]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/cfq-iosched.c
blkcg, cfq-iosched: use GFP_NOWAIT instead of GFP_ATOMIC for non-critical allocations
[mirror_ubuntu-artful-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include <linux/blk-cgroup.h>
18 #include "blk.h"
19
20 /*
21 * tunables
22 */
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const int cfq_slice_sync = HZ / 10;
31 static int cfq_slice_async = HZ / 25;
32 static const int cfq_slice_async_rq = 2;
33 static int cfq_slice_idle = HZ / 125;
34 static int cfq_group_idle = HZ / 125;
35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
37
38 /*
39 * offset from end of service tree
40 */
41 #define CFQ_IDLE_DELAY (HZ / 5)
42
43 /*
44 * below this threshold, we consider thinktime immediate
45 */
46 #define CFQ_MIN_TT (2)
47
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
51
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56
57 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
60
61 static struct kmem_cache *cfq_pool;
62
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
69
70 /* blkio-related constants */
71 #define CFQ_WEIGHT_MIN 10
72 #define CFQ_WEIGHT_MAX 1000
73 #define CFQ_WEIGHT_DEFAULT 500
74
75 struct cfq_ttime {
76 unsigned long last_end_request;
77
78 unsigned long ttime_total;
79 unsigned long ttime_samples;
80 unsigned long ttime_mean;
81 };
82
83 /*
84 * Most of our rbtree usage is for sorting with min extraction, so
85 * if we cache the leftmost node we don't have to walk down the tree
86 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
87 * move this into the elevator for the rq sorting as well.
88 */
89 struct cfq_rb_root {
90 struct rb_root rb;
91 struct rb_node *left;
92 unsigned count;
93 u64 min_vdisktime;
94 struct cfq_ttime ttime;
95 };
96 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
97 .ttime = {.last_end_request = jiffies,},}
98
99 /*
100 * Per process-grouping structure
101 */
102 struct cfq_queue {
103 /* reference count */
104 int ref;
105 /* various state flags, see below */
106 unsigned int flags;
107 /* parent cfq_data */
108 struct cfq_data *cfqd;
109 /* service_tree member */
110 struct rb_node rb_node;
111 /* service_tree key */
112 unsigned long rb_key;
113 /* prio tree member */
114 struct rb_node p_node;
115 /* prio tree root we belong to, if any */
116 struct rb_root *p_root;
117 /* sorted list of pending requests */
118 struct rb_root sort_list;
119 /* if fifo isn't expired, next request to serve */
120 struct request *next_rq;
121 /* requests queued in sort_list */
122 int queued[2];
123 /* currently allocated requests */
124 int allocated[2];
125 /* fifo list of requests in sort_list */
126 struct list_head fifo;
127
128 /* time when queue got scheduled in to dispatch first request. */
129 unsigned long dispatch_start;
130 unsigned int allocated_slice;
131 unsigned int slice_dispatch;
132 /* time when first request from queue completed and slice started. */
133 unsigned long slice_start;
134 unsigned long slice_end;
135 long slice_resid;
136
137 /* pending priority requests */
138 int prio_pending;
139 /* number of requests that are on the dispatch list or inside driver */
140 int dispatched;
141
142 /* io prio of this group */
143 unsigned short ioprio, org_ioprio;
144 unsigned short ioprio_class;
145
146 pid_t pid;
147
148 u32 seek_history;
149 sector_t last_request_pos;
150
151 struct cfq_rb_root *service_tree;
152 struct cfq_queue *new_cfqq;
153 struct cfq_group *cfqg;
154 /* Number of sectors dispatched from queue in single dispatch round */
155 unsigned long nr_sectors;
156 };
157
158 /*
159 * First index in the service_trees.
160 * IDLE is handled separately, so it has negative index
161 */
162 enum wl_class_t {
163 BE_WORKLOAD = 0,
164 RT_WORKLOAD = 1,
165 IDLE_WORKLOAD = 2,
166 CFQ_PRIO_NR,
167 };
168
169 /*
170 * Second index in the service_trees.
171 */
172 enum wl_type_t {
173 ASYNC_WORKLOAD = 0,
174 SYNC_NOIDLE_WORKLOAD = 1,
175 SYNC_WORKLOAD = 2
176 };
177
178 struct cfqg_stats {
179 #ifdef CONFIG_CFQ_GROUP_IOSCHED
180 /* total bytes transferred */
181 struct blkg_rwstat service_bytes;
182 /* total IOs serviced, post merge */
183 struct blkg_rwstat serviced;
184 /* number of ios merged */
185 struct blkg_rwstat merged;
186 /* total time spent on device in ns, may not be accurate w/ queueing */
187 struct blkg_rwstat service_time;
188 /* total time spent waiting in scheduler queue in ns */
189 struct blkg_rwstat wait_time;
190 /* number of IOs queued up */
191 struct blkg_rwstat queued;
192 /* total sectors transferred */
193 struct blkg_stat sectors;
194 /* total disk time and nr sectors dispatched by this group */
195 struct blkg_stat time;
196 #ifdef CONFIG_DEBUG_BLK_CGROUP
197 /* time not charged to this cgroup */
198 struct blkg_stat unaccounted_time;
199 /* sum of number of ios queued across all samples */
200 struct blkg_stat avg_queue_size_sum;
201 /* count of samples taken for average */
202 struct blkg_stat avg_queue_size_samples;
203 /* how many times this group has been removed from service tree */
204 struct blkg_stat dequeue;
205 /* total time spent waiting for it to be assigned a timeslice. */
206 struct blkg_stat group_wait_time;
207 /* time spent idling for this blkcg_gq */
208 struct blkg_stat idle_time;
209 /* total time with empty current active q with other requests queued */
210 struct blkg_stat empty_time;
211 /* fields after this shouldn't be cleared on stat reset */
212 uint64_t start_group_wait_time;
213 uint64_t start_idle_time;
214 uint64_t start_empty_time;
215 uint16_t flags;
216 #endif /* CONFIG_DEBUG_BLK_CGROUP */
217 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
218 };
219
220 /* Per-cgroup data */
221 struct cfq_group_data {
222 /* must be the first member */
223 struct blkcg_policy_data pd;
224
225 unsigned int weight;
226 unsigned int leaf_weight;
227 };
228
229 /* This is per cgroup per device grouping structure */
230 struct cfq_group {
231 /* must be the first member */
232 struct blkg_policy_data pd;
233
234 /* group service_tree member */
235 struct rb_node rb_node;
236
237 /* group service_tree key */
238 u64 vdisktime;
239
240 /*
241 * The number of active cfqgs and sum of their weights under this
242 * cfqg. This covers this cfqg's leaf_weight and all children's
243 * weights, but does not cover weights of further descendants.
244 *
245 * If a cfqg is on the service tree, it's active. An active cfqg
246 * also activates its parent and contributes to the children_weight
247 * of the parent.
248 */
249 int nr_active;
250 unsigned int children_weight;
251
252 /*
253 * vfraction is the fraction of vdisktime that the tasks in this
254 * cfqg are entitled to. This is determined by compounding the
255 * ratios walking up from this cfqg to the root.
256 *
257 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
258 * vfractions on a service tree is approximately 1. The sum may
259 * deviate a bit due to rounding errors and fluctuations caused by
260 * cfqgs entering and leaving the service tree.
261 */
262 unsigned int vfraction;
263
264 /*
265 * There are two weights - (internal) weight is the weight of this
266 * cfqg against the sibling cfqgs. leaf_weight is the wight of
267 * this cfqg against the child cfqgs. For the root cfqg, both
268 * weights are kept in sync for backward compatibility.
269 */
270 unsigned int weight;
271 unsigned int new_weight;
272 unsigned int dev_weight;
273
274 unsigned int leaf_weight;
275 unsigned int new_leaf_weight;
276 unsigned int dev_leaf_weight;
277
278 /* number of cfqq currently on this group */
279 int nr_cfqq;
280
281 /*
282 * Per group busy queues average. Useful for workload slice calc. We
283 * create the array for each prio class but at run time it is used
284 * only for RT and BE class and slot for IDLE class remains unused.
285 * This is primarily done to avoid confusion and a gcc warning.
286 */
287 unsigned int busy_queues_avg[CFQ_PRIO_NR];
288 /*
289 * rr lists of queues with requests. We maintain service trees for
290 * RT and BE classes. These trees are subdivided in subclasses
291 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
292 * class there is no subclassification and all the cfq queues go on
293 * a single tree service_tree_idle.
294 * Counts are embedded in the cfq_rb_root
295 */
296 struct cfq_rb_root service_trees[2][3];
297 struct cfq_rb_root service_tree_idle;
298
299 unsigned long saved_wl_slice;
300 enum wl_type_t saved_wl_type;
301 enum wl_class_t saved_wl_class;
302
303 /* number of requests that are on the dispatch list or inside driver */
304 int dispatched;
305 struct cfq_ttime ttime;
306 struct cfqg_stats stats; /* stats for this cfqg */
307 struct cfqg_stats dead_stats; /* stats pushed from dead children */
308 };
309
310 struct cfq_io_cq {
311 struct io_cq icq; /* must be the first member */
312 struct cfq_queue *cfqq[2];
313 struct cfq_ttime ttime;
314 int ioprio; /* the current ioprio */
315 #ifdef CONFIG_CFQ_GROUP_IOSCHED
316 uint64_t blkcg_serial_nr; /* the current blkcg serial */
317 #endif
318 };
319
320 /*
321 * Per block device queue structure
322 */
323 struct cfq_data {
324 struct request_queue *queue;
325 /* Root service tree for cfq_groups */
326 struct cfq_rb_root grp_service_tree;
327 struct cfq_group *root_group;
328
329 /*
330 * The priority currently being served
331 */
332 enum wl_class_t serving_wl_class;
333 enum wl_type_t serving_wl_type;
334 unsigned long workload_expires;
335 struct cfq_group *serving_group;
336
337 /*
338 * Each priority tree is sorted by next_request position. These
339 * trees are used when determining if two or more queues are
340 * interleaving requests (see cfq_close_cooperator).
341 */
342 struct rb_root prio_trees[CFQ_PRIO_LISTS];
343
344 unsigned int busy_queues;
345 unsigned int busy_sync_queues;
346
347 int rq_in_driver;
348 int rq_in_flight[2];
349
350 /*
351 * queue-depth detection
352 */
353 int rq_queued;
354 int hw_tag;
355 /*
356 * hw_tag can be
357 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
358 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
359 * 0 => no NCQ
360 */
361 int hw_tag_est_depth;
362 unsigned int hw_tag_samples;
363
364 /*
365 * idle window management
366 */
367 struct timer_list idle_slice_timer;
368 struct work_struct unplug_work;
369
370 struct cfq_queue *active_queue;
371 struct cfq_io_cq *active_cic;
372
373 /*
374 * async queue for each priority case
375 */
376 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
377 struct cfq_queue *async_idle_cfqq;
378
379 sector_t last_position;
380
381 /*
382 * tunables, see top of file
383 */
384 unsigned int cfq_quantum;
385 unsigned int cfq_fifo_expire[2];
386 unsigned int cfq_back_penalty;
387 unsigned int cfq_back_max;
388 unsigned int cfq_slice[2];
389 unsigned int cfq_slice_async_rq;
390 unsigned int cfq_slice_idle;
391 unsigned int cfq_group_idle;
392 unsigned int cfq_latency;
393 unsigned int cfq_target_latency;
394
395 /*
396 * Fallback dummy cfqq for extreme OOM conditions
397 */
398 struct cfq_queue oom_cfqq;
399
400 unsigned long last_delayed_sync;
401 };
402
403 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
404
405 static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
406 enum wl_class_t class,
407 enum wl_type_t type)
408 {
409 if (!cfqg)
410 return NULL;
411
412 if (class == IDLE_WORKLOAD)
413 return &cfqg->service_tree_idle;
414
415 return &cfqg->service_trees[class][type];
416 }
417
418 enum cfqq_state_flags {
419 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
420 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
421 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
422 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
423 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
424 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
425 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
426 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
427 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
428 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
429 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
430 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
431 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
432 };
433
434 #define CFQ_CFQQ_FNS(name) \
435 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
436 { \
437 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
438 } \
439 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
440 { \
441 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
442 } \
443 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
444 { \
445 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
446 }
447
448 CFQ_CFQQ_FNS(on_rr);
449 CFQ_CFQQ_FNS(wait_request);
450 CFQ_CFQQ_FNS(must_dispatch);
451 CFQ_CFQQ_FNS(must_alloc_slice);
452 CFQ_CFQQ_FNS(fifo_expire);
453 CFQ_CFQQ_FNS(idle_window);
454 CFQ_CFQQ_FNS(prio_changed);
455 CFQ_CFQQ_FNS(slice_new);
456 CFQ_CFQQ_FNS(sync);
457 CFQ_CFQQ_FNS(coop);
458 CFQ_CFQQ_FNS(split_coop);
459 CFQ_CFQQ_FNS(deep);
460 CFQ_CFQQ_FNS(wait_busy);
461 #undef CFQ_CFQQ_FNS
462
463 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
464
465 /* cfqg stats flags */
466 enum cfqg_stats_flags {
467 CFQG_stats_waiting = 0,
468 CFQG_stats_idling,
469 CFQG_stats_empty,
470 };
471
472 #define CFQG_FLAG_FNS(name) \
473 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
474 { \
475 stats->flags |= (1 << CFQG_stats_##name); \
476 } \
477 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
478 { \
479 stats->flags &= ~(1 << CFQG_stats_##name); \
480 } \
481 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
482 { \
483 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
484 } \
485
486 CFQG_FLAG_FNS(waiting)
487 CFQG_FLAG_FNS(idling)
488 CFQG_FLAG_FNS(empty)
489 #undef CFQG_FLAG_FNS
490
491 /* This should be called with the queue_lock held. */
492 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
493 {
494 unsigned long long now;
495
496 if (!cfqg_stats_waiting(stats))
497 return;
498
499 now = sched_clock();
500 if (time_after64(now, stats->start_group_wait_time))
501 blkg_stat_add(&stats->group_wait_time,
502 now - stats->start_group_wait_time);
503 cfqg_stats_clear_waiting(stats);
504 }
505
506 /* This should be called with the queue_lock held. */
507 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
508 struct cfq_group *curr_cfqg)
509 {
510 struct cfqg_stats *stats = &cfqg->stats;
511
512 if (cfqg_stats_waiting(stats))
513 return;
514 if (cfqg == curr_cfqg)
515 return;
516 stats->start_group_wait_time = sched_clock();
517 cfqg_stats_mark_waiting(stats);
518 }
519
520 /* This should be called with the queue_lock held. */
521 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
522 {
523 unsigned long long now;
524
525 if (!cfqg_stats_empty(stats))
526 return;
527
528 now = sched_clock();
529 if (time_after64(now, stats->start_empty_time))
530 blkg_stat_add(&stats->empty_time,
531 now - stats->start_empty_time);
532 cfqg_stats_clear_empty(stats);
533 }
534
535 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
536 {
537 blkg_stat_add(&cfqg->stats.dequeue, 1);
538 }
539
540 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
541 {
542 struct cfqg_stats *stats = &cfqg->stats;
543
544 if (blkg_rwstat_total(&stats->queued))
545 return;
546
547 /*
548 * group is already marked empty. This can happen if cfqq got new
549 * request in parent group and moved to this group while being added
550 * to service tree. Just ignore the event and move on.
551 */
552 if (cfqg_stats_empty(stats))
553 return;
554
555 stats->start_empty_time = sched_clock();
556 cfqg_stats_mark_empty(stats);
557 }
558
559 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
560 {
561 struct cfqg_stats *stats = &cfqg->stats;
562
563 if (cfqg_stats_idling(stats)) {
564 unsigned long long now = sched_clock();
565
566 if (time_after64(now, stats->start_idle_time))
567 blkg_stat_add(&stats->idle_time,
568 now - stats->start_idle_time);
569 cfqg_stats_clear_idling(stats);
570 }
571 }
572
573 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
574 {
575 struct cfqg_stats *stats = &cfqg->stats;
576
577 BUG_ON(cfqg_stats_idling(stats));
578
579 stats->start_idle_time = sched_clock();
580 cfqg_stats_mark_idling(stats);
581 }
582
583 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
584 {
585 struct cfqg_stats *stats = &cfqg->stats;
586
587 blkg_stat_add(&stats->avg_queue_size_sum,
588 blkg_rwstat_total(&stats->queued));
589 blkg_stat_add(&stats->avg_queue_size_samples, 1);
590 cfqg_stats_update_group_wait_time(stats);
591 }
592
593 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
594
595 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
596 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
597 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
598 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
599 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
600 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
601 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
602
603 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
604
605 #ifdef CONFIG_CFQ_GROUP_IOSCHED
606
607 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
608 {
609 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
610 }
611
612 static struct cfq_group_data
613 *cpd_to_cfqgd(struct blkcg_policy_data *cpd)
614 {
615 return cpd ? container_of(cpd, struct cfq_group_data, pd) : NULL;
616 }
617
618 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
619 {
620 return pd_to_blkg(&cfqg->pd);
621 }
622
623 static struct blkcg_policy blkcg_policy_cfq;
624
625 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
626 {
627 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
628 }
629
630 static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg)
631 {
632 return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq));
633 }
634
635 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
636 {
637 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
638
639 return pblkg ? blkg_to_cfqg(pblkg) : NULL;
640 }
641
642 static inline void cfqg_get(struct cfq_group *cfqg)
643 {
644 return blkg_get(cfqg_to_blkg(cfqg));
645 }
646
647 static inline void cfqg_put(struct cfq_group *cfqg)
648 {
649 return blkg_put(cfqg_to_blkg(cfqg));
650 }
651
652 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
653 char __pbuf[128]; \
654 \
655 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
656 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
657 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
658 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
659 __pbuf, ##args); \
660 } while (0)
661
662 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
663 char __pbuf[128]; \
664 \
665 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
666 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
667 } while (0)
668
669 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
670 struct cfq_group *curr_cfqg, int rw)
671 {
672 blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
673 cfqg_stats_end_empty_time(&cfqg->stats);
674 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
675 }
676
677 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
678 unsigned long time, unsigned long unaccounted_time)
679 {
680 blkg_stat_add(&cfqg->stats.time, time);
681 #ifdef CONFIG_DEBUG_BLK_CGROUP
682 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
683 #endif
684 }
685
686 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
687 {
688 blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
689 }
690
691 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
692 {
693 blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
694 }
695
696 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
697 uint64_t bytes, int rw)
698 {
699 blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
700 blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
701 blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
702 }
703
704 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
705 uint64_t start_time, uint64_t io_start_time, int rw)
706 {
707 struct cfqg_stats *stats = &cfqg->stats;
708 unsigned long long now = sched_clock();
709
710 if (time_after64(now, io_start_time))
711 blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
712 if (time_after64(io_start_time, start_time))
713 blkg_rwstat_add(&stats->wait_time, rw,
714 io_start_time - start_time);
715 }
716
717 /* @stats = 0 */
718 static void cfqg_stats_reset(struct cfqg_stats *stats)
719 {
720 /* queued stats shouldn't be cleared */
721 blkg_rwstat_reset(&stats->service_bytes);
722 blkg_rwstat_reset(&stats->serviced);
723 blkg_rwstat_reset(&stats->merged);
724 blkg_rwstat_reset(&stats->service_time);
725 blkg_rwstat_reset(&stats->wait_time);
726 blkg_stat_reset(&stats->time);
727 #ifdef CONFIG_DEBUG_BLK_CGROUP
728 blkg_stat_reset(&stats->unaccounted_time);
729 blkg_stat_reset(&stats->avg_queue_size_sum);
730 blkg_stat_reset(&stats->avg_queue_size_samples);
731 blkg_stat_reset(&stats->dequeue);
732 blkg_stat_reset(&stats->group_wait_time);
733 blkg_stat_reset(&stats->idle_time);
734 blkg_stat_reset(&stats->empty_time);
735 #endif
736 }
737
738 /* @to += @from */
739 static void cfqg_stats_merge(struct cfqg_stats *to, struct cfqg_stats *from)
740 {
741 /* queued stats shouldn't be cleared */
742 blkg_rwstat_merge(&to->service_bytes, &from->service_bytes);
743 blkg_rwstat_merge(&to->serviced, &from->serviced);
744 blkg_rwstat_merge(&to->merged, &from->merged);
745 blkg_rwstat_merge(&to->service_time, &from->service_time);
746 blkg_rwstat_merge(&to->wait_time, &from->wait_time);
747 blkg_stat_merge(&from->time, &from->time);
748 #ifdef CONFIG_DEBUG_BLK_CGROUP
749 blkg_stat_merge(&to->unaccounted_time, &from->unaccounted_time);
750 blkg_stat_merge(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
751 blkg_stat_merge(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
752 blkg_stat_merge(&to->dequeue, &from->dequeue);
753 blkg_stat_merge(&to->group_wait_time, &from->group_wait_time);
754 blkg_stat_merge(&to->idle_time, &from->idle_time);
755 blkg_stat_merge(&to->empty_time, &from->empty_time);
756 #endif
757 }
758
759 /*
760 * Transfer @cfqg's stats to its parent's dead_stats so that the ancestors'
761 * recursive stats can still account for the amount used by this cfqg after
762 * it's gone.
763 */
764 static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
765 {
766 struct cfq_group *parent = cfqg_parent(cfqg);
767
768 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
769
770 if (unlikely(!parent))
771 return;
772
773 cfqg_stats_merge(&parent->dead_stats, &cfqg->stats);
774 cfqg_stats_merge(&parent->dead_stats, &cfqg->dead_stats);
775 cfqg_stats_reset(&cfqg->stats);
776 cfqg_stats_reset(&cfqg->dead_stats);
777 }
778
779 #else /* CONFIG_CFQ_GROUP_IOSCHED */
780
781 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
782 static inline void cfqg_get(struct cfq_group *cfqg) { }
783 static inline void cfqg_put(struct cfq_group *cfqg) { }
784
785 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
786 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
787 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
788 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
789 ##args)
790 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
791
792 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
793 struct cfq_group *curr_cfqg, int rw) { }
794 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
795 unsigned long time, unsigned long unaccounted_time) { }
796 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
797 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
798 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
799 uint64_t bytes, int rw) { }
800 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
801 uint64_t start_time, uint64_t io_start_time, int rw) { }
802
803 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
804
805 #define cfq_log(cfqd, fmt, args...) \
806 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
807
808 /* Traverses through cfq group service trees */
809 #define for_each_cfqg_st(cfqg, i, j, st) \
810 for (i = 0; i <= IDLE_WORKLOAD; i++) \
811 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
812 : &cfqg->service_tree_idle; \
813 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
814 (i == IDLE_WORKLOAD && j == 0); \
815 j++, st = i < IDLE_WORKLOAD ? \
816 &cfqg->service_trees[i][j]: NULL) \
817
818 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
819 struct cfq_ttime *ttime, bool group_idle)
820 {
821 unsigned long slice;
822 if (!sample_valid(ttime->ttime_samples))
823 return false;
824 if (group_idle)
825 slice = cfqd->cfq_group_idle;
826 else
827 slice = cfqd->cfq_slice_idle;
828 return ttime->ttime_mean > slice;
829 }
830
831 static inline bool iops_mode(struct cfq_data *cfqd)
832 {
833 /*
834 * If we are not idling on queues and it is a NCQ drive, parallel
835 * execution of requests is on and measuring time is not possible
836 * in most of the cases until and unless we drive shallower queue
837 * depths and that becomes a performance bottleneck. In such cases
838 * switch to start providing fairness in terms of number of IOs.
839 */
840 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
841 return true;
842 else
843 return false;
844 }
845
846 static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
847 {
848 if (cfq_class_idle(cfqq))
849 return IDLE_WORKLOAD;
850 if (cfq_class_rt(cfqq))
851 return RT_WORKLOAD;
852 return BE_WORKLOAD;
853 }
854
855
856 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
857 {
858 if (!cfq_cfqq_sync(cfqq))
859 return ASYNC_WORKLOAD;
860 if (!cfq_cfqq_idle_window(cfqq))
861 return SYNC_NOIDLE_WORKLOAD;
862 return SYNC_WORKLOAD;
863 }
864
865 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
866 struct cfq_data *cfqd,
867 struct cfq_group *cfqg)
868 {
869 if (wl_class == IDLE_WORKLOAD)
870 return cfqg->service_tree_idle.count;
871
872 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
873 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
874 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
875 }
876
877 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
878 struct cfq_group *cfqg)
879 {
880 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
881 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
882 }
883
884 static void cfq_dispatch_insert(struct request_queue *, struct request *);
885 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
886 struct cfq_io_cq *cic, struct bio *bio,
887 gfp_t gfp_mask);
888
889 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
890 {
891 /* cic->icq is the first member, %NULL will convert to %NULL */
892 return container_of(icq, struct cfq_io_cq, icq);
893 }
894
895 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
896 struct io_context *ioc)
897 {
898 if (ioc)
899 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
900 return NULL;
901 }
902
903 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
904 {
905 return cic->cfqq[is_sync];
906 }
907
908 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
909 bool is_sync)
910 {
911 cic->cfqq[is_sync] = cfqq;
912 }
913
914 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
915 {
916 return cic->icq.q->elevator->elevator_data;
917 }
918
919 /*
920 * We regard a request as SYNC, if it's either a read or has the SYNC bit
921 * set (in which case it could also be direct WRITE).
922 */
923 static inline bool cfq_bio_sync(struct bio *bio)
924 {
925 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
926 }
927
928 /*
929 * scheduler run of queue, if there are requests pending and no one in the
930 * driver that will restart queueing
931 */
932 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
933 {
934 if (cfqd->busy_queues) {
935 cfq_log(cfqd, "schedule dispatch");
936 kblockd_schedule_work(&cfqd->unplug_work);
937 }
938 }
939
940 /*
941 * Scale schedule slice based on io priority. Use the sync time slice only
942 * if a queue is marked sync and has sync io queued. A sync queue with async
943 * io only, should not get full sync slice length.
944 */
945 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
946 unsigned short prio)
947 {
948 const int base_slice = cfqd->cfq_slice[sync];
949
950 WARN_ON(prio >= IOPRIO_BE_NR);
951
952 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
953 }
954
955 static inline int
956 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
957 {
958 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
959 }
960
961 /**
962 * cfqg_scale_charge - scale disk time charge according to cfqg weight
963 * @charge: disk time being charged
964 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
965 *
966 * Scale @charge according to @vfraction, which is in range (0, 1]. The
967 * scaling is inversely proportional.
968 *
969 * scaled = charge / vfraction
970 *
971 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
972 */
973 static inline u64 cfqg_scale_charge(unsigned long charge,
974 unsigned int vfraction)
975 {
976 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
977
978 /* charge / vfraction */
979 c <<= CFQ_SERVICE_SHIFT;
980 do_div(c, vfraction);
981 return c;
982 }
983
984 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
985 {
986 s64 delta = (s64)(vdisktime - min_vdisktime);
987 if (delta > 0)
988 min_vdisktime = vdisktime;
989
990 return min_vdisktime;
991 }
992
993 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
994 {
995 s64 delta = (s64)(vdisktime - min_vdisktime);
996 if (delta < 0)
997 min_vdisktime = vdisktime;
998
999 return min_vdisktime;
1000 }
1001
1002 static void update_min_vdisktime(struct cfq_rb_root *st)
1003 {
1004 struct cfq_group *cfqg;
1005
1006 if (st->left) {
1007 cfqg = rb_entry_cfqg(st->left);
1008 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
1009 cfqg->vdisktime);
1010 }
1011 }
1012
1013 /*
1014 * get averaged number of queues of RT/BE priority.
1015 * average is updated, with a formula that gives more weight to higher numbers,
1016 * to quickly follows sudden increases and decrease slowly
1017 */
1018
1019 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
1020 struct cfq_group *cfqg, bool rt)
1021 {
1022 unsigned min_q, max_q;
1023 unsigned mult = cfq_hist_divisor - 1;
1024 unsigned round = cfq_hist_divisor / 2;
1025 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1026
1027 min_q = min(cfqg->busy_queues_avg[rt], busy);
1028 max_q = max(cfqg->busy_queues_avg[rt], busy);
1029 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1030 cfq_hist_divisor;
1031 return cfqg->busy_queues_avg[rt];
1032 }
1033
1034 static inline unsigned
1035 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1036 {
1037 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1038 }
1039
1040 static inline unsigned
1041 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1042 {
1043 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
1044 if (cfqd->cfq_latency) {
1045 /*
1046 * interested queues (we consider only the ones with the same
1047 * priority class in the cfq group)
1048 */
1049 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1050 cfq_class_rt(cfqq));
1051 unsigned sync_slice = cfqd->cfq_slice[1];
1052 unsigned expect_latency = sync_slice * iq;
1053 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1054
1055 if (expect_latency > group_slice) {
1056 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
1057 /* scale low_slice according to IO priority
1058 * and sync vs async */
1059 unsigned low_slice =
1060 min(slice, base_low_slice * slice / sync_slice);
1061 /* the adapted slice value is scaled to fit all iqs
1062 * into the target latency */
1063 slice = max(slice * group_slice / expect_latency,
1064 low_slice);
1065 }
1066 }
1067 return slice;
1068 }
1069
1070 static inline void
1071 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1072 {
1073 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1074
1075 cfqq->slice_start = jiffies;
1076 cfqq->slice_end = jiffies + slice;
1077 cfqq->allocated_slice = slice;
1078 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
1079 }
1080
1081 /*
1082 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1083 * isn't valid until the first request from the dispatch is activated
1084 * and the slice time set.
1085 */
1086 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1087 {
1088 if (cfq_cfqq_slice_new(cfqq))
1089 return false;
1090 if (time_before(jiffies, cfqq->slice_end))
1091 return false;
1092
1093 return true;
1094 }
1095
1096 /*
1097 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1098 * We choose the request that is closest to the head right now. Distance
1099 * behind the head is penalized and only allowed to a certain extent.
1100 */
1101 static struct request *
1102 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1103 {
1104 sector_t s1, s2, d1 = 0, d2 = 0;
1105 unsigned long back_max;
1106 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1107 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1108 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1109
1110 if (rq1 == NULL || rq1 == rq2)
1111 return rq2;
1112 if (rq2 == NULL)
1113 return rq1;
1114
1115 if (rq_is_sync(rq1) != rq_is_sync(rq2))
1116 return rq_is_sync(rq1) ? rq1 : rq2;
1117
1118 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1119 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1120
1121 s1 = blk_rq_pos(rq1);
1122 s2 = blk_rq_pos(rq2);
1123
1124 /*
1125 * by definition, 1KiB is 2 sectors
1126 */
1127 back_max = cfqd->cfq_back_max * 2;
1128
1129 /*
1130 * Strict one way elevator _except_ in the case where we allow
1131 * short backward seeks which are biased as twice the cost of a
1132 * similar forward seek.
1133 */
1134 if (s1 >= last)
1135 d1 = s1 - last;
1136 else if (s1 + back_max >= last)
1137 d1 = (last - s1) * cfqd->cfq_back_penalty;
1138 else
1139 wrap |= CFQ_RQ1_WRAP;
1140
1141 if (s2 >= last)
1142 d2 = s2 - last;
1143 else if (s2 + back_max >= last)
1144 d2 = (last - s2) * cfqd->cfq_back_penalty;
1145 else
1146 wrap |= CFQ_RQ2_WRAP;
1147
1148 /* Found required data */
1149
1150 /*
1151 * By doing switch() on the bit mask "wrap" we avoid having to
1152 * check two variables for all permutations: --> faster!
1153 */
1154 switch (wrap) {
1155 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1156 if (d1 < d2)
1157 return rq1;
1158 else if (d2 < d1)
1159 return rq2;
1160 else {
1161 if (s1 >= s2)
1162 return rq1;
1163 else
1164 return rq2;
1165 }
1166
1167 case CFQ_RQ2_WRAP:
1168 return rq1;
1169 case CFQ_RQ1_WRAP:
1170 return rq2;
1171 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1172 default:
1173 /*
1174 * Since both rqs are wrapped,
1175 * start with the one that's further behind head
1176 * (--> only *one* back seek required),
1177 * since back seek takes more time than forward.
1178 */
1179 if (s1 <= s2)
1180 return rq1;
1181 else
1182 return rq2;
1183 }
1184 }
1185
1186 /*
1187 * The below is leftmost cache rbtree addon
1188 */
1189 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1190 {
1191 /* Service tree is empty */
1192 if (!root->count)
1193 return NULL;
1194
1195 if (!root->left)
1196 root->left = rb_first(&root->rb);
1197
1198 if (root->left)
1199 return rb_entry(root->left, struct cfq_queue, rb_node);
1200
1201 return NULL;
1202 }
1203
1204 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1205 {
1206 if (!root->left)
1207 root->left = rb_first(&root->rb);
1208
1209 if (root->left)
1210 return rb_entry_cfqg(root->left);
1211
1212 return NULL;
1213 }
1214
1215 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1216 {
1217 rb_erase(n, root);
1218 RB_CLEAR_NODE(n);
1219 }
1220
1221 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1222 {
1223 if (root->left == n)
1224 root->left = NULL;
1225 rb_erase_init(n, &root->rb);
1226 --root->count;
1227 }
1228
1229 /*
1230 * would be nice to take fifo expire time into account as well
1231 */
1232 static struct request *
1233 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1234 struct request *last)
1235 {
1236 struct rb_node *rbnext = rb_next(&last->rb_node);
1237 struct rb_node *rbprev = rb_prev(&last->rb_node);
1238 struct request *next = NULL, *prev = NULL;
1239
1240 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1241
1242 if (rbprev)
1243 prev = rb_entry_rq(rbprev);
1244
1245 if (rbnext)
1246 next = rb_entry_rq(rbnext);
1247 else {
1248 rbnext = rb_first(&cfqq->sort_list);
1249 if (rbnext && rbnext != &last->rb_node)
1250 next = rb_entry_rq(rbnext);
1251 }
1252
1253 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1254 }
1255
1256 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1257 struct cfq_queue *cfqq)
1258 {
1259 /*
1260 * just an approximation, should be ok.
1261 */
1262 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1263 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1264 }
1265
1266 static inline s64
1267 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1268 {
1269 return cfqg->vdisktime - st->min_vdisktime;
1270 }
1271
1272 static void
1273 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1274 {
1275 struct rb_node **node = &st->rb.rb_node;
1276 struct rb_node *parent = NULL;
1277 struct cfq_group *__cfqg;
1278 s64 key = cfqg_key(st, cfqg);
1279 int left = 1;
1280
1281 while (*node != NULL) {
1282 parent = *node;
1283 __cfqg = rb_entry_cfqg(parent);
1284
1285 if (key < cfqg_key(st, __cfqg))
1286 node = &parent->rb_left;
1287 else {
1288 node = &parent->rb_right;
1289 left = 0;
1290 }
1291 }
1292
1293 if (left)
1294 st->left = &cfqg->rb_node;
1295
1296 rb_link_node(&cfqg->rb_node, parent, node);
1297 rb_insert_color(&cfqg->rb_node, &st->rb);
1298 }
1299
1300 /*
1301 * This has to be called only on activation of cfqg
1302 */
1303 static void
1304 cfq_update_group_weight(struct cfq_group *cfqg)
1305 {
1306 if (cfqg->new_weight) {
1307 cfqg->weight = cfqg->new_weight;
1308 cfqg->new_weight = 0;
1309 }
1310 }
1311
1312 static void
1313 cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1314 {
1315 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1316
1317 if (cfqg->new_leaf_weight) {
1318 cfqg->leaf_weight = cfqg->new_leaf_weight;
1319 cfqg->new_leaf_weight = 0;
1320 }
1321 }
1322
1323 static void
1324 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1325 {
1326 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1327 struct cfq_group *pos = cfqg;
1328 struct cfq_group *parent;
1329 bool propagate;
1330
1331 /* add to the service tree */
1332 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1333
1334 /*
1335 * Update leaf_weight. We cannot update weight at this point
1336 * because cfqg might already have been activated and is
1337 * contributing its current weight to the parent's child_weight.
1338 */
1339 cfq_update_group_leaf_weight(cfqg);
1340 __cfq_group_service_tree_add(st, cfqg);
1341
1342 /*
1343 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1344 * entitled to. vfraction is calculated by walking the tree
1345 * towards the root calculating the fraction it has at each level.
1346 * The compounded ratio is how much vfraction @cfqg owns.
1347 *
1348 * Start with the proportion tasks in this cfqg has against active
1349 * children cfqgs - its leaf_weight against children_weight.
1350 */
1351 propagate = !pos->nr_active++;
1352 pos->children_weight += pos->leaf_weight;
1353 vfr = vfr * pos->leaf_weight / pos->children_weight;
1354
1355 /*
1356 * Compound ->weight walking up the tree. Both activation and
1357 * vfraction calculation are done in the same loop. Propagation
1358 * stops once an already activated node is met. vfraction
1359 * calculation should always continue to the root.
1360 */
1361 while ((parent = cfqg_parent(pos))) {
1362 if (propagate) {
1363 cfq_update_group_weight(pos);
1364 propagate = !parent->nr_active++;
1365 parent->children_weight += pos->weight;
1366 }
1367 vfr = vfr * pos->weight / parent->children_weight;
1368 pos = parent;
1369 }
1370
1371 cfqg->vfraction = max_t(unsigned, vfr, 1);
1372 }
1373
1374 static void
1375 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1376 {
1377 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1378 struct cfq_group *__cfqg;
1379 struct rb_node *n;
1380
1381 cfqg->nr_cfqq++;
1382 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1383 return;
1384
1385 /*
1386 * Currently put the group at the end. Later implement something
1387 * so that groups get lesser vtime based on their weights, so that
1388 * if group does not loose all if it was not continuously backlogged.
1389 */
1390 n = rb_last(&st->rb);
1391 if (n) {
1392 __cfqg = rb_entry_cfqg(n);
1393 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1394 } else
1395 cfqg->vdisktime = st->min_vdisktime;
1396 cfq_group_service_tree_add(st, cfqg);
1397 }
1398
1399 static void
1400 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1401 {
1402 struct cfq_group *pos = cfqg;
1403 bool propagate;
1404
1405 /*
1406 * Undo activation from cfq_group_service_tree_add(). Deactivate
1407 * @cfqg and propagate deactivation upwards.
1408 */
1409 propagate = !--pos->nr_active;
1410 pos->children_weight -= pos->leaf_weight;
1411
1412 while (propagate) {
1413 struct cfq_group *parent = cfqg_parent(pos);
1414
1415 /* @pos has 0 nr_active at this point */
1416 WARN_ON_ONCE(pos->children_weight);
1417 pos->vfraction = 0;
1418
1419 if (!parent)
1420 break;
1421
1422 propagate = !--parent->nr_active;
1423 parent->children_weight -= pos->weight;
1424 pos = parent;
1425 }
1426
1427 /* remove from the service tree */
1428 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1429 cfq_rb_erase(&cfqg->rb_node, st);
1430 }
1431
1432 static void
1433 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1434 {
1435 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1436
1437 BUG_ON(cfqg->nr_cfqq < 1);
1438 cfqg->nr_cfqq--;
1439
1440 /* If there are other cfq queues under this group, don't delete it */
1441 if (cfqg->nr_cfqq)
1442 return;
1443
1444 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1445 cfq_group_service_tree_del(st, cfqg);
1446 cfqg->saved_wl_slice = 0;
1447 cfqg_stats_update_dequeue(cfqg);
1448 }
1449
1450 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1451 unsigned int *unaccounted_time)
1452 {
1453 unsigned int slice_used;
1454
1455 /*
1456 * Queue got expired before even a single request completed or
1457 * got expired immediately after first request completion.
1458 */
1459 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1460 /*
1461 * Also charge the seek time incurred to the group, otherwise
1462 * if there are mutiple queues in the group, each can dispatch
1463 * a single request on seeky media and cause lots of seek time
1464 * and group will never know it.
1465 */
1466 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1467 1);
1468 } else {
1469 slice_used = jiffies - cfqq->slice_start;
1470 if (slice_used > cfqq->allocated_slice) {
1471 *unaccounted_time = slice_used - cfqq->allocated_slice;
1472 slice_used = cfqq->allocated_slice;
1473 }
1474 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1475 *unaccounted_time += cfqq->slice_start -
1476 cfqq->dispatch_start;
1477 }
1478
1479 return slice_used;
1480 }
1481
1482 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1483 struct cfq_queue *cfqq)
1484 {
1485 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1486 unsigned int used_sl, charge, unaccounted_sl = 0;
1487 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1488 - cfqg->service_tree_idle.count;
1489 unsigned int vfr;
1490
1491 BUG_ON(nr_sync < 0);
1492 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1493
1494 if (iops_mode(cfqd))
1495 charge = cfqq->slice_dispatch;
1496 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1497 charge = cfqq->allocated_slice;
1498
1499 /*
1500 * Can't update vdisktime while on service tree and cfqg->vfraction
1501 * is valid only while on it. Cache vfr, leave the service tree,
1502 * update vdisktime and go back on. The re-addition to the tree
1503 * will also update the weights as necessary.
1504 */
1505 vfr = cfqg->vfraction;
1506 cfq_group_service_tree_del(st, cfqg);
1507 cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1508 cfq_group_service_tree_add(st, cfqg);
1509
1510 /* This group is being expired. Save the context */
1511 if (time_after(cfqd->workload_expires, jiffies)) {
1512 cfqg->saved_wl_slice = cfqd->workload_expires
1513 - jiffies;
1514 cfqg->saved_wl_type = cfqd->serving_wl_type;
1515 cfqg->saved_wl_class = cfqd->serving_wl_class;
1516 } else
1517 cfqg->saved_wl_slice = 0;
1518
1519 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1520 st->min_vdisktime);
1521 cfq_log_cfqq(cfqq->cfqd, cfqq,
1522 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1523 used_sl, cfqq->slice_dispatch, charge,
1524 iops_mode(cfqd), cfqq->nr_sectors);
1525 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1526 cfqg_stats_set_start_empty_time(cfqg);
1527 }
1528
1529 /**
1530 * cfq_init_cfqg_base - initialize base part of a cfq_group
1531 * @cfqg: cfq_group to initialize
1532 *
1533 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1534 * is enabled or not.
1535 */
1536 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1537 {
1538 struct cfq_rb_root *st;
1539 int i, j;
1540
1541 for_each_cfqg_st(cfqg, i, j, st)
1542 *st = CFQ_RB_ROOT;
1543 RB_CLEAR_NODE(&cfqg->rb_node);
1544
1545 cfqg->ttime.last_end_request = jiffies;
1546 }
1547
1548 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1549 static void cfqg_stats_init(struct cfqg_stats *stats)
1550 {
1551 blkg_rwstat_init(&stats->service_bytes);
1552 blkg_rwstat_init(&stats->serviced);
1553 blkg_rwstat_init(&stats->merged);
1554 blkg_rwstat_init(&stats->service_time);
1555 blkg_rwstat_init(&stats->wait_time);
1556 blkg_rwstat_init(&stats->queued);
1557
1558 blkg_stat_init(&stats->sectors);
1559 blkg_stat_init(&stats->time);
1560
1561 #ifdef CONFIG_DEBUG_BLK_CGROUP
1562 blkg_stat_init(&stats->unaccounted_time);
1563 blkg_stat_init(&stats->avg_queue_size_sum);
1564 blkg_stat_init(&stats->avg_queue_size_samples);
1565 blkg_stat_init(&stats->dequeue);
1566 blkg_stat_init(&stats->group_wait_time);
1567 blkg_stat_init(&stats->idle_time);
1568 blkg_stat_init(&stats->empty_time);
1569 #endif
1570 }
1571
1572 static void cfq_cpd_init(const struct blkcg *blkcg)
1573 {
1574 struct cfq_group_data *cgd =
1575 cpd_to_cfqgd(blkcg->pd[blkcg_policy_cfq.plid]);
1576
1577 if (blkcg == &blkcg_root) {
1578 cgd->weight = 2 * CFQ_WEIGHT_DEFAULT;
1579 cgd->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
1580 } else {
1581 cgd->weight = CFQ_WEIGHT_DEFAULT;
1582 cgd->leaf_weight = CFQ_WEIGHT_DEFAULT;
1583 }
1584 }
1585
1586 static void cfq_pd_init(struct blkcg_gq *blkg)
1587 {
1588 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1589 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkg->blkcg);
1590
1591 cfq_init_cfqg_base(cfqg);
1592 cfqg->weight = cgd->weight;
1593 cfqg->leaf_weight = cgd->leaf_weight;
1594 cfqg_stats_init(&cfqg->stats);
1595 cfqg_stats_init(&cfqg->dead_stats);
1596 }
1597
1598 static void cfq_pd_offline(struct blkcg_gq *blkg)
1599 {
1600 /*
1601 * @blkg is going offline and will be ignored by
1602 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1603 * that they don't get lost. If IOs complete after this point, the
1604 * stats for them will be lost. Oh well...
1605 */
1606 cfqg_stats_xfer_dead(blkg_to_cfqg(blkg));
1607 }
1608
1609 /* offset delta from cfqg->stats to cfqg->dead_stats */
1610 static const int dead_stats_off_delta = offsetof(struct cfq_group, dead_stats) -
1611 offsetof(struct cfq_group, stats);
1612
1613 /* to be used by recursive prfill, sums live and dead stats recursively */
1614 static u64 cfqg_stat_pd_recursive_sum(struct blkg_policy_data *pd, int off)
1615 {
1616 u64 sum = 0;
1617
1618 sum += blkg_stat_recursive_sum(pd, off);
1619 sum += blkg_stat_recursive_sum(pd, off + dead_stats_off_delta);
1620 return sum;
1621 }
1622
1623 /* to be used by recursive prfill, sums live and dead rwstats recursively */
1624 static struct blkg_rwstat cfqg_rwstat_pd_recursive_sum(struct blkg_policy_data *pd,
1625 int off)
1626 {
1627 struct blkg_rwstat a, b;
1628
1629 a = blkg_rwstat_recursive_sum(pd, off);
1630 b = blkg_rwstat_recursive_sum(pd, off + dead_stats_off_delta);
1631 blkg_rwstat_merge(&a, &b);
1632 return a;
1633 }
1634
1635 static void cfq_pd_reset_stats(struct blkcg_gq *blkg)
1636 {
1637 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1638
1639 cfqg_stats_reset(&cfqg->stats);
1640 cfqg_stats_reset(&cfqg->dead_stats);
1641 }
1642
1643 /*
1644 * Search for the cfq group current task belongs to. request_queue lock must
1645 * be held.
1646 */
1647 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1648 struct blkcg *blkcg)
1649 {
1650 struct request_queue *q = cfqd->queue;
1651 struct cfq_group *cfqg = NULL;
1652
1653 /* avoid lookup for the common case where there's no blkcg */
1654 if (blkcg == &blkcg_root) {
1655 cfqg = cfqd->root_group;
1656 } else {
1657 struct blkcg_gq *blkg;
1658
1659 blkg = blkg_lookup_create(blkcg, q);
1660 if (!IS_ERR(blkg))
1661 cfqg = blkg_to_cfqg(blkg);
1662 }
1663
1664 return cfqg;
1665 }
1666
1667 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1668 {
1669 /* Currently, all async queues are mapped to root group */
1670 if (!cfq_cfqq_sync(cfqq))
1671 cfqg = cfqq->cfqd->root_group;
1672
1673 cfqq->cfqg = cfqg;
1674 /* cfqq reference on cfqg */
1675 cfqg_get(cfqg);
1676 }
1677
1678 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1679 struct blkg_policy_data *pd, int off)
1680 {
1681 struct cfq_group *cfqg = pd_to_cfqg(pd);
1682
1683 if (!cfqg->dev_weight)
1684 return 0;
1685 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1686 }
1687
1688 static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1689 {
1690 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1691 cfqg_prfill_weight_device, &blkcg_policy_cfq,
1692 0, false);
1693 return 0;
1694 }
1695
1696 static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1697 struct blkg_policy_data *pd, int off)
1698 {
1699 struct cfq_group *cfqg = pd_to_cfqg(pd);
1700
1701 if (!cfqg->dev_leaf_weight)
1702 return 0;
1703 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1704 }
1705
1706 static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1707 {
1708 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1709 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1710 0, false);
1711 return 0;
1712 }
1713
1714 static int cfq_print_weight(struct seq_file *sf, void *v)
1715 {
1716 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1717 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1718 unsigned int val = 0;
1719
1720 if (cgd)
1721 val = cgd->weight;
1722
1723 seq_printf(sf, "%u\n", val);
1724 return 0;
1725 }
1726
1727 static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1728 {
1729 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1730 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1731 unsigned int val = 0;
1732
1733 if (cgd)
1734 val = cgd->leaf_weight;
1735
1736 seq_printf(sf, "%u\n", val);
1737 return 0;
1738 }
1739
1740 static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1741 char *buf, size_t nbytes, loff_t off,
1742 bool is_leaf_weight)
1743 {
1744 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1745 struct blkg_conf_ctx ctx;
1746 struct cfq_group *cfqg;
1747 struct cfq_group_data *cfqgd;
1748 int ret;
1749
1750 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1751 if (ret)
1752 return ret;
1753
1754 ret = -EINVAL;
1755 cfqg = blkg_to_cfqg(ctx.blkg);
1756 cfqgd = blkcg_to_cfqgd(blkcg);
1757 if (!cfqg || !cfqgd)
1758 goto err;
1759
1760 if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) {
1761 if (!is_leaf_weight) {
1762 cfqg->dev_weight = ctx.v;
1763 cfqg->new_weight = ctx.v ?: cfqgd->weight;
1764 } else {
1765 cfqg->dev_leaf_weight = ctx.v;
1766 cfqg->new_leaf_weight = ctx.v ?: cfqgd->leaf_weight;
1767 }
1768 ret = 0;
1769 }
1770
1771 err:
1772 blkg_conf_finish(&ctx);
1773 return ret ?: nbytes;
1774 }
1775
1776 static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1777 char *buf, size_t nbytes, loff_t off)
1778 {
1779 return __cfqg_set_weight_device(of, buf, nbytes, off, false);
1780 }
1781
1782 static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1783 char *buf, size_t nbytes, loff_t off)
1784 {
1785 return __cfqg_set_weight_device(of, buf, nbytes, off, true);
1786 }
1787
1788 static int __cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1789 u64 val, bool is_leaf_weight)
1790 {
1791 struct blkcg *blkcg = css_to_blkcg(css);
1792 struct blkcg_gq *blkg;
1793 struct cfq_group_data *cfqgd;
1794 int ret = 0;
1795
1796 if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
1797 return -EINVAL;
1798
1799 spin_lock_irq(&blkcg->lock);
1800 cfqgd = blkcg_to_cfqgd(blkcg);
1801 if (!cfqgd) {
1802 ret = -EINVAL;
1803 goto out;
1804 }
1805
1806 if (!is_leaf_weight)
1807 cfqgd->weight = val;
1808 else
1809 cfqgd->leaf_weight = val;
1810
1811 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1812 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1813
1814 if (!cfqg)
1815 continue;
1816
1817 if (!is_leaf_weight) {
1818 if (!cfqg->dev_weight)
1819 cfqg->new_weight = cfqgd->weight;
1820 } else {
1821 if (!cfqg->dev_leaf_weight)
1822 cfqg->new_leaf_weight = cfqgd->leaf_weight;
1823 }
1824 }
1825
1826 out:
1827 spin_unlock_irq(&blkcg->lock);
1828 return ret;
1829 }
1830
1831 static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1832 u64 val)
1833 {
1834 return __cfq_set_weight(css, cft, val, false);
1835 }
1836
1837 static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1838 struct cftype *cft, u64 val)
1839 {
1840 return __cfq_set_weight(css, cft, val, true);
1841 }
1842
1843 static int cfqg_print_stat(struct seq_file *sf, void *v)
1844 {
1845 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1846 &blkcg_policy_cfq, seq_cft(sf)->private, false);
1847 return 0;
1848 }
1849
1850 static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1851 {
1852 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1853 &blkcg_policy_cfq, seq_cft(sf)->private, true);
1854 return 0;
1855 }
1856
1857 static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1858 struct blkg_policy_data *pd, int off)
1859 {
1860 u64 sum = cfqg_stat_pd_recursive_sum(pd, off);
1861
1862 return __blkg_prfill_u64(sf, pd, sum);
1863 }
1864
1865 static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1866 struct blkg_policy_data *pd, int off)
1867 {
1868 struct blkg_rwstat sum = cfqg_rwstat_pd_recursive_sum(pd, off);
1869
1870 return __blkg_prfill_rwstat(sf, pd, &sum);
1871 }
1872
1873 static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1874 {
1875 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1876 cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1877 seq_cft(sf)->private, false);
1878 return 0;
1879 }
1880
1881 static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1882 {
1883 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1884 cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1885 seq_cft(sf)->private, true);
1886 return 0;
1887 }
1888
1889 #ifdef CONFIG_DEBUG_BLK_CGROUP
1890 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1891 struct blkg_policy_data *pd, int off)
1892 {
1893 struct cfq_group *cfqg = pd_to_cfqg(pd);
1894 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1895 u64 v = 0;
1896
1897 if (samples) {
1898 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1899 v = div64_u64(v, samples);
1900 }
1901 __blkg_prfill_u64(sf, pd, v);
1902 return 0;
1903 }
1904
1905 /* print avg_queue_size */
1906 static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
1907 {
1908 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1909 cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
1910 0, false);
1911 return 0;
1912 }
1913 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1914
1915 static struct cftype cfq_blkcg_files[] = {
1916 /* on root, weight is mapped to leaf_weight */
1917 {
1918 .name = "weight_device",
1919 .flags = CFTYPE_ONLY_ON_ROOT,
1920 .seq_show = cfqg_print_leaf_weight_device,
1921 .write = cfqg_set_leaf_weight_device,
1922 },
1923 {
1924 .name = "weight",
1925 .flags = CFTYPE_ONLY_ON_ROOT,
1926 .seq_show = cfq_print_leaf_weight,
1927 .write_u64 = cfq_set_leaf_weight,
1928 },
1929
1930 /* no such mapping necessary for !roots */
1931 {
1932 .name = "weight_device",
1933 .flags = CFTYPE_NOT_ON_ROOT,
1934 .seq_show = cfqg_print_weight_device,
1935 .write = cfqg_set_weight_device,
1936 },
1937 {
1938 .name = "weight",
1939 .flags = CFTYPE_NOT_ON_ROOT,
1940 .seq_show = cfq_print_weight,
1941 .write_u64 = cfq_set_weight,
1942 },
1943
1944 {
1945 .name = "leaf_weight_device",
1946 .seq_show = cfqg_print_leaf_weight_device,
1947 .write = cfqg_set_leaf_weight_device,
1948 },
1949 {
1950 .name = "leaf_weight",
1951 .seq_show = cfq_print_leaf_weight,
1952 .write_u64 = cfq_set_leaf_weight,
1953 },
1954
1955 /* statistics, covers only the tasks in the cfqg */
1956 {
1957 .name = "time",
1958 .private = offsetof(struct cfq_group, stats.time),
1959 .seq_show = cfqg_print_stat,
1960 },
1961 {
1962 .name = "sectors",
1963 .private = offsetof(struct cfq_group, stats.sectors),
1964 .seq_show = cfqg_print_stat,
1965 },
1966 {
1967 .name = "io_service_bytes",
1968 .private = offsetof(struct cfq_group, stats.service_bytes),
1969 .seq_show = cfqg_print_rwstat,
1970 },
1971 {
1972 .name = "io_serviced",
1973 .private = offsetof(struct cfq_group, stats.serviced),
1974 .seq_show = cfqg_print_rwstat,
1975 },
1976 {
1977 .name = "io_service_time",
1978 .private = offsetof(struct cfq_group, stats.service_time),
1979 .seq_show = cfqg_print_rwstat,
1980 },
1981 {
1982 .name = "io_wait_time",
1983 .private = offsetof(struct cfq_group, stats.wait_time),
1984 .seq_show = cfqg_print_rwstat,
1985 },
1986 {
1987 .name = "io_merged",
1988 .private = offsetof(struct cfq_group, stats.merged),
1989 .seq_show = cfqg_print_rwstat,
1990 },
1991 {
1992 .name = "io_queued",
1993 .private = offsetof(struct cfq_group, stats.queued),
1994 .seq_show = cfqg_print_rwstat,
1995 },
1996
1997 /* the same statictics which cover the cfqg and its descendants */
1998 {
1999 .name = "time_recursive",
2000 .private = offsetof(struct cfq_group, stats.time),
2001 .seq_show = cfqg_print_stat_recursive,
2002 },
2003 {
2004 .name = "sectors_recursive",
2005 .private = offsetof(struct cfq_group, stats.sectors),
2006 .seq_show = cfqg_print_stat_recursive,
2007 },
2008 {
2009 .name = "io_service_bytes_recursive",
2010 .private = offsetof(struct cfq_group, stats.service_bytes),
2011 .seq_show = cfqg_print_rwstat_recursive,
2012 },
2013 {
2014 .name = "io_serviced_recursive",
2015 .private = offsetof(struct cfq_group, stats.serviced),
2016 .seq_show = cfqg_print_rwstat_recursive,
2017 },
2018 {
2019 .name = "io_service_time_recursive",
2020 .private = offsetof(struct cfq_group, stats.service_time),
2021 .seq_show = cfqg_print_rwstat_recursive,
2022 },
2023 {
2024 .name = "io_wait_time_recursive",
2025 .private = offsetof(struct cfq_group, stats.wait_time),
2026 .seq_show = cfqg_print_rwstat_recursive,
2027 },
2028 {
2029 .name = "io_merged_recursive",
2030 .private = offsetof(struct cfq_group, stats.merged),
2031 .seq_show = cfqg_print_rwstat_recursive,
2032 },
2033 {
2034 .name = "io_queued_recursive",
2035 .private = offsetof(struct cfq_group, stats.queued),
2036 .seq_show = cfqg_print_rwstat_recursive,
2037 },
2038 #ifdef CONFIG_DEBUG_BLK_CGROUP
2039 {
2040 .name = "avg_queue_size",
2041 .seq_show = cfqg_print_avg_queue_size,
2042 },
2043 {
2044 .name = "group_wait_time",
2045 .private = offsetof(struct cfq_group, stats.group_wait_time),
2046 .seq_show = cfqg_print_stat,
2047 },
2048 {
2049 .name = "idle_time",
2050 .private = offsetof(struct cfq_group, stats.idle_time),
2051 .seq_show = cfqg_print_stat,
2052 },
2053 {
2054 .name = "empty_time",
2055 .private = offsetof(struct cfq_group, stats.empty_time),
2056 .seq_show = cfqg_print_stat,
2057 },
2058 {
2059 .name = "dequeue",
2060 .private = offsetof(struct cfq_group, stats.dequeue),
2061 .seq_show = cfqg_print_stat,
2062 },
2063 {
2064 .name = "unaccounted_time",
2065 .private = offsetof(struct cfq_group, stats.unaccounted_time),
2066 .seq_show = cfqg_print_stat,
2067 },
2068 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2069 { } /* terminate */
2070 };
2071 #else /* GROUP_IOSCHED */
2072 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
2073 struct blkcg *blkcg)
2074 {
2075 return cfqd->root_group;
2076 }
2077
2078 static inline void
2079 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2080 cfqq->cfqg = cfqg;
2081 }
2082
2083 #endif /* GROUP_IOSCHED */
2084
2085 /*
2086 * The cfqd->service_trees holds all pending cfq_queue's that have
2087 * requests waiting to be processed. It is sorted in the order that
2088 * we will service the queues.
2089 */
2090 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2091 bool add_front)
2092 {
2093 struct rb_node **p, *parent;
2094 struct cfq_queue *__cfqq;
2095 unsigned long rb_key;
2096 struct cfq_rb_root *st;
2097 int left;
2098 int new_cfqq = 1;
2099
2100 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2101 if (cfq_class_idle(cfqq)) {
2102 rb_key = CFQ_IDLE_DELAY;
2103 parent = rb_last(&st->rb);
2104 if (parent && parent != &cfqq->rb_node) {
2105 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2106 rb_key += __cfqq->rb_key;
2107 } else
2108 rb_key += jiffies;
2109 } else if (!add_front) {
2110 /*
2111 * Get our rb key offset. Subtract any residual slice
2112 * value carried from last service. A negative resid
2113 * count indicates slice overrun, and this should position
2114 * the next service time further away in the tree.
2115 */
2116 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
2117 rb_key -= cfqq->slice_resid;
2118 cfqq->slice_resid = 0;
2119 } else {
2120 rb_key = -HZ;
2121 __cfqq = cfq_rb_first(st);
2122 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
2123 }
2124
2125 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2126 new_cfqq = 0;
2127 /*
2128 * same position, nothing more to do
2129 */
2130 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2131 return;
2132
2133 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2134 cfqq->service_tree = NULL;
2135 }
2136
2137 left = 1;
2138 parent = NULL;
2139 cfqq->service_tree = st;
2140 p = &st->rb.rb_node;
2141 while (*p) {
2142 parent = *p;
2143 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2144
2145 /*
2146 * sort by key, that represents service time.
2147 */
2148 if (time_before(rb_key, __cfqq->rb_key))
2149 p = &parent->rb_left;
2150 else {
2151 p = &parent->rb_right;
2152 left = 0;
2153 }
2154 }
2155
2156 if (left)
2157 st->left = &cfqq->rb_node;
2158
2159 cfqq->rb_key = rb_key;
2160 rb_link_node(&cfqq->rb_node, parent, p);
2161 rb_insert_color(&cfqq->rb_node, &st->rb);
2162 st->count++;
2163 if (add_front || !new_cfqq)
2164 return;
2165 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2166 }
2167
2168 static struct cfq_queue *
2169 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2170 sector_t sector, struct rb_node **ret_parent,
2171 struct rb_node ***rb_link)
2172 {
2173 struct rb_node **p, *parent;
2174 struct cfq_queue *cfqq = NULL;
2175
2176 parent = NULL;
2177 p = &root->rb_node;
2178 while (*p) {
2179 struct rb_node **n;
2180
2181 parent = *p;
2182 cfqq = rb_entry(parent, struct cfq_queue, p_node);
2183
2184 /*
2185 * Sort strictly based on sector. Smallest to the left,
2186 * largest to the right.
2187 */
2188 if (sector > blk_rq_pos(cfqq->next_rq))
2189 n = &(*p)->rb_right;
2190 else if (sector < blk_rq_pos(cfqq->next_rq))
2191 n = &(*p)->rb_left;
2192 else
2193 break;
2194 p = n;
2195 cfqq = NULL;
2196 }
2197
2198 *ret_parent = parent;
2199 if (rb_link)
2200 *rb_link = p;
2201 return cfqq;
2202 }
2203
2204 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2205 {
2206 struct rb_node **p, *parent;
2207 struct cfq_queue *__cfqq;
2208
2209 if (cfqq->p_root) {
2210 rb_erase(&cfqq->p_node, cfqq->p_root);
2211 cfqq->p_root = NULL;
2212 }
2213
2214 if (cfq_class_idle(cfqq))
2215 return;
2216 if (!cfqq->next_rq)
2217 return;
2218
2219 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2220 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2221 blk_rq_pos(cfqq->next_rq), &parent, &p);
2222 if (!__cfqq) {
2223 rb_link_node(&cfqq->p_node, parent, p);
2224 rb_insert_color(&cfqq->p_node, cfqq->p_root);
2225 } else
2226 cfqq->p_root = NULL;
2227 }
2228
2229 /*
2230 * Update cfqq's position in the service tree.
2231 */
2232 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2233 {
2234 /*
2235 * Resorting requires the cfqq to be on the RR list already.
2236 */
2237 if (cfq_cfqq_on_rr(cfqq)) {
2238 cfq_service_tree_add(cfqd, cfqq, 0);
2239 cfq_prio_tree_add(cfqd, cfqq);
2240 }
2241 }
2242
2243 /*
2244 * add to busy list of queues for service, trying to be fair in ordering
2245 * the pending list according to last request service
2246 */
2247 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2248 {
2249 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2250 BUG_ON(cfq_cfqq_on_rr(cfqq));
2251 cfq_mark_cfqq_on_rr(cfqq);
2252 cfqd->busy_queues++;
2253 if (cfq_cfqq_sync(cfqq))
2254 cfqd->busy_sync_queues++;
2255
2256 cfq_resort_rr_list(cfqd, cfqq);
2257 }
2258
2259 /*
2260 * Called when the cfqq no longer has requests pending, remove it from
2261 * the service tree.
2262 */
2263 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2264 {
2265 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2266 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2267 cfq_clear_cfqq_on_rr(cfqq);
2268
2269 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2270 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2271 cfqq->service_tree = NULL;
2272 }
2273 if (cfqq->p_root) {
2274 rb_erase(&cfqq->p_node, cfqq->p_root);
2275 cfqq->p_root = NULL;
2276 }
2277
2278 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2279 BUG_ON(!cfqd->busy_queues);
2280 cfqd->busy_queues--;
2281 if (cfq_cfqq_sync(cfqq))
2282 cfqd->busy_sync_queues--;
2283 }
2284
2285 /*
2286 * rb tree support functions
2287 */
2288 static void cfq_del_rq_rb(struct request *rq)
2289 {
2290 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2291 const int sync = rq_is_sync(rq);
2292
2293 BUG_ON(!cfqq->queued[sync]);
2294 cfqq->queued[sync]--;
2295
2296 elv_rb_del(&cfqq->sort_list, rq);
2297
2298 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2299 /*
2300 * Queue will be deleted from service tree when we actually
2301 * expire it later. Right now just remove it from prio tree
2302 * as it is empty.
2303 */
2304 if (cfqq->p_root) {
2305 rb_erase(&cfqq->p_node, cfqq->p_root);
2306 cfqq->p_root = NULL;
2307 }
2308 }
2309 }
2310
2311 static void cfq_add_rq_rb(struct request *rq)
2312 {
2313 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2314 struct cfq_data *cfqd = cfqq->cfqd;
2315 struct request *prev;
2316
2317 cfqq->queued[rq_is_sync(rq)]++;
2318
2319 elv_rb_add(&cfqq->sort_list, rq);
2320
2321 if (!cfq_cfqq_on_rr(cfqq))
2322 cfq_add_cfqq_rr(cfqd, cfqq);
2323
2324 /*
2325 * check if this request is a better next-serve candidate
2326 */
2327 prev = cfqq->next_rq;
2328 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2329
2330 /*
2331 * adjust priority tree position, if ->next_rq changes
2332 */
2333 if (prev != cfqq->next_rq)
2334 cfq_prio_tree_add(cfqd, cfqq);
2335
2336 BUG_ON(!cfqq->next_rq);
2337 }
2338
2339 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2340 {
2341 elv_rb_del(&cfqq->sort_list, rq);
2342 cfqq->queued[rq_is_sync(rq)]--;
2343 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2344 cfq_add_rq_rb(rq);
2345 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2346 rq->cmd_flags);
2347 }
2348
2349 static struct request *
2350 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2351 {
2352 struct task_struct *tsk = current;
2353 struct cfq_io_cq *cic;
2354 struct cfq_queue *cfqq;
2355
2356 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2357 if (!cic)
2358 return NULL;
2359
2360 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2361 if (cfqq)
2362 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2363
2364 return NULL;
2365 }
2366
2367 static void cfq_activate_request(struct request_queue *q, struct request *rq)
2368 {
2369 struct cfq_data *cfqd = q->elevator->elevator_data;
2370
2371 cfqd->rq_in_driver++;
2372 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2373 cfqd->rq_in_driver);
2374
2375 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2376 }
2377
2378 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2379 {
2380 struct cfq_data *cfqd = q->elevator->elevator_data;
2381
2382 WARN_ON(!cfqd->rq_in_driver);
2383 cfqd->rq_in_driver--;
2384 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2385 cfqd->rq_in_driver);
2386 }
2387
2388 static void cfq_remove_request(struct request *rq)
2389 {
2390 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2391
2392 if (cfqq->next_rq == rq)
2393 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2394
2395 list_del_init(&rq->queuelist);
2396 cfq_del_rq_rb(rq);
2397
2398 cfqq->cfqd->rq_queued--;
2399 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2400 if (rq->cmd_flags & REQ_PRIO) {
2401 WARN_ON(!cfqq->prio_pending);
2402 cfqq->prio_pending--;
2403 }
2404 }
2405
2406 static int cfq_merge(struct request_queue *q, struct request **req,
2407 struct bio *bio)
2408 {
2409 struct cfq_data *cfqd = q->elevator->elevator_data;
2410 struct request *__rq;
2411
2412 __rq = cfq_find_rq_fmerge(cfqd, bio);
2413 if (__rq && elv_rq_merge_ok(__rq, bio)) {
2414 *req = __rq;
2415 return ELEVATOR_FRONT_MERGE;
2416 }
2417
2418 return ELEVATOR_NO_MERGE;
2419 }
2420
2421 static void cfq_merged_request(struct request_queue *q, struct request *req,
2422 int type)
2423 {
2424 if (type == ELEVATOR_FRONT_MERGE) {
2425 struct cfq_queue *cfqq = RQ_CFQQ(req);
2426
2427 cfq_reposition_rq_rb(cfqq, req);
2428 }
2429 }
2430
2431 static void cfq_bio_merged(struct request_queue *q, struct request *req,
2432 struct bio *bio)
2433 {
2434 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
2435 }
2436
2437 static void
2438 cfq_merged_requests(struct request_queue *q, struct request *rq,
2439 struct request *next)
2440 {
2441 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2442 struct cfq_data *cfqd = q->elevator->elevator_data;
2443
2444 /*
2445 * reposition in fifo if next is older than rq
2446 */
2447 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2448 time_before(next->fifo_time, rq->fifo_time) &&
2449 cfqq == RQ_CFQQ(next)) {
2450 list_move(&rq->queuelist, &next->queuelist);
2451 rq->fifo_time = next->fifo_time;
2452 }
2453
2454 if (cfqq->next_rq == next)
2455 cfqq->next_rq = rq;
2456 cfq_remove_request(next);
2457 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2458
2459 cfqq = RQ_CFQQ(next);
2460 /*
2461 * all requests of this queue are merged to other queues, delete it
2462 * from the service tree. If it's the active_queue,
2463 * cfq_dispatch_requests() will choose to expire it or do idle
2464 */
2465 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2466 cfqq != cfqd->active_queue)
2467 cfq_del_cfqq_rr(cfqd, cfqq);
2468 }
2469
2470 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
2471 struct bio *bio)
2472 {
2473 struct cfq_data *cfqd = q->elevator->elevator_data;
2474 struct cfq_io_cq *cic;
2475 struct cfq_queue *cfqq;
2476
2477 /*
2478 * Disallow merge of a sync bio into an async request.
2479 */
2480 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2481 return false;
2482
2483 /*
2484 * Lookup the cfqq that this bio will be queued with and allow
2485 * merge only if rq is queued there.
2486 */
2487 cic = cfq_cic_lookup(cfqd, current->io_context);
2488 if (!cic)
2489 return false;
2490
2491 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2492 return cfqq == RQ_CFQQ(rq);
2493 }
2494
2495 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2496 {
2497 del_timer(&cfqd->idle_slice_timer);
2498 cfqg_stats_update_idle_time(cfqq->cfqg);
2499 }
2500
2501 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2502 struct cfq_queue *cfqq)
2503 {
2504 if (cfqq) {
2505 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2506 cfqd->serving_wl_class, cfqd->serving_wl_type);
2507 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2508 cfqq->slice_start = 0;
2509 cfqq->dispatch_start = jiffies;
2510 cfqq->allocated_slice = 0;
2511 cfqq->slice_end = 0;
2512 cfqq->slice_dispatch = 0;
2513 cfqq->nr_sectors = 0;
2514
2515 cfq_clear_cfqq_wait_request(cfqq);
2516 cfq_clear_cfqq_must_dispatch(cfqq);
2517 cfq_clear_cfqq_must_alloc_slice(cfqq);
2518 cfq_clear_cfqq_fifo_expire(cfqq);
2519 cfq_mark_cfqq_slice_new(cfqq);
2520
2521 cfq_del_timer(cfqd, cfqq);
2522 }
2523
2524 cfqd->active_queue = cfqq;
2525 }
2526
2527 /*
2528 * current cfqq expired its slice (or was too idle), select new one
2529 */
2530 static void
2531 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2532 bool timed_out)
2533 {
2534 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2535
2536 if (cfq_cfqq_wait_request(cfqq))
2537 cfq_del_timer(cfqd, cfqq);
2538
2539 cfq_clear_cfqq_wait_request(cfqq);
2540 cfq_clear_cfqq_wait_busy(cfqq);
2541
2542 /*
2543 * If this cfqq is shared between multiple processes, check to
2544 * make sure that those processes are still issuing I/Os within
2545 * the mean seek distance. If not, it may be time to break the
2546 * queues apart again.
2547 */
2548 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2549 cfq_mark_cfqq_split_coop(cfqq);
2550
2551 /*
2552 * store what was left of this slice, if the queue idled/timed out
2553 */
2554 if (timed_out) {
2555 if (cfq_cfqq_slice_new(cfqq))
2556 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2557 else
2558 cfqq->slice_resid = cfqq->slice_end - jiffies;
2559 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2560 }
2561
2562 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2563
2564 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2565 cfq_del_cfqq_rr(cfqd, cfqq);
2566
2567 cfq_resort_rr_list(cfqd, cfqq);
2568
2569 if (cfqq == cfqd->active_queue)
2570 cfqd->active_queue = NULL;
2571
2572 if (cfqd->active_cic) {
2573 put_io_context(cfqd->active_cic->icq.ioc);
2574 cfqd->active_cic = NULL;
2575 }
2576 }
2577
2578 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2579 {
2580 struct cfq_queue *cfqq = cfqd->active_queue;
2581
2582 if (cfqq)
2583 __cfq_slice_expired(cfqd, cfqq, timed_out);
2584 }
2585
2586 /*
2587 * Get next queue for service. Unless we have a queue preemption,
2588 * we'll simply select the first cfqq in the service tree.
2589 */
2590 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2591 {
2592 struct cfq_rb_root *st = st_for(cfqd->serving_group,
2593 cfqd->serving_wl_class, cfqd->serving_wl_type);
2594
2595 if (!cfqd->rq_queued)
2596 return NULL;
2597
2598 /* There is nothing to dispatch */
2599 if (!st)
2600 return NULL;
2601 if (RB_EMPTY_ROOT(&st->rb))
2602 return NULL;
2603 return cfq_rb_first(st);
2604 }
2605
2606 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2607 {
2608 struct cfq_group *cfqg;
2609 struct cfq_queue *cfqq;
2610 int i, j;
2611 struct cfq_rb_root *st;
2612
2613 if (!cfqd->rq_queued)
2614 return NULL;
2615
2616 cfqg = cfq_get_next_cfqg(cfqd);
2617 if (!cfqg)
2618 return NULL;
2619
2620 for_each_cfqg_st(cfqg, i, j, st)
2621 if ((cfqq = cfq_rb_first(st)) != NULL)
2622 return cfqq;
2623 return NULL;
2624 }
2625
2626 /*
2627 * Get and set a new active queue for service.
2628 */
2629 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2630 struct cfq_queue *cfqq)
2631 {
2632 if (!cfqq)
2633 cfqq = cfq_get_next_queue(cfqd);
2634
2635 __cfq_set_active_queue(cfqd, cfqq);
2636 return cfqq;
2637 }
2638
2639 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2640 struct request *rq)
2641 {
2642 if (blk_rq_pos(rq) >= cfqd->last_position)
2643 return blk_rq_pos(rq) - cfqd->last_position;
2644 else
2645 return cfqd->last_position - blk_rq_pos(rq);
2646 }
2647
2648 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2649 struct request *rq)
2650 {
2651 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2652 }
2653
2654 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2655 struct cfq_queue *cur_cfqq)
2656 {
2657 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2658 struct rb_node *parent, *node;
2659 struct cfq_queue *__cfqq;
2660 sector_t sector = cfqd->last_position;
2661
2662 if (RB_EMPTY_ROOT(root))
2663 return NULL;
2664
2665 /*
2666 * First, if we find a request starting at the end of the last
2667 * request, choose it.
2668 */
2669 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2670 if (__cfqq)
2671 return __cfqq;
2672
2673 /*
2674 * If the exact sector wasn't found, the parent of the NULL leaf
2675 * will contain the closest sector.
2676 */
2677 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2678 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2679 return __cfqq;
2680
2681 if (blk_rq_pos(__cfqq->next_rq) < sector)
2682 node = rb_next(&__cfqq->p_node);
2683 else
2684 node = rb_prev(&__cfqq->p_node);
2685 if (!node)
2686 return NULL;
2687
2688 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2689 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2690 return __cfqq;
2691
2692 return NULL;
2693 }
2694
2695 /*
2696 * cfqd - obvious
2697 * cur_cfqq - passed in so that we don't decide that the current queue is
2698 * closely cooperating with itself.
2699 *
2700 * So, basically we're assuming that that cur_cfqq has dispatched at least
2701 * one request, and that cfqd->last_position reflects a position on the disk
2702 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2703 * assumption.
2704 */
2705 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2706 struct cfq_queue *cur_cfqq)
2707 {
2708 struct cfq_queue *cfqq;
2709
2710 if (cfq_class_idle(cur_cfqq))
2711 return NULL;
2712 if (!cfq_cfqq_sync(cur_cfqq))
2713 return NULL;
2714 if (CFQQ_SEEKY(cur_cfqq))
2715 return NULL;
2716
2717 /*
2718 * Don't search priority tree if it's the only queue in the group.
2719 */
2720 if (cur_cfqq->cfqg->nr_cfqq == 1)
2721 return NULL;
2722
2723 /*
2724 * We should notice if some of the queues are cooperating, eg
2725 * working closely on the same area of the disk. In that case,
2726 * we can group them together and don't waste time idling.
2727 */
2728 cfqq = cfqq_close(cfqd, cur_cfqq);
2729 if (!cfqq)
2730 return NULL;
2731
2732 /* If new queue belongs to different cfq_group, don't choose it */
2733 if (cur_cfqq->cfqg != cfqq->cfqg)
2734 return NULL;
2735
2736 /*
2737 * It only makes sense to merge sync queues.
2738 */
2739 if (!cfq_cfqq_sync(cfqq))
2740 return NULL;
2741 if (CFQQ_SEEKY(cfqq))
2742 return NULL;
2743
2744 /*
2745 * Do not merge queues of different priority classes
2746 */
2747 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2748 return NULL;
2749
2750 return cfqq;
2751 }
2752
2753 /*
2754 * Determine whether we should enforce idle window for this queue.
2755 */
2756
2757 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2758 {
2759 enum wl_class_t wl_class = cfqq_class(cfqq);
2760 struct cfq_rb_root *st = cfqq->service_tree;
2761
2762 BUG_ON(!st);
2763 BUG_ON(!st->count);
2764
2765 if (!cfqd->cfq_slice_idle)
2766 return false;
2767
2768 /* We never do for idle class queues. */
2769 if (wl_class == IDLE_WORKLOAD)
2770 return false;
2771
2772 /* We do for queues that were marked with idle window flag. */
2773 if (cfq_cfqq_idle_window(cfqq) &&
2774 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2775 return true;
2776
2777 /*
2778 * Otherwise, we do only if they are the last ones
2779 * in their service tree.
2780 */
2781 if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2782 !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2783 return true;
2784 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2785 return false;
2786 }
2787
2788 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2789 {
2790 struct cfq_queue *cfqq = cfqd->active_queue;
2791 struct cfq_io_cq *cic;
2792 unsigned long sl, group_idle = 0;
2793
2794 /*
2795 * SSD device without seek penalty, disable idling. But only do so
2796 * for devices that support queuing, otherwise we still have a problem
2797 * with sync vs async workloads.
2798 */
2799 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2800 return;
2801
2802 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2803 WARN_ON(cfq_cfqq_slice_new(cfqq));
2804
2805 /*
2806 * idle is disabled, either manually or by past process history
2807 */
2808 if (!cfq_should_idle(cfqd, cfqq)) {
2809 /* no queue idling. Check for group idling */
2810 if (cfqd->cfq_group_idle)
2811 group_idle = cfqd->cfq_group_idle;
2812 else
2813 return;
2814 }
2815
2816 /*
2817 * still active requests from this queue, don't idle
2818 */
2819 if (cfqq->dispatched)
2820 return;
2821
2822 /*
2823 * task has exited, don't wait
2824 */
2825 cic = cfqd->active_cic;
2826 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2827 return;
2828
2829 /*
2830 * If our average think time is larger than the remaining time
2831 * slice, then don't idle. This avoids overrunning the allotted
2832 * time slice.
2833 */
2834 if (sample_valid(cic->ttime.ttime_samples) &&
2835 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2836 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2837 cic->ttime.ttime_mean);
2838 return;
2839 }
2840
2841 /* There are other queues in the group, don't do group idle */
2842 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2843 return;
2844
2845 cfq_mark_cfqq_wait_request(cfqq);
2846
2847 if (group_idle)
2848 sl = cfqd->cfq_group_idle;
2849 else
2850 sl = cfqd->cfq_slice_idle;
2851
2852 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2853 cfqg_stats_set_start_idle_time(cfqq->cfqg);
2854 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2855 group_idle ? 1 : 0);
2856 }
2857
2858 /*
2859 * Move request from internal lists to the request queue dispatch list.
2860 */
2861 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2862 {
2863 struct cfq_data *cfqd = q->elevator->elevator_data;
2864 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2865
2866 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2867
2868 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2869 cfq_remove_request(rq);
2870 cfqq->dispatched++;
2871 (RQ_CFQG(rq))->dispatched++;
2872 elv_dispatch_sort(q, rq);
2873
2874 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2875 cfqq->nr_sectors += blk_rq_sectors(rq);
2876 cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
2877 }
2878
2879 /*
2880 * return expired entry, or NULL to just start from scratch in rbtree
2881 */
2882 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2883 {
2884 struct request *rq = NULL;
2885
2886 if (cfq_cfqq_fifo_expire(cfqq))
2887 return NULL;
2888
2889 cfq_mark_cfqq_fifo_expire(cfqq);
2890
2891 if (list_empty(&cfqq->fifo))
2892 return NULL;
2893
2894 rq = rq_entry_fifo(cfqq->fifo.next);
2895 if (time_before(jiffies, rq->fifo_time))
2896 rq = NULL;
2897
2898 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2899 return rq;
2900 }
2901
2902 static inline int
2903 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2904 {
2905 const int base_rq = cfqd->cfq_slice_async_rq;
2906
2907 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2908
2909 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2910 }
2911
2912 /*
2913 * Must be called with the queue_lock held.
2914 */
2915 static int cfqq_process_refs(struct cfq_queue *cfqq)
2916 {
2917 int process_refs, io_refs;
2918
2919 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2920 process_refs = cfqq->ref - io_refs;
2921 BUG_ON(process_refs < 0);
2922 return process_refs;
2923 }
2924
2925 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2926 {
2927 int process_refs, new_process_refs;
2928 struct cfq_queue *__cfqq;
2929
2930 /*
2931 * If there are no process references on the new_cfqq, then it is
2932 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2933 * chain may have dropped their last reference (not just their
2934 * last process reference).
2935 */
2936 if (!cfqq_process_refs(new_cfqq))
2937 return;
2938
2939 /* Avoid a circular list and skip interim queue merges */
2940 while ((__cfqq = new_cfqq->new_cfqq)) {
2941 if (__cfqq == cfqq)
2942 return;
2943 new_cfqq = __cfqq;
2944 }
2945
2946 process_refs = cfqq_process_refs(cfqq);
2947 new_process_refs = cfqq_process_refs(new_cfqq);
2948 /*
2949 * If the process for the cfqq has gone away, there is no
2950 * sense in merging the queues.
2951 */
2952 if (process_refs == 0 || new_process_refs == 0)
2953 return;
2954
2955 /*
2956 * Merge in the direction of the lesser amount of work.
2957 */
2958 if (new_process_refs >= process_refs) {
2959 cfqq->new_cfqq = new_cfqq;
2960 new_cfqq->ref += process_refs;
2961 } else {
2962 new_cfqq->new_cfqq = cfqq;
2963 cfqq->ref += new_process_refs;
2964 }
2965 }
2966
2967 static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
2968 struct cfq_group *cfqg, enum wl_class_t wl_class)
2969 {
2970 struct cfq_queue *queue;
2971 int i;
2972 bool key_valid = false;
2973 unsigned long lowest_key = 0;
2974 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2975
2976 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2977 /* select the one with lowest rb_key */
2978 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
2979 if (queue &&
2980 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2981 lowest_key = queue->rb_key;
2982 cur_best = i;
2983 key_valid = true;
2984 }
2985 }
2986
2987 return cur_best;
2988 }
2989
2990 static void
2991 choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
2992 {
2993 unsigned slice;
2994 unsigned count;
2995 struct cfq_rb_root *st;
2996 unsigned group_slice;
2997 enum wl_class_t original_class = cfqd->serving_wl_class;
2998
2999 /* Choose next priority. RT > BE > IDLE */
3000 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
3001 cfqd->serving_wl_class = RT_WORKLOAD;
3002 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
3003 cfqd->serving_wl_class = BE_WORKLOAD;
3004 else {
3005 cfqd->serving_wl_class = IDLE_WORKLOAD;
3006 cfqd->workload_expires = jiffies + 1;
3007 return;
3008 }
3009
3010 if (original_class != cfqd->serving_wl_class)
3011 goto new_workload;
3012
3013 /*
3014 * For RT and BE, we have to choose also the type
3015 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3016 * expiration time
3017 */
3018 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3019 count = st->count;
3020
3021 /*
3022 * check workload expiration, and that we still have other queues ready
3023 */
3024 if (count && !time_after(jiffies, cfqd->workload_expires))
3025 return;
3026
3027 new_workload:
3028 /* otherwise select new workload type */
3029 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
3030 cfqd->serving_wl_class);
3031 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3032 count = st->count;
3033
3034 /*
3035 * the workload slice is computed as a fraction of target latency
3036 * proportional to the number of queues in that workload, over
3037 * all the queues in the same priority class
3038 */
3039 group_slice = cfq_group_slice(cfqd, cfqg);
3040
3041 slice = group_slice * count /
3042 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
3043 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
3044 cfqg));
3045
3046 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
3047 unsigned int tmp;
3048
3049 /*
3050 * Async queues are currently system wide. Just taking
3051 * proportion of queues with-in same group will lead to higher
3052 * async ratio system wide as generally root group is going
3053 * to have higher weight. A more accurate thing would be to
3054 * calculate system wide asnc/sync ratio.
3055 */
3056 tmp = cfqd->cfq_target_latency *
3057 cfqg_busy_async_queues(cfqd, cfqg);
3058 tmp = tmp/cfqd->busy_queues;
3059 slice = min_t(unsigned, slice, tmp);
3060
3061 /* async workload slice is scaled down according to
3062 * the sync/async slice ratio. */
3063 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
3064 } else
3065 /* sync workload slice is at least 2 * cfq_slice_idle */
3066 slice = max(slice, 2 * cfqd->cfq_slice_idle);
3067
3068 slice = max_t(unsigned, slice, CFQ_MIN_TT);
3069 cfq_log(cfqd, "workload slice:%d", slice);
3070 cfqd->workload_expires = jiffies + slice;
3071 }
3072
3073 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3074 {
3075 struct cfq_rb_root *st = &cfqd->grp_service_tree;
3076 struct cfq_group *cfqg;
3077
3078 if (RB_EMPTY_ROOT(&st->rb))
3079 return NULL;
3080 cfqg = cfq_rb_first_group(st);
3081 update_min_vdisktime(st);
3082 return cfqg;
3083 }
3084
3085 static void cfq_choose_cfqg(struct cfq_data *cfqd)
3086 {
3087 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3088
3089 cfqd->serving_group = cfqg;
3090
3091 /* Restore the workload type data */
3092 if (cfqg->saved_wl_slice) {
3093 cfqd->workload_expires = jiffies + cfqg->saved_wl_slice;
3094 cfqd->serving_wl_type = cfqg->saved_wl_type;
3095 cfqd->serving_wl_class = cfqg->saved_wl_class;
3096 } else
3097 cfqd->workload_expires = jiffies - 1;
3098
3099 choose_wl_class_and_type(cfqd, cfqg);
3100 }
3101
3102 /*
3103 * Select a queue for service. If we have a current active queue,
3104 * check whether to continue servicing it, or retrieve and set a new one.
3105 */
3106 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3107 {
3108 struct cfq_queue *cfqq, *new_cfqq = NULL;
3109
3110 cfqq = cfqd->active_queue;
3111 if (!cfqq)
3112 goto new_queue;
3113
3114 if (!cfqd->rq_queued)
3115 return NULL;
3116
3117 /*
3118 * We were waiting for group to get backlogged. Expire the queue
3119 */
3120 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3121 goto expire;
3122
3123 /*
3124 * The active queue has run out of time, expire it and select new.
3125 */
3126 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3127 /*
3128 * If slice had not expired at the completion of last request
3129 * we might not have turned on wait_busy flag. Don't expire
3130 * the queue yet. Allow the group to get backlogged.
3131 *
3132 * The very fact that we have used the slice, that means we
3133 * have been idling all along on this queue and it should be
3134 * ok to wait for this request to complete.
3135 */
3136 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3137 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3138 cfqq = NULL;
3139 goto keep_queue;
3140 } else
3141 goto check_group_idle;
3142 }
3143
3144 /*
3145 * The active queue has requests and isn't expired, allow it to
3146 * dispatch.
3147 */
3148 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3149 goto keep_queue;
3150
3151 /*
3152 * If another queue has a request waiting within our mean seek
3153 * distance, let it run. The expire code will check for close
3154 * cooperators and put the close queue at the front of the service
3155 * tree. If possible, merge the expiring queue with the new cfqq.
3156 */
3157 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3158 if (new_cfqq) {
3159 if (!cfqq->new_cfqq)
3160 cfq_setup_merge(cfqq, new_cfqq);
3161 goto expire;
3162 }
3163
3164 /*
3165 * No requests pending. If the active queue still has requests in
3166 * flight or is idling for a new request, allow either of these
3167 * conditions to happen (or time out) before selecting a new queue.
3168 */
3169 if (timer_pending(&cfqd->idle_slice_timer)) {
3170 cfqq = NULL;
3171 goto keep_queue;
3172 }
3173
3174 /*
3175 * This is a deep seek queue, but the device is much faster than
3176 * the queue can deliver, don't idle
3177 **/
3178 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3179 (cfq_cfqq_slice_new(cfqq) ||
3180 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
3181 cfq_clear_cfqq_deep(cfqq);
3182 cfq_clear_cfqq_idle_window(cfqq);
3183 }
3184
3185 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3186 cfqq = NULL;
3187 goto keep_queue;
3188 }
3189
3190 /*
3191 * If group idle is enabled and there are requests dispatched from
3192 * this group, wait for requests to complete.
3193 */
3194 check_group_idle:
3195 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3196 cfqq->cfqg->dispatched &&
3197 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3198 cfqq = NULL;
3199 goto keep_queue;
3200 }
3201
3202 expire:
3203 cfq_slice_expired(cfqd, 0);
3204 new_queue:
3205 /*
3206 * Current queue expired. Check if we have to switch to a new
3207 * service tree
3208 */
3209 if (!new_cfqq)
3210 cfq_choose_cfqg(cfqd);
3211
3212 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3213 keep_queue:
3214 return cfqq;
3215 }
3216
3217 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3218 {
3219 int dispatched = 0;
3220
3221 while (cfqq->next_rq) {
3222 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3223 dispatched++;
3224 }
3225
3226 BUG_ON(!list_empty(&cfqq->fifo));
3227
3228 /* By default cfqq is not expired if it is empty. Do it explicitly */
3229 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3230 return dispatched;
3231 }
3232
3233 /*
3234 * Drain our current requests. Used for barriers and when switching
3235 * io schedulers on-the-fly.
3236 */
3237 static int cfq_forced_dispatch(struct cfq_data *cfqd)
3238 {
3239 struct cfq_queue *cfqq;
3240 int dispatched = 0;
3241
3242 /* Expire the timeslice of the current active queue first */
3243 cfq_slice_expired(cfqd, 0);
3244 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3245 __cfq_set_active_queue(cfqd, cfqq);
3246 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3247 }
3248
3249 BUG_ON(cfqd->busy_queues);
3250
3251 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3252 return dispatched;
3253 }
3254
3255 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3256 struct cfq_queue *cfqq)
3257 {
3258 /* the queue hasn't finished any request, can't estimate */
3259 if (cfq_cfqq_slice_new(cfqq))
3260 return true;
3261 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
3262 cfqq->slice_end))
3263 return true;
3264
3265 return false;
3266 }
3267
3268 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3269 {
3270 unsigned int max_dispatch;
3271
3272 /*
3273 * Drain async requests before we start sync IO
3274 */
3275 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3276 return false;
3277
3278 /*
3279 * If this is an async queue and we have sync IO in flight, let it wait
3280 */
3281 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3282 return false;
3283
3284 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3285 if (cfq_class_idle(cfqq))
3286 max_dispatch = 1;
3287
3288 /*
3289 * Does this cfqq already have too much IO in flight?
3290 */
3291 if (cfqq->dispatched >= max_dispatch) {
3292 bool promote_sync = false;
3293 /*
3294 * idle queue must always only have a single IO in flight
3295 */
3296 if (cfq_class_idle(cfqq))
3297 return false;
3298
3299 /*
3300 * If there is only one sync queue
3301 * we can ignore async queue here and give the sync
3302 * queue no dispatch limit. The reason is a sync queue can
3303 * preempt async queue, limiting the sync queue doesn't make
3304 * sense. This is useful for aiostress test.
3305 */
3306 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3307 promote_sync = true;
3308
3309 /*
3310 * We have other queues, don't allow more IO from this one
3311 */
3312 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3313 !promote_sync)
3314 return false;
3315
3316 /*
3317 * Sole queue user, no limit
3318 */
3319 if (cfqd->busy_queues == 1 || promote_sync)
3320 max_dispatch = -1;
3321 else
3322 /*
3323 * Normally we start throttling cfqq when cfq_quantum/2
3324 * requests have been dispatched. But we can drive
3325 * deeper queue depths at the beginning of slice
3326 * subjected to upper limit of cfq_quantum.
3327 * */
3328 max_dispatch = cfqd->cfq_quantum;
3329 }
3330
3331 /*
3332 * Async queues must wait a bit before being allowed dispatch.
3333 * We also ramp up the dispatch depth gradually for async IO,
3334 * based on the last sync IO we serviced
3335 */
3336 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3337 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
3338 unsigned int depth;
3339
3340 depth = last_sync / cfqd->cfq_slice[1];
3341 if (!depth && !cfqq->dispatched)
3342 depth = 1;
3343 if (depth < max_dispatch)
3344 max_dispatch = depth;
3345 }
3346
3347 /*
3348 * If we're below the current max, allow a dispatch
3349 */
3350 return cfqq->dispatched < max_dispatch;
3351 }
3352
3353 /*
3354 * Dispatch a request from cfqq, moving them to the request queue
3355 * dispatch list.
3356 */
3357 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3358 {
3359 struct request *rq;
3360
3361 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3362
3363 if (!cfq_may_dispatch(cfqd, cfqq))
3364 return false;
3365
3366 /*
3367 * follow expired path, else get first next available
3368 */
3369 rq = cfq_check_fifo(cfqq);
3370 if (!rq)
3371 rq = cfqq->next_rq;
3372
3373 /*
3374 * insert request into driver dispatch list
3375 */
3376 cfq_dispatch_insert(cfqd->queue, rq);
3377
3378 if (!cfqd->active_cic) {
3379 struct cfq_io_cq *cic = RQ_CIC(rq);
3380
3381 atomic_long_inc(&cic->icq.ioc->refcount);
3382 cfqd->active_cic = cic;
3383 }
3384
3385 return true;
3386 }
3387
3388 /*
3389 * Find the cfqq that we need to service and move a request from that to the
3390 * dispatch list
3391 */
3392 static int cfq_dispatch_requests(struct request_queue *q, int force)
3393 {
3394 struct cfq_data *cfqd = q->elevator->elevator_data;
3395 struct cfq_queue *cfqq;
3396
3397 if (!cfqd->busy_queues)
3398 return 0;
3399
3400 if (unlikely(force))
3401 return cfq_forced_dispatch(cfqd);
3402
3403 cfqq = cfq_select_queue(cfqd);
3404 if (!cfqq)
3405 return 0;
3406
3407 /*
3408 * Dispatch a request from this cfqq, if it is allowed
3409 */
3410 if (!cfq_dispatch_request(cfqd, cfqq))
3411 return 0;
3412
3413 cfqq->slice_dispatch++;
3414 cfq_clear_cfqq_must_dispatch(cfqq);
3415
3416 /*
3417 * expire an async queue immediately if it has used up its slice. idle
3418 * queue always expire after 1 dispatch round.
3419 */
3420 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3421 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3422 cfq_class_idle(cfqq))) {
3423 cfqq->slice_end = jiffies + 1;
3424 cfq_slice_expired(cfqd, 0);
3425 }
3426
3427 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3428 return 1;
3429 }
3430
3431 /*
3432 * task holds one reference to the queue, dropped when task exits. each rq
3433 * in-flight on this queue also holds a reference, dropped when rq is freed.
3434 *
3435 * Each cfq queue took a reference on the parent group. Drop it now.
3436 * queue lock must be held here.
3437 */
3438 static void cfq_put_queue(struct cfq_queue *cfqq)
3439 {
3440 struct cfq_data *cfqd = cfqq->cfqd;
3441 struct cfq_group *cfqg;
3442
3443 BUG_ON(cfqq->ref <= 0);
3444
3445 cfqq->ref--;
3446 if (cfqq->ref)
3447 return;
3448
3449 cfq_log_cfqq(cfqd, cfqq, "put_queue");
3450 BUG_ON(rb_first(&cfqq->sort_list));
3451 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3452 cfqg = cfqq->cfqg;
3453
3454 if (unlikely(cfqd->active_queue == cfqq)) {
3455 __cfq_slice_expired(cfqd, cfqq, 0);
3456 cfq_schedule_dispatch(cfqd);
3457 }
3458
3459 BUG_ON(cfq_cfqq_on_rr(cfqq));
3460 kmem_cache_free(cfq_pool, cfqq);
3461 cfqg_put(cfqg);
3462 }
3463
3464 static void cfq_put_cooperator(struct cfq_queue *cfqq)
3465 {
3466 struct cfq_queue *__cfqq, *next;
3467
3468 /*
3469 * If this queue was scheduled to merge with another queue, be
3470 * sure to drop the reference taken on that queue (and others in
3471 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3472 */
3473 __cfqq = cfqq->new_cfqq;
3474 while (__cfqq) {
3475 if (__cfqq == cfqq) {
3476 WARN(1, "cfqq->new_cfqq loop detected\n");
3477 break;
3478 }
3479 next = __cfqq->new_cfqq;
3480 cfq_put_queue(__cfqq);
3481 __cfqq = next;
3482 }
3483 }
3484
3485 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3486 {
3487 if (unlikely(cfqq == cfqd->active_queue)) {
3488 __cfq_slice_expired(cfqd, cfqq, 0);
3489 cfq_schedule_dispatch(cfqd);
3490 }
3491
3492 cfq_put_cooperator(cfqq);
3493
3494 cfq_put_queue(cfqq);
3495 }
3496
3497 static void cfq_init_icq(struct io_cq *icq)
3498 {
3499 struct cfq_io_cq *cic = icq_to_cic(icq);
3500
3501 cic->ttime.last_end_request = jiffies;
3502 }
3503
3504 static void cfq_exit_icq(struct io_cq *icq)
3505 {
3506 struct cfq_io_cq *cic = icq_to_cic(icq);
3507 struct cfq_data *cfqd = cic_to_cfqd(cic);
3508
3509 if (cic_to_cfqq(cic, false)) {
3510 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false));
3511 cic_set_cfqq(cic, NULL, false);
3512 }
3513
3514 if (cic_to_cfqq(cic, true)) {
3515 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true));
3516 cic_set_cfqq(cic, NULL, true);
3517 }
3518 }
3519
3520 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3521 {
3522 struct task_struct *tsk = current;
3523 int ioprio_class;
3524
3525 if (!cfq_cfqq_prio_changed(cfqq))
3526 return;
3527
3528 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3529 switch (ioprio_class) {
3530 default:
3531 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3532 case IOPRIO_CLASS_NONE:
3533 /*
3534 * no prio set, inherit CPU scheduling settings
3535 */
3536 cfqq->ioprio = task_nice_ioprio(tsk);
3537 cfqq->ioprio_class = task_nice_ioclass(tsk);
3538 break;
3539 case IOPRIO_CLASS_RT:
3540 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3541 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3542 break;
3543 case IOPRIO_CLASS_BE:
3544 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3545 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3546 break;
3547 case IOPRIO_CLASS_IDLE:
3548 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3549 cfqq->ioprio = 7;
3550 cfq_clear_cfqq_idle_window(cfqq);
3551 break;
3552 }
3553
3554 /*
3555 * keep track of original prio settings in case we have to temporarily
3556 * elevate the priority of this queue
3557 */
3558 cfqq->org_ioprio = cfqq->ioprio;
3559 cfq_clear_cfqq_prio_changed(cfqq);
3560 }
3561
3562 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3563 {
3564 int ioprio = cic->icq.ioc->ioprio;
3565 struct cfq_data *cfqd = cic_to_cfqd(cic);
3566 struct cfq_queue *cfqq;
3567
3568 /*
3569 * Check whether ioprio has changed. The condition may trigger
3570 * spuriously on a newly created cic but there's no harm.
3571 */
3572 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3573 return;
3574
3575 cfqq = cic_to_cfqq(cic, false);
3576 if (cfqq) {
3577 cfq_put_queue(cfqq);
3578 cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio, GFP_NOWAIT);
3579 cic_set_cfqq(cic, cfqq, false);
3580 }
3581
3582 cfqq = cic_to_cfqq(cic, true);
3583 if (cfqq)
3584 cfq_mark_cfqq_prio_changed(cfqq);
3585
3586 cic->ioprio = ioprio;
3587 }
3588
3589 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3590 pid_t pid, bool is_sync)
3591 {
3592 RB_CLEAR_NODE(&cfqq->rb_node);
3593 RB_CLEAR_NODE(&cfqq->p_node);
3594 INIT_LIST_HEAD(&cfqq->fifo);
3595
3596 cfqq->ref = 0;
3597 cfqq->cfqd = cfqd;
3598
3599 cfq_mark_cfqq_prio_changed(cfqq);
3600
3601 if (is_sync) {
3602 if (!cfq_class_idle(cfqq))
3603 cfq_mark_cfqq_idle_window(cfqq);
3604 cfq_mark_cfqq_sync(cfqq);
3605 }
3606 cfqq->pid = pid;
3607 }
3608
3609 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3610 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3611 {
3612 struct cfq_data *cfqd = cic_to_cfqd(cic);
3613 struct cfq_queue *sync_cfqq;
3614 uint64_t serial_nr;
3615
3616 rcu_read_lock();
3617 serial_nr = bio_blkcg(bio)->css.serial_nr;
3618 rcu_read_unlock();
3619
3620 /*
3621 * Check whether blkcg has changed. The condition may trigger
3622 * spuriously on a newly created cic but there's no harm.
3623 */
3624 if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr))
3625 return;
3626
3627 sync_cfqq = cic_to_cfqq(cic, 1);
3628 if (sync_cfqq) {
3629 /*
3630 * Drop reference to sync queue. A new sync queue will be
3631 * assigned in new group upon arrival of a fresh request.
3632 */
3633 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
3634 cic_set_cfqq(cic, NULL, 1);
3635 cfq_put_queue(sync_cfqq);
3636 }
3637
3638 cic->blkcg_serial_nr = serial_nr;
3639 }
3640 #else
3641 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3642 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3643
3644 static struct cfq_queue *
3645 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3646 struct bio *bio, gfp_t gfp_mask)
3647 {
3648 struct blkcg *blkcg;
3649 struct cfq_queue *cfqq, *new_cfqq = NULL;
3650 struct cfq_group *cfqg;
3651
3652 retry:
3653 rcu_read_lock();
3654
3655 blkcg = bio_blkcg(bio);
3656 cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
3657 if (!cfqg) {
3658 cfqq = &cfqd->oom_cfqq;
3659 goto out;
3660 }
3661
3662 cfqq = cic_to_cfqq(cic, is_sync);
3663
3664 /*
3665 * Always try a new alloc if we fell back to the OOM cfqq
3666 * originally, since it should just be a temporary situation.
3667 */
3668 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3669 cfqq = NULL;
3670 if (new_cfqq) {
3671 cfqq = new_cfqq;
3672 new_cfqq = NULL;
3673 } else if (gfp_mask & __GFP_WAIT) {
3674 rcu_read_unlock();
3675 spin_unlock_irq(cfqd->queue->queue_lock);
3676 new_cfqq = kmem_cache_alloc_node(cfq_pool,
3677 gfp_mask | __GFP_ZERO,
3678 cfqd->queue->node);
3679 spin_lock_irq(cfqd->queue->queue_lock);
3680 if (new_cfqq)
3681 goto retry;
3682 else
3683 return &cfqd->oom_cfqq;
3684 } else {
3685 cfqq = kmem_cache_alloc_node(cfq_pool,
3686 gfp_mask | __GFP_ZERO,
3687 cfqd->queue->node);
3688 }
3689
3690 if (cfqq) {
3691 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3692 cfq_init_prio_data(cfqq, cic);
3693 cfq_link_cfqq_cfqg(cfqq, cfqg);
3694 cfq_log_cfqq(cfqd, cfqq, "alloced");
3695 } else
3696 cfqq = &cfqd->oom_cfqq;
3697 }
3698 out:
3699 if (new_cfqq)
3700 kmem_cache_free(cfq_pool, new_cfqq);
3701
3702 rcu_read_unlock();
3703 return cfqq;
3704 }
3705
3706 static struct cfq_queue **
3707 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3708 {
3709 switch (ioprio_class) {
3710 case IOPRIO_CLASS_RT:
3711 return &cfqd->async_cfqq[0][ioprio];
3712 case IOPRIO_CLASS_NONE:
3713 ioprio = IOPRIO_NORM;
3714 /* fall through */
3715 case IOPRIO_CLASS_BE:
3716 return &cfqd->async_cfqq[1][ioprio];
3717 case IOPRIO_CLASS_IDLE:
3718 return &cfqd->async_idle_cfqq;
3719 default:
3720 BUG();
3721 }
3722 }
3723
3724 static struct cfq_queue *
3725 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3726 struct bio *bio, gfp_t gfp_mask)
3727 {
3728 int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3729 int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3730 struct cfq_queue **async_cfqq;
3731 struct cfq_queue *cfqq;
3732
3733 if (!is_sync) {
3734 if (!ioprio_valid(cic->ioprio)) {
3735 struct task_struct *tsk = current;
3736 ioprio = task_nice_ioprio(tsk);
3737 ioprio_class = task_nice_ioclass(tsk);
3738 }
3739 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3740 cfqq = *async_cfqq;
3741 if (cfqq)
3742 goto out;
3743 }
3744
3745 cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
3746
3747 /*
3748 * pin the queue now that it's allocated, scheduler exit will prune it
3749 */
3750 if (!is_sync && cfqq != &cfqd->oom_cfqq) {
3751 cfqq->ref++;
3752 *async_cfqq = cfqq;
3753 }
3754 out:
3755 cfqq->ref++;
3756 return cfqq;
3757 }
3758
3759 static void
3760 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3761 {
3762 unsigned long elapsed = jiffies - ttime->last_end_request;
3763 elapsed = min(elapsed, 2UL * slice_idle);
3764
3765 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3766 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3767 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3768 }
3769
3770 static void
3771 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3772 struct cfq_io_cq *cic)
3773 {
3774 if (cfq_cfqq_sync(cfqq)) {
3775 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3776 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3777 cfqd->cfq_slice_idle);
3778 }
3779 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3780 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3781 #endif
3782 }
3783
3784 static void
3785 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3786 struct request *rq)
3787 {
3788 sector_t sdist = 0;
3789 sector_t n_sec = blk_rq_sectors(rq);
3790 if (cfqq->last_request_pos) {
3791 if (cfqq->last_request_pos < blk_rq_pos(rq))
3792 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3793 else
3794 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3795 }
3796
3797 cfqq->seek_history <<= 1;
3798 if (blk_queue_nonrot(cfqd->queue))
3799 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3800 else
3801 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3802 }
3803
3804 /*
3805 * Disable idle window if the process thinks too long or seeks so much that
3806 * it doesn't matter
3807 */
3808 static void
3809 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3810 struct cfq_io_cq *cic)
3811 {
3812 int old_idle, enable_idle;
3813
3814 /*
3815 * Don't idle for async or idle io prio class
3816 */
3817 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3818 return;
3819
3820 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3821
3822 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3823 cfq_mark_cfqq_deep(cfqq);
3824
3825 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3826 enable_idle = 0;
3827 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3828 !cfqd->cfq_slice_idle ||
3829 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3830 enable_idle = 0;
3831 else if (sample_valid(cic->ttime.ttime_samples)) {
3832 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3833 enable_idle = 0;
3834 else
3835 enable_idle = 1;
3836 }
3837
3838 if (old_idle != enable_idle) {
3839 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3840 if (enable_idle)
3841 cfq_mark_cfqq_idle_window(cfqq);
3842 else
3843 cfq_clear_cfqq_idle_window(cfqq);
3844 }
3845 }
3846
3847 /*
3848 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3849 * no or if we aren't sure, a 1 will cause a preempt.
3850 */
3851 static bool
3852 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3853 struct request *rq)
3854 {
3855 struct cfq_queue *cfqq;
3856
3857 cfqq = cfqd->active_queue;
3858 if (!cfqq)
3859 return false;
3860
3861 if (cfq_class_idle(new_cfqq))
3862 return false;
3863
3864 if (cfq_class_idle(cfqq))
3865 return true;
3866
3867 /*
3868 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3869 */
3870 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3871 return false;
3872
3873 /*
3874 * if the new request is sync, but the currently running queue is
3875 * not, let the sync request have priority.
3876 */
3877 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3878 return true;
3879
3880 if (new_cfqq->cfqg != cfqq->cfqg)
3881 return false;
3882
3883 if (cfq_slice_used(cfqq))
3884 return true;
3885
3886 /* Allow preemption only if we are idling on sync-noidle tree */
3887 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
3888 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3889 new_cfqq->service_tree->count == 2 &&
3890 RB_EMPTY_ROOT(&cfqq->sort_list))
3891 return true;
3892
3893 /*
3894 * So both queues are sync. Let the new request get disk time if
3895 * it's a metadata request and the current queue is doing regular IO.
3896 */
3897 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3898 return true;
3899
3900 /*
3901 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3902 */
3903 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3904 return true;
3905
3906 /* An idle queue should not be idle now for some reason */
3907 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3908 return true;
3909
3910 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3911 return false;
3912
3913 /*
3914 * if this request is as-good as one we would expect from the
3915 * current cfqq, let it preempt
3916 */
3917 if (cfq_rq_close(cfqd, cfqq, rq))
3918 return true;
3919
3920 return false;
3921 }
3922
3923 /*
3924 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3925 * let it have half of its nominal slice.
3926 */
3927 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3928 {
3929 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3930
3931 cfq_log_cfqq(cfqd, cfqq, "preempt");
3932 cfq_slice_expired(cfqd, 1);
3933
3934 /*
3935 * workload type is changed, don't save slice, otherwise preempt
3936 * doesn't happen
3937 */
3938 if (old_type != cfqq_type(cfqq))
3939 cfqq->cfqg->saved_wl_slice = 0;
3940
3941 /*
3942 * Put the new queue at the front of the of the current list,
3943 * so we know that it will be selected next.
3944 */
3945 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3946
3947 cfq_service_tree_add(cfqd, cfqq, 1);
3948
3949 cfqq->slice_end = 0;
3950 cfq_mark_cfqq_slice_new(cfqq);
3951 }
3952
3953 /*
3954 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3955 * something we should do about it
3956 */
3957 static void
3958 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3959 struct request *rq)
3960 {
3961 struct cfq_io_cq *cic = RQ_CIC(rq);
3962
3963 cfqd->rq_queued++;
3964 if (rq->cmd_flags & REQ_PRIO)
3965 cfqq->prio_pending++;
3966
3967 cfq_update_io_thinktime(cfqd, cfqq, cic);
3968 cfq_update_io_seektime(cfqd, cfqq, rq);
3969 cfq_update_idle_window(cfqd, cfqq, cic);
3970
3971 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3972
3973 if (cfqq == cfqd->active_queue) {
3974 /*
3975 * Remember that we saw a request from this process, but
3976 * don't start queuing just yet. Otherwise we risk seeing lots
3977 * of tiny requests, because we disrupt the normal plugging
3978 * and merging. If the request is already larger than a single
3979 * page, let it rip immediately. For that case we assume that
3980 * merging is already done. Ditto for a busy system that
3981 * has other work pending, don't risk delaying until the
3982 * idle timer unplug to continue working.
3983 */
3984 if (cfq_cfqq_wait_request(cfqq)) {
3985 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3986 cfqd->busy_queues > 1) {
3987 cfq_del_timer(cfqd, cfqq);
3988 cfq_clear_cfqq_wait_request(cfqq);
3989 __blk_run_queue(cfqd->queue);
3990 } else {
3991 cfqg_stats_update_idle_time(cfqq->cfqg);
3992 cfq_mark_cfqq_must_dispatch(cfqq);
3993 }
3994 }
3995 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3996 /*
3997 * not the active queue - expire current slice if it is
3998 * idle and has expired it's mean thinktime or this new queue
3999 * has some old slice time left and is of higher priority or
4000 * this new queue is RT and the current one is BE
4001 */
4002 cfq_preempt_queue(cfqd, cfqq);
4003 __blk_run_queue(cfqd->queue);
4004 }
4005 }
4006
4007 static void cfq_insert_request(struct request_queue *q, struct request *rq)
4008 {
4009 struct cfq_data *cfqd = q->elevator->elevator_data;
4010 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4011
4012 cfq_log_cfqq(cfqd, cfqq, "insert_request");
4013 cfq_init_prio_data(cfqq, RQ_CIC(rq));
4014
4015 rq->fifo_time = jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
4016 list_add_tail(&rq->queuelist, &cfqq->fifo);
4017 cfq_add_rq_rb(rq);
4018 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
4019 rq->cmd_flags);
4020 cfq_rq_enqueued(cfqd, cfqq, rq);
4021 }
4022
4023 /*
4024 * Update hw_tag based on peak queue depth over 50 samples under
4025 * sufficient load.
4026 */
4027 static void cfq_update_hw_tag(struct cfq_data *cfqd)
4028 {
4029 struct cfq_queue *cfqq = cfqd->active_queue;
4030
4031 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
4032 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
4033
4034 if (cfqd->hw_tag == 1)
4035 return;
4036
4037 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
4038 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
4039 return;
4040
4041 /*
4042 * If active queue hasn't enough requests and can idle, cfq might not
4043 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4044 * case
4045 */
4046 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
4047 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
4048 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
4049 return;
4050
4051 if (cfqd->hw_tag_samples++ < 50)
4052 return;
4053
4054 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
4055 cfqd->hw_tag = 1;
4056 else
4057 cfqd->hw_tag = 0;
4058 }
4059
4060 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4061 {
4062 struct cfq_io_cq *cic = cfqd->active_cic;
4063
4064 /* If the queue already has requests, don't wait */
4065 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4066 return false;
4067
4068 /* If there are other queues in the group, don't wait */
4069 if (cfqq->cfqg->nr_cfqq > 1)
4070 return false;
4071
4072 /* the only queue in the group, but think time is big */
4073 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
4074 return false;
4075
4076 if (cfq_slice_used(cfqq))
4077 return true;
4078
4079 /* if slice left is less than think time, wait busy */
4080 if (cic && sample_valid(cic->ttime.ttime_samples)
4081 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
4082 return true;
4083
4084 /*
4085 * If think times is less than a jiffy than ttime_mean=0 and above
4086 * will not be true. It might happen that slice has not expired yet
4087 * but will expire soon (4-5 ns) during select_queue(). To cover the
4088 * case where think time is less than a jiffy, mark the queue wait
4089 * busy if only 1 jiffy is left in the slice.
4090 */
4091 if (cfqq->slice_end - jiffies == 1)
4092 return true;
4093
4094 return false;
4095 }
4096
4097 static void cfq_completed_request(struct request_queue *q, struct request *rq)
4098 {
4099 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4100 struct cfq_data *cfqd = cfqq->cfqd;
4101 const int sync = rq_is_sync(rq);
4102 unsigned long now;
4103
4104 now = jiffies;
4105 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
4106 !!(rq->cmd_flags & REQ_NOIDLE));
4107
4108 cfq_update_hw_tag(cfqd);
4109
4110 WARN_ON(!cfqd->rq_in_driver);
4111 WARN_ON(!cfqq->dispatched);
4112 cfqd->rq_in_driver--;
4113 cfqq->dispatched--;
4114 (RQ_CFQG(rq))->dispatched--;
4115 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4116 rq_io_start_time_ns(rq), rq->cmd_flags);
4117
4118 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4119
4120 if (sync) {
4121 struct cfq_rb_root *st;
4122
4123 RQ_CIC(rq)->ttime.last_end_request = now;
4124
4125 if (cfq_cfqq_on_rr(cfqq))
4126 st = cfqq->service_tree;
4127 else
4128 st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4129 cfqq_type(cfqq));
4130
4131 st->ttime.last_end_request = now;
4132 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
4133 cfqd->last_delayed_sync = now;
4134 }
4135
4136 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4137 cfqq->cfqg->ttime.last_end_request = now;
4138 #endif
4139
4140 /*
4141 * If this is the active queue, check if it needs to be expired,
4142 * or if we want to idle in case it has no pending requests.
4143 */
4144 if (cfqd->active_queue == cfqq) {
4145 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4146
4147 if (cfq_cfqq_slice_new(cfqq)) {
4148 cfq_set_prio_slice(cfqd, cfqq);
4149 cfq_clear_cfqq_slice_new(cfqq);
4150 }
4151
4152 /*
4153 * Should we wait for next request to come in before we expire
4154 * the queue.
4155 */
4156 if (cfq_should_wait_busy(cfqd, cfqq)) {
4157 unsigned long extend_sl = cfqd->cfq_slice_idle;
4158 if (!cfqd->cfq_slice_idle)
4159 extend_sl = cfqd->cfq_group_idle;
4160 cfqq->slice_end = jiffies + extend_sl;
4161 cfq_mark_cfqq_wait_busy(cfqq);
4162 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4163 }
4164
4165 /*
4166 * Idling is not enabled on:
4167 * - expired queues
4168 * - idle-priority queues
4169 * - async queues
4170 * - queues with still some requests queued
4171 * - when there is a close cooperator
4172 */
4173 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4174 cfq_slice_expired(cfqd, 1);
4175 else if (sync && cfqq_empty &&
4176 !cfq_close_cooperator(cfqd, cfqq)) {
4177 cfq_arm_slice_timer(cfqd);
4178 }
4179 }
4180
4181 if (!cfqd->rq_in_driver)
4182 cfq_schedule_dispatch(cfqd);
4183 }
4184
4185 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4186 {
4187 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4188 cfq_mark_cfqq_must_alloc_slice(cfqq);
4189 return ELV_MQUEUE_MUST;
4190 }
4191
4192 return ELV_MQUEUE_MAY;
4193 }
4194
4195 static int cfq_may_queue(struct request_queue *q, int rw)
4196 {
4197 struct cfq_data *cfqd = q->elevator->elevator_data;
4198 struct task_struct *tsk = current;
4199 struct cfq_io_cq *cic;
4200 struct cfq_queue *cfqq;
4201
4202 /*
4203 * don't force setup of a queue from here, as a call to may_queue
4204 * does not necessarily imply that a request actually will be queued.
4205 * so just lookup a possibly existing queue, or return 'may queue'
4206 * if that fails
4207 */
4208 cic = cfq_cic_lookup(cfqd, tsk->io_context);
4209 if (!cic)
4210 return ELV_MQUEUE_MAY;
4211
4212 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
4213 if (cfqq) {
4214 cfq_init_prio_data(cfqq, cic);
4215
4216 return __cfq_may_queue(cfqq);
4217 }
4218
4219 return ELV_MQUEUE_MAY;
4220 }
4221
4222 /*
4223 * queue lock held here
4224 */
4225 static void cfq_put_request(struct request *rq)
4226 {
4227 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4228
4229 if (cfqq) {
4230 const int rw = rq_data_dir(rq);
4231
4232 BUG_ON(!cfqq->allocated[rw]);
4233 cfqq->allocated[rw]--;
4234
4235 /* Put down rq reference on cfqg */
4236 cfqg_put(RQ_CFQG(rq));
4237 rq->elv.priv[0] = NULL;
4238 rq->elv.priv[1] = NULL;
4239
4240 cfq_put_queue(cfqq);
4241 }
4242 }
4243
4244 static struct cfq_queue *
4245 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4246 struct cfq_queue *cfqq)
4247 {
4248 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4249 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4250 cfq_mark_cfqq_coop(cfqq->new_cfqq);
4251 cfq_put_queue(cfqq);
4252 return cic_to_cfqq(cic, 1);
4253 }
4254
4255 /*
4256 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4257 * was the last process referring to said cfqq.
4258 */
4259 static struct cfq_queue *
4260 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4261 {
4262 if (cfqq_process_refs(cfqq) == 1) {
4263 cfqq->pid = current->pid;
4264 cfq_clear_cfqq_coop(cfqq);
4265 cfq_clear_cfqq_split_coop(cfqq);
4266 return cfqq;
4267 }
4268
4269 cic_set_cfqq(cic, NULL, 1);
4270
4271 cfq_put_cooperator(cfqq);
4272
4273 cfq_put_queue(cfqq);
4274 return NULL;
4275 }
4276 /*
4277 * Allocate cfq data structures associated with this request.
4278 */
4279 static int
4280 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4281 gfp_t gfp_mask)
4282 {
4283 struct cfq_data *cfqd = q->elevator->elevator_data;
4284 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4285 const int rw = rq_data_dir(rq);
4286 const bool is_sync = rq_is_sync(rq);
4287 struct cfq_queue *cfqq;
4288
4289 might_sleep_if(gfp_mask & __GFP_WAIT);
4290
4291 spin_lock_irq(q->queue_lock);
4292
4293 check_ioprio_changed(cic, bio);
4294 check_blkcg_changed(cic, bio);
4295 new_queue:
4296 cfqq = cic_to_cfqq(cic, is_sync);
4297 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4298 if (cfqq)
4299 cfq_put_queue(cfqq);
4300 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
4301 cic_set_cfqq(cic, cfqq, is_sync);
4302 } else {
4303 /*
4304 * If the queue was seeky for too long, break it apart.
4305 */
4306 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4307 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4308 cfqq = split_cfqq(cic, cfqq);
4309 if (!cfqq)
4310 goto new_queue;
4311 }
4312
4313 /*
4314 * Check to see if this queue is scheduled to merge with
4315 * another, closely cooperating queue. The merging of
4316 * queues happens here as it must be done in process context.
4317 * The reference on new_cfqq was taken in merge_cfqqs.
4318 */
4319 if (cfqq->new_cfqq)
4320 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4321 }
4322
4323 cfqq->allocated[rw]++;
4324
4325 cfqq->ref++;
4326 cfqg_get(cfqq->cfqg);
4327 rq->elv.priv[0] = cfqq;
4328 rq->elv.priv[1] = cfqq->cfqg;
4329 spin_unlock_irq(q->queue_lock);
4330 return 0;
4331 }
4332
4333 static void cfq_kick_queue(struct work_struct *work)
4334 {
4335 struct cfq_data *cfqd =
4336 container_of(work, struct cfq_data, unplug_work);
4337 struct request_queue *q = cfqd->queue;
4338
4339 spin_lock_irq(q->queue_lock);
4340 __blk_run_queue(cfqd->queue);
4341 spin_unlock_irq(q->queue_lock);
4342 }
4343
4344 /*
4345 * Timer running if the active_queue is currently idling inside its time slice
4346 */
4347 static void cfq_idle_slice_timer(unsigned long data)
4348 {
4349 struct cfq_data *cfqd = (struct cfq_data *) data;
4350 struct cfq_queue *cfqq;
4351 unsigned long flags;
4352 int timed_out = 1;
4353
4354 cfq_log(cfqd, "idle timer fired");
4355
4356 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4357
4358 cfqq = cfqd->active_queue;
4359 if (cfqq) {
4360 timed_out = 0;
4361
4362 /*
4363 * We saw a request before the queue expired, let it through
4364 */
4365 if (cfq_cfqq_must_dispatch(cfqq))
4366 goto out_kick;
4367
4368 /*
4369 * expired
4370 */
4371 if (cfq_slice_used(cfqq))
4372 goto expire;
4373
4374 /*
4375 * only expire and reinvoke request handler, if there are
4376 * other queues with pending requests
4377 */
4378 if (!cfqd->busy_queues)
4379 goto out_cont;
4380
4381 /*
4382 * not expired and it has a request pending, let it dispatch
4383 */
4384 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4385 goto out_kick;
4386
4387 /*
4388 * Queue depth flag is reset only when the idle didn't succeed
4389 */
4390 cfq_clear_cfqq_deep(cfqq);
4391 }
4392 expire:
4393 cfq_slice_expired(cfqd, timed_out);
4394 out_kick:
4395 cfq_schedule_dispatch(cfqd);
4396 out_cont:
4397 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4398 }
4399
4400 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4401 {
4402 del_timer_sync(&cfqd->idle_slice_timer);
4403 cancel_work_sync(&cfqd->unplug_work);
4404 }
4405
4406 static void cfq_put_async_queues(struct cfq_data *cfqd)
4407 {
4408 int i;
4409
4410 for (i = 0; i < IOPRIO_BE_NR; i++) {
4411 if (cfqd->async_cfqq[0][i])
4412 cfq_put_queue(cfqd->async_cfqq[0][i]);
4413 if (cfqd->async_cfqq[1][i])
4414 cfq_put_queue(cfqd->async_cfqq[1][i]);
4415 }
4416
4417 if (cfqd->async_idle_cfqq)
4418 cfq_put_queue(cfqd->async_idle_cfqq);
4419 }
4420
4421 static void cfq_exit_queue(struct elevator_queue *e)
4422 {
4423 struct cfq_data *cfqd = e->elevator_data;
4424 struct request_queue *q = cfqd->queue;
4425
4426 cfq_shutdown_timer_wq(cfqd);
4427
4428 spin_lock_irq(q->queue_lock);
4429
4430 if (cfqd->active_queue)
4431 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4432
4433 cfq_put_async_queues(cfqd);
4434
4435 spin_unlock_irq(q->queue_lock);
4436
4437 cfq_shutdown_timer_wq(cfqd);
4438
4439 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4440 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4441 #else
4442 kfree(cfqd->root_group);
4443 #endif
4444 kfree(cfqd);
4445 }
4446
4447 static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4448 {
4449 struct cfq_data *cfqd;
4450 struct blkcg_gq *blkg __maybe_unused;
4451 int i, ret;
4452 struct elevator_queue *eq;
4453
4454 eq = elevator_alloc(q, e);
4455 if (!eq)
4456 return -ENOMEM;
4457
4458 cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4459 if (!cfqd) {
4460 kobject_put(&eq->kobj);
4461 return -ENOMEM;
4462 }
4463 eq->elevator_data = cfqd;
4464
4465 cfqd->queue = q;
4466 spin_lock_irq(q->queue_lock);
4467 q->elevator = eq;
4468 spin_unlock_irq(q->queue_lock);
4469
4470 /* Init root service tree */
4471 cfqd->grp_service_tree = CFQ_RB_ROOT;
4472
4473 /* Init root group and prefer root group over other groups by default */
4474 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4475 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4476 if (ret)
4477 goto out_free;
4478
4479 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4480 #else
4481 ret = -ENOMEM;
4482 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4483 GFP_KERNEL, cfqd->queue->node);
4484 if (!cfqd->root_group)
4485 goto out_free;
4486
4487 cfq_init_cfqg_base(cfqd->root_group);
4488 #endif
4489 cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
4490 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
4491
4492 /*
4493 * Not strictly needed (since RB_ROOT just clears the node and we
4494 * zeroed cfqd on alloc), but better be safe in case someone decides
4495 * to add magic to the rb code
4496 */
4497 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4498 cfqd->prio_trees[i] = RB_ROOT;
4499
4500 /*
4501 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4502 * Grab a permanent reference to it, so that the normal code flow
4503 * will not attempt to free it. oom_cfqq is linked to root_group
4504 * but shouldn't hold a reference as it'll never be unlinked. Lose
4505 * the reference from linking right away.
4506 */
4507 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4508 cfqd->oom_cfqq.ref++;
4509
4510 spin_lock_irq(q->queue_lock);
4511 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4512 cfqg_put(cfqd->root_group);
4513 spin_unlock_irq(q->queue_lock);
4514
4515 init_timer(&cfqd->idle_slice_timer);
4516 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4517 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4518
4519 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4520
4521 cfqd->cfq_quantum = cfq_quantum;
4522 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4523 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4524 cfqd->cfq_back_max = cfq_back_max;
4525 cfqd->cfq_back_penalty = cfq_back_penalty;
4526 cfqd->cfq_slice[0] = cfq_slice_async;
4527 cfqd->cfq_slice[1] = cfq_slice_sync;
4528 cfqd->cfq_target_latency = cfq_target_latency;
4529 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4530 cfqd->cfq_slice_idle = cfq_slice_idle;
4531 cfqd->cfq_group_idle = cfq_group_idle;
4532 cfqd->cfq_latency = 1;
4533 cfqd->hw_tag = -1;
4534 /*
4535 * we optimistically start assuming sync ops weren't delayed in last
4536 * second, in order to have larger depth for async operations.
4537 */
4538 cfqd->last_delayed_sync = jiffies - HZ;
4539 return 0;
4540
4541 out_free:
4542 kfree(cfqd);
4543 kobject_put(&eq->kobj);
4544 return ret;
4545 }
4546
4547 static void cfq_registered_queue(struct request_queue *q)
4548 {
4549 struct elevator_queue *e = q->elevator;
4550 struct cfq_data *cfqd = e->elevator_data;
4551
4552 /*
4553 * Default to IOPS mode with no idling for SSDs
4554 */
4555 if (blk_queue_nonrot(q))
4556 cfqd->cfq_slice_idle = 0;
4557 }
4558
4559 /*
4560 * sysfs parts below -->
4561 */
4562 static ssize_t
4563 cfq_var_show(unsigned int var, char *page)
4564 {
4565 return sprintf(page, "%u\n", var);
4566 }
4567
4568 static ssize_t
4569 cfq_var_store(unsigned int *var, const char *page, size_t count)
4570 {
4571 char *p = (char *) page;
4572
4573 *var = simple_strtoul(p, &p, 10);
4574 return count;
4575 }
4576
4577 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4578 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4579 { \
4580 struct cfq_data *cfqd = e->elevator_data; \
4581 unsigned int __data = __VAR; \
4582 if (__CONV) \
4583 __data = jiffies_to_msecs(__data); \
4584 return cfq_var_show(__data, (page)); \
4585 }
4586 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4587 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4588 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4589 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4590 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4591 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4592 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4593 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4594 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4595 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4596 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4597 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4598 #undef SHOW_FUNCTION
4599
4600 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4601 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4602 { \
4603 struct cfq_data *cfqd = e->elevator_data; \
4604 unsigned int __data; \
4605 int ret = cfq_var_store(&__data, (page), count); \
4606 if (__data < (MIN)) \
4607 __data = (MIN); \
4608 else if (__data > (MAX)) \
4609 __data = (MAX); \
4610 if (__CONV) \
4611 *(__PTR) = msecs_to_jiffies(__data); \
4612 else \
4613 *(__PTR) = __data; \
4614 return ret; \
4615 }
4616 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4617 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4618 UINT_MAX, 1);
4619 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4620 UINT_MAX, 1);
4621 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4622 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4623 UINT_MAX, 0);
4624 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4625 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4626 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4627 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4628 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4629 UINT_MAX, 0);
4630 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4631 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4632 #undef STORE_FUNCTION
4633
4634 #define CFQ_ATTR(name) \
4635 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4636
4637 static struct elv_fs_entry cfq_attrs[] = {
4638 CFQ_ATTR(quantum),
4639 CFQ_ATTR(fifo_expire_sync),
4640 CFQ_ATTR(fifo_expire_async),
4641 CFQ_ATTR(back_seek_max),
4642 CFQ_ATTR(back_seek_penalty),
4643 CFQ_ATTR(slice_sync),
4644 CFQ_ATTR(slice_async),
4645 CFQ_ATTR(slice_async_rq),
4646 CFQ_ATTR(slice_idle),
4647 CFQ_ATTR(group_idle),
4648 CFQ_ATTR(low_latency),
4649 CFQ_ATTR(target_latency),
4650 __ATTR_NULL
4651 };
4652
4653 static struct elevator_type iosched_cfq = {
4654 .ops = {
4655 .elevator_merge_fn = cfq_merge,
4656 .elevator_merged_fn = cfq_merged_request,
4657 .elevator_merge_req_fn = cfq_merged_requests,
4658 .elevator_allow_merge_fn = cfq_allow_merge,
4659 .elevator_bio_merged_fn = cfq_bio_merged,
4660 .elevator_dispatch_fn = cfq_dispatch_requests,
4661 .elevator_add_req_fn = cfq_insert_request,
4662 .elevator_activate_req_fn = cfq_activate_request,
4663 .elevator_deactivate_req_fn = cfq_deactivate_request,
4664 .elevator_completed_req_fn = cfq_completed_request,
4665 .elevator_former_req_fn = elv_rb_former_request,
4666 .elevator_latter_req_fn = elv_rb_latter_request,
4667 .elevator_init_icq_fn = cfq_init_icq,
4668 .elevator_exit_icq_fn = cfq_exit_icq,
4669 .elevator_set_req_fn = cfq_set_request,
4670 .elevator_put_req_fn = cfq_put_request,
4671 .elevator_may_queue_fn = cfq_may_queue,
4672 .elevator_init_fn = cfq_init_queue,
4673 .elevator_exit_fn = cfq_exit_queue,
4674 .elevator_registered_fn = cfq_registered_queue,
4675 },
4676 .icq_size = sizeof(struct cfq_io_cq),
4677 .icq_align = __alignof__(struct cfq_io_cq),
4678 .elevator_attrs = cfq_attrs,
4679 .elevator_name = "cfq",
4680 .elevator_owner = THIS_MODULE,
4681 };
4682
4683 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4684 static struct blkcg_policy blkcg_policy_cfq = {
4685 .pd_size = sizeof(struct cfq_group),
4686 .cpd_size = sizeof(struct cfq_group_data),
4687 .cftypes = cfq_blkcg_files,
4688
4689 .cpd_init_fn = cfq_cpd_init,
4690 .pd_init_fn = cfq_pd_init,
4691 .pd_offline_fn = cfq_pd_offline,
4692 .pd_reset_stats_fn = cfq_pd_reset_stats,
4693 };
4694 #endif
4695
4696 static int __init cfq_init(void)
4697 {
4698 int ret;
4699
4700 /*
4701 * could be 0 on HZ < 1000 setups
4702 */
4703 if (!cfq_slice_async)
4704 cfq_slice_async = 1;
4705 if (!cfq_slice_idle)
4706 cfq_slice_idle = 1;
4707
4708 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4709 if (!cfq_group_idle)
4710 cfq_group_idle = 1;
4711
4712 ret = blkcg_policy_register(&blkcg_policy_cfq);
4713 if (ret)
4714 return ret;
4715 #else
4716 cfq_group_idle = 0;
4717 #endif
4718
4719 ret = -ENOMEM;
4720 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4721 if (!cfq_pool)
4722 goto err_pol_unreg;
4723
4724 ret = elv_register(&iosched_cfq);
4725 if (ret)
4726 goto err_free_pool;
4727
4728 return 0;
4729
4730 err_free_pool:
4731 kmem_cache_destroy(cfq_pool);
4732 err_pol_unreg:
4733 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4734 blkcg_policy_unregister(&blkcg_policy_cfq);
4735 #endif
4736 return ret;
4737 }
4738
4739 static void __exit cfq_exit(void)
4740 {
4741 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4742 blkcg_policy_unregister(&blkcg_policy_cfq);
4743 #endif
4744 elv_unregister(&iosched_cfq);
4745 kmem_cache_destroy(cfq_pool);
4746 }
4747
4748 module_init(cfq_init);
4749 module_exit(cfq_exit);
4750
4751 MODULE_AUTHOR("Jens Axboe");
4752 MODULE_LICENSE("GPL");
4753 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");