]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/cfq-iosched.c
block cfq: don't use atomic_t for cfq_queue
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "cfq.h"
18
19 /*
20 * tunables
21 */
22 /* max queue in one round of service */
23 static const int cfq_quantum = 8;
24 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max = 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty = 2;
29 static const int cfq_slice_sync = HZ / 10;
30 static int cfq_slice_async = HZ / 25;
31 static const int cfq_slice_async_rq = 2;
32 static int cfq_slice_idle = HZ / 125;
33 static int cfq_group_idle = HZ / 125;
34 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35 static const int cfq_hist_divisor = 4;
36
37 /*
38 * offset from end of service tree
39 */
40 #define CFQ_IDLE_DELAY (HZ / 5)
41
42 /*
43 * below this threshold, we consider thinktime immediate
44 */
45 #define CFQ_MIN_TT (2)
46
47 #define CFQ_SLICE_SCALE (5)
48 #define CFQ_HW_QUEUE_MIN (5)
49 #define CFQ_SERVICE_SHIFT 12
50
51 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
52 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
53 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
54 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
55
56 #define RQ_CIC(rq) \
57 ((struct cfq_io_context *) (rq)->elevator_private)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
60
61 static struct kmem_cache *cfq_pool;
62 static struct kmem_cache *cfq_ioc_pool;
63
64 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
65 static struct completion *ioc_gone;
66 static DEFINE_SPINLOCK(ioc_gone_lock);
67
68 static DEFINE_SPINLOCK(cic_index_lock);
69 static DEFINE_IDA(cic_index_ida);
70
71 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
72 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
75 #define sample_valid(samples) ((samples) > 80)
76 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
77
78 /*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84 struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
87 unsigned count;
88 unsigned total_weight;
89 u64 min_vdisktime;
90 };
91 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
93
94 /*
95 * Per process-grouping structure
96 */
97 struct cfq_queue {
98 /* reference count */
99 int ref;
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
122
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
125 unsigned int allocated_slice;
126 unsigned int slice_dispatch;
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
129 unsigned long slice_end;
130 long slice_resid;
131
132 /* pending metadata requests */
133 int meta_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
136
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class, org_ioprio_class;
140
141 pid_t pid;
142
143 u32 seek_history;
144 sector_t last_request_pos;
145
146 struct cfq_rb_root *service_tree;
147 struct cfq_queue *new_cfqq;
148 struct cfq_group *cfqg;
149 struct cfq_group *orig_cfqg;
150 /* Number of sectors dispatched from queue in single dispatch round */
151 unsigned long nr_sectors;
152 };
153
154 /*
155 * First index in the service_trees.
156 * IDLE is handled separately, so it has negative index
157 */
158 enum wl_prio_t {
159 BE_WORKLOAD = 0,
160 RT_WORKLOAD = 1,
161 IDLE_WORKLOAD = 2,
162 CFQ_PRIO_NR,
163 };
164
165 /*
166 * Second index in the service_trees.
167 */
168 enum wl_type_t {
169 ASYNC_WORKLOAD = 0,
170 SYNC_NOIDLE_WORKLOAD = 1,
171 SYNC_WORKLOAD = 2
172 };
173
174 /* This is per cgroup per device grouping structure */
175 struct cfq_group {
176 /* group service_tree member */
177 struct rb_node rb_node;
178
179 /* group service_tree key */
180 u64 vdisktime;
181 unsigned int weight;
182
183 /* number of cfqq currently on this group */
184 int nr_cfqq;
185
186 /*
187 * Per group busy queus average. Useful for workload slice calc. We
188 * create the array for each prio class but at run time it is used
189 * only for RT and BE class and slot for IDLE class remains unused.
190 * This is primarily done to avoid confusion and a gcc warning.
191 */
192 unsigned int busy_queues_avg[CFQ_PRIO_NR];
193 /*
194 * rr lists of queues with requests. We maintain service trees for
195 * RT and BE classes. These trees are subdivided in subclasses
196 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
197 * class there is no subclassification and all the cfq queues go on
198 * a single tree service_tree_idle.
199 * Counts are embedded in the cfq_rb_root
200 */
201 struct cfq_rb_root service_trees[2][3];
202 struct cfq_rb_root service_tree_idle;
203
204 unsigned long saved_workload_slice;
205 enum wl_type_t saved_workload;
206 enum wl_prio_t saved_serving_prio;
207 struct blkio_group blkg;
208 #ifdef CONFIG_CFQ_GROUP_IOSCHED
209 struct hlist_node cfqd_node;
210 atomic_t ref;
211 #endif
212 /* number of requests that are on the dispatch list or inside driver */
213 int dispatched;
214 };
215
216 /*
217 * Per block device queue structure
218 */
219 struct cfq_data {
220 struct request_queue *queue;
221 /* Root service tree for cfq_groups */
222 struct cfq_rb_root grp_service_tree;
223 struct cfq_group root_group;
224
225 /*
226 * The priority currently being served
227 */
228 enum wl_prio_t serving_prio;
229 enum wl_type_t serving_type;
230 unsigned long workload_expires;
231 struct cfq_group *serving_group;
232
233 /*
234 * Each priority tree is sorted by next_request position. These
235 * trees are used when determining if two or more queues are
236 * interleaving requests (see cfq_close_cooperator).
237 */
238 struct rb_root prio_trees[CFQ_PRIO_LISTS];
239
240 unsigned int busy_queues;
241
242 int rq_in_driver;
243 int rq_in_flight[2];
244
245 /*
246 * queue-depth detection
247 */
248 int rq_queued;
249 int hw_tag;
250 /*
251 * hw_tag can be
252 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
253 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
254 * 0 => no NCQ
255 */
256 int hw_tag_est_depth;
257 unsigned int hw_tag_samples;
258
259 /*
260 * idle window management
261 */
262 struct timer_list idle_slice_timer;
263 struct work_struct unplug_work;
264
265 struct cfq_queue *active_queue;
266 struct cfq_io_context *active_cic;
267
268 /*
269 * async queue for each priority case
270 */
271 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
272 struct cfq_queue *async_idle_cfqq;
273
274 sector_t last_position;
275
276 /*
277 * tunables, see top of file
278 */
279 unsigned int cfq_quantum;
280 unsigned int cfq_fifo_expire[2];
281 unsigned int cfq_back_penalty;
282 unsigned int cfq_back_max;
283 unsigned int cfq_slice[2];
284 unsigned int cfq_slice_async_rq;
285 unsigned int cfq_slice_idle;
286 unsigned int cfq_group_idle;
287 unsigned int cfq_latency;
288 unsigned int cfq_group_isolation;
289
290 unsigned int cic_index;
291 struct list_head cic_list;
292
293 /*
294 * Fallback dummy cfqq for extreme OOM conditions
295 */
296 struct cfq_queue oom_cfqq;
297
298 unsigned long last_delayed_sync;
299
300 /* List of cfq groups being managed on this device*/
301 struct hlist_head cfqg_list;
302 struct rcu_head rcu;
303 };
304
305 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
306
307 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
308 enum wl_prio_t prio,
309 enum wl_type_t type)
310 {
311 if (!cfqg)
312 return NULL;
313
314 if (prio == IDLE_WORKLOAD)
315 return &cfqg->service_tree_idle;
316
317 return &cfqg->service_trees[prio][type];
318 }
319
320 enum cfqq_state_flags {
321 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
322 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
323 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
324 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
325 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
326 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
327 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
328 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
329 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
330 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
331 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
332 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
333 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
334 };
335
336 #define CFQ_CFQQ_FNS(name) \
337 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
338 { \
339 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
340 } \
341 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
342 { \
343 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
344 } \
345 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
346 { \
347 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
348 }
349
350 CFQ_CFQQ_FNS(on_rr);
351 CFQ_CFQQ_FNS(wait_request);
352 CFQ_CFQQ_FNS(must_dispatch);
353 CFQ_CFQQ_FNS(must_alloc_slice);
354 CFQ_CFQQ_FNS(fifo_expire);
355 CFQ_CFQQ_FNS(idle_window);
356 CFQ_CFQQ_FNS(prio_changed);
357 CFQ_CFQQ_FNS(slice_new);
358 CFQ_CFQQ_FNS(sync);
359 CFQ_CFQQ_FNS(coop);
360 CFQ_CFQQ_FNS(split_coop);
361 CFQ_CFQQ_FNS(deep);
362 CFQ_CFQQ_FNS(wait_busy);
363 #undef CFQ_CFQQ_FNS
364
365 #ifdef CONFIG_CFQ_GROUP_IOSCHED
366 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
367 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
368 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
369 blkg_path(&(cfqq)->cfqg->blkg), ##args);
370
371 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
372 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
373 blkg_path(&(cfqg)->blkg), ##args); \
374
375 #else
376 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
377 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
378 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
379 #endif
380 #define cfq_log(cfqd, fmt, args...) \
381 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
382
383 /* Traverses through cfq group service trees */
384 #define for_each_cfqg_st(cfqg, i, j, st) \
385 for (i = 0; i <= IDLE_WORKLOAD; i++) \
386 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
387 : &cfqg->service_tree_idle; \
388 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
389 (i == IDLE_WORKLOAD && j == 0); \
390 j++, st = i < IDLE_WORKLOAD ? \
391 &cfqg->service_trees[i][j]: NULL) \
392
393
394 static inline bool iops_mode(struct cfq_data *cfqd)
395 {
396 /*
397 * If we are not idling on queues and it is a NCQ drive, parallel
398 * execution of requests is on and measuring time is not possible
399 * in most of the cases until and unless we drive shallower queue
400 * depths and that becomes a performance bottleneck. In such cases
401 * switch to start providing fairness in terms of number of IOs.
402 */
403 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
404 return true;
405 else
406 return false;
407 }
408
409 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
410 {
411 if (cfq_class_idle(cfqq))
412 return IDLE_WORKLOAD;
413 if (cfq_class_rt(cfqq))
414 return RT_WORKLOAD;
415 return BE_WORKLOAD;
416 }
417
418
419 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
420 {
421 if (!cfq_cfqq_sync(cfqq))
422 return ASYNC_WORKLOAD;
423 if (!cfq_cfqq_idle_window(cfqq))
424 return SYNC_NOIDLE_WORKLOAD;
425 return SYNC_WORKLOAD;
426 }
427
428 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
429 struct cfq_data *cfqd,
430 struct cfq_group *cfqg)
431 {
432 if (wl == IDLE_WORKLOAD)
433 return cfqg->service_tree_idle.count;
434
435 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
436 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
437 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
438 }
439
440 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
441 struct cfq_group *cfqg)
442 {
443 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
444 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
445 }
446
447 static void cfq_dispatch_insert(struct request_queue *, struct request *);
448 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
449 struct io_context *, gfp_t);
450 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
451 struct io_context *);
452
453 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
454 bool is_sync)
455 {
456 return cic->cfqq[is_sync];
457 }
458
459 static inline void cic_set_cfqq(struct cfq_io_context *cic,
460 struct cfq_queue *cfqq, bool is_sync)
461 {
462 cic->cfqq[is_sync] = cfqq;
463 }
464
465 #define CIC_DEAD_KEY 1ul
466 #define CIC_DEAD_INDEX_SHIFT 1
467
468 static inline void *cfqd_dead_key(struct cfq_data *cfqd)
469 {
470 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
471 }
472
473 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
474 {
475 struct cfq_data *cfqd = cic->key;
476
477 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
478 return NULL;
479
480 return cfqd;
481 }
482
483 /*
484 * We regard a request as SYNC, if it's either a read or has the SYNC bit
485 * set (in which case it could also be direct WRITE).
486 */
487 static inline bool cfq_bio_sync(struct bio *bio)
488 {
489 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
490 }
491
492 /*
493 * scheduler run of queue, if there are requests pending and no one in the
494 * driver that will restart queueing
495 */
496 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
497 {
498 if (cfqd->busy_queues) {
499 cfq_log(cfqd, "schedule dispatch");
500 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
501 }
502 }
503
504 static int cfq_queue_empty(struct request_queue *q)
505 {
506 struct cfq_data *cfqd = q->elevator->elevator_data;
507
508 return !cfqd->rq_queued;
509 }
510
511 /*
512 * Scale schedule slice based on io priority. Use the sync time slice only
513 * if a queue is marked sync and has sync io queued. A sync queue with async
514 * io only, should not get full sync slice length.
515 */
516 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
517 unsigned short prio)
518 {
519 const int base_slice = cfqd->cfq_slice[sync];
520
521 WARN_ON(prio >= IOPRIO_BE_NR);
522
523 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
524 }
525
526 static inline int
527 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
528 {
529 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
530 }
531
532 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
533 {
534 u64 d = delta << CFQ_SERVICE_SHIFT;
535
536 d = d * BLKIO_WEIGHT_DEFAULT;
537 do_div(d, cfqg->weight);
538 return d;
539 }
540
541 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
542 {
543 s64 delta = (s64)(vdisktime - min_vdisktime);
544 if (delta > 0)
545 min_vdisktime = vdisktime;
546
547 return min_vdisktime;
548 }
549
550 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
551 {
552 s64 delta = (s64)(vdisktime - min_vdisktime);
553 if (delta < 0)
554 min_vdisktime = vdisktime;
555
556 return min_vdisktime;
557 }
558
559 static void update_min_vdisktime(struct cfq_rb_root *st)
560 {
561 u64 vdisktime = st->min_vdisktime;
562 struct cfq_group *cfqg;
563
564 if (st->left) {
565 cfqg = rb_entry_cfqg(st->left);
566 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
567 }
568
569 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
570 }
571
572 /*
573 * get averaged number of queues of RT/BE priority.
574 * average is updated, with a formula that gives more weight to higher numbers,
575 * to quickly follows sudden increases and decrease slowly
576 */
577
578 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
579 struct cfq_group *cfqg, bool rt)
580 {
581 unsigned min_q, max_q;
582 unsigned mult = cfq_hist_divisor - 1;
583 unsigned round = cfq_hist_divisor / 2;
584 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
585
586 min_q = min(cfqg->busy_queues_avg[rt], busy);
587 max_q = max(cfqg->busy_queues_avg[rt], busy);
588 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
589 cfq_hist_divisor;
590 return cfqg->busy_queues_avg[rt];
591 }
592
593 static inline unsigned
594 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
595 {
596 struct cfq_rb_root *st = &cfqd->grp_service_tree;
597
598 return cfq_target_latency * cfqg->weight / st->total_weight;
599 }
600
601 static inline void
602 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
603 {
604 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
605 if (cfqd->cfq_latency) {
606 /*
607 * interested queues (we consider only the ones with the same
608 * priority class in the cfq group)
609 */
610 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
611 cfq_class_rt(cfqq));
612 unsigned sync_slice = cfqd->cfq_slice[1];
613 unsigned expect_latency = sync_slice * iq;
614 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
615
616 if (expect_latency > group_slice) {
617 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
618 /* scale low_slice according to IO priority
619 * and sync vs async */
620 unsigned low_slice =
621 min(slice, base_low_slice * slice / sync_slice);
622 /* the adapted slice value is scaled to fit all iqs
623 * into the target latency */
624 slice = max(slice * group_slice / expect_latency,
625 low_slice);
626 }
627 }
628 cfqq->slice_start = jiffies;
629 cfqq->slice_end = jiffies + slice;
630 cfqq->allocated_slice = slice;
631 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
632 }
633
634 /*
635 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
636 * isn't valid until the first request from the dispatch is activated
637 * and the slice time set.
638 */
639 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
640 {
641 if (cfq_cfqq_slice_new(cfqq))
642 return false;
643 if (time_before(jiffies, cfqq->slice_end))
644 return false;
645
646 return true;
647 }
648
649 /*
650 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
651 * We choose the request that is closest to the head right now. Distance
652 * behind the head is penalized and only allowed to a certain extent.
653 */
654 static struct request *
655 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
656 {
657 sector_t s1, s2, d1 = 0, d2 = 0;
658 unsigned long back_max;
659 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
660 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
661 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
662
663 if (rq1 == NULL || rq1 == rq2)
664 return rq2;
665 if (rq2 == NULL)
666 return rq1;
667
668 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
669 return rq1;
670 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
671 return rq2;
672 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
673 return rq1;
674 else if ((rq2->cmd_flags & REQ_META) &&
675 !(rq1->cmd_flags & REQ_META))
676 return rq2;
677
678 s1 = blk_rq_pos(rq1);
679 s2 = blk_rq_pos(rq2);
680
681 /*
682 * by definition, 1KiB is 2 sectors
683 */
684 back_max = cfqd->cfq_back_max * 2;
685
686 /*
687 * Strict one way elevator _except_ in the case where we allow
688 * short backward seeks which are biased as twice the cost of a
689 * similar forward seek.
690 */
691 if (s1 >= last)
692 d1 = s1 - last;
693 else if (s1 + back_max >= last)
694 d1 = (last - s1) * cfqd->cfq_back_penalty;
695 else
696 wrap |= CFQ_RQ1_WRAP;
697
698 if (s2 >= last)
699 d2 = s2 - last;
700 else if (s2 + back_max >= last)
701 d2 = (last - s2) * cfqd->cfq_back_penalty;
702 else
703 wrap |= CFQ_RQ2_WRAP;
704
705 /* Found required data */
706
707 /*
708 * By doing switch() on the bit mask "wrap" we avoid having to
709 * check two variables for all permutations: --> faster!
710 */
711 switch (wrap) {
712 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
713 if (d1 < d2)
714 return rq1;
715 else if (d2 < d1)
716 return rq2;
717 else {
718 if (s1 >= s2)
719 return rq1;
720 else
721 return rq2;
722 }
723
724 case CFQ_RQ2_WRAP:
725 return rq1;
726 case CFQ_RQ1_WRAP:
727 return rq2;
728 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
729 default:
730 /*
731 * Since both rqs are wrapped,
732 * start with the one that's further behind head
733 * (--> only *one* back seek required),
734 * since back seek takes more time than forward.
735 */
736 if (s1 <= s2)
737 return rq1;
738 else
739 return rq2;
740 }
741 }
742
743 /*
744 * The below is leftmost cache rbtree addon
745 */
746 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
747 {
748 /* Service tree is empty */
749 if (!root->count)
750 return NULL;
751
752 if (!root->left)
753 root->left = rb_first(&root->rb);
754
755 if (root->left)
756 return rb_entry(root->left, struct cfq_queue, rb_node);
757
758 return NULL;
759 }
760
761 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
762 {
763 if (!root->left)
764 root->left = rb_first(&root->rb);
765
766 if (root->left)
767 return rb_entry_cfqg(root->left);
768
769 return NULL;
770 }
771
772 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
773 {
774 rb_erase(n, root);
775 RB_CLEAR_NODE(n);
776 }
777
778 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
779 {
780 if (root->left == n)
781 root->left = NULL;
782 rb_erase_init(n, &root->rb);
783 --root->count;
784 }
785
786 /*
787 * would be nice to take fifo expire time into account as well
788 */
789 static struct request *
790 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
791 struct request *last)
792 {
793 struct rb_node *rbnext = rb_next(&last->rb_node);
794 struct rb_node *rbprev = rb_prev(&last->rb_node);
795 struct request *next = NULL, *prev = NULL;
796
797 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
798
799 if (rbprev)
800 prev = rb_entry_rq(rbprev);
801
802 if (rbnext)
803 next = rb_entry_rq(rbnext);
804 else {
805 rbnext = rb_first(&cfqq->sort_list);
806 if (rbnext && rbnext != &last->rb_node)
807 next = rb_entry_rq(rbnext);
808 }
809
810 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
811 }
812
813 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
814 struct cfq_queue *cfqq)
815 {
816 /*
817 * just an approximation, should be ok.
818 */
819 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
820 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
821 }
822
823 static inline s64
824 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
825 {
826 return cfqg->vdisktime - st->min_vdisktime;
827 }
828
829 static void
830 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
831 {
832 struct rb_node **node = &st->rb.rb_node;
833 struct rb_node *parent = NULL;
834 struct cfq_group *__cfqg;
835 s64 key = cfqg_key(st, cfqg);
836 int left = 1;
837
838 while (*node != NULL) {
839 parent = *node;
840 __cfqg = rb_entry_cfqg(parent);
841
842 if (key < cfqg_key(st, __cfqg))
843 node = &parent->rb_left;
844 else {
845 node = &parent->rb_right;
846 left = 0;
847 }
848 }
849
850 if (left)
851 st->left = &cfqg->rb_node;
852
853 rb_link_node(&cfqg->rb_node, parent, node);
854 rb_insert_color(&cfqg->rb_node, &st->rb);
855 }
856
857 static void
858 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
859 {
860 struct cfq_rb_root *st = &cfqd->grp_service_tree;
861 struct cfq_group *__cfqg;
862 struct rb_node *n;
863
864 cfqg->nr_cfqq++;
865 if (!RB_EMPTY_NODE(&cfqg->rb_node))
866 return;
867
868 /*
869 * Currently put the group at the end. Later implement something
870 * so that groups get lesser vtime based on their weights, so that
871 * if group does not loose all if it was not continously backlogged.
872 */
873 n = rb_last(&st->rb);
874 if (n) {
875 __cfqg = rb_entry_cfqg(n);
876 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
877 } else
878 cfqg->vdisktime = st->min_vdisktime;
879
880 __cfq_group_service_tree_add(st, cfqg);
881 st->total_weight += cfqg->weight;
882 }
883
884 static void
885 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
886 {
887 struct cfq_rb_root *st = &cfqd->grp_service_tree;
888
889 BUG_ON(cfqg->nr_cfqq < 1);
890 cfqg->nr_cfqq--;
891
892 /* If there are other cfq queues under this group, don't delete it */
893 if (cfqg->nr_cfqq)
894 return;
895
896 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
897 st->total_weight -= cfqg->weight;
898 if (!RB_EMPTY_NODE(&cfqg->rb_node))
899 cfq_rb_erase(&cfqg->rb_node, st);
900 cfqg->saved_workload_slice = 0;
901 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
902 }
903
904 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
905 {
906 unsigned int slice_used;
907
908 /*
909 * Queue got expired before even a single request completed or
910 * got expired immediately after first request completion.
911 */
912 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
913 /*
914 * Also charge the seek time incurred to the group, otherwise
915 * if there are mutiple queues in the group, each can dispatch
916 * a single request on seeky media and cause lots of seek time
917 * and group will never know it.
918 */
919 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
920 1);
921 } else {
922 slice_used = jiffies - cfqq->slice_start;
923 if (slice_used > cfqq->allocated_slice)
924 slice_used = cfqq->allocated_slice;
925 }
926
927 return slice_used;
928 }
929
930 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
931 struct cfq_queue *cfqq)
932 {
933 struct cfq_rb_root *st = &cfqd->grp_service_tree;
934 unsigned int used_sl, charge;
935 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
936 - cfqg->service_tree_idle.count;
937
938 BUG_ON(nr_sync < 0);
939 used_sl = charge = cfq_cfqq_slice_usage(cfqq);
940
941 if (iops_mode(cfqd))
942 charge = cfqq->slice_dispatch;
943 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
944 charge = cfqq->allocated_slice;
945
946 /* Can't update vdisktime while group is on service tree */
947 cfq_rb_erase(&cfqg->rb_node, st);
948 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
949 __cfq_group_service_tree_add(st, cfqg);
950
951 /* This group is being expired. Save the context */
952 if (time_after(cfqd->workload_expires, jiffies)) {
953 cfqg->saved_workload_slice = cfqd->workload_expires
954 - jiffies;
955 cfqg->saved_workload = cfqd->serving_type;
956 cfqg->saved_serving_prio = cfqd->serving_prio;
957 } else
958 cfqg->saved_workload_slice = 0;
959
960 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
961 st->min_vdisktime);
962 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
963 " sect=%u", used_sl, cfqq->slice_dispatch, charge,
964 iops_mode(cfqd), cfqq->nr_sectors);
965 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
966 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
967 }
968
969 #ifdef CONFIG_CFQ_GROUP_IOSCHED
970 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
971 {
972 if (blkg)
973 return container_of(blkg, struct cfq_group, blkg);
974 return NULL;
975 }
976
977 void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
978 unsigned int weight)
979 {
980 cfqg_of_blkg(blkg)->weight = weight;
981 }
982
983 static struct cfq_group *
984 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
985 {
986 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
987 struct cfq_group *cfqg = NULL;
988 void *key = cfqd;
989 int i, j;
990 struct cfq_rb_root *st;
991 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
992 unsigned int major, minor;
993
994 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
995 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
996 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
997 cfqg->blkg.dev = MKDEV(major, minor);
998 goto done;
999 }
1000 if (cfqg || !create)
1001 goto done;
1002
1003 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1004 if (!cfqg)
1005 goto done;
1006
1007 for_each_cfqg_st(cfqg, i, j, st)
1008 *st = CFQ_RB_ROOT;
1009 RB_CLEAR_NODE(&cfqg->rb_node);
1010
1011 /*
1012 * Take the initial reference that will be released on destroy
1013 * This can be thought of a joint reference by cgroup and
1014 * elevator which will be dropped by either elevator exit
1015 * or cgroup deletion path depending on who is exiting first.
1016 */
1017 atomic_set(&cfqg->ref, 1);
1018
1019 /*
1020 * Add group onto cgroup list. It might happen that bdi->dev is
1021 * not initiliazed yet. Initialize this new group without major
1022 * and minor info and this info will be filled in once a new thread
1023 * comes for IO. See code above.
1024 */
1025 if (bdi->dev) {
1026 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1027 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1028 MKDEV(major, minor));
1029 } else
1030 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1031 0);
1032
1033 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1034
1035 /* Add group on cfqd list */
1036 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1037
1038 done:
1039 return cfqg;
1040 }
1041
1042 /*
1043 * Search for the cfq group current task belongs to. If create = 1, then also
1044 * create the cfq group if it does not exist. request_queue lock must be held.
1045 */
1046 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1047 {
1048 struct cgroup *cgroup;
1049 struct cfq_group *cfqg = NULL;
1050
1051 rcu_read_lock();
1052 cgroup = task_cgroup(current, blkio_subsys_id);
1053 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1054 if (!cfqg && create)
1055 cfqg = &cfqd->root_group;
1056 rcu_read_unlock();
1057 return cfqg;
1058 }
1059
1060 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1061 {
1062 atomic_inc(&cfqg->ref);
1063 return cfqg;
1064 }
1065
1066 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1067 {
1068 /* Currently, all async queues are mapped to root group */
1069 if (!cfq_cfqq_sync(cfqq))
1070 cfqg = &cfqq->cfqd->root_group;
1071
1072 cfqq->cfqg = cfqg;
1073 /* cfqq reference on cfqg */
1074 atomic_inc(&cfqq->cfqg->ref);
1075 }
1076
1077 static void cfq_put_cfqg(struct cfq_group *cfqg)
1078 {
1079 struct cfq_rb_root *st;
1080 int i, j;
1081
1082 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1083 if (!atomic_dec_and_test(&cfqg->ref))
1084 return;
1085 for_each_cfqg_st(cfqg, i, j, st)
1086 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1087 kfree(cfqg);
1088 }
1089
1090 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1091 {
1092 /* Something wrong if we are trying to remove same group twice */
1093 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1094
1095 hlist_del_init(&cfqg->cfqd_node);
1096
1097 /*
1098 * Put the reference taken at the time of creation so that when all
1099 * queues are gone, group can be destroyed.
1100 */
1101 cfq_put_cfqg(cfqg);
1102 }
1103
1104 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1105 {
1106 struct hlist_node *pos, *n;
1107 struct cfq_group *cfqg;
1108
1109 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1110 /*
1111 * If cgroup removal path got to blk_group first and removed
1112 * it from cgroup list, then it will take care of destroying
1113 * cfqg also.
1114 */
1115 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1116 cfq_destroy_cfqg(cfqd, cfqg);
1117 }
1118 }
1119
1120 /*
1121 * Blk cgroup controller notification saying that blkio_group object is being
1122 * delinked as associated cgroup object is going away. That also means that
1123 * no new IO will come in this group. So get rid of this group as soon as
1124 * any pending IO in the group is finished.
1125 *
1126 * This function is called under rcu_read_lock(). key is the rcu protected
1127 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1128 * read lock.
1129 *
1130 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1131 * it should not be NULL as even if elevator was exiting, cgroup deltion
1132 * path got to it first.
1133 */
1134 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1135 {
1136 unsigned long flags;
1137 struct cfq_data *cfqd = key;
1138
1139 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1140 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1141 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1142 }
1143
1144 #else /* GROUP_IOSCHED */
1145 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1146 {
1147 return &cfqd->root_group;
1148 }
1149
1150 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1151 {
1152 return cfqg;
1153 }
1154
1155 static inline void
1156 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1157 cfqq->cfqg = cfqg;
1158 }
1159
1160 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1161 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1162
1163 #endif /* GROUP_IOSCHED */
1164
1165 /*
1166 * The cfqd->service_trees holds all pending cfq_queue's that have
1167 * requests waiting to be processed. It is sorted in the order that
1168 * we will service the queues.
1169 */
1170 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1171 bool add_front)
1172 {
1173 struct rb_node **p, *parent;
1174 struct cfq_queue *__cfqq;
1175 unsigned long rb_key;
1176 struct cfq_rb_root *service_tree;
1177 int left;
1178 int new_cfqq = 1;
1179 int group_changed = 0;
1180
1181 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1182 if (!cfqd->cfq_group_isolation
1183 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1184 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1185 /* Move this cfq to root group */
1186 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1187 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1188 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1189 cfqq->orig_cfqg = cfqq->cfqg;
1190 cfqq->cfqg = &cfqd->root_group;
1191 atomic_inc(&cfqd->root_group.ref);
1192 group_changed = 1;
1193 } else if (!cfqd->cfq_group_isolation
1194 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1195 /* cfqq is sequential now needs to go to its original group */
1196 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1197 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1198 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1199 cfq_put_cfqg(cfqq->cfqg);
1200 cfqq->cfqg = cfqq->orig_cfqg;
1201 cfqq->orig_cfqg = NULL;
1202 group_changed = 1;
1203 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1204 }
1205 #endif
1206
1207 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1208 cfqq_type(cfqq));
1209 if (cfq_class_idle(cfqq)) {
1210 rb_key = CFQ_IDLE_DELAY;
1211 parent = rb_last(&service_tree->rb);
1212 if (parent && parent != &cfqq->rb_node) {
1213 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1214 rb_key += __cfqq->rb_key;
1215 } else
1216 rb_key += jiffies;
1217 } else if (!add_front) {
1218 /*
1219 * Get our rb key offset. Subtract any residual slice
1220 * value carried from last service. A negative resid
1221 * count indicates slice overrun, and this should position
1222 * the next service time further away in the tree.
1223 */
1224 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1225 rb_key -= cfqq->slice_resid;
1226 cfqq->slice_resid = 0;
1227 } else {
1228 rb_key = -HZ;
1229 __cfqq = cfq_rb_first(service_tree);
1230 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1231 }
1232
1233 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1234 new_cfqq = 0;
1235 /*
1236 * same position, nothing more to do
1237 */
1238 if (rb_key == cfqq->rb_key &&
1239 cfqq->service_tree == service_tree)
1240 return;
1241
1242 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1243 cfqq->service_tree = NULL;
1244 }
1245
1246 left = 1;
1247 parent = NULL;
1248 cfqq->service_tree = service_tree;
1249 p = &service_tree->rb.rb_node;
1250 while (*p) {
1251 struct rb_node **n;
1252
1253 parent = *p;
1254 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1255
1256 /*
1257 * sort by key, that represents service time.
1258 */
1259 if (time_before(rb_key, __cfqq->rb_key))
1260 n = &(*p)->rb_left;
1261 else {
1262 n = &(*p)->rb_right;
1263 left = 0;
1264 }
1265
1266 p = n;
1267 }
1268
1269 if (left)
1270 service_tree->left = &cfqq->rb_node;
1271
1272 cfqq->rb_key = rb_key;
1273 rb_link_node(&cfqq->rb_node, parent, p);
1274 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1275 service_tree->count++;
1276 if ((add_front || !new_cfqq) && !group_changed)
1277 return;
1278 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1279 }
1280
1281 static struct cfq_queue *
1282 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1283 sector_t sector, struct rb_node **ret_parent,
1284 struct rb_node ***rb_link)
1285 {
1286 struct rb_node **p, *parent;
1287 struct cfq_queue *cfqq = NULL;
1288
1289 parent = NULL;
1290 p = &root->rb_node;
1291 while (*p) {
1292 struct rb_node **n;
1293
1294 parent = *p;
1295 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1296
1297 /*
1298 * Sort strictly based on sector. Smallest to the left,
1299 * largest to the right.
1300 */
1301 if (sector > blk_rq_pos(cfqq->next_rq))
1302 n = &(*p)->rb_right;
1303 else if (sector < blk_rq_pos(cfqq->next_rq))
1304 n = &(*p)->rb_left;
1305 else
1306 break;
1307 p = n;
1308 cfqq = NULL;
1309 }
1310
1311 *ret_parent = parent;
1312 if (rb_link)
1313 *rb_link = p;
1314 return cfqq;
1315 }
1316
1317 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1318 {
1319 struct rb_node **p, *parent;
1320 struct cfq_queue *__cfqq;
1321
1322 if (cfqq->p_root) {
1323 rb_erase(&cfqq->p_node, cfqq->p_root);
1324 cfqq->p_root = NULL;
1325 }
1326
1327 if (cfq_class_idle(cfqq))
1328 return;
1329 if (!cfqq->next_rq)
1330 return;
1331
1332 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1333 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1334 blk_rq_pos(cfqq->next_rq), &parent, &p);
1335 if (!__cfqq) {
1336 rb_link_node(&cfqq->p_node, parent, p);
1337 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1338 } else
1339 cfqq->p_root = NULL;
1340 }
1341
1342 /*
1343 * Update cfqq's position in the service tree.
1344 */
1345 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1346 {
1347 /*
1348 * Resorting requires the cfqq to be on the RR list already.
1349 */
1350 if (cfq_cfqq_on_rr(cfqq)) {
1351 cfq_service_tree_add(cfqd, cfqq, 0);
1352 cfq_prio_tree_add(cfqd, cfqq);
1353 }
1354 }
1355
1356 /*
1357 * add to busy list of queues for service, trying to be fair in ordering
1358 * the pending list according to last request service
1359 */
1360 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1361 {
1362 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1363 BUG_ON(cfq_cfqq_on_rr(cfqq));
1364 cfq_mark_cfqq_on_rr(cfqq);
1365 cfqd->busy_queues++;
1366
1367 cfq_resort_rr_list(cfqd, cfqq);
1368 }
1369
1370 /*
1371 * Called when the cfqq no longer has requests pending, remove it from
1372 * the service tree.
1373 */
1374 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1375 {
1376 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1377 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1378 cfq_clear_cfqq_on_rr(cfqq);
1379
1380 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1381 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1382 cfqq->service_tree = NULL;
1383 }
1384 if (cfqq->p_root) {
1385 rb_erase(&cfqq->p_node, cfqq->p_root);
1386 cfqq->p_root = NULL;
1387 }
1388
1389 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1390 BUG_ON(!cfqd->busy_queues);
1391 cfqd->busy_queues--;
1392 }
1393
1394 /*
1395 * rb tree support functions
1396 */
1397 static void cfq_del_rq_rb(struct request *rq)
1398 {
1399 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1400 const int sync = rq_is_sync(rq);
1401
1402 BUG_ON(!cfqq->queued[sync]);
1403 cfqq->queued[sync]--;
1404
1405 elv_rb_del(&cfqq->sort_list, rq);
1406
1407 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1408 /*
1409 * Queue will be deleted from service tree when we actually
1410 * expire it later. Right now just remove it from prio tree
1411 * as it is empty.
1412 */
1413 if (cfqq->p_root) {
1414 rb_erase(&cfqq->p_node, cfqq->p_root);
1415 cfqq->p_root = NULL;
1416 }
1417 }
1418 }
1419
1420 static void cfq_add_rq_rb(struct request *rq)
1421 {
1422 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1423 struct cfq_data *cfqd = cfqq->cfqd;
1424 struct request *__alias, *prev;
1425
1426 cfqq->queued[rq_is_sync(rq)]++;
1427
1428 /*
1429 * looks a little odd, but the first insert might return an alias.
1430 * if that happens, put the alias on the dispatch list
1431 */
1432 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1433 cfq_dispatch_insert(cfqd->queue, __alias);
1434
1435 if (!cfq_cfqq_on_rr(cfqq))
1436 cfq_add_cfqq_rr(cfqd, cfqq);
1437
1438 /*
1439 * check if this request is a better next-serve candidate
1440 */
1441 prev = cfqq->next_rq;
1442 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1443
1444 /*
1445 * adjust priority tree position, if ->next_rq changes
1446 */
1447 if (prev != cfqq->next_rq)
1448 cfq_prio_tree_add(cfqd, cfqq);
1449
1450 BUG_ON(!cfqq->next_rq);
1451 }
1452
1453 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1454 {
1455 elv_rb_del(&cfqq->sort_list, rq);
1456 cfqq->queued[rq_is_sync(rq)]--;
1457 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1458 rq_data_dir(rq), rq_is_sync(rq));
1459 cfq_add_rq_rb(rq);
1460 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1461 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1462 rq_is_sync(rq));
1463 }
1464
1465 static struct request *
1466 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1467 {
1468 struct task_struct *tsk = current;
1469 struct cfq_io_context *cic;
1470 struct cfq_queue *cfqq;
1471
1472 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1473 if (!cic)
1474 return NULL;
1475
1476 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1477 if (cfqq) {
1478 sector_t sector = bio->bi_sector + bio_sectors(bio);
1479
1480 return elv_rb_find(&cfqq->sort_list, sector);
1481 }
1482
1483 return NULL;
1484 }
1485
1486 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1487 {
1488 struct cfq_data *cfqd = q->elevator->elevator_data;
1489
1490 cfqd->rq_in_driver++;
1491 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1492 cfqd->rq_in_driver);
1493
1494 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1495 }
1496
1497 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1498 {
1499 struct cfq_data *cfqd = q->elevator->elevator_data;
1500
1501 WARN_ON(!cfqd->rq_in_driver);
1502 cfqd->rq_in_driver--;
1503 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1504 cfqd->rq_in_driver);
1505 }
1506
1507 static void cfq_remove_request(struct request *rq)
1508 {
1509 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1510
1511 if (cfqq->next_rq == rq)
1512 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1513
1514 list_del_init(&rq->queuelist);
1515 cfq_del_rq_rb(rq);
1516
1517 cfqq->cfqd->rq_queued--;
1518 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1519 rq_data_dir(rq), rq_is_sync(rq));
1520 if (rq->cmd_flags & REQ_META) {
1521 WARN_ON(!cfqq->meta_pending);
1522 cfqq->meta_pending--;
1523 }
1524 }
1525
1526 static int cfq_merge(struct request_queue *q, struct request **req,
1527 struct bio *bio)
1528 {
1529 struct cfq_data *cfqd = q->elevator->elevator_data;
1530 struct request *__rq;
1531
1532 __rq = cfq_find_rq_fmerge(cfqd, bio);
1533 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1534 *req = __rq;
1535 return ELEVATOR_FRONT_MERGE;
1536 }
1537
1538 return ELEVATOR_NO_MERGE;
1539 }
1540
1541 static void cfq_merged_request(struct request_queue *q, struct request *req,
1542 int type)
1543 {
1544 if (type == ELEVATOR_FRONT_MERGE) {
1545 struct cfq_queue *cfqq = RQ_CFQQ(req);
1546
1547 cfq_reposition_rq_rb(cfqq, req);
1548 }
1549 }
1550
1551 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1552 struct bio *bio)
1553 {
1554 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1555 bio_data_dir(bio), cfq_bio_sync(bio));
1556 }
1557
1558 static void
1559 cfq_merged_requests(struct request_queue *q, struct request *rq,
1560 struct request *next)
1561 {
1562 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1563 /*
1564 * reposition in fifo if next is older than rq
1565 */
1566 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1567 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1568 list_move(&rq->queuelist, &next->queuelist);
1569 rq_set_fifo_time(rq, rq_fifo_time(next));
1570 }
1571
1572 if (cfqq->next_rq == next)
1573 cfqq->next_rq = rq;
1574 cfq_remove_request(next);
1575 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1576 rq_data_dir(next), rq_is_sync(next));
1577 }
1578
1579 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1580 struct bio *bio)
1581 {
1582 struct cfq_data *cfqd = q->elevator->elevator_data;
1583 struct cfq_io_context *cic;
1584 struct cfq_queue *cfqq;
1585
1586 /*
1587 * Disallow merge of a sync bio into an async request.
1588 */
1589 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1590 return false;
1591
1592 /*
1593 * Lookup the cfqq that this bio will be queued with. Allow
1594 * merge only if rq is queued there.
1595 */
1596 cic = cfq_cic_lookup(cfqd, current->io_context);
1597 if (!cic)
1598 return false;
1599
1600 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1601 return cfqq == RQ_CFQQ(rq);
1602 }
1603
1604 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1605 {
1606 del_timer(&cfqd->idle_slice_timer);
1607 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1608 }
1609
1610 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1611 struct cfq_queue *cfqq)
1612 {
1613 if (cfqq) {
1614 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1615 cfqd->serving_prio, cfqd->serving_type);
1616 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1617 cfqq->slice_start = 0;
1618 cfqq->dispatch_start = jiffies;
1619 cfqq->allocated_slice = 0;
1620 cfqq->slice_end = 0;
1621 cfqq->slice_dispatch = 0;
1622 cfqq->nr_sectors = 0;
1623
1624 cfq_clear_cfqq_wait_request(cfqq);
1625 cfq_clear_cfqq_must_dispatch(cfqq);
1626 cfq_clear_cfqq_must_alloc_slice(cfqq);
1627 cfq_clear_cfqq_fifo_expire(cfqq);
1628 cfq_mark_cfqq_slice_new(cfqq);
1629
1630 cfq_del_timer(cfqd, cfqq);
1631 }
1632
1633 cfqd->active_queue = cfqq;
1634 }
1635
1636 /*
1637 * current cfqq expired its slice (or was too idle), select new one
1638 */
1639 static void
1640 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1641 bool timed_out)
1642 {
1643 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1644
1645 if (cfq_cfqq_wait_request(cfqq))
1646 cfq_del_timer(cfqd, cfqq);
1647
1648 cfq_clear_cfqq_wait_request(cfqq);
1649 cfq_clear_cfqq_wait_busy(cfqq);
1650
1651 /*
1652 * If this cfqq is shared between multiple processes, check to
1653 * make sure that those processes are still issuing I/Os within
1654 * the mean seek distance. If not, it may be time to break the
1655 * queues apart again.
1656 */
1657 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1658 cfq_mark_cfqq_split_coop(cfqq);
1659
1660 /*
1661 * store what was left of this slice, if the queue idled/timed out
1662 */
1663 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1664 cfqq->slice_resid = cfqq->slice_end - jiffies;
1665 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1666 }
1667
1668 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1669
1670 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1671 cfq_del_cfqq_rr(cfqd, cfqq);
1672
1673 cfq_resort_rr_list(cfqd, cfqq);
1674
1675 if (cfqq == cfqd->active_queue)
1676 cfqd->active_queue = NULL;
1677
1678 if (cfqd->active_cic) {
1679 put_io_context(cfqd->active_cic->ioc);
1680 cfqd->active_cic = NULL;
1681 }
1682 }
1683
1684 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1685 {
1686 struct cfq_queue *cfqq = cfqd->active_queue;
1687
1688 if (cfqq)
1689 __cfq_slice_expired(cfqd, cfqq, timed_out);
1690 }
1691
1692 /*
1693 * Get next queue for service. Unless we have a queue preemption,
1694 * we'll simply select the first cfqq in the service tree.
1695 */
1696 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1697 {
1698 struct cfq_rb_root *service_tree =
1699 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1700 cfqd->serving_type);
1701
1702 if (!cfqd->rq_queued)
1703 return NULL;
1704
1705 /* There is nothing to dispatch */
1706 if (!service_tree)
1707 return NULL;
1708 if (RB_EMPTY_ROOT(&service_tree->rb))
1709 return NULL;
1710 return cfq_rb_first(service_tree);
1711 }
1712
1713 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1714 {
1715 struct cfq_group *cfqg;
1716 struct cfq_queue *cfqq;
1717 int i, j;
1718 struct cfq_rb_root *st;
1719
1720 if (!cfqd->rq_queued)
1721 return NULL;
1722
1723 cfqg = cfq_get_next_cfqg(cfqd);
1724 if (!cfqg)
1725 return NULL;
1726
1727 for_each_cfqg_st(cfqg, i, j, st)
1728 if ((cfqq = cfq_rb_first(st)) != NULL)
1729 return cfqq;
1730 return NULL;
1731 }
1732
1733 /*
1734 * Get and set a new active queue for service.
1735 */
1736 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1737 struct cfq_queue *cfqq)
1738 {
1739 if (!cfqq)
1740 cfqq = cfq_get_next_queue(cfqd);
1741
1742 __cfq_set_active_queue(cfqd, cfqq);
1743 return cfqq;
1744 }
1745
1746 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1747 struct request *rq)
1748 {
1749 if (blk_rq_pos(rq) >= cfqd->last_position)
1750 return blk_rq_pos(rq) - cfqd->last_position;
1751 else
1752 return cfqd->last_position - blk_rq_pos(rq);
1753 }
1754
1755 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1756 struct request *rq)
1757 {
1758 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1759 }
1760
1761 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1762 struct cfq_queue *cur_cfqq)
1763 {
1764 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1765 struct rb_node *parent, *node;
1766 struct cfq_queue *__cfqq;
1767 sector_t sector = cfqd->last_position;
1768
1769 if (RB_EMPTY_ROOT(root))
1770 return NULL;
1771
1772 /*
1773 * First, if we find a request starting at the end of the last
1774 * request, choose it.
1775 */
1776 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1777 if (__cfqq)
1778 return __cfqq;
1779
1780 /*
1781 * If the exact sector wasn't found, the parent of the NULL leaf
1782 * will contain the closest sector.
1783 */
1784 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1785 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1786 return __cfqq;
1787
1788 if (blk_rq_pos(__cfqq->next_rq) < sector)
1789 node = rb_next(&__cfqq->p_node);
1790 else
1791 node = rb_prev(&__cfqq->p_node);
1792 if (!node)
1793 return NULL;
1794
1795 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1796 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1797 return __cfqq;
1798
1799 return NULL;
1800 }
1801
1802 /*
1803 * cfqd - obvious
1804 * cur_cfqq - passed in so that we don't decide that the current queue is
1805 * closely cooperating with itself.
1806 *
1807 * So, basically we're assuming that that cur_cfqq has dispatched at least
1808 * one request, and that cfqd->last_position reflects a position on the disk
1809 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1810 * assumption.
1811 */
1812 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1813 struct cfq_queue *cur_cfqq)
1814 {
1815 struct cfq_queue *cfqq;
1816
1817 if (cfq_class_idle(cur_cfqq))
1818 return NULL;
1819 if (!cfq_cfqq_sync(cur_cfqq))
1820 return NULL;
1821 if (CFQQ_SEEKY(cur_cfqq))
1822 return NULL;
1823
1824 /*
1825 * Don't search priority tree if it's the only queue in the group.
1826 */
1827 if (cur_cfqq->cfqg->nr_cfqq == 1)
1828 return NULL;
1829
1830 /*
1831 * We should notice if some of the queues are cooperating, eg
1832 * working closely on the same area of the disk. In that case,
1833 * we can group them together and don't waste time idling.
1834 */
1835 cfqq = cfqq_close(cfqd, cur_cfqq);
1836 if (!cfqq)
1837 return NULL;
1838
1839 /* If new queue belongs to different cfq_group, don't choose it */
1840 if (cur_cfqq->cfqg != cfqq->cfqg)
1841 return NULL;
1842
1843 /*
1844 * It only makes sense to merge sync queues.
1845 */
1846 if (!cfq_cfqq_sync(cfqq))
1847 return NULL;
1848 if (CFQQ_SEEKY(cfqq))
1849 return NULL;
1850
1851 /*
1852 * Do not merge queues of different priority classes
1853 */
1854 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1855 return NULL;
1856
1857 return cfqq;
1858 }
1859
1860 /*
1861 * Determine whether we should enforce idle window for this queue.
1862 */
1863
1864 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1865 {
1866 enum wl_prio_t prio = cfqq_prio(cfqq);
1867 struct cfq_rb_root *service_tree = cfqq->service_tree;
1868
1869 BUG_ON(!service_tree);
1870 BUG_ON(!service_tree->count);
1871
1872 if (!cfqd->cfq_slice_idle)
1873 return false;
1874
1875 /* We never do for idle class queues. */
1876 if (prio == IDLE_WORKLOAD)
1877 return false;
1878
1879 /* We do for queues that were marked with idle window flag. */
1880 if (cfq_cfqq_idle_window(cfqq) &&
1881 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1882 return true;
1883
1884 /*
1885 * Otherwise, we do only if they are the last ones
1886 * in their service tree.
1887 */
1888 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1889 return true;
1890 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1891 service_tree->count);
1892 return false;
1893 }
1894
1895 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1896 {
1897 struct cfq_queue *cfqq = cfqd->active_queue;
1898 struct cfq_io_context *cic;
1899 unsigned long sl, group_idle = 0;
1900
1901 /*
1902 * SSD device without seek penalty, disable idling. But only do so
1903 * for devices that support queuing, otherwise we still have a problem
1904 * with sync vs async workloads.
1905 */
1906 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1907 return;
1908
1909 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1910 WARN_ON(cfq_cfqq_slice_new(cfqq));
1911
1912 /*
1913 * idle is disabled, either manually or by past process history
1914 */
1915 if (!cfq_should_idle(cfqd, cfqq)) {
1916 /* no queue idling. Check for group idling */
1917 if (cfqd->cfq_group_idle)
1918 group_idle = cfqd->cfq_group_idle;
1919 else
1920 return;
1921 }
1922
1923 /*
1924 * still active requests from this queue, don't idle
1925 */
1926 if (cfqq->dispatched)
1927 return;
1928
1929 /*
1930 * task has exited, don't wait
1931 */
1932 cic = cfqd->active_cic;
1933 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1934 return;
1935
1936 /*
1937 * If our average think time is larger than the remaining time
1938 * slice, then don't idle. This avoids overrunning the allotted
1939 * time slice.
1940 */
1941 if (sample_valid(cic->ttime_samples) &&
1942 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1943 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1944 cic->ttime_mean);
1945 return;
1946 }
1947
1948 /* There are other queues in the group, don't do group idle */
1949 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
1950 return;
1951
1952 cfq_mark_cfqq_wait_request(cfqq);
1953
1954 if (group_idle)
1955 sl = cfqd->cfq_group_idle;
1956 else
1957 sl = cfqd->cfq_slice_idle;
1958
1959 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1960 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
1961 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
1962 group_idle ? 1 : 0);
1963 }
1964
1965 /*
1966 * Move request from internal lists to the request queue dispatch list.
1967 */
1968 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1969 {
1970 struct cfq_data *cfqd = q->elevator->elevator_data;
1971 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1972
1973 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1974
1975 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1976 cfq_remove_request(rq);
1977 cfqq->dispatched++;
1978 (RQ_CFQG(rq))->dispatched++;
1979 elv_dispatch_sort(q, rq);
1980
1981 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1982 cfqq->nr_sectors += blk_rq_sectors(rq);
1983 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
1984 rq_data_dir(rq), rq_is_sync(rq));
1985 }
1986
1987 /*
1988 * return expired entry, or NULL to just start from scratch in rbtree
1989 */
1990 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1991 {
1992 struct request *rq = NULL;
1993
1994 if (cfq_cfqq_fifo_expire(cfqq))
1995 return NULL;
1996
1997 cfq_mark_cfqq_fifo_expire(cfqq);
1998
1999 if (list_empty(&cfqq->fifo))
2000 return NULL;
2001
2002 rq = rq_entry_fifo(cfqq->fifo.next);
2003 if (time_before(jiffies, rq_fifo_time(rq)))
2004 rq = NULL;
2005
2006 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2007 return rq;
2008 }
2009
2010 static inline int
2011 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2012 {
2013 const int base_rq = cfqd->cfq_slice_async_rq;
2014
2015 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2016
2017 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
2018 }
2019
2020 /*
2021 * Must be called with the queue_lock held.
2022 */
2023 static int cfqq_process_refs(struct cfq_queue *cfqq)
2024 {
2025 int process_refs, io_refs;
2026
2027 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2028 process_refs = cfqq->ref - io_refs;
2029 BUG_ON(process_refs < 0);
2030 return process_refs;
2031 }
2032
2033 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2034 {
2035 int process_refs, new_process_refs;
2036 struct cfq_queue *__cfqq;
2037
2038 /*
2039 * If there are no process references on the new_cfqq, then it is
2040 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2041 * chain may have dropped their last reference (not just their
2042 * last process reference).
2043 */
2044 if (!cfqq_process_refs(new_cfqq))
2045 return;
2046
2047 /* Avoid a circular list and skip interim queue merges */
2048 while ((__cfqq = new_cfqq->new_cfqq)) {
2049 if (__cfqq == cfqq)
2050 return;
2051 new_cfqq = __cfqq;
2052 }
2053
2054 process_refs = cfqq_process_refs(cfqq);
2055 new_process_refs = cfqq_process_refs(new_cfqq);
2056 /*
2057 * If the process for the cfqq has gone away, there is no
2058 * sense in merging the queues.
2059 */
2060 if (process_refs == 0 || new_process_refs == 0)
2061 return;
2062
2063 /*
2064 * Merge in the direction of the lesser amount of work.
2065 */
2066 if (new_process_refs >= process_refs) {
2067 cfqq->new_cfqq = new_cfqq;
2068 new_cfqq->ref += process_refs;
2069 } else {
2070 new_cfqq->new_cfqq = cfqq;
2071 cfqq->ref += new_process_refs;
2072 }
2073 }
2074
2075 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2076 struct cfq_group *cfqg, enum wl_prio_t prio)
2077 {
2078 struct cfq_queue *queue;
2079 int i;
2080 bool key_valid = false;
2081 unsigned long lowest_key = 0;
2082 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2083
2084 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2085 /* select the one with lowest rb_key */
2086 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2087 if (queue &&
2088 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2089 lowest_key = queue->rb_key;
2090 cur_best = i;
2091 key_valid = true;
2092 }
2093 }
2094
2095 return cur_best;
2096 }
2097
2098 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2099 {
2100 unsigned slice;
2101 unsigned count;
2102 struct cfq_rb_root *st;
2103 unsigned group_slice;
2104 enum wl_prio_t original_prio = cfqd->serving_prio;
2105
2106 /* Choose next priority. RT > BE > IDLE */
2107 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2108 cfqd->serving_prio = RT_WORKLOAD;
2109 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2110 cfqd->serving_prio = BE_WORKLOAD;
2111 else {
2112 cfqd->serving_prio = IDLE_WORKLOAD;
2113 cfqd->workload_expires = jiffies + 1;
2114 return;
2115 }
2116
2117 if (original_prio != cfqd->serving_prio)
2118 goto new_workload;
2119
2120 /*
2121 * For RT and BE, we have to choose also the type
2122 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2123 * expiration time
2124 */
2125 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2126 count = st->count;
2127
2128 /*
2129 * check workload expiration, and that we still have other queues ready
2130 */
2131 if (count && !time_after(jiffies, cfqd->workload_expires))
2132 return;
2133
2134 new_workload:
2135 /* otherwise select new workload type */
2136 cfqd->serving_type =
2137 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2138 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2139 count = st->count;
2140
2141 /*
2142 * the workload slice is computed as a fraction of target latency
2143 * proportional to the number of queues in that workload, over
2144 * all the queues in the same priority class
2145 */
2146 group_slice = cfq_group_slice(cfqd, cfqg);
2147
2148 slice = group_slice * count /
2149 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2150 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2151
2152 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2153 unsigned int tmp;
2154
2155 /*
2156 * Async queues are currently system wide. Just taking
2157 * proportion of queues with-in same group will lead to higher
2158 * async ratio system wide as generally root group is going
2159 * to have higher weight. A more accurate thing would be to
2160 * calculate system wide asnc/sync ratio.
2161 */
2162 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2163 tmp = tmp/cfqd->busy_queues;
2164 slice = min_t(unsigned, slice, tmp);
2165
2166 /* async workload slice is scaled down according to
2167 * the sync/async slice ratio. */
2168 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2169 } else
2170 /* sync workload slice is at least 2 * cfq_slice_idle */
2171 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2172
2173 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2174 cfq_log(cfqd, "workload slice:%d", slice);
2175 cfqd->workload_expires = jiffies + slice;
2176 }
2177
2178 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2179 {
2180 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2181 struct cfq_group *cfqg;
2182
2183 if (RB_EMPTY_ROOT(&st->rb))
2184 return NULL;
2185 cfqg = cfq_rb_first_group(st);
2186 update_min_vdisktime(st);
2187 return cfqg;
2188 }
2189
2190 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2191 {
2192 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2193
2194 cfqd->serving_group = cfqg;
2195
2196 /* Restore the workload type data */
2197 if (cfqg->saved_workload_slice) {
2198 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2199 cfqd->serving_type = cfqg->saved_workload;
2200 cfqd->serving_prio = cfqg->saved_serving_prio;
2201 } else
2202 cfqd->workload_expires = jiffies - 1;
2203
2204 choose_service_tree(cfqd, cfqg);
2205 }
2206
2207 /*
2208 * Select a queue for service. If we have a current active queue,
2209 * check whether to continue servicing it, or retrieve and set a new one.
2210 */
2211 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2212 {
2213 struct cfq_queue *cfqq, *new_cfqq = NULL;
2214
2215 cfqq = cfqd->active_queue;
2216 if (!cfqq)
2217 goto new_queue;
2218
2219 if (!cfqd->rq_queued)
2220 return NULL;
2221
2222 /*
2223 * We were waiting for group to get backlogged. Expire the queue
2224 */
2225 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2226 goto expire;
2227
2228 /*
2229 * The active queue has run out of time, expire it and select new.
2230 */
2231 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2232 /*
2233 * If slice had not expired at the completion of last request
2234 * we might not have turned on wait_busy flag. Don't expire
2235 * the queue yet. Allow the group to get backlogged.
2236 *
2237 * The very fact that we have used the slice, that means we
2238 * have been idling all along on this queue and it should be
2239 * ok to wait for this request to complete.
2240 */
2241 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2242 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2243 cfqq = NULL;
2244 goto keep_queue;
2245 } else
2246 goto check_group_idle;
2247 }
2248
2249 /*
2250 * The active queue has requests and isn't expired, allow it to
2251 * dispatch.
2252 */
2253 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2254 goto keep_queue;
2255
2256 /*
2257 * If another queue has a request waiting within our mean seek
2258 * distance, let it run. The expire code will check for close
2259 * cooperators and put the close queue at the front of the service
2260 * tree. If possible, merge the expiring queue with the new cfqq.
2261 */
2262 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2263 if (new_cfqq) {
2264 if (!cfqq->new_cfqq)
2265 cfq_setup_merge(cfqq, new_cfqq);
2266 goto expire;
2267 }
2268
2269 /*
2270 * No requests pending. If the active queue still has requests in
2271 * flight or is idling for a new request, allow either of these
2272 * conditions to happen (or time out) before selecting a new queue.
2273 */
2274 if (timer_pending(&cfqd->idle_slice_timer)) {
2275 cfqq = NULL;
2276 goto keep_queue;
2277 }
2278
2279 /*
2280 * This is a deep seek queue, but the device is much faster than
2281 * the queue can deliver, don't idle
2282 **/
2283 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2284 (cfq_cfqq_slice_new(cfqq) ||
2285 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2286 cfq_clear_cfqq_deep(cfqq);
2287 cfq_clear_cfqq_idle_window(cfqq);
2288 }
2289
2290 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2291 cfqq = NULL;
2292 goto keep_queue;
2293 }
2294
2295 /*
2296 * If group idle is enabled and there are requests dispatched from
2297 * this group, wait for requests to complete.
2298 */
2299 check_group_idle:
2300 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2301 && cfqq->cfqg->dispatched) {
2302 cfqq = NULL;
2303 goto keep_queue;
2304 }
2305
2306 expire:
2307 cfq_slice_expired(cfqd, 0);
2308 new_queue:
2309 /*
2310 * Current queue expired. Check if we have to switch to a new
2311 * service tree
2312 */
2313 if (!new_cfqq)
2314 cfq_choose_cfqg(cfqd);
2315
2316 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2317 keep_queue:
2318 return cfqq;
2319 }
2320
2321 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2322 {
2323 int dispatched = 0;
2324
2325 while (cfqq->next_rq) {
2326 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2327 dispatched++;
2328 }
2329
2330 BUG_ON(!list_empty(&cfqq->fifo));
2331
2332 /* By default cfqq is not expired if it is empty. Do it explicitly */
2333 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2334 return dispatched;
2335 }
2336
2337 /*
2338 * Drain our current requests. Used for barriers and when switching
2339 * io schedulers on-the-fly.
2340 */
2341 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2342 {
2343 struct cfq_queue *cfqq;
2344 int dispatched = 0;
2345
2346 /* Expire the timeslice of the current active queue first */
2347 cfq_slice_expired(cfqd, 0);
2348 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2349 __cfq_set_active_queue(cfqd, cfqq);
2350 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2351 }
2352
2353 BUG_ON(cfqd->busy_queues);
2354
2355 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2356 return dispatched;
2357 }
2358
2359 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2360 struct cfq_queue *cfqq)
2361 {
2362 /* the queue hasn't finished any request, can't estimate */
2363 if (cfq_cfqq_slice_new(cfqq))
2364 return true;
2365 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2366 cfqq->slice_end))
2367 return true;
2368
2369 return false;
2370 }
2371
2372 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2373 {
2374 unsigned int max_dispatch;
2375
2376 /*
2377 * Drain async requests before we start sync IO
2378 */
2379 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2380 return false;
2381
2382 /*
2383 * If this is an async queue and we have sync IO in flight, let it wait
2384 */
2385 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2386 return false;
2387
2388 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2389 if (cfq_class_idle(cfqq))
2390 max_dispatch = 1;
2391
2392 /*
2393 * Does this cfqq already have too much IO in flight?
2394 */
2395 if (cfqq->dispatched >= max_dispatch) {
2396 /*
2397 * idle queue must always only have a single IO in flight
2398 */
2399 if (cfq_class_idle(cfqq))
2400 return false;
2401
2402 /*
2403 * We have other queues, don't allow more IO from this one
2404 */
2405 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2406 return false;
2407
2408 /*
2409 * Sole queue user, no limit
2410 */
2411 if (cfqd->busy_queues == 1)
2412 max_dispatch = -1;
2413 else
2414 /*
2415 * Normally we start throttling cfqq when cfq_quantum/2
2416 * requests have been dispatched. But we can drive
2417 * deeper queue depths at the beginning of slice
2418 * subjected to upper limit of cfq_quantum.
2419 * */
2420 max_dispatch = cfqd->cfq_quantum;
2421 }
2422
2423 /*
2424 * Async queues must wait a bit before being allowed dispatch.
2425 * We also ramp up the dispatch depth gradually for async IO,
2426 * based on the last sync IO we serviced
2427 */
2428 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2429 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2430 unsigned int depth;
2431
2432 depth = last_sync / cfqd->cfq_slice[1];
2433 if (!depth && !cfqq->dispatched)
2434 depth = 1;
2435 if (depth < max_dispatch)
2436 max_dispatch = depth;
2437 }
2438
2439 /*
2440 * If we're below the current max, allow a dispatch
2441 */
2442 return cfqq->dispatched < max_dispatch;
2443 }
2444
2445 /*
2446 * Dispatch a request from cfqq, moving them to the request queue
2447 * dispatch list.
2448 */
2449 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2450 {
2451 struct request *rq;
2452
2453 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2454
2455 if (!cfq_may_dispatch(cfqd, cfqq))
2456 return false;
2457
2458 /*
2459 * follow expired path, else get first next available
2460 */
2461 rq = cfq_check_fifo(cfqq);
2462 if (!rq)
2463 rq = cfqq->next_rq;
2464
2465 /*
2466 * insert request into driver dispatch list
2467 */
2468 cfq_dispatch_insert(cfqd->queue, rq);
2469
2470 if (!cfqd->active_cic) {
2471 struct cfq_io_context *cic = RQ_CIC(rq);
2472
2473 atomic_long_inc(&cic->ioc->refcount);
2474 cfqd->active_cic = cic;
2475 }
2476
2477 return true;
2478 }
2479
2480 /*
2481 * Find the cfqq that we need to service and move a request from that to the
2482 * dispatch list
2483 */
2484 static int cfq_dispatch_requests(struct request_queue *q, int force)
2485 {
2486 struct cfq_data *cfqd = q->elevator->elevator_data;
2487 struct cfq_queue *cfqq;
2488
2489 if (!cfqd->busy_queues)
2490 return 0;
2491
2492 if (unlikely(force))
2493 return cfq_forced_dispatch(cfqd);
2494
2495 cfqq = cfq_select_queue(cfqd);
2496 if (!cfqq)
2497 return 0;
2498
2499 /*
2500 * Dispatch a request from this cfqq, if it is allowed
2501 */
2502 if (!cfq_dispatch_request(cfqd, cfqq))
2503 return 0;
2504
2505 cfqq->slice_dispatch++;
2506 cfq_clear_cfqq_must_dispatch(cfqq);
2507
2508 /*
2509 * expire an async queue immediately if it has used up its slice. idle
2510 * queue always expire after 1 dispatch round.
2511 */
2512 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2513 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2514 cfq_class_idle(cfqq))) {
2515 cfqq->slice_end = jiffies + 1;
2516 cfq_slice_expired(cfqd, 0);
2517 }
2518
2519 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2520 return 1;
2521 }
2522
2523 /*
2524 * task holds one reference to the queue, dropped when task exits. each rq
2525 * in-flight on this queue also holds a reference, dropped when rq is freed.
2526 *
2527 * Each cfq queue took a reference on the parent group. Drop it now.
2528 * queue lock must be held here.
2529 */
2530 static void cfq_put_queue(struct cfq_queue *cfqq)
2531 {
2532 struct cfq_data *cfqd = cfqq->cfqd;
2533 struct cfq_group *cfqg, *orig_cfqg;
2534
2535 BUG_ON(cfqq->ref <= 0);
2536
2537 cfqq->ref--;
2538 if (cfqq->ref)
2539 return;
2540
2541 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2542 BUG_ON(rb_first(&cfqq->sort_list));
2543 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2544 cfqg = cfqq->cfqg;
2545 orig_cfqg = cfqq->orig_cfqg;
2546
2547 if (unlikely(cfqd->active_queue == cfqq)) {
2548 __cfq_slice_expired(cfqd, cfqq, 0);
2549 cfq_schedule_dispatch(cfqd);
2550 }
2551
2552 BUG_ON(cfq_cfqq_on_rr(cfqq));
2553 kmem_cache_free(cfq_pool, cfqq);
2554 cfq_put_cfqg(cfqg);
2555 if (orig_cfqg)
2556 cfq_put_cfqg(orig_cfqg);
2557 }
2558
2559 /*
2560 * Must always be called with the rcu_read_lock() held
2561 */
2562 static void
2563 __call_for_each_cic(struct io_context *ioc,
2564 void (*func)(struct io_context *, struct cfq_io_context *))
2565 {
2566 struct cfq_io_context *cic;
2567 struct hlist_node *n;
2568
2569 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2570 func(ioc, cic);
2571 }
2572
2573 /*
2574 * Call func for each cic attached to this ioc.
2575 */
2576 static void
2577 call_for_each_cic(struct io_context *ioc,
2578 void (*func)(struct io_context *, struct cfq_io_context *))
2579 {
2580 rcu_read_lock();
2581 __call_for_each_cic(ioc, func);
2582 rcu_read_unlock();
2583 }
2584
2585 static void cfq_cic_free_rcu(struct rcu_head *head)
2586 {
2587 struct cfq_io_context *cic;
2588
2589 cic = container_of(head, struct cfq_io_context, rcu_head);
2590
2591 kmem_cache_free(cfq_ioc_pool, cic);
2592 elv_ioc_count_dec(cfq_ioc_count);
2593
2594 if (ioc_gone) {
2595 /*
2596 * CFQ scheduler is exiting, grab exit lock and check
2597 * the pending io context count. If it hits zero,
2598 * complete ioc_gone and set it back to NULL
2599 */
2600 spin_lock(&ioc_gone_lock);
2601 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2602 complete(ioc_gone);
2603 ioc_gone = NULL;
2604 }
2605 spin_unlock(&ioc_gone_lock);
2606 }
2607 }
2608
2609 static void cfq_cic_free(struct cfq_io_context *cic)
2610 {
2611 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2612 }
2613
2614 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2615 {
2616 unsigned long flags;
2617 unsigned long dead_key = (unsigned long) cic->key;
2618
2619 BUG_ON(!(dead_key & CIC_DEAD_KEY));
2620
2621 spin_lock_irqsave(&ioc->lock, flags);
2622 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2623 hlist_del_rcu(&cic->cic_list);
2624 spin_unlock_irqrestore(&ioc->lock, flags);
2625
2626 cfq_cic_free(cic);
2627 }
2628
2629 /*
2630 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2631 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2632 * and ->trim() which is called with the task lock held
2633 */
2634 static void cfq_free_io_context(struct io_context *ioc)
2635 {
2636 /*
2637 * ioc->refcount is zero here, or we are called from elv_unregister(),
2638 * so no more cic's are allowed to be linked into this ioc. So it
2639 * should be ok to iterate over the known list, we will see all cic's
2640 * since no new ones are added.
2641 */
2642 __call_for_each_cic(ioc, cic_free_func);
2643 }
2644
2645 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2646 {
2647 struct cfq_queue *__cfqq, *next;
2648
2649 /*
2650 * If this queue was scheduled to merge with another queue, be
2651 * sure to drop the reference taken on that queue (and others in
2652 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2653 */
2654 __cfqq = cfqq->new_cfqq;
2655 while (__cfqq) {
2656 if (__cfqq == cfqq) {
2657 WARN(1, "cfqq->new_cfqq loop detected\n");
2658 break;
2659 }
2660 next = __cfqq->new_cfqq;
2661 cfq_put_queue(__cfqq);
2662 __cfqq = next;
2663 }
2664 }
2665
2666 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2667 {
2668 if (unlikely(cfqq == cfqd->active_queue)) {
2669 __cfq_slice_expired(cfqd, cfqq, 0);
2670 cfq_schedule_dispatch(cfqd);
2671 }
2672
2673 cfq_put_cooperator(cfqq);
2674
2675 cfq_put_queue(cfqq);
2676 }
2677
2678 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2679 struct cfq_io_context *cic)
2680 {
2681 struct io_context *ioc = cic->ioc;
2682
2683 list_del_init(&cic->queue_list);
2684
2685 /*
2686 * Make sure dead mark is seen for dead queues
2687 */
2688 smp_wmb();
2689 cic->key = cfqd_dead_key(cfqd);
2690
2691 if (ioc->ioc_data == cic)
2692 rcu_assign_pointer(ioc->ioc_data, NULL);
2693
2694 if (cic->cfqq[BLK_RW_ASYNC]) {
2695 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2696 cic->cfqq[BLK_RW_ASYNC] = NULL;
2697 }
2698
2699 if (cic->cfqq[BLK_RW_SYNC]) {
2700 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2701 cic->cfqq[BLK_RW_SYNC] = NULL;
2702 }
2703 }
2704
2705 static void cfq_exit_single_io_context(struct io_context *ioc,
2706 struct cfq_io_context *cic)
2707 {
2708 struct cfq_data *cfqd = cic_to_cfqd(cic);
2709
2710 if (cfqd) {
2711 struct request_queue *q = cfqd->queue;
2712 unsigned long flags;
2713
2714 spin_lock_irqsave(q->queue_lock, flags);
2715
2716 /*
2717 * Ensure we get a fresh copy of the ->key to prevent
2718 * race between exiting task and queue
2719 */
2720 smp_read_barrier_depends();
2721 if (cic->key == cfqd)
2722 __cfq_exit_single_io_context(cfqd, cic);
2723
2724 spin_unlock_irqrestore(q->queue_lock, flags);
2725 }
2726 }
2727
2728 /*
2729 * The process that ioc belongs to has exited, we need to clean up
2730 * and put the internal structures we have that belongs to that process.
2731 */
2732 static void cfq_exit_io_context(struct io_context *ioc)
2733 {
2734 call_for_each_cic(ioc, cfq_exit_single_io_context);
2735 }
2736
2737 static struct cfq_io_context *
2738 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2739 {
2740 struct cfq_io_context *cic;
2741
2742 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2743 cfqd->queue->node);
2744 if (cic) {
2745 cic->last_end_request = jiffies;
2746 INIT_LIST_HEAD(&cic->queue_list);
2747 INIT_HLIST_NODE(&cic->cic_list);
2748 cic->dtor = cfq_free_io_context;
2749 cic->exit = cfq_exit_io_context;
2750 elv_ioc_count_inc(cfq_ioc_count);
2751 }
2752
2753 return cic;
2754 }
2755
2756 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2757 {
2758 struct task_struct *tsk = current;
2759 int ioprio_class;
2760
2761 if (!cfq_cfqq_prio_changed(cfqq))
2762 return;
2763
2764 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2765 switch (ioprio_class) {
2766 default:
2767 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2768 case IOPRIO_CLASS_NONE:
2769 /*
2770 * no prio set, inherit CPU scheduling settings
2771 */
2772 cfqq->ioprio = task_nice_ioprio(tsk);
2773 cfqq->ioprio_class = task_nice_ioclass(tsk);
2774 break;
2775 case IOPRIO_CLASS_RT:
2776 cfqq->ioprio = task_ioprio(ioc);
2777 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2778 break;
2779 case IOPRIO_CLASS_BE:
2780 cfqq->ioprio = task_ioprio(ioc);
2781 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2782 break;
2783 case IOPRIO_CLASS_IDLE:
2784 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2785 cfqq->ioprio = 7;
2786 cfq_clear_cfqq_idle_window(cfqq);
2787 break;
2788 }
2789
2790 /*
2791 * keep track of original prio settings in case we have to temporarily
2792 * elevate the priority of this queue
2793 */
2794 cfqq->org_ioprio = cfqq->ioprio;
2795 cfqq->org_ioprio_class = cfqq->ioprio_class;
2796 cfq_clear_cfqq_prio_changed(cfqq);
2797 }
2798
2799 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2800 {
2801 struct cfq_data *cfqd = cic_to_cfqd(cic);
2802 struct cfq_queue *cfqq;
2803 unsigned long flags;
2804
2805 if (unlikely(!cfqd))
2806 return;
2807
2808 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2809
2810 cfqq = cic->cfqq[BLK_RW_ASYNC];
2811 if (cfqq) {
2812 struct cfq_queue *new_cfqq;
2813 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2814 GFP_ATOMIC);
2815 if (new_cfqq) {
2816 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2817 cfq_put_queue(cfqq);
2818 }
2819 }
2820
2821 cfqq = cic->cfqq[BLK_RW_SYNC];
2822 if (cfqq)
2823 cfq_mark_cfqq_prio_changed(cfqq);
2824
2825 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2826 }
2827
2828 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2829 {
2830 call_for_each_cic(ioc, changed_ioprio);
2831 ioc->ioprio_changed = 0;
2832 }
2833
2834 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2835 pid_t pid, bool is_sync)
2836 {
2837 RB_CLEAR_NODE(&cfqq->rb_node);
2838 RB_CLEAR_NODE(&cfqq->p_node);
2839 INIT_LIST_HEAD(&cfqq->fifo);
2840
2841 cfqq->ref = 0;
2842 cfqq->cfqd = cfqd;
2843
2844 cfq_mark_cfqq_prio_changed(cfqq);
2845
2846 if (is_sync) {
2847 if (!cfq_class_idle(cfqq))
2848 cfq_mark_cfqq_idle_window(cfqq);
2849 cfq_mark_cfqq_sync(cfqq);
2850 }
2851 cfqq->pid = pid;
2852 }
2853
2854 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2855 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2856 {
2857 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2858 struct cfq_data *cfqd = cic_to_cfqd(cic);
2859 unsigned long flags;
2860 struct request_queue *q;
2861
2862 if (unlikely(!cfqd))
2863 return;
2864
2865 q = cfqd->queue;
2866
2867 spin_lock_irqsave(q->queue_lock, flags);
2868
2869 if (sync_cfqq) {
2870 /*
2871 * Drop reference to sync queue. A new sync queue will be
2872 * assigned in new group upon arrival of a fresh request.
2873 */
2874 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2875 cic_set_cfqq(cic, NULL, 1);
2876 cfq_put_queue(sync_cfqq);
2877 }
2878
2879 spin_unlock_irqrestore(q->queue_lock, flags);
2880 }
2881
2882 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2883 {
2884 call_for_each_cic(ioc, changed_cgroup);
2885 ioc->cgroup_changed = 0;
2886 }
2887 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2888
2889 static struct cfq_queue *
2890 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2891 struct io_context *ioc, gfp_t gfp_mask)
2892 {
2893 struct cfq_queue *cfqq, *new_cfqq = NULL;
2894 struct cfq_io_context *cic;
2895 struct cfq_group *cfqg;
2896
2897 retry:
2898 cfqg = cfq_get_cfqg(cfqd, 1);
2899 cic = cfq_cic_lookup(cfqd, ioc);
2900 /* cic always exists here */
2901 cfqq = cic_to_cfqq(cic, is_sync);
2902
2903 /*
2904 * Always try a new alloc if we fell back to the OOM cfqq
2905 * originally, since it should just be a temporary situation.
2906 */
2907 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2908 cfqq = NULL;
2909 if (new_cfqq) {
2910 cfqq = new_cfqq;
2911 new_cfqq = NULL;
2912 } else if (gfp_mask & __GFP_WAIT) {
2913 spin_unlock_irq(cfqd->queue->queue_lock);
2914 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2915 gfp_mask | __GFP_ZERO,
2916 cfqd->queue->node);
2917 spin_lock_irq(cfqd->queue->queue_lock);
2918 if (new_cfqq)
2919 goto retry;
2920 } else {
2921 cfqq = kmem_cache_alloc_node(cfq_pool,
2922 gfp_mask | __GFP_ZERO,
2923 cfqd->queue->node);
2924 }
2925
2926 if (cfqq) {
2927 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2928 cfq_init_prio_data(cfqq, ioc);
2929 cfq_link_cfqq_cfqg(cfqq, cfqg);
2930 cfq_log_cfqq(cfqd, cfqq, "alloced");
2931 } else
2932 cfqq = &cfqd->oom_cfqq;
2933 }
2934
2935 if (new_cfqq)
2936 kmem_cache_free(cfq_pool, new_cfqq);
2937
2938 return cfqq;
2939 }
2940
2941 static struct cfq_queue **
2942 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2943 {
2944 switch (ioprio_class) {
2945 case IOPRIO_CLASS_RT:
2946 return &cfqd->async_cfqq[0][ioprio];
2947 case IOPRIO_CLASS_BE:
2948 return &cfqd->async_cfqq[1][ioprio];
2949 case IOPRIO_CLASS_IDLE:
2950 return &cfqd->async_idle_cfqq;
2951 default:
2952 BUG();
2953 }
2954 }
2955
2956 static struct cfq_queue *
2957 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2958 gfp_t gfp_mask)
2959 {
2960 const int ioprio = task_ioprio(ioc);
2961 const int ioprio_class = task_ioprio_class(ioc);
2962 struct cfq_queue **async_cfqq = NULL;
2963 struct cfq_queue *cfqq = NULL;
2964
2965 if (!is_sync) {
2966 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2967 cfqq = *async_cfqq;
2968 }
2969
2970 if (!cfqq)
2971 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2972
2973 /*
2974 * pin the queue now that it's allocated, scheduler exit will prune it
2975 */
2976 if (!is_sync && !(*async_cfqq)) {
2977 cfqq->ref++;
2978 *async_cfqq = cfqq;
2979 }
2980
2981 cfqq->ref++;
2982 return cfqq;
2983 }
2984
2985 /*
2986 * We drop cfq io contexts lazily, so we may find a dead one.
2987 */
2988 static void
2989 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2990 struct cfq_io_context *cic)
2991 {
2992 unsigned long flags;
2993
2994 WARN_ON(!list_empty(&cic->queue_list));
2995 BUG_ON(cic->key != cfqd_dead_key(cfqd));
2996
2997 spin_lock_irqsave(&ioc->lock, flags);
2998
2999 BUG_ON(ioc->ioc_data == cic);
3000
3001 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
3002 hlist_del_rcu(&cic->cic_list);
3003 spin_unlock_irqrestore(&ioc->lock, flags);
3004
3005 cfq_cic_free(cic);
3006 }
3007
3008 static struct cfq_io_context *
3009 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
3010 {
3011 struct cfq_io_context *cic;
3012 unsigned long flags;
3013
3014 if (unlikely(!ioc))
3015 return NULL;
3016
3017 rcu_read_lock();
3018
3019 /*
3020 * we maintain a last-hit cache, to avoid browsing over the tree
3021 */
3022 cic = rcu_dereference(ioc->ioc_data);
3023 if (cic && cic->key == cfqd) {
3024 rcu_read_unlock();
3025 return cic;
3026 }
3027
3028 do {
3029 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
3030 rcu_read_unlock();
3031 if (!cic)
3032 break;
3033 if (unlikely(cic->key != cfqd)) {
3034 cfq_drop_dead_cic(cfqd, ioc, cic);
3035 rcu_read_lock();
3036 continue;
3037 }
3038
3039 spin_lock_irqsave(&ioc->lock, flags);
3040 rcu_assign_pointer(ioc->ioc_data, cic);
3041 spin_unlock_irqrestore(&ioc->lock, flags);
3042 break;
3043 } while (1);
3044
3045 return cic;
3046 }
3047
3048 /*
3049 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3050 * the process specific cfq io context when entered from the block layer.
3051 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3052 */
3053 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3054 struct cfq_io_context *cic, gfp_t gfp_mask)
3055 {
3056 unsigned long flags;
3057 int ret;
3058
3059 ret = radix_tree_preload(gfp_mask);
3060 if (!ret) {
3061 cic->ioc = ioc;
3062 cic->key = cfqd;
3063
3064 spin_lock_irqsave(&ioc->lock, flags);
3065 ret = radix_tree_insert(&ioc->radix_root,
3066 cfqd->cic_index, cic);
3067 if (!ret)
3068 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3069 spin_unlock_irqrestore(&ioc->lock, flags);
3070
3071 radix_tree_preload_end();
3072
3073 if (!ret) {
3074 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3075 list_add(&cic->queue_list, &cfqd->cic_list);
3076 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3077 }
3078 }
3079
3080 if (ret)
3081 printk(KERN_ERR "cfq: cic link failed!\n");
3082
3083 return ret;
3084 }
3085
3086 /*
3087 * Setup general io context and cfq io context. There can be several cfq
3088 * io contexts per general io context, if this process is doing io to more
3089 * than one device managed by cfq.
3090 */
3091 static struct cfq_io_context *
3092 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3093 {
3094 struct io_context *ioc = NULL;
3095 struct cfq_io_context *cic;
3096
3097 might_sleep_if(gfp_mask & __GFP_WAIT);
3098
3099 ioc = get_io_context(gfp_mask, cfqd->queue->node);
3100 if (!ioc)
3101 return NULL;
3102
3103 cic = cfq_cic_lookup(cfqd, ioc);
3104 if (cic)
3105 goto out;
3106
3107 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3108 if (cic == NULL)
3109 goto err;
3110
3111 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3112 goto err_free;
3113
3114 out:
3115 smp_read_barrier_depends();
3116 if (unlikely(ioc->ioprio_changed))
3117 cfq_ioc_set_ioprio(ioc);
3118
3119 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3120 if (unlikely(ioc->cgroup_changed))
3121 cfq_ioc_set_cgroup(ioc);
3122 #endif
3123 return cic;
3124 err_free:
3125 cfq_cic_free(cic);
3126 err:
3127 put_io_context(ioc);
3128 return NULL;
3129 }
3130
3131 static void
3132 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
3133 {
3134 unsigned long elapsed = jiffies - cic->last_end_request;
3135 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
3136
3137 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3138 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3139 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3140 }
3141
3142 static void
3143 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3144 struct request *rq)
3145 {
3146 sector_t sdist = 0;
3147 sector_t n_sec = blk_rq_sectors(rq);
3148 if (cfqq->last_request_pos) {
3149 if (cfqq->last_request_pos < blk_rq_pos(rq))
3150 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3151 else
3152 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3153 }
3154
3155 cfqq->seek_history <<= 1;
3156 if (blk_queue_nonrot(cfqd->queue))
3157 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3158 else
3159 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3160 }
3161
3162 /*
3163 * Disable idle window if the process thinks too long or seeks so much that
3164 * it doesn't matter
3165 */
3166 static void
3167 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3168 struct cfq_io_context *cic)
3169 {
3170 int old_idle, enable_idle;
3171
3172 /*
3173 * Don't idle for async or idle io prio class
3174 */
3175 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3176 return;
3177
3178 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3179
3180 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3181 cfq_mark_cfqq_deep(cfqq);
3182
3183 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3184 enable_idle = 0;
3185 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3186 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3187 enable_idle = 0;
3188 else if (sample_valid(cic->ttime_samples)) {
3189 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3190 enable_idle = 0;
3191 else
3192 enable_idle = 1;
3193 }
3194
3195 if (old_idle != enable_idle) {
3196 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3197 if (enable_idle)
3198 cfq_mark_cfqq_idle_window(cfqq);
3199 else
3200 cfq_clear_cfqq_idle_window(cfqq);
3201 }
3202 }
3203
3204 /*
3205 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3206 * no or if we aren't sure, a 1 will cause a preempt.
3207 */
3208 static bool
3209 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3210 struct request *rq)
3211 {
3212 struct cfq_queue *cfqq;
3213
3214 cfqq = cfqd->active_queue;
3215 if (!cfqq)
3216 return false;
3217
3218 if (cfq_class_idle(new_cfqq))
3219 return false;
3220
3221 if (cfq_class_idle(cfqq))
3222 return true;
3223
3224 /*
3225 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3226 */
3227 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3228 return false;
3229
3230 /*
3231 * if the new request is sync, but the currently running queue is
3232 * not, let the sync request have priority.
3233 */
3234 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3235 return true;
3236
3237 if (new_cfqq->cfqg != cfqq->cfqg)
3238 return false;
3239
3240 if (cfq_slice_used(cfqq))
3241 return true;
3242
3243 /* Allow preemption only if we are idling on sync-noidle tree */
3244 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3245 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3246 new_cfqq->service_tree->count == 2 &&
3247 RB_EMPTY_ROOT(&cfqq->sort_list))
3248 return true;
3249
3250 /*
3251 * So both queues are sync. Let the new request get disk time if
3252 * it's a metadata request and the current queue is doing regular IO.
3253 */
3254 if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
3255 return true;
3256
3257 /*
3258 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3259 */
3260 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3261 return true;
3262
3263 /* An idle queue should not be idle now for some reason */
3264 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3265 return true;
3266
3267 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3268 return false;
3269
3270 /*
3271 * if this request is as-good as one we would expect from the
3272 * current cfqq, let it preempt
3273 */
3274 if (cfq_rq_close(cfqd, cfqq, rq))
3275 return true;
3276
3277 return false;
3278 }
3279
3280 /*
3281 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3282 * let it have half of its nominal slice.
3283 */
3284 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3285 {
3286 cfq_log_cfqq(cfqd, cfqq, "preempt");
3287 cfq_slice_expired(cfqd, 1);
3288
3289 /*
3290 * Put the new queue at the front of the of the current list,
3291 * so we know that it will be selected next.
3292 */
3293 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3294
3295 cfq_service_tree_add(cfqd, cfqq, 1);
3296
3297 cfqq->slice_end = 0;
3298 cfq_mark_cfqq_slice_new(cfqq);
3299 }
3300
3301 /*
3302 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3303 * something we should do about it
3304 */
3305 static void
3306 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3307 struct request *rq)
3308 {
3309 struct cfq_io_context *cic = RQ_CIC(rq);
3310
3311 cfqd->rq_queued++;
3312 if (rq->cmd_flags & REQ_META)
3313 cfqq->meta_pending++;
3314
3315 cfq_update_io_thinktime(cfqd, cic);
3316 cfq_update_io_seektime(cfqd, cfqq, rq);
3317 cfq_update_idle_window(cfqd, cfqq, cic);
3318
3319 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3320
3321 if (cfqq == cfqd->active_queue) {
3322 /*
3323 * Remember that we saw a request from this process, but
3324 * don't start queuing just yet. Otherwise we risk seeing lots
3325 * of tiny requests, because we disrupt the normal plugging
3326 * and merging. If the request is already larger than a single
3327 * page, let it rip immediately. For that case we assume that
3328 * merging is already done. Ditto for a busy system that
3329 * has other work pending, don't risk delaying until the
3330 * idle timer unplug to continue working.
3331 */
3332 if (cfq_cfqq_wait_request(cfqq)) {
3333 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3334 cfqd->busy_queues > 1) {
3335 cfq_del_timer(cfqd, cfqq);
3336 cfq_clear_cfqq_wait_request(cfqq);
3337 __blk_run_queue(cfqd->queue);
3338 } else {
3339 cfq_blkiocg_update_idle_time_stats(
3340 &cfqq->cfqg->blkg);
3341 cfq_mark_cfqq_must_dispatch(cfqq);
3342 }
3343 }
3344 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3345 /*
3346 * not the active queue - expire current slice if it is
3347 * idle and has expired it's mean thinktime or this new queue
3348 * has some old slice time left and is of higher priority or
3349 * this new queue is RT and the current one is BE
3350 */
3351 cfq_preempt_queue(cfqd, cfqq);
3352 __blk_run_queue(cfqd->queue);
3353 }
3354 }
3355
3356 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3357 {
3358 struct cfq_data *cfqd = q->elevator->elevator_data;
3359 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3360
3361 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3362 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3363
3364 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3365 list_add_tail(&rq->queuelist, &cfqq->fifo);
3366 cfq_add_rq_rb(rq);
3367 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3368 &cfqd->serving_group->blkg, rq_data_dir(rq),
3369 rq_is_sync(rq));
3370 cfq_rq_enqueued(cfqd, cfqq, rq);
3371 }
3372
3373 /*
3374 * Update hw_tag based on peak queue depth over 50 samples under
3375 * sufficient load.
3376 */
3377 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3378 {
3379 struct cfq_queue *cfqq = cfqd->active_queue;
3380
3381 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3382 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3383
3384 if (cfqd->hw_tag == 1)
3385 return;
3386
3387 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3388 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3389 return;
3390
3391 /*
3392 * If active queue hasn't enough requests and can idle, cfq might not
3393 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3394 * case
3395 */
3396 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3397 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3398 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3399 return;
3400
3401 if (cfqd->hw_tag_samples++ < 50)
3402 return;
3403
3404 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3405 cfqd->hw_tag = 1;
3406 else
3407 cfqd->hw_tag = 0;
3408 }
3409
3410 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3411 {
3412 struct cfq_io_context *cic = cfqd->active_cic;
3413
3414 /* If there are other queues in the group, don't wait */
3415 if (cfqq->cfqg->nr_cfqq > 1)
3416 return false;
3417
3418 if (cfq_slice_used(cfqq))
3419 return true;
3420
3421 /* if slice left is less than think time, wait busy */
3422 if (cic && sample_valid(cic->ttime_samples)
3423 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3424 return true;
3425
3426 /*
3427 * If think times is less than a jiffy than ttime_mean=0 and above
3428 * will not be true. It might happen that slice has not expired yet
3429 * but will expire soon (4-5 ns) during select_queue(). To cover the
3430 * case where think time is less than a jiffy, mark the queue wait
3431 * busy if only 1 jiffy is left in the slice.
3432 */
3433 if (cfqq->slice_end - jiffies == 1)
3434 return true;
3435
3436 return false;
3437 }
3438
3439 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3440 {
3441 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3442 struct cfq_data *cfqd = cfqq->cfqd;
3443 const int sync = rq_is_sync(rq);
3444 unsigned long now;
3445
3446 now = jiffies;
3447 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3448 !!(rq->cmd_flags & REQ_NOIDLE));
3449
3450 cfq_update_hw_tag(cfqd);
3451
3452 WARN_ON(!cfqd->rq_in_driver);
3453 WARN_ON(!cfqq->dispatched);
3454 cfqd->rq_in_driver--;
3455 cfqq->dispatched--;
3456 (RQ_CFQG(rq))->dispatched--;
3457 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3458 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3459 rq_data_dir(rq), rq_is_sync(rq));
3460
3461 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3462
3463 if (sync) {
3464 RQ_CIC(rq)->last_end_request = now;
3465 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3466 cfqd->last_delayed_sync = now;
3467 }
3468
3469 /*
3470 * If this is the active queue, check if it needs to be expired,
3471 * or if we want to idle in case it has no pending requests.
3472 */
3473 if (cfqd->active_queue == cfqq) {
3474 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3475
3476 if (cfq_cfqq_slice_new(cfqq)) {
3477 cfq_set_prio_slice(cfqd, cfqq);
3478 cfq_clear_cfqq_slice_new(cfqq);
3479 }
3480
3481 /*
3482 * Should we wait for next request to come in before we expire
3483 * the queue.
3484 */
3485 if (cfq_should_wait_busy(cfqd, cfqq)) {
3486 unsigned long extend_sl = cfqd->cfq_slice_idle;
3487 if (!cfqd->cfq_slice_idle)
3488 extend_sl = cfqd->cfq_group_idle;
3489 cfqq->slice_end = jiffies + extend_sl;
3490 cfq_mark_cfqq_wait_busy(cfqq);
3491 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3492 }
3493
3494 /*
3495 * Idling is not enabled on:
3496 * - expired queues
3497 * - idle-priority queues
3498 * - async queues
3499 * - queues with still some requests queued
3500 * - when there is a close cooperator
3501 */
3502 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3503 cfq_slice_expired(cfqd, 1);
3504 else if (sync && cfqq_empty &&
3505 !cfq_close_cooperator(cfqd, cfqq)) {
3506 cfq_arm_slice_timer(cfqd);
3507 }
3508 }
3509
3510 if (!cfqd->rq_in_driver)
3511 cfq_schedule_dispatch(cfqd);
3512 }
3513
3514 /*
3515 * we temporarily boost lower priority queues if they are holding fs exclusive
3516 * resources. they are boosted to normal prio (CLASS_BE/4)
3517 */
3518 static void cfq_prio_boost(struct cfq_queue *cfqq)
3519 {
3520 if (has_fs_excl()) {
3521 /*
3522 * boost idle prio on transactions that would lock out other
3523 * users of the filesystem
3524 */
3525 if (cfq_class_idle(cfqq))
3526 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3527 if (cfqq->ioprio > IOPRIO_NORM)
3528 cfqq->ioprio = IOPRIO_NORM;
3529 } else {
3530 /*
3531 * unboost the queue (if needed)
3532 */
3533 cfqq->ioprio_class = cfqq->org_ioprio_class;
3534 cfqq->ioprio = cfqq->org_ioprio;
3535 }
3536 }
3537
3538 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3539 {
3540 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3541 cfq_mark_cfqq_must_alloc_slice(cfqq);
3542 return ELV_MQUEUE_MUST;
3543 }
3544
3545 return ELV_MQUEUE_MAY;
3546 }
3547
3548 static int cfq_may_queue(struct request_queue *q, int rw)
3549 {
3550 struct cfq_data *cfqd = q->elevator->elevator_data;
3551 struct task_struct *tsk = current;
3552 struct cfq_io_context *cic;
3553 struct cfq_queue *cfqq;
3554
3555 /*
3556 * don't force setup of a queue from here, as a call to may_queue
3557 * does not necessarily imply that a request actually will be queued.
3558 * so just lookup a possibly existing queue, or return 'may queue'
3559 * if that fails
3560 */
3561 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3562 if (!cic)
3563 return ELV_MQUEUE_MAY;
3564
3565 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3566 if (cfqq) {
3567 cfq_init_prio_data(cfqq, cic->ioc);
3568 cfq_prio_boost(cfqq);
3569
3570 return __cfq_may_queue(cfqq);
3571 }
3572
3573 return ELV_MQUEUE_MAY;
3574 }
3575
3576 /*
3577 * queue lock held here
3578 */
3579 static void cfq_put_request(struct request *rq)
3580 {
3581 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3582
3583 if (cfqq) {
3584 const int rw = rq_data_dir(rq);
3585
3586 BUG_ON(!cfqq->allocated[rw]);
3587 cfqq->allocated[rw]--;
3588
3589 put_io_context(RQ_CIC(rq)->ioc);
3590
3591 rq->elevator_private = NULL;
3592 rq->elevator_private2 = NULL;
3593
3594 /* Put down rq reference on cfqg */
3595 cfq_put_cfqg(RQ_CFQG(rq));
3596 rq->elevator_private3 = NULL;
3597
3598 cfq_put_queue(cfqq);
3599 }
3600 }
3601
3602 static struct cfq_queue *
3603 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3604 struct cfq_queue *cfqq)
3605 {
3606 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3607 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3608 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3609 cfq_put_queue(cfqq);
3610 return cic_to_cfqq(cic, 1);
3611 }
3612
3613 /*
3614 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3615 * was the last process referring to said cfqq.
3616 */
3617 static struct cfq_queue *
3618 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3619 {
3620 if (cfqq_process_refs(cfqq) == 1) {
3621 cfqq->pid = current->pid;
3622 cfq_clear_cfqq_coop(cfqq);
3623 cfq_clear_cfqq_split_coop(cfqq);
3624 return cfqq;
3625 }
3626
3627 cic_set_cfqq(cic, NULL, 1);
3628
3629 cfq_put_cooperator(cfqq);
3630
3631 cfq_put_queue(cfqq);
3632 return NULL;
3633 }
3634 /*
3635 * Allocate cfq data structures associated with this request.
3636 */
3637 static int
3638 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3639 {
3640 struct cfq_data *cfqd = q->elevator->elevator_data;
3641 struct cfq_io_context *cic;
3642 const int rw = rq_data_dir(rq);
3643 const bool is_sync = rq_is_sync(rq);
3644 struct cfq_queue *cfqq;
3645 unsigned long flags;
3646
3647 might_sleep_if(gfp_mask & __GFP_WAIT);
3648
3649 cic = cfq_get_io_context(cfqd, gfp_mask);
3650
3651 spin_lock_irqsave(q->queue_lock, flags);
3652
3653 if (!cic)
3654 goto queue_fail;
3655
3656 new_queue:
3657 cfqq = cic_to_cfqq(cic, is_sync);
3658 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3659 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3660 cic_set_cfqq(cic, cfqq, is_sync);
3661 } else {
3662 /*
3663 * If the queue was seeky for too long, break it apart.
3664 */
3665 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3666 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3667 cfqq = split_cfqq(cic, cfqq);
3668 if (!cfqq)
3669 goto new_queue;
3670 }
3671
3672 /*
3673 * Check to see if this queue is scheduled to merge with
3674 * another, closely cooperating queue. The merging of
3675 * queues happens here as it must be done in process context.
3676 * The reference on new_cfqq was taken in merge_cfqqs.
3677 */
3678 if (cfqq->new_cfqq)
3679 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3680 }
3681
3682 cfqq->allocated[rw]++;
3683 cfqq->ref++;
3684
3685 spin_unlock_irqrestore(q->queue_lock, flags);
3686
3687 rq->elevator_private = cic;
3688 rq->elevator_private2 = cfqq;
3689 rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
3690 return 0;
3691
3692 queue_fail:
3693 if (cic)
3694 put_io_context(cic->ioc);
3695
3696 cfq_schedule_dispatch(cfqd);
3697 spin_unlock_irqrestore(q->queue_lock, flags);
3698 cfq_log(cfqd, "set_request fail");
3699 return 1;
3700 }
3701
3702 static void cfq_kick_queue(struct work_struct *work)
3703 {
3704 struct cfq_data *cfqd =
3705 container_of(work, struct cfq_data, unplug_work);
3706 struct request_queue *q = cfqd->queue;
3707
3708 spin_lock_irq(q->queue_lock);
3709 __blk_run_queue(cfqd->queue);
3710 spin_unlock_irq(q->queue_lock);
3711 }
3712
3713 /*
3714 * Timer running if the active_queue is currently idling inside its time slice
3715 */
3716 static void cfq_idle_slice_timer(unsigned long data)
3717 {
3718 struct cfq_data *cfqd = (struct cfq_data *) data;
3719 struct cfq_queue *cfqq;
3720 unsigned long flags;
3721 int timed_out = 1;
3722
3723 cfq_log(cfqd, "idle timer fired");
3724
3725 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3726
3727 cfqq = cfqd->active_queue;
3728 if (cfqq) {
3729 timed_out = 0;
3730
3731 /*
3732 * We saw a request before the queue expired, let it through
3733 */
3734 if (cfq_cfqq_must_dispatch(cfqq))
3735 goto out_kick;
3736
3737 /*
3738 * expired
3739 */
3740 if (cfq_slice_used(cfqq))
3741 goto expire;
3742
3743 /*
3744 * only expire and reinvoke request handler, if there are
3745 * other queues with pending requests
3746 */
3747 if (!cfqd->busy_queues)
3748 goto out_cont;
3749
3750 /*
3751 * not expired and it has a request pending, let it dispatch
3752 */
3753 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3754 goto out_kick;
3755
3756 /*
3757 * Queue depth flag is reset only when the idle didn't succeed
3758 */
3759 cfq_clear_cfqq_deep(cfqq);
3760 }
3761 expire:
3762 cfq_slice_expired(cfqd, timed_out);
3763 out_kick:
3764 cfq_schedule_dispatch(cfqd);
3765 out_cont:
3766 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3767 }
3768
3769 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3770 {
3771 del_timer_sync(&cfqd->idle_slice_timer);
3772 cancel_work_sync(&cfqd->unplug_work);
3773 }
3774
3775 static void cfq_put_async_queues(struct cfq_data *cfqd)
3776 {
3777 int i;
3778
3779 for (i = 0; i < IOPRIO_BE_NR; i++) {
3780 if (cfqd->async_cfqq[0][i])
3781 cfq_put_queue(cfqd->async_cfqq[0][i]);
3782 if (cfqd->async_cfqq[1][i])
3783 cfq_put_queue(cfqd->async_cfqq[1][i]);
3784 }
3785
3786 if (cfqd->async_idle_cfqq)
3787 cfq_put_queue(cfqd->async_idle_cfqq);
3788 }
3789
3790 static void cfq_cfqd_free(struct rcu_head *head)
3791 {
3792 kfree(container_of(head, struct cfq_data, rcu));
3793 }
3794
3795 static void cfq_exit_queue(struct elevator_queue *e)
3796 {
3797 struct cfq_data *cfqd = e->elevator_data;
3798 struct request_queue *q = cfqd->queue;
3799
3800 cfq_shutdown_timer_wq(cfqd);
3801
3802 spin_lock_irq(q->queue_lock);
3803
3804 if (cfqd->active_queue)
3805 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3806
3807 while (!list_empty(&cfqd->cic_list)) {
3808 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3809 struct cfq_io_context,
3810 queue_list);
3811
3812 __cfq_exit_single_io_context(cfqd, cic);
3813 }
3814
3815 cfq_put_async_queues(cfqd);
3816 cfq_release_cfq_groups(cfqd);
3817 cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3818
3819 spin_unlock_irq(q->queue_lock);
3820
3821 cfq_shutdown_timer_wq(cfqd);
3822
3823 spin_lock(&cic_index_lock);
3824 ida_remove(&cic_index_ida, cfqd->cic_index);
3825 spin_unlock(&cic_index_lock);
3826
3827 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3828 call_rcu(&cfqd->rcu, cfq_cfqd_free);
3829 }
3830
3831 static int cfq_alloc_cic_index(void)
3832 {
3833 int index, error;
3834
3835 do {
3836 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3837 return -ENOMEM;
3838
3839 spin_lock(&cic_index_lock);
3840 error = ida_get_new(&cic_index_ida, &index);
3841 spin_unlock(&cic_index_lock);
3842 if (error && error != -EAGAIN)
3843 return error;
3844 } while (error);
3845
3846 return index;
3847 }
3848
3849 static void *cfq_init_queue(struct request_queue *q)
3850 {
3851 struct cfq_data *cfqd;
3852 int i, j;
3853 struct cfq_group *cfqg;
3854 struct cfq_rb_root *st;
3855
3856 i = cfq_alloc_cic_index();
3857 if (i < 0)
3858 return NULL;
3859
3860 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3861 if (!cfqd)
3862 return NULL;
3863
3864 /*
3865 * Don't need take queue_lock in the routine, since we are
3866 * initializing the ioscheduler, and nobody is using cfqd
3867 */
3868 cfqd->cic_index = i;
3869
3870 /* Init root service tree */
3871 cfqd->grp_service_tree = CFQ_RB_ROOT;
3872
3873 /* Init root group */
3874 cfqg = &cfqd->root_group;
3875 for_each_cfqg_st(cfqg, i, j, st)
3876 *st = CFQ_RB_ROOT;
3877 RB_CLEAR_NODE(&cfqg->rb_node);
3878
3879 /* Give preference to root group over other groups */
3880 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3881
3882 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3883 /*
3884 * Take a reference to root group which we never drop. This is just
3885 * to make sure that cfq_put_cfqg() does not try to kfree root group
3886 */
3887 atomic_set(&cfqg->ref, 1);
3888 rcu_read_lock();
3889 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3890 (void *)cfqd, 0);
3891 rcu_read_unlock();
3892 #endif
3893 /*
3894 * Not strictly needed (since RB_ROOT just clears the node and we
3895 * zeroed cfqd on alloc), but better be safe in case someone decides
3896 * to add magic to the rb code
3897 */
3898 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3899 cfqd->prio_trees[i] = RB_ROOT;
3900
3901 /*
3902 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3903 * Grab a permanent reference to it, so that the normal code flow
3904 * will not attempt to free it.
3905 */
3906 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3907 cfqd->oom_cfqq.ref++;
3908 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3909
3910 INIT_LIST_HEAD(&cfqd->cic_list);
3911
3912 cfqd->queue = q;
3913
3914 init_timer(&cfqd->idle_slice_timer);
3915 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3916 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3917
3918 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3919
3920 cfqd->cfq_quantum = cfq_quantum;
3921 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3922 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3923 cfqd->cfq_back_max = cfq_back_max;
3924 cfqd->cfq_back_penalty = cfq_back_penalty;
3925 cfqd->cfq_slice[0] = cfq_slice_async;
3926 cfqd->cfq_slice[1] = cfq_slice_sync;
3927 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3928 cfqd->cfq_slice_idle = cfq_slice_idle;
3929 cfqd->cfq_group_idle = cfq_group_idle;
3930 cfqd->cfq_latency = 1;
3931 cfqd->cfq_group_isolation = 0;
3932 cfqd->hw_tag = -1;
3933 /*
3934 * we optimistically start assuming sync ops weren't delayed in last
3935 * second, in order to have larger depth for async operations.
3936 */
3937 cfqd->last_delayed_sync = jiffies - HZ;
3938 return cfqd;
3939 }
3940
3941 static void cfq_slab_kill(void)
3942 {
3943 /*
3944 * Caller already ensured that pending RCU callbacks are completed,
3945 * so we should have no busy allocations at this point.
3946 */
3947 if (cfq_pool)
3948 kmem_cache_destroy(cfq_pool);
3949 if (cfq_ioc_pool)
3950 kmem_cache_destroy(cfq_ioc_pool);
3951 }
3952
3953 static int __init cfq_slab_setup(void)
3954 {
3955 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3956 if (!cfq_pool)
3957 goto fail;
3958
3959 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3960 if (!cfq_ioc_pool)
3961 goto fail;
3962
3963 return 0;
3964 fail:
3965 cfq_slab_kill();
3966 return -ENOMEM;
3967 }
3968
3969 /*
3970 * sysfs parts below -->
3971 */
3972 static ssize_t
3973 cfq_var_show(unsigned int var, char *page)
3974 {
3975 return sprintf(page, "%d\n", var);
3976 }
3977
3978 static ssize_t
3979 cfq_var_store(unsigned int *var, const char *page, size_t count)
3980 {
3981 char *p = (char *) page;
3982
3983 *var = simple_strtoul(p, &p, 10);
3984 return count;
3985 }
3986
3987 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3988 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3989 { \
3990 struct cfq_data *cfqd = e->elevator_data; \
3991 unsigned int __data = __VAR; \
3992 if (__CONV) \
3993 __data = jiffies_to_msecs(__data); \
3994 return cfq_var_show(__data, (page)); \
3995 }
3996 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3997 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3998 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3999 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4000 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4001 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4002 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4003 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4004 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4005 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4006 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4007 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
4008 #undef SHOW_FUNCTION
4009
4010 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4011 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4012 { \
4013 struct cfq_data *cfqd = e->elevator_data; \
4014 unsigned int __data; \
4015 int ret = cfq_var_store(&__data, (page), count); \
4016 if (__data < (MIN)) \
4017 __data = (MIN); \
4018 else if (__data > (MAX)) \
4019 __data = (MAX); \
4020 if (__CONV) \
4021 *(__PTR) = msecs_to_jiffies(__data); \
4022 else \
4023 *(__PTR) = __data; \
4024 return ret; \
4025 }
4026 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4027 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4028 UINT_MAX, 1);
4029 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4030 UINT_MAX, 1);
4031 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4032 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4033 UINT_MAX, 0);
4034 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4035 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4036 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4037 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4038 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4039 UINT_MAX, 0);
4040 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4041 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
4042 #undef STORE_FUNCTION
4043
4044 #define CFQ_ATTR(name) \
4045 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4046
4047 static struct elv_fs_entry cfq_attrs[] = {
4048 CFQ_ATTR(quantum),
4049 CFQ_ATTR(fifo_expire_sync),
4050 CFQ_ATTR(fifo_expire_async),
4051 CFQ_ATTR(back_seek_max),
4052 CFQ_ATTR(back_seek_penalty),
4053 CFQ_ATTR(slice_sync),
4054 CFQ_ATTR(slice_async),
4055 CFQ_ATTR(slice_async_rq),
4056 CFQ_ATTR(slice_idle),
4057 CFQ_ATTR(group_idle),
4058 CFQ_ATTR(low_latency),
4059 CFQ_ATTR(group_isolation),
4060 __ATTR_NULL
4061 };
4062
4063 static struct elevator_type iosched_cfq = {
4064 .ops = {
4065 .elevator_merge_fn = cfq_merge,
4066 .elevator_merged_fn = cfq_merged_request,
4067 .elevator_merge_req_fn = cfq_merged_requests,
4068 .elevator_allow_merge_fn = cfq_allow_merge,
4069 .elevator_bio_merged_fn = cfq_bio_merged,
4070 .elevator_dispatch_fn = cfq_dispatch_requests,
4071 .elevator_add_req_fn = cfq_insert_request,
4072 .elevator_activate_req_fn = cfq_activate_request,
4073 .elevator_deactivate_req_fn = cfq_deactivate_request,
4074 .elevator_queue_empty_fn = cfq_queue_empty,
4075 .elevator_completed_req_fn = cfq_completed_request,
4076 .elevator_former_req_fn = elv_rb_former_request,
4077 .elevator_latter_req_fn = elv_rb_latter_request,
4078 .elevator_set_req_fn = cfq_set_request,
4079 .elevator_put_req_fn = cfq_put_request,
4080 .elevator_may_queue_fn = cfq_may_queue,
4081 .elevator_init_fn = cfq_init_queue,
4082 .elevator_exit_fn = cfq_exit_queue,
4083 .trim = cfq_free_io_context,
4084 },
4085 .elevator_attrs = cfq_attrs,
4086 .elevator_name = "cfq",
4087 .elevator_owner = THIS_MODULE,
4088 };
4089
4090 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4091 static struct blkio_policy_type blkio_policy_cfq = {
4092 .ops = {
4093 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4094 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4095 },
4096 .plid = BLKIO_POLICY_PROP,
4097 };
4098 #else
4099 static struct blkio_policy_type blkio_policy_cfq;
4100 #endif
4101
4102 static int __init cfq_init(void)
4103 {
4104 /*
4105 * could be 0 on HZ < 1000 setups
4106 */
4107 if (!cfq_slice_async)
4108 cfq_slice_async = 1;
4109 if (!cfq_slice_idle)
4110 cfq_slice_idle = 1;
4111
4112 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4113 if (!cfq_group_idle)
4114 cfq_group_idle = 1;
4115 #else
4116 cfq_group_idle = 0;
4117 #endif
4118 if (cfq_slab_setup())
4119 return -ENOMEM;
4120
4121 elv_register(&iosched_cfq);
4122 blkio_policy_register(&blkio_policy_cfq);
4123
4124 return 0;
4125 }
4126
4127 static void __exit cfq_exit(void)
4128 {
4129 DECLARE_COMPLETION_ONSTACK(all_gone);
4130 blkio_policy_unregister(&blkio_policy_cfq);
4131 elv_unregister(&iosched_cfq);
4132 ioc_gone = &all_gone;
4133 /* ioc_gone's update must be visible before reading ioc_count */
4134 smp_wmb();
4135
4136 /*
4137 * this also protects us from entering cfq_slab_kill() with
4138 * pending RCU callbacks
4139 */
4140 if (elv_ioc_count_read(cfq_ioc_count))
4141 wait_for_completion(&all_gone);
4142 ida_destroy(&cic_index_ida);
4143 cfq_slab_kill();
4144 }
4145
4146 module_init(cfq_init);
4147 module_exit(cfq_exit);
4148
4149 MODULE_AUTHOR("Jens Axboe");
4150 MODULE_LICENSE("GPL");
4151 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");