return cfq_var_show(__data, (page)); \
3789 }
3790 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3791 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3792 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3793 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3794 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3795 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3796 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3797 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3798 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3799 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3800 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3801 #undef SHOW_FUNCTION
3802
3803 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3804 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3805 { \
3806 struct cfq_data *cfqd = e->elevator_data; \
3807 unsigned int __data; \
3808 int ret = cfq_var_store(&__data, (page), count); \
3809 if (__data < (MIN)) \
3810 __data = (MIN); \
3811 else if (__data > (MAX)) \
3812 __data = (MAX); \
3813 if (__CONV) \
3814 *(__PTR) = msecs_to_jiffies(__data); \
3815 else \
3816 *(__PTR) = __data; \
3817 return ret; \
3818 }
3819 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3820 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3821 UINT_MAX, 1);
3822 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3823 UINT_MAX, 1);
3824 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3825 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3826 UINT_MAX, 0);
3827 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3828 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3829 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3830 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3831 UINT_MAX, 0);
3832 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3833 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3834 #undef STORE_FUNCTION
3835
3836 #define CFQ_ATTR(name) \
3837 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3838
3839 static struct elv_fs_entry cfq_attrs[] = {
3840 CFQ_ATTR(quantum),
3841 CFQ_ATTR(fifo_expire_sync),
3842 CFQ_ATTR(fifo_expire_async),
3843 CFQ_ATTR(back_seek_max),
3844 CFQ_ATTR(back_seek_penalty),
3845 CFQ_ATTR(slice_sync),
3846 CFQ_ATTR(slice_async),
3847 CFQ_ATTR(slice_async_rq),
3848 CFQ_ATTR(slice_idle),
3849 CFQ_ATTR(low_latency),
3850 CFQ_ATTR(group_isolation),
3851 __ATTR_NULL
3852 };
3853
3854 static struct elevator_type iosched_cfq = {
3855 .ops = {
3856 .elevator_merge_fn = cfq_merge,
3857 .elevator_merged_fn = cfq_merged_request,
3858 .elevator_merge_req_fn = cfq_merged_requests,
3859 .elevator_allow_merge_fn = cfq_allow_merge,
3860 .elevator_dispatch_fn = cfq_dispatch_requests,
3861 .elevator_add_req_fn = cfq_insert_request,
3862 .elevator_activate_req_fn = cfq_activate_request,
3863 .elevator_deactivate_req_fn = cfq_deactivate_request,
3864 .elevator_queue_empty_fn = cfq_queue_empty,
3865 .elevator_completed_req_fn = cfq_completed_request,
3866 .elevator_former_req_fn = elv_rb_former_request,
3867 .elevator_latter_req_fn = elv_rb_latter_request,
3868 .elevator_set_req_fn = cfq_set_request,
3869 .elevator_put_req_fn = cfq_put_request,
3870 .elevator_may_queue_fn = cfq_may_queue,
3871 .elevator_init_fn = cfq_init_queue,
3872 .elevator_exit_fn = cfq_exit_queue,
3873 .trim = cfq_free_io_context,
3874 },
3875 .elevator_attrs = cfq_attrs,
3876 .elevator_name = "cfq",
3877 .elevator_owner = THIS_MODULE,
3878 };
3879
3880 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3881 static struct blkio_policy_type blkio_policy_cfq = {
3882 .ops = {
3883 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3884 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3885 },
3886 };
3887 #else
3888 static struct blkio_policy_type blkio_policy_cfq;
3889 #endif
3890
3891 static int __init cfq_init(void)
3892 {
3893 /*
3894 * could be 0 on HZ < 1000 setups
3895 */
3896 if (!cfq_slice_async)
3897 cfq_slice_async = 1;
3898 if (!cfq_slice_idle)
3899 cfq_slice_idle = 1;
3900
3901 if (cfq_slab_setup())
3902 return -ENOMEM;
3903
3904 elv_register(&iosched_cfq);
3905 blkio_policy_register(&blkio_policy_cfq);
3906
3907 return 0;
3908 }
3909
3910 static void __exit cfq_exit(void)
3911 {
3912 DECLARE_COMPLETION_ONSTACK(all_gone);
3913 blkio_policy_unregister(&blkio_policy_cfq);
3914 elv_unregister(&iosched_cfq);
3915 ioc_gone = &all_gone;
3916 /* ioc_gone's update must be visible before reading ioc_count */
3917 smp_wmb();
3918
3919 /*
3920 * this also protects us from entering cfq_slab_kill() with
3921 * pending RCU callbacks
3922 */
3923 if (elv_ioc_count_read(cfq_ioc_count))
3924 wait_for_completion(&all_gone);
3925 cfq_slab_kill();
3926 }
3927
3928 module_init(cfq_init);
3929 module_exit(cfq_exit);
3930
3931 MODULE_AUTHOR("Jens Axboe");
3932 MODULE_LICENSE("GPL");
3933 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");