]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - block/cfq-iosched.c
[PATCH] Propagate down request sync flag
[mirror_ubuntu-zesty-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/hash.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15
16 /*
17 * tunables
18 */
19 static const int cfq_quantum = 4; /* max queue in one round of service */
20 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
21 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
22 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
23
24 static const int cfq_slice_sync = HZ / 10;
25 static int cfq_slice_async = HZ / 25;
26 static const int cfq_slice_async_rq = 2;
27 static int cfq_slice_idle = HZ / 125;
28
29 #define CFQ_IDLE_GRACE (HZ / 10)
30 #define CFQ_SLICE_SCALE (5)
31
32 #define CFQ_KEY_ASYNC (0)
33
34 /*
35 * for the hash of cfqq inside the cfqd
36 */
37 #define CFQ_QHASH_SHIFT 6
38 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
39 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
40
41 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
42
43 #define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
44 #define RQ_CFQQ(rq) ((rq)->elevator_private2)
45
46 static struct kmem_cache *cfq_pool;
47 static struct kmem_cache *cfq_ioc_pool;
48
49 static DEFINE_PER_CPU(unsigned long, ioc_count);
50 static struct completion *ioc_gone;
51
52 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
53 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
54 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
55
56 #define ASYNC (0)
57 #define SYNC (1)
58
59 #define cfq_cfqq_dispatched(cfqq) \
60 ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
61
62 #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
63
64 #define cfq_cfqq_sync(cfqq) \
65 (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
66
67 #define sample_valid(samples) ((samples) > 80)
68
69 /*
70 * Per block device queue structure
71 */
72 struct cfq_data {
73 request_queue_t *queue;
74
75 /*
76 * rr list of queues with requests and the count of them
77 */
78 struct list_head rr_list[CFQ_PRIO_LISTS];
79 struct list_head busy_rr;
80 struct list_head cur_rr;
81 struct list_head idle_rr;
82 unsigned int busy_queues;
83
84 /*
85 * cfqq lookup hash
86 */
87 struct hlist_head *cfq_hash;
88
89 int rq_in_driver;
90 int hw_tag;
91
92 /*
93 * idle window management
94 */
95 struct timer_list idle_slice_timer;
96 struct work_struct unplug_work;
97
98 struct cfq_queue *active_queue;
99 struct cfq_io_context *active_cic;
100 int cur_prio, cur_end_prio;
101 unsigned int dispatch_slice;
102
103 struct timer_list idle_class_timer;
104
105 sector_t last_sector;
106 unsigned long last_end_request;
107
108 /*
109 * tunables, see top of file
110 */
111 unsigned int cfq_quantum;
112 unsigned int cfq_fifo_expire[2];
113 unsigned int cfq_back_penalty;
114 unsigned int cfq_back_max;
115 unsigned int cfq_slice[2];
116 unsigned int cfq_slice_async_rq;
117 unsigned int cfq_slice_idle;
118
119 struct list_head cic_list;
120 };
121
122 /*
123 * Per process-grouping structure
124 */
125 struct cfq_queue {
126 /* reference count */
127 atomic_t ref;
128 /* parent cfq_data */
129 struct cfq_data *cfqd;
130 /* cfqq lookup hash */
131 struct hlist_node cfq_hash;
132 /* hash key */
133 unsigned int key;
134 /* member of the rr/busy/cur/idle cfqd list */
135 struct list_head cfq_list;
136 /* sorted list of pending requests */
137 struct rb_root sort_list;
138 /* if fifo isn't expired, next request to serve */
139 struct request *next_rq;
140 /* requests queued in sort_list */
141 int queued[2];
142 /* currently allocated requests */
143 int allocated[2];
144 /* pending metadata requests */
145 int meta_pending;
146 /* fifo list of requests in sort_list */
147 struct list_head fifo;
148
149 unsigned long slice_start;
150 unsigned long slice_end;
151 unsigned long slice_left;
152
153 /* number of requests that are on the dispatch list */
154 int on_dispatch[2];
155
156 /* io prio of this group */
157 unsigned short ioprio, org_ioprio;
158 unsigned short ioprio_class, org_ioprio_class;
159
160 /* various state flags, see below */
161 unsigned int flags;
162 };
163
164 enum cfqq_state_flags {
165 CFQ_CFQQ_FLAG_on_rr = 0,
166 CFQ_CFQQ_FLAG_wait_request,
167 CFQ_CFQQ_FLAG_must_alloc,
168 CFQ_CFQQ_FLAG_must_alloc_slice,
169 CFQ_CFQQ_FLAG_must_dispatch,
170 CFQ_CFQQ_FLAG_fifo_expire,
171 CFQ_CFQQ_FLAG_idle_window,
172 CFQ_CFQQ_FLAG_prio_changed,
173 CFQ_CFQQ_FLAG_queue_new,
174 };
175
176 #define CFQ_CFQQ_FNS(name) \
177 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
178 { \
179 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
180 } \
181 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
182 { \
183 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
184 } \
185 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
186 { \
187 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
188 }
189
190 CFQ_CFQQ_FNS(on_rr);
191 CFQ_CFQQ_FNS(wait_request);
192 CFQ_CFQQ_FNS(must_alloc);
193 CFQ_CFQQ_FNS(must_alloc_slice);
194 CFQ_CFQQ_FNS(must_dispatch);
195 CFQ_CFQQ_FNS(fifo_expire);
196 CFQ_CFQQ_FNS(idle_window);
197 CFQ_CFQQ_FNS(prio_changed);
198 CFQ_CFQQ_FNS(queue_new);
199 #undef CFQ_CFQQ_FNS
200
201 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
202 static void cfq_dispatch_insert(request_queue_t *, struct request *);
203 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
204
205 /*
206 * scheduler run of queue, if there are requests pending and no one in the
207 * driver that will restart queueing
208 */
209 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
210 {
211 if (cfqd->busy_queues)
212 kblockd_schedule_work(&cfqd->unplug_work);
213 }
214
215 static int cfq_queue_empty(request_queue_t *q)
216 {
217 struct cfq_data *cfqd = q->elevator->elevator_data;
218
219 return !cfqd->busy_queues;
220 }
221
222 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw, int is_sync)
223 {
224 /*
225 * Use the per-process queue, for read requests and syncronous writes
226 */
227 if (!(rw & REQ_RW) || is_sync)
228 return task->pid;
229
230 return CFQ_KEY_ASYNC;
231 }
232
233 /*
234 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
235 * We choose the request that is closest to the head right now. Distance
236 * behind the head is penalized and only allowed to a certain extent.
237 */
238 static struct request *
239 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
240 {
241 sector_t last, s1, s2, d1 = 0, d2 = 0;
242 unsigned long back_max;
243 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
244 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
245 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
246
247 if (rq1 == NULL || rq1 == rq2)
248 return rq2;
249 if (rq2 == NULL)
250 return rq1;
251
252 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
253 return rq1;
254 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
255 return rq2;
256 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
257 return rq1;
258 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
259 return rq2;
260
261 s1 = rq1->sector;
262 s2 = rq2->sector;
263
264 last = cfqd->last_sector;
265
266 /*
267 * by definition, 1KiB is 2 sectors
268 */
269 back_max = cfqd->cfq_back_max * 2;
270
271 /*
272 * Strict one way elevator _except_ in the case where we allow
273 * short backward seeks which are biased as twice the cost of a
274 * similar forward seek.
275 */
276 if (s1 >= last)
277 d1 = s1 - last;
278 else if (s1 + back_max >= last)
279 d1 = (last - s1) * cfqd->cfq_back_penalty;
280 else
281 wrap |= CFQ_RQ1_WRAP;
282
283 if (s2 >= last)
284 d2 = s2 - last;
285 else if (s2 + back_max >= last)
286 d2 = (last - s2) * cfqd->cfq_back_penalty;
287 else
288 wrap |= CFQ_RQ2_WRAP;
289
290 /* Found required data */
291
292 /*
293 * By doing switch() on the bit mask "wrap" we avoid having to
294 * check two variables for all permutations: --> faster!
295 */
296 switch (wrap) {
297 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
298 if (d1 < d2)
299 return rq1;
300 else if (d2 < d1)
301 return rq2;
302 else {
303 if (s1 >= s2)
304 return rq1;
305 else
306 return rq2;
307 }
308
309 case CFQ_RQ2_WRAP:
310 return rq1;
311 case CFQ_RQ1_WRAP:
312 return rq2;
313 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
314 default:
315 /*
316 * Since both rqs are wrapped,
317 * start with the one that's further behind head
318 * (--> only *one* back seek required),
319 * since back seek takes more time than forward.
320 */
321 if (s1 <= s2)
322 return rq1;
323 else
324 return rq2;
325 }
326 }
327
328 /*
329 * would be nice to take fifo expire time into account as well
330 */
331 static struct request *
332 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
333 struct request *last)
334 {
335 struct rb_node *rbnext = rb_next(&last->rb_node);
336 struct rb_node *rbprev = rb_prev(&last->rb_node);
337 struct request *next = NULL, *prev = NULL;
338
339 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
340
341 if (rbprev)
342 prev = rb_entry_rq(rbprev);
343
344 if (rbnext)
345 next = rb_entry_rq(rbnext);
346 else {
347 rbnext = rb_first(&cfqq->sort_list);
348 if (rbnext && rbnext != &last->rb_node)
349 next = rb_entry_rq(rbnext);
350 }
351
352 return cfq_choose_req(cfqd, next, prev);
353 }
354
355 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
356 {
357 struct cfq_data *cfqd = cfqq->cfqd;
358 struct list_head *list;
359
360 BUG_ON(!cfq_cfqq_on_rr(cfqq));
361
362 list_del(&cfqq->cfq_list);
363
364 if (cfq_class_rt(cfqq))
365 list = &cfqd->cur_rr;
366 else if (cfq_class_idle(cfqq))
367 list = &cfqd->idle_rr;
368 else {
369 /*
370 * if cfqq has requests in flight, don't allow it to be
371 * found in cfq_set_active_queue before it has finished them.
372 * this is done to increase fairness between a process that
373 * has lots of io pending vs one that only generates one
374 * sporadically or synchronously
375 */
376 if (cfq_cfqq_dispatched(cfqq))
377 list = &cfqd->busy_rr;
378 else
379 list = &cfqd->rr_list[cfqq->ioprio];
380 }
381
382 /*
383 * If this queue was preempted or is new (never been serviced), let
384 * it be added first for fairness but beind other new queues.
385 * Otherwise, just add to the back of the list.
386 */
387 if (preempted || cfq_cfqq_queue_new(cfqq)) {
388 struct list_head *n = list;
389 struct cfq_queue *__cfqq;
390
391 while (n->next != list) {
392 __cfqq = list_entry_cfqq(n->next);
393 if (!cfq_cfqq_queue_new(__cfqq))
394 break;
395
396 n = n->next;
397 }
398
399 list = n;
400 }
401
402 list_add_tail(&cfqq->cfq_list, list);
403 }
404
405 /*
406 * add to busy list of queues for service, trying to be fair in ordering
407 * the pending list according to last request service
408 */
409 static inline void
410 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
411 {
412 BUG_ON(cfq_cfqq_on_rr(cfqq));
413 cfq_mark_cfqq_on_rr(cfqq);
414 cfqd->busy_queues++;
415
416 cfq_resort_rr_list(cfqq, 0);
417 }
418
419 static inline void
420 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
421 {
422 BUG_ON(!cfq_cfqq_on_rr(cfqq));
423 cfq_clear_cfqq_on_rr(cfqq);
424 list_del_init(&cfqq->cfq_list);
425
426 BUG_ON(!cfqd->busy_queues);
427 cfqd->busy_queues--;
428 }
429
430 /*
431 * rb tree support functions
432 */
433 static inline void cfq_del_rq_rb(struct request *rq)
434 {
435 struct cfq_queue *cfqq = RQ_CFQQ(rq);
436 struct cfq_data *cfqd = cfqq->cfqd;
437 const int sync = rq_is_sync(rq);
438
439 BUG_ON(!cfqq->queued[sync]);
440 cfqq->queued[sync]--;
441
442 elv_rb_del(&cfqq->sort_list, rq);
443
444 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
445 cfq_del_cfqq_rr(cfqd, cfqq);
446 }
447
448 static void cfq_add_rq_rb(struct request *rq)
449 {
450 struct cfq_queue *cfqq = RQ_CFQQ(rq);
451 struct cfq_data *cfqd = cfqq->cfqd;
452 struct request *__alias;
453
454 cfqq->queued[rq_is_sync(rq)]++;
455
456 /*
457 * looks a little odd, but the first insert might return an alias.
458 * if that happens, put the alias on the dispatch list
459 */
460 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
461 cfq_dispatch_insert(cfqd->queue, __alias);
462
463 if (!cfq_cfqq_on_rr(cfqq))
464 cfq_add_cfqq_rr(cfqd, cfqq);
465 }
466
467 static inline void
468 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
469 {
470 elv_rb_del(&cfqq->sort_list, rq);
471 cfqq->queued[rq_is_sync(rq)]--;
472 cfq_add_rq_rb(rq);
473 }
474
475 static struct request *
476 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
477 {
478 struct task_struct *tsk = current;
479 pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio), bio_sync(bio));
480 struct cfq_queue *cfqq;
481
482 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
483 if (cfqq) {
484 sector_t sector = bio->bi_sector + bio_sectors(bio);
485
486 return elv_rb_find(&cfqq->sort_list, sector);
487 }
488
489 return NULL;
490 }
491
492 static void cfq_activate_request(request_queue_t *q, struct request *rq)
493 {
494 struct cfq_data *cfqd = q->elevator->elevator_data;
495
496 cfqd->rq_in_driver++;
497
498 /*
499 * If the depth is larger 1, it really could be queueing. But lets
500 * make the mark a little higher - idling could still be good for
501 * low queueing, and a low queueing number could also just indicate
502 * a SCSI mid layer like behaviour where limit+1 is often seen.
503 */
504 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
505 cfqd->hw_tag = 1;
506 }
507
508 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
509 {
510 struct cfq_data *cfqd = q->elevator->elevator_data;
511
512 WARN_ON(!cfqd->rq_in_driver);
513 cfqd->rq_in_driver--;
514 }
515
516 static void cfq_remove_request(struct request *rq)
517 {
518 struct cfq_queue *cfqq = RQ_CFQQ(rq);
519
520 if (cfqq->next_rq == rq)
521 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
522
523 list_del_init(&rq->queuelist);
524 cfq_del_rq_rb(rq);
525
526 if (rq_is_meta(rq)) {
527 WARN_ON(!cfqq->meta_pending);
528 cfqq->meta_pending--;
529 }
530 }
531
532 static int
533 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
534 {
535 struct cfq_data *cfqd = q->elevator->elevator_data;
536 struct request *__rq;
537
538 __rq = cfq_find_rq_fmerge(cfqd, bio);
539 if (__rq && elv_rq_merge_ok(__rq, bio)) {
540 *req = __rq;
541 return ELEVATOR_FRONT_MERGE;
542 }
543
544 return ELEVATOR_NO_MERGE;
545 }
546
547 static void cfq_merged_request(request_queue_t *q, struct request *req,
548 int type)
549 {
550 if (type == ELEVATOR_FRONT_MERGE) {
551 struct cfq_queue *cfqq = RQ_CFQQ(req);
552
553 cfq_reposition_rq_rb(cfqq, req);
554 }
555 }
556
557 static void
558 cfq_merged_requests(request_queue_t *q, struct request *rq,
559 struct request *next)
560 {
561 /*
562 * reposition in fifo if next is older than rq
563 */
564 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
565 time_before(next->start_time, rq->start_time))
566 list_move(&rq->queuelist, &next->queuelist);
567
568 cfq_remove_request(next);
569 }
570
571 static inline void
572 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
573 {
574 if (cfqq) {
575 /*
576 * stop potential idle class queues waiting service
577 */
578 del_timer(&cfqd->idle_class_timer);
579
580 cfqq->slice_start = jiffies;
581 cfqq->slice_end = 0;
582 cfqq->slice_left = 0;
583 cfq_clear_cfqq_must_alloc_slice(cfqq);
584 cfq_clear_cfqq_fifo_expire(cfqq);
585 }
586
587 cfqd->active_queue = cfqq;
588 }
589
590 /*
591 * current cfqq expired its slice (or was too idle), select new one
592 */
593 static void
594 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
595 int preempted)
596 {
597 unsigned long now = jiffies;
598
599 if (cfq_cfqq_wait_request(cfqq))
600 del_timer(&cfqd->idle_slice_timer);
601
602 if (!preempted && !cfq_cfqq_dispatched(cfqq))
603 cfq_schedule_dispatch(cfqd);
604
605 cfq_clear_cfqq_must_dispatch(cfqq);
606 cfq_clear_cfqq_wait_request(cfqq);
607 cfq_clear_cfqq_queue_new(cfqq);
608
609 /*
610 * store what was left of this slice, if the queue idled out
611 * or was preempted
612 */
613 if (time_after(cfqq->slice_end, now))
614 cfqq->slice_left = cfqq->slice_end - now;
615 else
616 cfqq->slice_left = 0;
617
618 if (cfq_cfqq_on_rr(cfqq))
619 cfq_resort_rr_list(cfqq, preempted);
620
621 if (cfqq == cfqd->active_queue)
622 cfqd->active_queue = NULL;
623
624 if (cfqd->active_cic) {
625 put_io_context(cfqd->active_cic->ioc);
626 cfqd->active_cic = NULL;
627 }
628
629 cfqd->dispatch_slice = 0;
630 }
631
632 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
633 {
634 struct cfq_queue *cfqq = cfqd->active_queue;
635
636 if (cfqq)
637 __cfq_slice_expired(cfqd, cfqq, preempted);
638 }
639
640 /*
641 * 0
642 * 0,1
643 * 0,1,2
644 * 0,1,2,3
645 * 0,1,2,3,4
646 * 0,1,2,3,4,5
647 * 0,1,2,3,4,5,6
648 * 0,1,2,3,4,5,6,7
649 */
650 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
651 {
652 int prio, wrap;
653
654 prio = -1;
655 wrap = 0;
656 do {
657 int p;
658
659 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
660 if (!list_empty(&cfqd->rr_list[p])) {
661 prio = p;
662 break;
663 }
664 }
665
666 if (prio != -1)
667 break;
668 cfqd->cur_prio = 0;
669 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
670 cfqd->cur_end_prio = 0;
671 if (wrap)
672 break;
673 wrap = 1;
674 }
675 } while (1);
676
677 if (unlikely(prio == -1))
678 return -1;
679
680 BUG_ON(prio >= CFQ_PRIO_LISTS);
681
682 list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
683
684 cfqd->cur_prio = prio + 1;
685 if (cfqd->cur_prio > cfqd->cur_end_prio) {
686 cfqd->cur_end_prio = cfqd->cur_prio;
687 cfqd->cur_prio = 0;
688 }
689 if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
690 cfqd->cur_prio = 0;
691 cfqd->cur_end_prio = 0;
692 }
693
694 return prio;
695 }
696
697 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
698 {
699 struct cfq_queue *cfqq = NULL;
700
701 if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1) {
702 /*
703 * if current list is non-empty, grab first entry. if it is
704 * empty, get next prio level and grab first entry then if any
705 * are spliced
706 */
707 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
708 } else if (!list_empty(&cfqd->busy_rr)) {
709 /*
710 * If no new queues are available, check if the busy list has
711 * some before falling back to idle io.
712 */
713 cfqq = list_entry_cfqq(cfqd->busy_rr.next);
714 } else if (!list_empty(&cfqd->idle_rr)) {
715 /*
716 * if we have idle queues and no rt or be queues had pending
717 * requests, either allow immediate service if the grace period
718 * has passed or arm the idle grace timer
719 */
720 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
721
722 if (time_after_eq(jiffies, end))
723 cfqq = list_entry_cfqq(cfqd->idle_rr.next);
724 else
725 mod_timer(&cfqd->idle_class_timer, end);
726 }
727
728 __cfq_set_active_queue(cfqd, cfqq);
729 return cfqq;
730 }
731
732 #define CIC_SEEKY(cic) ((cic)->seek_mean > (128 * 1024))
733
734 static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
735
736 {
737 struct cfq_io_context *cic;
738 unsigned long sl;
739
740 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
741 WARN_ON(cfqq != cfqd->active_queue);
742
743 /*
744 * idle is disabled, either manually or by past process history
745 */
746 if (!cfqd->cfq_slice_idle)
747 return 0;
748 if (!cfq_cfqq_idle_window(cfqq))
749 return 0;
750 /*
751 * task has exited, don't wait
752 */
753 cic = cfqd->active_cic;
754 if (!cic || !cic->ioc->task)
755 return 0;
756
757 cfq_mark_cfqq_must_dispatch(cfqq);
758 cfq_mark_cfqq_wait_request(cfqq);
759
760 sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
761
762 /*
763 * we don't want to idle for seeks, but we do want to allow
764 * fair distribution of slice time for a process doing back-to-back
765 * seeks. so allow a little bit of time for him to submit a new rq
766 */
767 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
768 sl = min(sl, msecs_to_jiffies(2));
769
770 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
771 return 1;
772 }
773
774 static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
775 {
776 struct cfq_data *cfqd = q->elevator->elevator_data;
777 struct cfq_queue *cfqq = RQ_CFQQ(rq);
778
779 cfq_remove_request(rq);
780 cfqq->on_dispatch[rq_is_sync(rq)]++;
781 elv_dispatch_sort(q, rq);
782
783 rq = list_entry(q->queue_head.prev, struct request, queuelist);
784 cfqd->last_sector = rq->sector + rq->nr_sectors;
785 }
786
787 /*
788 * return expired entry, or NULL to just start from scratch in rbtree
789 */
790 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
791 {
792 struct cfq_data *cfqd = cfqq->cfqd;
793 struct request *rq;
794 int fifo;
795
796 if (cfq_cfqq_fifo_expire(cfqq))
797 return NULL;
798 if (list_empty(&cfqq->fifo))
799 return NULL;
800
801 fifo = cfq_cfqq_class_sync(cfqq);
802 rq = rq_entry_fifo(cfqq->fifo.next);
803
804 if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
805 cfq_mark_cfqq_fifo_expire(cfqq);
806 return rq;
807 }
808
809 return NULL;
810 }
811
812 /*
813 * Scale schedule slice based on io priority. Use the sync time slice only
814 * if a queue is marked sync and has sync io queued. A sync queue with async
815 * io only, should not get full sync slice length.
816 */
817 static inline int
818 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
819 {
820 const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
821
822 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
823
824 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
825 }
826
827 static inline void
828 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
829 {
830 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
831 }
832
833 static inline int
834 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
835 {
836 const int base_rq = cfqd->cfq_slice_async_rq;
837
838 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
839
840 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
841 }
842
843 /*
844 * get next queue for service
845 */
846 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
847 {
848 unsigned long now = jiffies;
849 struct cfq_queue *cfqq;
850
851 cfqq = cfqd->active_queue;
852 if (!cfqq)
853 goto new_queue;
854
855 /*
856 * slice has expired
857 */
858 if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
859 goto expire;
860
861 /*
862 * if queue has requests, dispatch one. if not, check if
863 * enough slice is left to wait for one
864 */
865 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
866 goto keep_queue;
867 else if (cfq_cfqq_dispatched(cfqq)) {
868 cfqq = NULL;
869 goto keep_queue;
870 } else if (cfq_cfqq_class_sync(cfqq)) {
871 if (cfq_arm_slice_timer(cfqd, cfqq))
872 return NULL;
873 }
874
875 expire:
876 cfq_slice_expired(cfqd, 0);
877 new_queue:
878 cfqq = cfq_set_active_queue(cfqd);
879 keep_queue:
880 return cfqq;
881 }
882
883 static int
884 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
885 int max_dispatch)
886 {
887 int dispatched = 0;
888
889 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
890
891 do {
892 struct request *rq;
893
894 /*
895 * follow expired path, else get first next available
896 */
897 if ((rq = cfq_check_fifo(cfqq)) == NULL)
898 rq = cfqq->next_rq;
899
900 /*
901 * finally, insert request into driver dispatch list
902 */
903 cfq_dispatch_insert(cfqd->queue, rq);
904
905 cfqd->dispatch_slice++;
906 dispatched++;
907
908 if (!cfqd->active_cic) {
909 atomic_inc(&RQ_CIC(rq)->ioc->refcount);
910 cfqd->active_cic = RQ_CIC(rq);
911 }
912
913 if (RB_EMPTY_ROOT(&cfqq->sort_list))
914 break;
915
916 } while (dispatched < max_dispatch);
917
918 /*
919 * if slice end isn't set yet, set it.
920 */
921 if (!cfqq->slice_end)
922 cfq_set_prio_slice(cfqd, cfqq);
923
924 /*
925 * expire an async queue immediately if it has used up its slice. idle
926 * queue always expire after 1 dispatch round.
927 */
928 if ((!cfq_cfqq_sync(cfqq) &&
929 cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
930 cfq_class_idle(cfqq) ||
931 !cfq_cfqq_idle_window(cfqq))
932 cfq_slice_expired(cfqd, 0);
933
934 return dispatched;
935 }
936
937 static int
938 cfq_forced_dispatch_cfqqs(struct list_head *list)
939 {
940 struct cfq_queue *cfqq, *next;
941 int dispatched;
942
943 dispatched = 0;
944 list_for_each_entry_safe(cfqq, next, list, cfq_list) {
945 while (cfqq->next_rq) {
946 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
947 dispatched++;
948 }
949 BUG_ON(!list_empty(&cfqq->fifo));
950 }
951
952 return dispatched;
953 }
954
955 static int
956 cfq_forced_dispatch(struct cfq_data *cfqd)
957 {
958 int i, dispatched = 0;
959
960 for (i = 0; i < CFQ_PRIO_LISTS; i++)
961 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
962
963 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
964 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
965 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
966
967 cfq_slice_expired(cfqd, 0);
968
969 BUG_ON(cfqd->busy_queues);
970
971 return dispatched;
972 }
973
974 static int
975 cfq_dispatch_requests(request_queue_t *q, int force)
976 {
977 struct cfq_data *cfqd = q->elevator->elevator_data;
978 struct cfq_queue *cfqq, *prev_cfqq;
979 int dispatched;
980
981 if (!cfqd->busy_queues)
982 return 0;
983
984 if (unlikely(force))
985 return cfq_forced_dispatch(cfqd);
986
987 dispatched = 0;
988 prev_cfqq = NULL;
989 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
990 int max_dispatch;
991
992 /*
993 * Don't repeat dispatch from the previous queue.
994 */
995 if (prev_cfqq == cfqq)
996 break;
997
998 cfq_clear_cfqq_must_dispatch(cfqq);
999 cfq_clear_cfqq_wait_request(cfqq);
1000 del_timer(&cfqd->idle_slice_timer);
1001
1002 max_dispatch = cfqd->cfq_quantum;
1003 if (cfq_class_idle(cfqq))
1004 max_dispatch = 1;
1005
1006 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1007
1008 /*
1009 * If the dispatch cfqq has idling enabled and is still
1010 * the active queue, break out.
1011 */
1012 if (cfq_cfqq_idle_window(cfqq) && cfqd->active_queue)
1013 break;
1014
1015 prev_cfqq = cfqq;
1016 }
1017
1018 return dispatched;
1019 }
1020
1021 /*
1022 * task holds one reference to the queue, dropped when task exits. each rq
1023 * in-flight on this queue also holds a reference, dropped when rq is freed.
1024 *
1025 * queue lock must be held here.
1026 */
1027 static void cfq_put_queue(struct cfq_queue *cfqq)
1028 {
1029 struct cfq_data *cfqd = cfqq->cfqd;
1030
1031 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1032
1033 if (!atomic_dec_and_test(&cfqq->ref))
1034 return;
1035
1036 BUG_ON(rb_first(&cfqq->sort_list));
1037 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1038 BUG_ON(cfq_cfqq_on_rr(cfqq));
1039
1040 if (unlikely(cfqd->active_queue == cfqq))
1041 __cfq_slice_expired(cfqd, cfqq, 0);
1042
1043 /*
1044 * it's on the empty list and still hashed
1045 */
1046 list_del(&cfqq->cfq_list);
1047 hlist_del(&cfqq->cfq_hash);
1048 kmem_cache_free(cfq_pool, cfqq);
1049 }
1050
1051 static struct cfq_queue *
1052 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1053 const int hashval)
1054 {
1055 struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1056 struct hlist_node *entry;
1057 struct cfq_queue *__cfqq;
1058
1059 hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1060 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1061
1062 if (__cfqq->key == key && (__p == prio || !prio))
1063 return __cfqq;
1064 }
1065
1066 return NULL;
1067 }
1068
1069 static struct cfq_queue *
1070 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1071 {
1072 return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1073 }
1074
1075 static void cfq_free_io_context(struct io_context *ioc)
1076 {
1077 struct cfq_io_context *__cic;
1078 struct rb_node *n;
1079 int freed = 0;
1080
1081 while ((n = rb_first(&ioc->cic_root)) != NULL) {
1082 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1083 rb_erase(&__cic->rb_node, &ioc->cic_root);
1084 kmem_cache_free(cfq_ioc_pool, __cic);
1085 freed++;
1086 }
1087
1088 elv_ioc_count_mod(ioc_count, -freed);
1089
1090 if (ioc_gone && !elv_ioc_count_read(ioc_count))
1091 complete(ioc_gone);
1092 }
1093
1094 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1095 {
1096 if (unlikely(cfqq == cfqd->active_queue))
1097 __cfq_slice_expired(cfqd, cfqq, 0);
1098
1099 cfq_put_queue(cfqq);
1100 }
1101
1102 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1103 struct cfq_io_context *cic)
1104 {
1105 list_del_init(&cic->queue_list);
1106 smp_wmb();
1107 cic->key = NULL;
1108
1109 if (cic->cfqq[ASYNC]) {
1110 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1111 cic->cfqq[ASYNC] = NULL;
1112 }
1113
1114 if (cic->cfqq[SYNC]) {
1115 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1116 cic->cfqq[SYNC] = NULL;
1117 }
1118 }
1119
1120
1121 /*
1122 * Called with interrupts disabled
1123 */
1124 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1125 {
1126 struct cfq_data *cfqd = cic->key;
1127
1128 if (cfqd) {
1129 request_queue_t *q = cfqd->queue;
1130
1131 spin_lock_irq(q->queue_lock);
1132 __cfq_exit_single_io_context(cfqd, cic);
1133 spin_unlock_irq(q->queue_lock);
1134 }
1135 }
1136
1137 static void cfq_exit_io_context(struct io_context *ioc)
1138 {
1139 struct cfq_io_context *__cic;
1140 struct rb_node *n;
1141
1142 /*
1143 * put the reference this task is holding to the various queues
1144 */
1145
1146 n = rb_first(&ioc->cic_root);
1147 while (n != NULL) {
1148 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1149
1150 cfq_exit_single_io_context(__cic);
1151 n = rb_next(n);
1152 }
1153 }
1154
1155 static struct cfq_io_context *
1156 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1157 {
1158 struct cfq_io_context *cic;
1159
1160 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
1161 if (cic) {
1162 memset(cic, 0, sizeof(*cic));
1163 cic->last_end_request = jiffies;
1164 INIT_LIST_HEAD(&cic->queue_list);
1165 cic->dtor = cfq_free_io_context;
1166 cic->exit = cfq_exit_io_context;
1167 elv_ioc_count_inc(ioc_count);
1168 }
1169
1170 return cic;
1171 }
1172
1173 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1174 {
1175 struct task_struct *tsk = current;
1176 int ioprio_class;
1177
1178 if (!cfq_cfqq_prio_changed(cfqq))
1179 return;
1180
1181 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1182 switch (ioprio_class) {
1183 default:
1184 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1185 case IOPRIO_CLASS_NONE:
1186 /*
1187 * no prio set, place us in the middle of the BE classes
1188 */
1189 cfqq->ioprio = task_nice_ioprio(tsk);
1190 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1191 break;
1192 case IOPRIO_CLASS_RT:
1193 cfqq->ioprio = task_ioprio(tsk);
1194 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1195 break;
1196 case IOPRIO_CLASS_BE:
1197 cfqq->ioprio = task_ioprio(tsk);
1198 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1199 break;
1200 case IOPRIO_CLASS_IDLE:
1201 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1202 cfqq->ioprio = 7;
1203 cfq_clear_cfqq_idle_window(cfqq);
1204 break;
1205 }
1206
1207 /*
1208 * keep track of original prio settings in case we have to temporarily
1209 * elevate the priority of this queue
1210 */
1211 cfqq->org_ioprio = cfqq->ioprio;
1212 cfqq->org_ioprio_class = cfqq->ioprio_class;
1213
1214 if (cfq_cfqq_on_rr(cfqq))
1215 cfq_resort_rr_list(cfqq, 0);
1216
1217 cfq_clear_cfqq_prio_changed(cfqq);
1218 }
1219
1220 static inline void changed_ioprio(struct cfq_io_context *cic)
1221 {
1222 struct cfq_data *cfqd = cic->key;
1223 struct cfq_queue *cfqq;
1224 unsigned long flags;
1225
1226 if (unlikely(!cfqd))
1227 return;
1228
1229 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1230
1231 cfqq = cic->cfqq[ASYNC];
1232 if (cfqq) {
1233 struct cfq_queue *new_cfqq;
1234 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1235 GFP_ATOMIC);
1236 if (new_cfqq) {
1237 cic->cfqq[ASYNC] = new_cfqq;
1238 cfq_put_queue(cfqq);
1239 }
1240 }
1241
1242 cfqq = cic->cfqq[SYNC];
1243 if (cfqq)
1244 cfq_mark_cfqq_prio_changed(cfqq);
1245
1246 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1247 }
1248
1249 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1250 {
1251 struct cfq_io_context *cic;
1252 struct rb_node *n;
1253
1254 ioc->ioprio_changed = 0;
1255
1256 n = rb_first(&ioc->cic_root);
1257 while (n != NULL) {
1258 cic = rb_entry(n, struct cfq_io_context, rb_node);
1259
1260 changed_ioprio(cic);
1261 n = rb_next(n);
1262 }
1263 }
1264
1265 static struct cfq_queue *
1266 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1267 gfp_t gfp_mask)
1268 {
1269 const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1270 struct cfq_queue *cfqq, *new_cfqq = NULL;
1271 unsigned short ioprio;
1272
1273 retry:
1274 ioprio = tsk->ioprio;
1275 cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1276
1277 if (!cfqq) {
1278 if (new_cfqq) {
1279 cfqq = new_cfqq;
1280 new_cfqq = NULL;
1281 } else if (gfp_mask & __GFP_WAIT) {
1282 /*
1283 * Inform the allocator of the fact that we will
1284 * just repeat this allocation if it fails, to allow
1285 * the allocator to do whatever it needs to attempt to
1286 * free memory.
1287 */
1288 spin_unlock_irq(cfqd->queue->queue_lock);
1289 new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
1290 spin_lock_irq(cfqd->queue->queue_lock);
1291 goto retry;
1292 } else {
1293 cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
1294 if (!cfqq)
1295 goto out;
1296 }
1297
1298 memset(cfqq, 0, sizeof(*cfqq));
1299
1300 INIT_HLIST_NODE(&cfqq->cfq_hash);
1301 INIT_LIST_HEAD(&cfqq->cfq_list);
1302 INIT_LIST_HEAD(&cfqq->fifo);
1303
1304 cfqq->key = key;
1305 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1306 atomic_set(&cfqq->ref, 0);
1307 cfqq->cfqd = cfqd;
1308 /*
1309 * set ->slice_left to allow preemption for a new process
1310 */
1311 cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1312 cfq_mark_cfqq_idle_window(cfqq);
1313 cfq_mark_cfqq_prio_changed(cfqq);
1314 cfq_mark_cfqq_queue_new(cfqq);
1315 cfq_init_prio_data(cfqq);
1316 }
1317
1318 if (new_cfqq)
1319 kmem_cache_free(cfq_pool, new_cfqq);
1320
1321 atomic_inc(&cfqq->ref);
1322 out:
1323 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1324 return cfqq;
1325 }
1326
1327 static void
1328 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1329 {
1330 WARN_ON(!list_empty(&cic->queue_list));
1331 rb_erase(&cic->rb_node, &ioc->cic_root);
1332 kmem_cache_free(cfq_ioc_pool, cic);
1333 elv_ioc_count_dec(ioc_count);
1334 }
1335
1336 static struct cfq_io_context *
1337 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1338 {
1339 struct rb_node *n;
1340 struct cfq_io_context *cic;
1341 void *k, *key = cfqd;
1342
1343 restart:
1344 n = ioc->cic_root.rb_node;
1345 while (n) {
1346 cic = rb_entry(n, struct cfq_io_context, rb_node);
1347 /* ->key must be copied to avoid race with cfq_exit_queue() */
1348 k = cic->key;
1349 if (unlikely(!k)) {
1350 cfq_drop_dead_cic(ioc, cic);
1351 goto restart;
1352 }
1353
1354 if (key < k)
1355 n = n->rb_left;
1356 else if (key > k)
1357 n = n->rb_right;
1358 else
1359 return cic;
1360 }
1361
1362 return NULL;
1363 }
1364
1365 static inline void
1366 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1367 struct cfq_io_context *cic)
1368 {
1369 struct rb_node **p;
1370 struct rb_node *parent;
1371 struct cfq_io_context *__cic;
1372 unsigned long flags;
1373 void *k;
1374
1375 cic->ioc = ioc;
1376 cic->key = cfqd;
1377
1378 restart:
1379 parent = NULL;
1380 p = &ioc->cic_root.rb_node;
1381 while (*p) {
1382 parent = *p;
1383 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1384 /* ->key must be copied to avoid race with cfq_exit_queue() */
1385 k = __cic->key;
1386 if (unlikely(!k)) {
1387 cfq_drop_dead_cic(ioc, __cic);
1388 goto restart;
1389 }
1390
1391 if (cic->key < k)
1392 p = &(*p)->rb_left;
1393 else if (cic->key > k)
1394 p = &(*p)->rb_right;
1395 else
1396 BUG();
1397 }
1398
1399 rb_link_node(&cic->rb_node, parent, p);
1400 rb_insert_color(&cic->rb_node, &ioc->cic_root);
1401
1402 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1403 list_add(&cic->queue_list, &cfqd->cic_list);
1404 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1405 }
1406
1407 /*
1408 * Setup general io context and cfq io context. There can be several cfq
1409 * io contexts per general io context, if this process is doing io to more
1410 * than one device managed by cfq.
1411 */
1412 static struct cfq_io_context *
1413 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1414 {
1415 struct io_context *ioc = NULL;
1416 struct cfq_io_context *cic;
1417
1418 might_sleep_if(gfp_mask & __GFP_WAIT);
1419
1420 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1421 if (!ioc)
1422 return NULL;
1423
1424 cic = cfq_cic_rb_lookup(cfqd, ioc);
1425 if (cic)
1426 goto out;
1427
1428 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1429 if (cic == NULL)
1430 goto err;
1431
1432 cfq_cic_link(cfqd, ioc, cic);
1433 out:
1434 smp_read_barrier_depends();
1435 if (unlikely(ioc->ioprio_changed))
1436 cfq_ioc_set_ioprio(ioc);
1437
1438 return cic;
1439 err:
1440 put_io_context(ioc);
1441 return NULL;
1442 }
1443
1444 static void
1445 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1446 {
1447 unsigned long elapsed, ttime;
1448
1449 /*
1450 * if this context already has stuff queued, thinktime is from
1451 * last queue not last end
1452 */
1453 #if 0
1454 if (time_after(cic->last_end_request, cic->last_queue))
1455 elapsed = jiffies - cic->last_end_request;
1456 else
1457 elapsed = jiffies - cic->last_queue;
1458 #else
1459 elapsed = jiffies - cic->last_end_request;
1460 #endif
1461
1462 ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1463
1464 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1465 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1466 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1467 }
1468
1469 static void
1470 cfq_update_io_seektime(struct cfq_io_context *cic, struct request *rq)
1471 {
1472 sector_t sdist;
1473 u64 total;
1474
1475 if (cic->last_request_pos < rq->sector)
1476 sdist = rq->sector - cic->last_request_pos;
1477 else
1478 sdist = cic->last_request_pos - rq->sector;
1479
1480 /*
1481 * Don't allow the seek distance to get too large from the
1482 * odd fragment, pagein, etc
1483 */
1484 if (cic->seek_samples <= 60) /* second&third seek */
1485 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1486 else
1487 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1488
1489 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1490 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1491 total = cic->seek_total + (cic->seek_samples/2);
1492 do_div(total, cic->seek_samples);
1493 cic->seek_mean = (sector_t)total;
1494 }
1495
1496 /*
1497 * Disable idle window if the process thinks too long or seeks so much that
1498 * it doesn't matter
1499 */
1500 static void
1501 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1502 struct cfq_io_context *cic)
1503 {
1504 int enable_idle = cfq_cfqq_idle_window(cfqq);
1505
1506 if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1507 (cfqd->hw_tag && CIC_SEEKY(cic)))
1508 enable_idle = 0;
1509 else if (sample_valid(cic->ttime_samples)) {
1510 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1511 enable_idle = 0;
1512 else
1513 enable_idle = 1;
1514 }
1515
1516 if (enable_idle)
1517 cfq_mark_cfqq_idle_window(cfqq);
1518 else
1519 cfq_clear_cfqq_idle_window(cfqq);
1520 }
1521
1522
1523 /*
1524 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1525 * no or if we aren't sure, a 1 will cause a preempt.
1526 */
1527 static int
1528 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1529 struct request *rq)
1530 {
1531 struct cfq_queue *cfqq = cfqd->active_queue;
1532
1533 if (cfq_class_idle(new_cfqq))
1534 return 0;
1535
1536 if (!cfqq)
1537 return 0;
1538
1539 if (cfq_class_idle(cfqq))
1540 return 1;
1541 if (!cfq_cfqq_wait_request(new_cfqq))
1542 return 0;
1543 /*
1544 * if it doesn't have slice left, forget it
1545 */
1546 if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1547 return 0;
1548 /*
1549 * if the new request is sync, but the currently running queue is
1550 * not, let the sync request have priority.
1551 */
1552 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1553 return 1;
1554 /*
1555 * So both queues are sync. Let the new request get disk time if
1556 * it's a metadata request and the current queue is doing regular IO.
1557 */
1558 if (rq_is_meta(rq) && !cfqq->meta_pending)
1559 return 1;
1560
1561 return 0;
1562 }
1563
1564 /*
1565 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1566 * let it have half of its nominal slice.
1567 */
1568 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1569 {
1570 cfq_slice_expired(cfqd, 1);
1571
1572 if (!cfqq->slice_left)
1573 cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1574
1575 /*
1576 * Put the new queue at the front of the of the current list,
1577 * so we know that it will be selected next.
1578 */
1579 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1580 list_move(&cfqq->cfq_list, &cfqd->cur_rr);
1581
1582 cfqq->slice_end = cfqq->slice_left + jiffies;
1583 }
1584
1585 /*
1586 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1587 * something we should do about it
1588 */
1589 static void
1590 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1591 struct request *rq)
1592 {
1593 struct cfq_io_context *cic = RQ_CIC(rq);
1594
1595 if (rq_is_meta(rq))
1596 cfqq->meta_pending++;
1597
1598 /*
1599 * check if this request is a better next-serve candidate)) {
1600 */
1601 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
1602 BUG_ON(!cfqq->next_rq);
1603
1604 /*
1605 * we never wait for an async request and we don't allow preemption
1606 * of an async request. so just return early
1607 */
1608 if (!rq_is_sync(rq)) {
1609 /*
1610 * sync process issued an async request, if it's waiting
1611 * then expire it and kick rq handling.
1612 */
1613 if (cic == cfqd->active_cic &&
1614 del_timer(&cfqd->idle_slice_timer)) {
1615 cfq_slice_expired(cfqd, 0);
1616 blk_start_queueing(cfqd->queue);
1617 }
1618 return;
1619 }
1620
1621 cfq_update_io_thinktime(cfqd, cic);
1622 cfq_update_io_seektime(cic, rq);
1623 cfq_update_idle_window(cfqd, cfqq, cic);
1624
1625 cic->last_queue = jiffies;
1626 cic->last_request_pos = rq->sector + rq->nr_sectors;
1627
1628 if (cfqq == cfqd->active_queue) {
1629 /*
1630 * if we are waiting for a request for this queue, let it rip
1631 * immediately and flag that we must not expire this queue
1632 * just now
1633 */
1634 if (cfq_cfqq_wait_request(cfqq)) {
1635 cfq_mark_cfqq_must_dispatch(cfqq);
1636 del_timer(&cfqd->idle_slice_timer);
1637 blk_start_queueing(cfqd->queue);
1638 }
1639 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1640 /*
1641 * not the active queue - expire current slice if it is
1642 * idle and has expired it's mean thinktime or this new queue
1643 * has some old slice time left and is of higher priority
1644 */
1645 cfq_preempt_queue(cfqd, cfqq);
1646 cfq_mark_cfqq_must_dispatch(cfqq);
1647 blk_start_queueing(cfqd->queue);
1648 }
1649 }
1650
1651 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1652 {
1653 struct cfq_data *cfqd = q->elevator->elevator_data;
1654 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1655
1656 cfq_init_prio_data(cfqq);
1657
1658 cfq_add_rq_rb(rq);
1659
1660 list_add_tail(&rq->queuelist, &cfqq->fifo);
1661
1662 cfq_rq_enqueued(cfqd, cfqq, rq);
1663 }
1664
1665 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1666 {
1667 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1668 struct cfq_data *cfqd = cfqq->cfqd;
1669 const int sync = rq_is_sync(rq);
1670 unsigned long now;
1671
1672 now = jiffies;
1673
1674 WARN_ON(!cfqd->rq_in_driver);
1675 WARN_ON(!cfqq->on_dispatch[sync]);
1676 cfqd->rq_in_driver--;
1677 cfqq->on_dispatch[sync]--;
1678
1679 if (!cfq_class_idle(cfqq))
1680 cfqd->last_end_request = now;
1681
1682 if (!cfq_cfqq_dispatched(cfqq) && cfq_cfqq_on_rr(cfqq))
1683 cfq_resort_rr_list(cfqq, 0);
1684
1685 if (sync)
1686 RQ_CIC(rq)->last_end_request = now;
1687
1688 /*
1689 * If this is the active queue, check if it needs to be expired,
1690 * or if we want to idle in case it has no pending requests.
1691 */
1692 if (cfqd->active_queue == cfqq) {
1693 if (time_after(now, cfqq->slice_end))
1694 cfq_slice_expired(cfqd, 0);
1695 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1696 if (!cfq_arm_slice_timer(cfqd, cfqq))
1697 cfq_schedule_dispatch(cfqd);
1698 }
1699 }
1700 }
1701
1702 /*
1703 * we temporarily boost lower priority queues if they are holding fs exclusive
1704 * resources. they are boosted to normal prio (CLASS_BE/4)
1705 */
1706 static void cfq_prio_boost(struct cfq_queue *cfqq)
1707 {
1708 const int ioprio_class = cfqq->ioprio_class;
1709 const int ioprio = cfqq->ioprio;
1710
1711 if (has_fs_excl()) {
1712 /*
1713 * boost idle prio on transactions that would lock out other
1714 * users of the filesystem
1715 */
1716 if (cfq_class_idle(cfqq))
1717 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1718 if (cfqq->ioprio > IOPRIO_NORM)
1719 cfqq->ioprio = IOPRIO_NORM;
1720 } else {
1721 /*
1722 * check if we need to unboost the queue
1723 */
1724 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1725 cfqq->ioprio_class = cfqq->org_ioprio_class;
1726 if (cfqq->ioprio != cfqq->org_ioprio)
1727 cfqq->ioprio = cfqq->org_ioprio;
1728 }
1729
1730 /*
1731 * refile between round-robin lists if we moved the priority class
1732 */
1733 if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
1734 cfq_cfqq_on_rr(cfqq))
1735 cfq_resort_rr_list(cfqq, 0);
1736 }
1737
1738 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1739 {
1740 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1741 !cfq_cfqq_must_alloc_slice(cfqq)) {
1742 cfq_mark_cfqq_must_alloc_slice(cfqq);
1743 return ELV_MQUEUE_MUST;
1744 }
1745
1746 return ELV_MQUEUE_MAY;
1747 }
1748
1749 static int cfq_may_queue(request_queue_t *q, int rw)
1750 {
1751 struct cfq_data *cfqd = q->elevator->elevator_data;
1752 struct task_struct *tsk = current;
1753 struct cfq_queue *cfqq;
1754 unsigned int key;
1755
1756 key = cfq_queue_pid(tsk, rw, rw & REQ_RW_SYNC);
1757
1758 /*
1759 * don't force setup of a queue from here, as a call to may_queue
1760 * does not necessarily imply that a request actually will be queued.
1761 * so just lookup a possibly existing queue, or return 'may queue'
1762 * if that fails
1763 */
1764 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
1765 if (cfqq) {
1766 cfq_init_prio_data(cfqq);
1767 cfq_prio_boost(cfqq);
1768
1769 return __cfq_may_queue(cfqq);
1770 }
1771
1772 return ELV_MQUEUE_MAY;
1773 }
1774
1775 /*
1776 * queue lock held here
1777 */
1778 static void cfq_put_request(struct request *rq)
1779 {
1780 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1781
1782 if (cfqq) {
1783 const int rw = rq_data_dir(rq);
1784
1785 BUG_ON(!cfqq->allocated[rw]);
1786 cfqq->allocated[rw]--;
1787
1788 put_io_context(RQ_CIC(rq)->ioc);
1789
1790 rq->elevator_private = NULL;
1791 rq->elevator_private2 = NULL;
1792
1793 cfq_put_queue(cfqq);
1794 }
1795 }
1796
1797 /*
1798 * Allocate cfq data structures associated with this request.
1799 */
1800 static int
1801 cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1802 {
1803 struct cfq_data *cfqd = q->elevator->elevator_data;
1804 struct task_struct *tsk = current;
1805 struct cfq_io_context *cic;
1806 const int rw = rq_data_dir(rq);
1807 const int is_sync = rq_is_sync(rq);
1808 pid_t key = cfq_queue_pid(tsk, rw, is_sync);
1809 struct cfq_queue *cfqq;
1810 unsigned long flags;
1811
1812 might_sleep_if(gfp_mask & __GFP_WAIT);
1813
1814 cic = cfq_get_io_context(cfqd, gfp_mask);
1815
1816 spin_lock_irqsave(q->queue_lock, flags);
1817
1818 if (!cic)
1819 goto queue_fail;
1820
1821 if (!cic->cfqq[is_sync]) {
1822 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
1823 if (!cfqq)
1824 goto queue_fail;
1825
1826 cic->cfqq[is_sync] = cfqq;
1827 } else
1828 cfqq = cic->cfqq[is_sync];
1829
1830 cfqq->allocated[rw]++;
1831 cfq_clear_cfqq_must_alloc(cfqq);
1832 atomic_inc(&cfqq->ref);
1833
1834 spin_unlock_irqrestore(q->queue_lock, flags);
1835
1836 rq->elevator_private = cic;
1837 rq->elevator_private2 = cfqq;
1838 return 0;
1839
1840 queue_fail:
1841 if (cic)
1842 put_io_context(cic->ioc);
1843
1844 cfq_schedule_dispatch(cfqd);
1845 spin_unlock_irqrestore(q->queue_lock, flags);
1846 return 1;
1847 }
1848
1849 static void cfq_kick_queue(struct work_struct *work)
1850 {
1851 struct cfq_data *cfqd =
1852 container_of(work, struct cfq_data, unplug_work);
1853 request_queue_t *q = cfqd->queue;
1854 unsigned long flags;
1855
1856 spin_lock_irqsave(q->queue_lock, flags);
1857 blk_start_queueing(q);
1858 spin_unlock_irqrestore(q->queue_lock, flags);
1859 }
1860
1861 /*
1862 * Timer running if the active_queue is currently idling inside its time slice
1863 */
1864 static void cfq_idle_slice_timer(unsigned long data)
1865 {
1866 struct cfq_data *cfqd = (struct cfq_data *) data;
1867 struct cfq_queue *cfqq;
1868 unsigned long flags;
1869
1870 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1871
1872 if ((cfqq = cfqd->active_queue) != NULL) {
1873 unsigned long now = jiffies;
1874
1875 /*
1876 * expired
1877 */
1878 if (time_after(now, cfqq->slice_end))
1879 goto expire;
1880
1881 /*
1882 * only expire and reinvoke request handler, if there are
1883 * other queues with pending requests
1884 */
1885 if (!cfqd->busy_queues)
1886 goto out_cont;
1887
1888 /*
1889 * not expired and it has a request pending, let it dispatch
1890 */
1891 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
1892 cfq_mark_cfqq_must_dispatch(cfqq);
1893 goto out_kick;
1894 }
1895 }
1896 expire:
1897 cfq_slice_expired(cfqd, 0);
1898 out_kick:
1899 cfq_schedule_dispatch(cfqd);
1900 out_cont:
1901 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1902 }
1903
1904 /*
1905 * Timer running if an idle class queue is waiting for service
1906 */
1907 static void cfq_idle_class_timer(unsigned long data)
1908 {
1909 struct cfq_data *cfqd = (struct cfq_data *) data;
1910 unsigned long flags, end;
1911
1912 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1913
1914 /*
1915 * race with a non-idle queue, reset timer
1916 */
1917 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
1918 if (!time_after_eq(jiffies, end))
1919 mod_timer(&cfqd->idle_class_timer, end);
1920 else
1921 cfq_schedule_dispatch(cfqd);
1922
1923 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1924 }
1925
1926 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
1927 {
1928 del_timer_sync(&cfqd->idle_slice_timer);
1929 del_timer_sync(&cfqd->idle_class_timer);
1930 blk_sync_queue(cfqd->queue);
1931 }
1932
1933 static void cfq_exit_queue(elevator_t *e)
1934 {
1935 struct cfq_data *cfqd = e->elevator_data;
1936 request_queue_t *q = cfqd->queue;
1937
1938 cfq_shutdown_timer_wq(cfqd);
1939
1940 spin_lock_irq(q->queue_lock);
1941
1942 if (cfqd->active_queue)
1943 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
1944
1945 while (!list_empty(&cfqd->cic_list)) {
1946 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
1947 struct cfq_io_context,
1948 queue_list);
1949
1950 __cfq_exit_single_io_context(cfqd, cic);
1951 }
1952
1953 spin_unlock_irq(q->queue_lock);
1954
1955 cfq_shutdown_timer_wq(cfqd);
1956
1957 kfree(cfqd->cfq_hash);
1958 kfree(cfqd);
1959 }
1960
1961 static void *cfq_init_queue(request_queue_t *q)
1962 {
1963 struct cfq_data *cfqd;
1964 int i;
1965
1966 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
1967 if (!cfqd)
1968 return NULL;
1969
1970 memset(cfqd, 0, sizeof(*cfqd));
1971
1972 for (i = 0; i < CFQ_PRIO_LISTS; i++)
1973 INIT_LIST_HEAD(&cfqd->rr_list[i]);
1974
1975 INIT_LIST_HEAD(&cfqd->busy_rr);
1976 INIT_LIST_HEAD(&cfqd->cur_rr);
1977 INIT_LIST_HEAD(&cfqd->idle_rr);
1978 INIT_LIST_HEAD(&cfqd->cic_list);
1979
1980 cfqd->cfq_hash = kmalloc_node(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL, q->node);
1981 if (!cfqd->cfq_hash)
1982 goto out_free;
1983
1984 for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
1985 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
1986
1987 cfqd->queue = q;
1988
1989 init_timer(&cfqd->idle_slice_timer);
1990 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
1991 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
1992
1993 init_timer(&cfqd->idle_class_timer);
1994 cfqd->idle_class_timer.function = cfq_idle_class_timer;
1995 cfqd->idle_class_timer.data = (unsigned long) cfqd;
1996
1997 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
1998
1999 cfqd->cfq_quantum = cfq_quantum;
2000 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2001 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2002 cfqd->cfq_back_max = cfq_back_max;
2003 cfqd->cfq_back_penalty = cfq_back_penalty;
2004 cfqd->cfq_slice[0] = cfq_slice_async;
2005 cfqd->cfq_slice[1] = cfq_slice_sync;
2006 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2007 cfqd->cfq_slice_idle = cfq_slice_idle;
2008
2009 return cfqd;
2010 out_free:
2011 kfree(cfqd);
2012 return NULL;
2013 }
2014
2015 static void cfq_slab_kill(void)
2016 {
2017 if (cfq_pool)
2018 kmem_cache_destroy(cfq_pool);
2019 if (cfq_ioc_pool)
2020 kmem_cache_destroy(cfq_ioc_pool);
2021 }
2022
2023 static int __init cfq_slab_setup(void)
2024 {
2025 cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2026 NULL, NULL);
2027 if (!cfq_pool)
2028 goto fail;
2029
2030 cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2031 sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2032 if (!cfq_ioc_pool)
2033 goto fail;
2034
2035 return 0;
2036 fail:
2037 cfq_slab_kill();
2038 return -ENOMEM;
2039 }
2040
2041 /*
2042 * sysfs parts below -->
2043 */
2044
2045 static ssize_t
2046 cfq_var_show(unsigned int var, char *page)
2047 {
2048 return sprintf(page, "%d\n", var);
2049 }
2050
2051 static ssize_t
2052 cfq_var_store(unsigned int *var, const char *page, size_t count)
2053 {
2054 char *p = (char *) page;
2055
2056 *var = simple_strtoul(p, &p, 10);
2057 return count;
2058 }
2059
2060 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2061 static ssize_t __FUNC(elevator_t *e, char *page) \
2062 { \
2063 struct cfq_data *cfqd = e->elevator_data; \
2064 unsigned int __data = __VAR; \
2065 if (__CONV) \
2066 __data = jiffies_to_msecs(__data); \
2067 return cfq_var_show(__data, (page)); \
2068 }
2069 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2070 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2071 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2072 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2073 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2074 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2075 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2076 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2077 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2078 #undef SHOW_FUNCTION
2079
2080 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2081 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2082 { \
2083 struct cfq_data *cfqd = e->elevator_data; \
2084 unsigned int __data; \
2085 int ret = cfq_var_store(&__data, (page), count); \
2086 if (__data < (MIN)) \
2087 __data = (MIN); \
2088 else if (__data > (MAX)) \
2089 __data = (MAX); \
2090 if (__CONV) \
2091 *(__PTR) = msecs_to_jiffies(__data); \
2092 else \
2093 *(__PTR) = __data; \
2094 return ret; \
2095 }
2096 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2097 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2098 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2099 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2100 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2101 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2102 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2103 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2104 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2105 #undef STORE_FUNCTION
2106
2107 #define CFQ_ATTR(name) \
2108 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2109
2110 static struct elv_fs_entry cfq_attrs[] = {
2111 CFQ_ATTR(quantum),
2112 CFQ_ATTR(fifo_expire_sync),
2113 CFQ_ATTR(fifo_expire_async),
2114 CFQ_ATTR(back_seek_max),
2115 CFQ_ATTR(back_seek_penalty),
2116 CFQ_ATTR(slice_sync),
2117 CFQ_ATTR(slice_async),
2118 CFQ_ATTR(slice_async_rq),
2119 CFQ_ATTR(slice_idle),
2120 __ATTR_NULL
2121 };
2122
2123 static struct elevator_type iosched_cfq = {
2124 .ops = {
2125 .elevator_merge_fn = cfq_merge,
2126 .elevator_merged_fn = cfq_merged_request,
2127 .elevator_merge_req_fn = cfq_merged_requests,
2128 .elevator_dispatch_fn = cfq_dispatch_requests,
2129 .elevator_add_req_fn = cfq_insert_request,
2130 .elevator_activate_req_fn = cfq_activate_request,
2131 .elevator_deactivate_req_fn = cfq_deactivate_request,
2132 .elevator_queue_empty_fn = cfq_queue_empty,
2133 .elevator_completed_req_fn = cfq_completed_request,
2134 .elevator_former_req_fn = elv_rb_former_request,
2135 .elevator_latter_req_fn = elv_rb_latter_request,
2136 .elevator_set_req_fn = cfq_set_request,
2137 .elevator_put_req_fn = cfq_put_request,
2138 .elevator_may_queue_fn = cfq_may_queue,
2139 .elevator_init_fn = cfq_init_queue,
2140 .elevator_exit_fn = cfq_exit_queue,
2141 .trim = cfq_free_io_context,
2142 },
2143 .elevator_attrs = cfq_attrs,
2144 .elevator_name = "cfq",
2145 .elevator_owner = THIS_MODULE,
2146 };
2147
2148 static int __init cfq_init(void)
2149 {
2150 int ret;
2151
2152 /*
2153 * could be 0 on HZ < 1000 setups
2154 */
2155 if (!cfq_slice_async)
2156 cfq_slice_async = 1;
2157 if (!cfq_slice_idle)
2158 cfq_slice_idle = 1;
2159
2160 if (cfq_slab_setup())
2161 return -ENOMEM;
2162
2163 ret = elv_register(&iosched_cfq);
2164 if (ret)
2165 cfq_slab_kill();
2166
2167 return ret;
2168 }
2169
2170 static void __exit cfq_exit(void)
2171 {
2172 DECLARE_COMPLETION_ONSTACK(all_gone);
2173 elv_unregister(&iosched_cfq);
2174 ioc_gone = &all_gone;
2175 /* ioc_gone's update must be visible before reading ioc_count */
2176 smp_wmb();
2177 if (elv_ioc_count_read(ioc_count))
2178 wait_for_completion(ioc_gone);
2179 synchronize_rcu();
2180 cfq_slab_kill();
2181 }
2182
2183 module_init(cfq_init);
2184 module_exit(cfq_exit);
2185
2186 MODULE_AUTHOR("Jens Axboe");
2187 MODULE_LICENSE("GPL");
2188 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");