]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/cfq-iosched.c
block: make kblockd_schedule_work() take the queue as parameter
[mirror_ubuntu-artful-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
15
16 /*
17 * tunables
18 */
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
30
31 /*
32 * offset from end of service tree
33 */
34 #define CFQ_IDLE_DELAY (HZ / 5)
35
36 /*
37 * below this threshold, we consider thinktime immediate
38 */
39 #define CFQ_MIN_TT (2)
40
41 #define CFQ_SLICE_SCALE (5)
42
43 #define RQ_CIC(rq) \
44 ((struct cfq_io_context *) (rq)->elevator_private)
45 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
46
47 static struct kmem_cache *cfq_pool;
48 static struct kmem_cache *cfq_ioc_pool;
49
50 static DEFINE_PER_CPU(unsigned long, ioc_count);
51 static struct completion *ioc_gone;
52 static DEFINE_SPINLOCK(ioc_gone_lock);
53
54 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
55 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
56 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
57
58 #define ASYNC (0)
59 #define SYNC (1)
60
61 #define sample_valid(samples) ((samples) > 80)
62
63 /*
64 * Most of our rbtree usage is for sorting with min extraction, so
65 * if we cache the leftmost node we don't have to walk down the tree
66 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
67 * move this into the elevator for the rq sorting as well.
68 */
69 struct cfq_rb_root {
70 struct rb_root rb;
71 struct rb_node *left;
72 };
73 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
74
75 /*
76 * Per block device queue structure
77 */
78 struct cfq_data {
79 struct request_queue *queue;
80
81 /*
82 * rr list of queues with requests and the count of them
83 */
84 struct cfq_rb_root service_tree;
85 unsigned int busy_queues;
86
87 int rq_in_driver;
88 int sync_flight;
89 int hw_tag;
90
91 /*
92 * idle window management
93 */
94 struct timer_list idle_slice_timer;
95 struct work_struct unplug_work;
96
97 struct cfq_queue *active_queue;
98 struct cfq_io_context *active_cic;
99
100 /*
101 * async queue for each priority case
102 */
103 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
104 struct cfq_queue *async_idle_cfqq;
105
106 sector_t last_position;
107 unsigned long last_end_request;
108
109 /*
110 * tunables, see top of file
111 */
112 unsigned int cfq_quantum;
113 unsigned int cfq_fifo_expire[2];
114 unsigned int cfq_back_penalty;
115 unsigned int cfq_back_max;
116 unsigned int cfq_slice[2];
117 unsigned int cfq_slice_async_rq;
118 unsigned int cfq_slice_idle;
119
120 struct list_head cic_list;
121 };
122
123 /*
124 * Per process-grouping structure
125 */
126 struct cfq_queue {
127 /* reference count */
128 atomic_t ref;
129 /* various state flags, see below */
130 unsigned int flags;
131 /* parent cfq_data */
132 struct cfq_data *cfqd;
133 /* service_tree member */
134 struct rb_node rb_node;
135 /* service_tree key */
136 unsigned long rb_key;
137 /* sorted list of pending requests */
138 struct rb_root sort_list;
139 /* if fifo isn't expired, next request to serve */
140 struct request *next_rq;
141 /* requests queued in sort_list */
142 int queued[2];
143 /* currently allocated requests */
144 int allocated[2];
145 /* fifo list of requests in sort_list */
146 struct list_head fifo;
147
148 unsigned long slice_end;
149 long slice_resid;
150
151 /* pending metadata requests */
152 int meta_pending;
153 /* number of requests that are on the dispatch list or inside driver */
154 int dispatched;
155
156 /* io prio of this group */
157 unsigned short ioprio, org_ioprio;
158 unsigned short ioprio_class, org_ioprio_class;
159
160 pid_t pid;
161 };
162
163 enum cfqq_state_flags {
164 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
165 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
166 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
167 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
168 CFQ_CFQQ_FLAG_must_dispatch, /* must dispatch, even if expired */
169 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
170 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
171 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
172 CFQ_CFQQ_FLAG_queue_new, /* queue never been serviced */
173 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
174 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
175 };
176
177 #define CFQ_CFQQ_FNS(name) \
178 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
179 { \
180 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
181 } \
182 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
183 { \
184 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
185 } \
186 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
187 { \
188 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
189 }
190
191 CFQ_CFQQ_FNS(on_rr);
192 CFQ_CFQQ_FNS(wait_request);
193 CFQ_CFQQ_FNS(must_alloc);
194 CFQ_CFQQ_FNS(must_alloc_slice);
195 CFQ_CFQQ_FNS(must_dispatch);
196 CFQ_CFQQ_FNS(fifo_expire);
197 CFQ_CFQQ_FNS(idle_window);
198 CFQ_CFQQ_FNS(prio_changed);
199 CFQ_CFQQ_FNS(queue_new);
200 CFQ_CFQQ_FNS(slice_new);
201 CFQ_CFQQ_FNS(sync);
202 #undef CFQ_CFQQ_FNS
203
204 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
205 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
206 #define cfq_log(cfqd, fmt, args...) \
207 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
208
209 static void cfq_dispatch_insert(struct request_queue *, struct request *);
210 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
211 struct io_context *, gfp_t);
212 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
213 struct io_context *);
214
215 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
216 int is_sync)
217 {
218 return cic->cfqq[!!is_sync];
219 }
220
221 static inline void cic_set_cfqq(struct cfq_io_context *cic,
222 struct cfq_queue *cfqq, int is_sync)
223 {
224 cic->cfqq[!!is_sync] = cfqq;
225 }
226
227 /*
228 * We regard a request as SYNC, if it's either a read or has the SYNC bit
229 * set (in which case it could also be direct WRITE).
230 */
231 static inline int cfq_bio_sync(struct bio *bio)
232 {
233 if (bio_data_dir(bio) == READ || bio_sync(bio))
234 return 1;
235
236 return 0;
237 }
238
239 /*
240 * scheduler run of queue, if there are requests pending and no one in the
241 * driver that will restart queueing
242 */
243 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
244 {
245 if (cfqd->busy_queues) {
246 cfq_log(cfqd, "schedule dispatch");
247 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
248 }
249 }
250
251 static int cfq_queue_empty(struct request_queue *q)
252 {
253 struct cfq_data *cfqd = q->elevator->elevator_data;
254
255 return !cfqd->busy_queues;
256 }
257
258 /*
259 * Scale schedule slice based on io priority. Use the sync time slice only
260 * if a queue is marked sync and has sync io queued. A sync queue with async
261 * io only, should not get full sync slice length.
262 */
263 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
264 unsigned short prio)
265 {
266 const int base_slice = cfqd->cfq_slice[sync];
267
268 WARN_ON(prio >= IOPRIO_BE_NR);
269
270 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
271 }
272
273 static inline int
274 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
275 {
276 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
277 }
278
279 static inline void
280 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
281 {
282 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
283 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
284 }
285
286 /*
287 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
288 * isn't valid until the first request from the dispatch is activated
289 * and the slice time set.
290 */
291 static inline int cfq_slice_used(struct cfq_queue *cfqq)
292 {
293 if (cfq_cfqq_slice_new(cfqq))
294 return 0;
295 if (time_before(jiffies, cfqq->slice_end))
296 return 0;
297
298 return 1;
299 }
300
301 /*
302 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
303 * We choose the request that is closest to the head right now. Distance
304 * behind the head is penalized and only allowed to a certain extent.
305 */
306 static struct request *
307 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
308 {
309 sector_t last, s1, s2, d1 = 0, d2 = 0;
310 unsigned long back_max;
311 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
312 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
313 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
314
315 if (rq1 == NULL || rq1 == rq2)
316 return rq2;
317 if (rq2 == NULL)
318 return rq1;
319
320 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
321 return rq1;
322 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
323 return rq2;
324 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
325 return rq1;
326 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
327 return rq2;
328
329 s1 = rq1->sector;
330 s2 = rq2->sector;
331
332 last = cfqd->last_position;
333
334 /*
335 * by definition, 1KiB is 2 sectors
336 */
337 back_max = cfqd->cfq_back_max * 2;
338
339 /*
340 * Strict one way elevator _except_ in the case where we allow
341 * short backward seeks which are biased as twice the cost of a
342 * similar forward seek.
343 */
344 if (s1 >= last)
345 d1 = s1 - last;
346 else if (s1 + back_max >= last)
347 d1 = (last - s1) * cfqd->cfq_back_penalty;
348 else
349 wrap |= CFQ_RQ1_WRAP;
350
351 if (s2 >= last)
352 d2 = s2 - last;
353 else if (s2 + back_max >= last)
354 d2 = (last - s2) * cfqd->cfq_back_penalty;
355 else
356 wrap |= CFQ_RQ2_WRAP;
357
358 /* Found required data */
359
360 /*
361 * By doing switch() on the bit mask "wrap" we avoid having to
362 * check two variables for all permutations: --> faster!
363 */
364 switch (wrap) {
365 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
366 if (d1 < d2)
367 return rq1;
368 else if (d2 < d1)
369 return rq2;
370 else {
371 if (s1 >= s2)
372 return rq1;
373 else
374 return rq2;
375 }
376
377 case CFQ_RQ2_WRAP:
378 return rq1;
379 case CFQ_RQ1_WRAP:
380 return rq2;
381 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
382 default:
383 /*
384 * Since both rqs are wrapped,
385 * start with the one that's further behind head
386 * (--> only *one* back seek required),
387 * since back seek takes more time than forward.
388 */
389 if (s1 <= s2)
390 return rq1;
391 else
392 return rq2;
393 }
394 }
395
396 /*
397 * The below is leftmost cache rbtree addon
398 */
399 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
400 {
401 if (!root->left)
402 root->left = rb_first(&root->rb);
403
404 if (root->left)
405 return rb_entry(root->left, struct cfq_queue, rb_node);
406
407 return NULL;
408 }
409
410 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
411 {
412 if (root->left == n)
413 root->left = NULL;
414
415 rb_erase(n, &root->rb);
416 RB_CLEAR_NODE(n);
417 }
418
419 /*
420 * would be nice to take fifo expire time into account as well
421 */
422 static struct request *
423 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
424 struct request *last)
425 {
426 struct rb_node *rbnext = rb_next(&last->rb_node);
427 struct rb_node *rbprev = rb_prev(&last->rb_node);
428 struct request *next = NULL, *prev = NULL;
429
430 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
431
432 if (rbprev)
433 prev = rb_entry_rq(rbprev);
434
435 if (rbnext)
436 next = rb_entry_rq(rbnext);
437 else {
438 rbnext = rb_first(&cfqq->sort_list);
439 if (rbnext && rbnext != &last->rb_node)
440 next = rb_entry_rq(rbnext);
441 }
442
443 return cfq_choose_req(cfqd, next, prev);
444 }
445
446 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
447 struct cfq_queue *cfqq)
448 {
449 /*
450 * just an approximation, should be ok.
451 */
452 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
453 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
454 }
455
456 /*
457 * The cfqd->service_tree holds all pending cfq_queue's that have
458 * requests waiting to be processed. It is sorted in the order that
459 * we will service the queues.
460 */
461 static void cfq_service_tree_add(struct cfq_data *cfqd,
462 struct cfq_queue *cfqq, int add_front)
463 {
464 struct rb_node **p, *parent;
465 struct cfq_queue *__cfqq;
466 unsigned long rb_key;
467 int left;
468
469 if (cfq_class_idle(cfqq)) {
470 rb_key = CFQ_IDLE_DELAY;
471 parent = rb_last(&cfqd->service_tree.rb);
472 if (parent && parent != &cfqq->rb_node) {
473 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
474 rb_key += __cfqq->rb_key;
475 } else
476 rb_key += jiffies;
477 } else if (!add_front) {
478 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
479 rb_key += cfqq->slice_resid;
480 cfqq->slice_resid = 0;
481 } else
482 rb_key = 0;
483
484 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
485 /*
486 * same position, nothing more to do
487 */
488 if (rb_key == cfqq->rb_key)
489 return;
490
491 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
492 }
493
494 left = 1;
495 parent = NULL;
496 p = &cfqd->service_tree.rb.rb_node;
497 while (*p) {
498 struct rb_node **n;
499
500 parent = *p;
501 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
502
503 /*
504 * sort RT queues first, we always want to give
505 * preference to them. IDLE queues goes to the back.
506 * after that, sort on the next service time.
507 */
508 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
509 n = &(*p)->rb_left;
510 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
511 n = &(*p)->rb_right;
512 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
513 n = &(*p)->rb_left;
514 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
515 n = &(*p)->rb_right;
516 else if (rb_key < __cfqq->rb_key)
517 n = &(*p)->rb_left;
518 else
519 n = &(*p)->rb_right;
520
521 if (n == &(*p)->rb_right)
522 left = 0;
523
524 p = n;
525 }
526
527 if (left)
528 cfqd->service_tree.left = &cfqq->rb_node;
529
530 cfqq->rb_key = rb_key;
531 rb_link_node(&cfqq->rb_node, parent, p);
532 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
533 }
534
535 /*
536 * Update cfqq's position in the service tree.
537 */
538 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
539 {
540 /*
541 * Resorting requires the cfqq to be on the RR list already.
542 */
543 if (cfq_cfqq_on_rr(cfqq))
544 cfq_service_tree_add(cfqd, cfqq, 0);
545 }
546
547 /*
548 * add to busy list of queues for service, trying to be fair in ordering
549 * the pending list according to last request service
550 */
551 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
552 {
553 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
554 BUG_ON(cfq_cfqq_on_rr(cfqq));
555 cfq_mark_cfqq_on_rr(cfqq);
556 cfqd->busy_queues++;
557
558 cfq_resort_rr_list(cfqd, cfqq);
559 }
560
561 /*
562 * Called when the cfqq no longer has requests pending, remove it from
563 * the service tree.
564 */
565 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
566 {
567 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
568 BUG_ON(!cfq_cfqq_on_rr(cfqq));
569 cfq_clear_cfqq_on_rr(cfqq);
570
571 if (!RB_EMPTY_NODE(&cfqq->rb_node))
572 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
573
574 BUG_ON(!cfqd->busy_queues);
575 cfqd->busy_queues--;
576 }
577
578 /*
579 * rb tree support functions
580 */
581 static void cfq_del_rq_rb(struct request *rq)
582 {
583 struct cfq_queue *cfqq = RQ_CFQQ(rq);
584 struct cfq_data *cfqd = cfqq->cfqd;
585 const int sync = rq_is_sync(rq);
586
587 BUG_ON(!cfqq->queued[sync]);
588 cfqq->queued[sync]--;
589
590 elv_rb_del(&cfqq->sort_list, rq);
591
592 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
593 cfq_del_cfqq_rr(cfqd, cfqq);
594 }
595
596 static void cfq_add_rq_rb(struct request *rq)
597 {
598 struct cfq_queue *cfqq = RQ_CFQQ(rq);
599 struct cfq_data *cfqd = cfqq->cfqd;
600 struct request *__alias;
601
602 cfqq->queued[rq_is_sync(rq)]++;
603
604 /*
605 * looks a little odd, but the first insert might return an alias.
606 * if that happens, put the alias on the dispatch list
607 */
608 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
609 cfq_dispatch_insert(cfqd->queue, __alias);
610
611 if (!cfq_cfqq_on_rr(cfqq))
612 cfq_add_cfqq_rr(cfqd, cfqq);
613
614 /*
615 * check if this request is a better next-serve candidate
616 */
617 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
618 BUG_ON(!cfqq->next_rq);
619 }
620
621 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
622 {
623 elv_rb_del(&cfqq->sort_list, rq);
624 cfqq->queued[rq_is_sync(rq)]--;
625 cfq_add_rq_rb(rq);
626 }
627
628 static struct request *
629 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
630 {
631 struct task_struct *tsk = current;
632 struct cfq_io_context *cic;
633 struct cfq_queue *cfqq;
634
635 cic = cfq_cic_lookup(cfqd, tsk->io_context);
636 if (!cic)
637 return NULL;
638
639 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
640 if (cfqq) {
641 sector_t sector = bio->bi_sector + bio_sectors(bio);
642
643 return elv_rb_find(&cfqq->sort_list, sector);
644 }
645
646 return NULL;
647 }
648
649 static void cfq_activate_request(struct request_queue *q, struct request *rq)
650 {
651 struct cfq_data *cfqd = q->elevator->elevator_data;
652
653 cfqd->rq_in_driver++;
654 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
655 cfqd->rq_in_driver);
656
657 /*
658 * If the depth is larger 1, it really could be queueing. But lets
659 * make the mark a little higher - idling could still be good for
660 * low queueing, and a low queueing number could also just indicate
661 * a SCSI mid layer like behaviour where limit+1 is often seen.
662 */
663 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
664 cfqd->hw_tag = 1;
665
666 cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
667 }
668
669 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
670 {
671 struct cfq_data *cfqd = q->elevator->elevator_data;
672
673 WARN_ON(!cfqd->rq_in_driver);
674 cfqd->rq_in_driver--;
675 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
676 cfqd->rq_in_driver);
677 }
678
679 static void cfq_remove_request(struct request *rq)
680 {
681 struct cfq_queue *cfqq = RQ_CFQQ(rq);
682
683 if (cfqq->next_rq == rq)
684 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
685
686 list_del_init(&rq->queuelist);
687 cfq_del_rq_rb(rq);
688
689 if (rq_is_meta(rq)) {
690 WARN_ON(!cfqq->meta_pending);
691 cfqq->meta_pending--;
692 }
693 }
694
695 static int cfq_merge(struct request_queue *q, struct request **req,
696 struct bio *bio)
697 {
698 struct cfq_data *cfqd = q->elevator->elevator_data;
699 struct request *__rq;
700
701 __rq = cfq_find_rq_fmerge(cfqd, bio);
702 if (__rq && elv_rq_merge_ok(__rq, bio)) {
703 *req = __rq;
704 return ELEVATOR_FRONT_MERGE;
705 }
706
707 return ELEVATOR_NO_MERGE;
708 }
709
710 static void cfq_merged_request(struct request_queue *q, struct request *req,
711 int type)
712 {
713 if (type == ELEVATOR_FRONT_MERGE) {
714 struct cfq_queue *cfqq = RQ_CFQQ(req);
715
716 cfq_reposition_rq_rb(cfqq, req);
717 }
718 }
719
720 static void
721 cfq_merged_requests(struct request_queue *q, struct request *rq,
722 struct request *next)
723 {
724 /*
725 * reposition in fifo if next is older than rq
726 */
727 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
728 time_before(next->start_time, rq->start_time))
729 list_move(&rq->queuelist, &next->queuelist);
730
731 cfq_remove_request(next);
732 }
733
734 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
735 struct bio *bio)
736 {
737 struct cfq_data *cfqd = q->elevator->elevator_data;
738 struct cfq_io_context *cic;
739 struct cfq_queue *cfqq;
740
741 /*
742 * Disallow merge of a sync bio into an async request.
743 */
744 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
745 return 0;
746
747 /*
748 * Lookup the cfqq that this bio will be queued with. Allow
749 * merge only if rq is queued there.
750 */
751 cic = cfq_cic_lookup(cfqd, current->io_context);
752 if (!cic)
753 return 0;
754
755 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
756 if (cfqq == RQ_CFQQ(rq))
757 return 1;
758
759 return 0;
760 }
761
762 static void __cfq_set_active_queue(struct cfq_data *cfqd,
763 struct cfq_queue *cfqq)
764 {
765 if (cfqq) {
766 cfq_log_cfqq(cfqd, cfqq, "set_active");
767 cfqq->slice_end = 0;
768 cfq_clear_cfqq_must_alloc_slice(cfqq);
769 cfq_clear_cfqq_fifo_expire(cfqq);
770 cfq_mark_cfqq_slice_new(cfqq);
771 cfq_clear_cfqq_queue_new(cfqq);
772 }
773
774 cfqd->active_queue = cfqq;
775 }
776
777 /*
778 * current cfqq expired its slice (or was too idle), select new one
779 */
780 static void
781 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
782 int timed_out)
783 {
784 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
785
786 if (cfq_cfqq_wait_request(cfqq))
787 del_timer(&cfqd->idle_slice_timer);
788
789 cfq_clear_cfqq_must_dispatch(cfqq);
790 cfq_clear_cfqq_wait_request(cfqq);
791
792 /*
793 * store what was left of this slice, if the queue idled/timed out
794 */
795 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
796 cfqq->slice_resid = cfqq->slice_end - jiffies;
797 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
798 }
799
800 cfq_resort_rr_list(cfqd, cfqq);
801
802 if (cfqq == cfqd->active_queue)
803 cfqd->active_queue = NULL;
804
805 if (cfqd->active_cic) {
806 put_io_context(cfqd->active_cic->ioc);
807 cfqd->active_cic = NULL;
808 }
809 }
810
811 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
812 {
813 struct cfq_queue *cfqq = cfqd->active_queue;
814
815 if (cfqq)
816 __cfq_slice_expired(cfqd, cfqq, timed_out);
817 }
818
819 /*
820 * Get next queue for service. Unless we have a queue preemption,
821 * we'll simply select the first cfqq in the service tree.
822 */
823 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
824 {
825 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
826 return NULL;
827
828 return cfq_rb_first(&cfqd->service_tree);
829 }
830
831 /*
832 * Get and set a new active queue for service.
833 */
834 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
835 {
836 struct cfq_queue *cfqq;
837
838 cfqq = cfq_get_next_queue(cfqd);
839 __cfq_set_active_queue(cfqd, cfqq);
840 return cfqq;
841 }
842
843 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
844 struct request *rq)
845 {
846 if (rq->sector >= cfqd->last_position)
847 return rq->sector - cfqd->last_position;
848 else
849 return cfqd->last_position - rq->sector;
850 }
851
852 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
853 {
854 struct cfq_io_context *cic = cfqd->active_cic;
855
856 if (!sample_valid(cic->seek_samples))
857 return 0;
858
859 return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
860 }
861
862 static int cfq_close_cooperator(struct cfq_data *cfq_data,
863 struct cfq_queue *cfqq)
864 {
865 /*
866 * We should notice if some of the queues are cooperating, eg
867 * working closely on the same area of the disk. In that case,
868 * we can group them together and don't waste time idling.
869 */
870 return 0;
871 }
872
873 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
874
875 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
876 {
877 struct cfq_queue *cfqq = cfqd->active_queue;
878 struct cfq_io_context *cic;
879 unsigned long sl;
880
881 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
882 WARN_ON(cfq_cfqq_slice_new(cfqq));
883
884 /*
885 * idle is disabled, either manually or by past process history
886 */
887 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
888 return;
889
890 /*
891 * still requests with the driver, don't idle
892 */
893 if (cfqd->rq_in_driver)
894 return;
895
896 /*
897 * task has exited, don't wait
898 */
899 cic = cfqd->active_cic;
900 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
901 return;
902
903 /*
904 * See if this prio level has a good candidate
905 */
906 if (cfq_close_cooperator(cfqd, cfqq) &&
907 (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
908 return;
909
910 cfq_mark_cfqq_must_dispatch(cfqq);
911 cfq_mark_cfqq_wait_request(cfqq);
912
913 /*
914 * we don't want to idle for seeks, but we do want to allow
915 * fair distribution of slice time for a process doing back-to-back
916 * seeks. so allow a little bit of time for him to submit a new rq
917 */
918 sl = cfqd->cfq_slice_idle;
919 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
920 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
921
922 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
923 cfq_log(cfqd, "arm_idle: %lu", sl);
924 }
925
926 /*
927 * Move request from internal lists to the request queue dispatch list.
928 */
929 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
930 {
931 struct cfq_data *cfqd = q->elevator->elevator_data;
932 struct cfq_queue *cfqq = RQ_CFQQ(rq);
933
934 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
935
936 cfq_remove_request(rq);
937 cfqq->dispatched++;
938 elv_dispatch_sort(q, rq);
939
940 if (cfq_cfqq_sync(cfqq))
941 cfqd->sync_flight++;
942 }
943
944 /*
945 * return expired entry, or NULL to just start from scratch in rbtree
946 */
947 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
948 {
949 struct cfq_data *cfqd = cfqq->cfqd;
950 struct request *rq;
951 int fifo;
952
953 if (cfq_cfqq_fifo_expire(cfqq))
954 return NULL;
955
956 cfq_mark_cfqq_fifo_expire(cfqq);
957
958 if (list_empty(&cfqq->fifo))
959 return NULL;
960
961 fifo = cfq_cfqq_sync(cfqq);
962 rq = rq_entry_fifo(cfqq->fifo.next);
963
964 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
965 rq = NULL;
966
967 cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
968 return rq;
969 }
970
971 static inline int
972 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
973 {
974 const int base_rq = cfqd->cfq_slice_async_rq;
975
976 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
977
978 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
979 }
980
981 /*
982 * Select a queue for service. If we have a current active queue,
983 * check whether to continue servicing it, or retrieve and set a new one.
984 */
985 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
986 {
987 struct cfq_queue *cfqq;
988
989 cfqq = cfqd->active_queue;
990 if (!cfqq)
991 goto new_queue;
992
993 /*
994 * The active queue has run out of time, expire it and select new.
995 */
996 if (cfq_slice_used(cfqq))
997 goto expire;
998
999 /*
1000 * The active queue has requests and isn't expired, allow it to
1001 * dispatch.
1002 */
1003 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1004 goto keep_queue;
1005
1006 /*
1007 * No requests pending. If the active queue still has requests in
1008 * flight or is idling for a new request, allow either of these
1009 * conditions to happen (or time out) before selecting a new queue.
1010 */
1011 if (timer_pending(&cfqd->idle_slice_timer) ||
1012 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1013 cfqq = NULL;
1014 goto keep_queue;
1015 }
1016
1017 expire:
1018 cfq_slice_expired(cfqd, 0);
1019 new_queue:
1020 cfqq = cfq_set_active_queue(cfqd);
1021 keep_queue:
1022 return cfqq;
1023 }
1024
1025 /*
1026 * Dispatch some requests from cfqq, moving them to the request queue
1027 * dispatch list.
1028 */
1029 static int
1030 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1031 int max_dispatch)
1032 {
1033 int dispatched = 0;
1034
1035 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1036
1037 do {
1038 struct request *rq;
1039
1040 /*
1041 * follow expired path, else get first next available
1042 */
1043 rq = cfq_check_fifo(cfqq);
1044 if (rq == NULL)
1045 rq = cfqq->next_rq;
1046
1047 /*
1048 * finally, insert request into driver dispatch list
1049 */
1050 cfq_dispatch_insert(cfqd->queue, rq);
1051
1052 dispatched++;
1053
1054 if (!cfqd->active_cic) {
1055 atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1056 cfqd->active_cic = RQ_CIC(rq);
1057 }
1058
1059 if (RB_EMPTY_ROOT(&cfqq->sort_list))
1060 break;
1061
1062 } while (dispatched < max_dispatch);
1063
1064 /*
1065 * expire an async queue immediately if it has used up its slice. idle
1066 * queue always expire after 1 dispatch round.
1067 */
1068 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1069 dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1070 cfq_class_idle(cfqq))) {
1071 cfqq->slice_end = jiffies + 1;
1072 cfq_slice_expired(cfqd, 0);
1073 }
1074
1075 return dispatched;
1076 }
1077
1078 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1079 {
1080 int dispatched = 0;
1081
1082 while (cfqq->next_rq) {
1083 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1084 dispatched++;
1085 }
1086
1087 BUG_ON(!list_empty(&cfqq->fifo));
1088 return dispatched;
1089 }
1090
1091 /*
1092 * Drain our current requests. Used for barriers and when switching
1093 * io schedulers on-the-fly.
1094 */
1095 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1096 {
1097 struct cfq_queue *cfqq;
1098 int dispatched = 0;
1099
1100 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1101 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1102
1103 cfq_slice_expired(cfqd, 0);
1104
1105 BUG_ON(cfqd->busy_queues);
1106
1107 cfq_log(cfqd, "forced_dispatch=%d\n", dispatched);
1108 return dispatched;
1109 }
1110
1111 static int cfq_dispatch_requests(struct request_queue *q, int force)
1112 {
1113 struct cfq_data *cfqd = q->elevator->elevator_data;
1114 struct cfq_queue *cfqq;
1115 int dispatched;
1116
1117 if (!cfqd->busy_queues)
1118 return 0;
1119
1120 if (unlikely(force))
1121 return cfq_forced_dispatch(cfqd);
1122
1123 dispatched = 0;
1124 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1125 int max_dispatch;
1126
1127 max_dispatch = cfqd->cfq_quantum;
1128 if (cfq_class_idle(cfqq))
1129 max_dispatch = 1;
1130
1131 if (cfqq->dispatched >= max_dispatch) {
1132 if (cfqd->busy_queues > 1)
1133 break;
1134 if (cfqq->dispatched >= 4 * max_dispatch)
1135 break;
1136 }
1137
1138 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1139 break;
1140
1141 cfq_clear_cfqq_must_dispatch(cfqq);
1142 cfq_clear_cfqq_wait_request(cfqq);
1143 del_timer(&cfqd->idle_slice_timer);
1144
1145 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1146 }
1147
1148 cfq_log(cfqd, "dispatched=%d", dispatched);
1149 return dispatched;
1150 }
1151
1152 /*
1153 * task holds one reference to the queue, dropped when task exits. each rq
1154 * in-flight on this queue also holds a reference, dropped when rq is freed.
1155 *
1156 * queue lock must be held here.
1157 */
1158 static void cfq_put_queue(struct cfq_queue *cfqq)
1159 {
1160 struct cfq_data *cfqd = cfqq->cfqd;
1161
1162 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1163
1164 if (!atomic_dec_and_test(&cfqq->ref))
1165 return;
1166
1167 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1168 BUG_ON(rb_first(&cfqq->sort_list));
1169 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1170 BUG_ON(cfq_cfqq_on_rr(cfqq));
1171
1172 if (unlikely(cfqd->active_queue == cfqq)) {
1173 __cfq_slice_expired(cfqd, cfqq, 0);
1174 cfq_schedule_dispatch(cfqd);
1175 }
1176
1177 kmem_cache_free(cfq_pool, cfqq);
1178 }
1179
1180 /*
1181 * Must always be called with the rcu_read_lock() held
1182 */
1183 static void
1184 __call_for_each_cic(struct io_context *ioc,
1185 void (*func)(struct io_context *, struct cfq_io_context *))
1186 {
1187 struct cfq_io_context *cic;
1188 struct hlist_node *n;
1189
1190 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1191 func(ioc, cic);
1192 }
1193
1194 /*
1195 * Call func for each cic attached to this ioc.
1196 */
1197 static void
1198 call_for_each_cic(struct io_context *ioc,
1199 void (*func)(struct io_context *, struct cfq_io_context *))
1200 {
1201 rcu_read_lock();
1202 __call_for_each_cic(ioc, func);
1203 rcu_read_unlock();
1204 }
1205
1206 static void cfq_cic_free_rcu(struct rcu_head *head)
1207 {
1208 struct cfq_io_context *cic;
1209
1210 cic = container_of(head, struct cfq_io_context, rcu_head);
1211
1212 kmem_cache_free(cfq_ioc_pool, cic);
1213 elv_ioc_count_dec(ioc_count);
1214
1215 if (ioc_gone) {
1216 /*
1217 * CFQ scheduler is exiting, grab exit lock and check
1218 * the pending io context count. If it hits zero,
1219 * complete ioc_gone and set it back to NULL
1220 */
1221 spin_lock(&ioc_gone_lock);
1222 if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1223 complete(ioc_gone);
1224 ioc_gone = NULL;
1225 }
1226 spin_unlock(&ioc_gone_lock);
1227 }
1228 }
1229
1230 static void cfq_cic_free(struct cfq_io_context *cic)
1231 {
1232 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1233 }
1234
1235 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1236 {
1237 unsigned long flags;
1238
1239 BUG_ON(!cic->dead_key);
1240
1241 spin_lock_irqsave(&ioc->lock, flags);
1242 radix_tree_delete(&ioc->radix_root, cic->dead_key);
1243 hlist_del_rcu(&cic->cic_list);
1244 spin_unlock_irqrestore(&ioc->lock, flags);
1245
1246 cfq_cic_free(cic);
1247 }
1248
1249 /*
1250 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1251 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1252 * and ->trim() which is called with the task lock held
1253 */
1254 static void cfq_free_io_context(struct io_context *ioc)
1255 {
1256 /*
1257 * ioc->refcount is zero here, or we are called from elv_unregister(),
1258 * so no more cic's are allowed to be linked into this ioc. So it
1259 * should be ok to iterate over the known list, we will see all cic's
1260 * since no new ones are added.
1261 */
1262 __call_for_each_cic(ioc, cic_free_func);
1263 }
1264
1265 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1266 {
1267 if (unlikely(cfqq == cfqd->active_queue)) {
1268 __cfq_slice_expired(cfqd, cfqq, 0);
1269 cfq_schedule_dispatch(cfqd);
1270 }
1271
1272 cfq_put_queue(cfqq);
1273 }
1274
1275 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1276 struct cfq_io_context *cic)
1277 {
1278 struct io_context *ioc = cic->ioc;
1279
1280 list_del_init(&cic->queue_list);
1281
1282 /*
1283 * Make sure key == NULL is seen for dead queues
1284 */
1285 smp_wmb();
1286 cic->dead_key = (unsigned long) cic->key;
1287 cic->key = NULL;
1288
1289 if (ioc->ioc_data == cic)
1290 rcu_assign_pointer(ioc->ioc_data, NULL);
1291
1292 if (cic->cfqq[ASYNC]) {
1293 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1294 cic->cfqq[ASYNC] = NULL;
1295 }
1296
1297 if (cic->cfqq[SYNC]) {
1298 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1299 cic->cfqq[SYNC] = NULL;
1300 }
1301 }
1302
1303 static void cfq_exit_single_io_context(struct io_context *ioc,
1304 struct cfq_io_context *cic)
1305 {
1306 struct cfq_data *cfqd = cic->key;
1307
1308 if (cfqd) {
1309 struct request_queue *q = cfqd->queue;
1310 unsigned long flags;
1311
1312 spin_lock_irqsave(q->queue_lock, flags);
1313 __cfq_exit_single_io_context(cfqd, cic);
1314 spin_unlock_irqrestore(q->queue_lock, flags);
1315 }
1316 }
1317
1318 /*
1319 * The process that ioc belongs to has exited, we need to clean up
1320 * and put the internal structures we have that belongs to that process.
1321 */
1322 static void cfq_exit_io_context(struct io_context *ioc)
1323 {
1324 call_for_each_cic(ioc, cfq_exit_single_io_context);
1325 }
1326
1327 static struct cfq_io_context *
1328 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1329 {
1330 struct cfq_io_context *cic;
1331
1332 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1333 cfqd->queue->node);
1334 if (cic) {
1335 cic->last_end_request = jiffies;
1336 INIT_LIST_HEAD(&cic->queue_list);
1337 INIT_HLIST_NODE(&cic->cic_list);
1338 cic->dtor = cfq_free_io_context;
1339 cic->exit = cfq_exit_io_context;
1340 elv_ioc_count_inc(ioc_count);
1341 }
1342
1343 return cic;
1344 }
1345
1346 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1347 {
1348 struct task_struct *tsk = current;
1349 int ioprio_class;
1350
1351 if (!cfq_cfqq_prio_changed(cfqq))
1352 return;
1353
1354 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1355 switch (ioprio_class) {
1356 default:
1357 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1358 case IOPRIO_CLASS_NONE:
1359 /*
1360 * no prio set, inherit CPU scheduling settings
1361 */
1362 cfqq->ioprio = task_nice_ioprio(tsk);
1363 cfqq->ioprio_class = task_nice_ioclass(tsk);
1364 break;
1365 case IOPRIO_CLASS_RT:
1366 cfqq->ioprio = task_ioprio(ioc);
1367 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1368 break;
1369 case IOPRIO_CLASS_BE:
1370 cfqq->ioprio = task_ioprio(ioc);
1371 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1372 break;
1373 case IOPRIO_CLASS_IDLE:
1374 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1375 cfqq->ioprio = 7;
1376 cfq_clear_cfqq_idle_window(cfqq);
1377 break;
1378 }
1379
1380 /*
1381 * keep track of original prio settings in case we have to temporarily
1382 * elevate the priority of this queue
1383 */
1384 cfqq->org_ioprio = cfqq->ioprio;
1385 cfqq->org_ioprio_class = cfqq->ioprio_class;
1386 cfq_clear_cfqq_prio_changed(cfqq);
1387 }
1388
1389 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1390 {
1391 struct cfq_data *cfqd = cic->key;
1392 struct cfq_queue *cfqq;
1393 unsigned long flags;
1394
1395 if (unlikely(!cfqd))
1396 return;
1397
1398 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1399
1400 cfqq = cic->cfqq[ASYNC];
1401 if (cfqq) {
1402 struct cfq_queue *new_cfqq;
1403 new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc, GFP_ATOMIC);
1404 if (new_cfqq) {
1405 cic->cfqq[ASYNC] = new_cfqq;
1406 cfq_put_queue(cfqq);
1407 }
1408 }
1409
1410 cfqq = cic->cfqq[SYNC];
1411 if (cfqq)
1412 cfq_mark_cfqq_prio_changed(cfqq);
1413
1414 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1415 }
1416
1417 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1418 {
1419 call_for_each_cic(ioc, changed_ioprio);
1420 ioc->ioprio_changed = 0;
1421 }
1422
1423 static struct cfq_queue *
1424 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1425 struct io_context *ioc, gfp_t gfp_mask)
1426 {
1427 struct cfq_queue *cfqq, *new_cfqq = NULL;
1428 struct cfq_io_context *cic;
1429
1430 retry:
1431 cic = cfq_cic_lookup(cfqd, ioc);
1432 /* cic always exists here */
1433 cfqq = cic_to_cfqq(cic, is_sync);
1434
1435 if (!cfqq) {
1436 if (new_cfqq) {
1437 cfqq = new_cfqq;
1438 new_cfqq = NULL;
1439 } else if (gfp_mask & __GFP_WAIT) {
1440 /*
1441 * Inform the allocator of the fact that we will
1442 * just repeat this allocation if it fails, to allow
1443 * the allocator to do whatever it needs to attempt to
1444 * free memory.
1445 */
1446 spin_unlock_irq(cfqd->queue->queue_lock);
1447 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1448 gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1449 cfqd->queue->node);
1450 spin_lock_irq(cfqd->queue->queue_lock);
1451 goto retry;
1452 } else {
1453 cfqq = kmem_cache_alloc_node(cfq_pool,
1454 gfp_mask | __GFP_ZERO,
1455 cfqd->queue->node);
1456 if (!cfqq)
1457 goto out;
1458 }
1459
1460 RB_CLEAR_NODE(&cfqq->rb_node);
1461 INIT_LIST_HEAD(&cfqq->fifo);
1462
1463 atomic_set(&cfqq->ref, 0);
1464 cfqq->cfqd = cfqd;
1465
1466 cfq_mark_cfqq_prio_changed(cfqq);
1467 cfq_mark_cfqq_queue_new(cfqq);
1468
1469 cfq_init_prio_data(cfqq, ioc);
1470
1471 if (is_sync) {
1472 if (!cfq_class_idle(cfqq))
1473 cfq_mark_cfqq_idle_window(cfqq);
1474 cfq_mark_cfqq_sync(cfqq);
1475 }
1476 cfqq->pid = current->pid;
1477 cfq_log_cfqq(cfqd, cfqq, "alloced");
1478 }
1479
1480 if (new_cfqq)
1481 kmem_cache_free(cfq_pool, new_cfqq);
1482
1483 out:
1484 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1485 return cfqq;
1486 }
1487
1488 static struct cfq_queue **
1489 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1490 {
1491 switch (ioprio_class) {
1492 case IOPRIO_CLASS_RT:
1493 return &cfqd->async_cfqq[0][ioprio];
1494 case IOPRIO_CLASS_BE:
1495 return &cfqd->async_cfqq[1][ioprio];
1496 case IOPRIO_CLASS_IDLE:
1497 return &cfqd->async_idle_cfqq;
1498 default:
1499 BUG();
1500 }
1501 }
1502
1503 static struct cfq_queue *
1504 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1505 gfp_t gfp_mask)
1506 {
1507 const int ioprio = task_ioprio(ioc);
1508 const int ioprio_class = task_ioprio_class(ioc);
1509 struct cfq_queue **async_cfqq = NULL;
1510 struct cfq_queue *cfqq = NULL;
1511
1512 if (!is_sync) {
1513 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1514 cfqq = *async_cfqq;
1515 }
1516
1517 if (!cfqq) {
1518 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1519 if (!cfqq)
1520 return NULL;
1521 }
1522
1523 /*
1524 * pin the queue now that it's allocated, scheduler exit will prune it
1525 */
1526 if (!is_sync && !(*async_cfqq)) {
1527 atomic_inc(&cfqq->ref);
1528 *async_cfqq = cfqq;
1529 }
1530
1531 atomic_inc(&cfqq->ref);
1532 return cfqq;
1533 }
1534
1535 /*
1536 * We drop cfq io contexts lazily, so we may find a dead one.
1537 */
1538 static void
1539 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1540 struct cfq_io_context *cic)
1541 {
1542 unsigned long flags;
1543
1544 WARN_ON(!list_empty(&cic->queue_list));
1545
1546 spin_lock_irqsave(&ioc->lock, flags);
1547
1548 BUG_ON(ioc->ioc_data == cic);
1549
1550 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1551 hlist_del_rcu(&cic->cic_list);
1552 spin_unlock_irqrestore(&ioc->lock, flags);
1553
1554 cfq_cic_free(cic);
1555 }
1556
1557 static struct cfq_io_context *
1558 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1559 {
1560 struct cfq_io_context *cic;
1561 unsigned long flags;
1562 void *k;
1563
1564 if (unlikely(!ioc))
1565 return NULL;
1566
1567 rcu_read_lock();
1568
1569 /*
1570 * we maintain a last-hit cache, to avoid browsing over the tree
1571 */
1572 cic = rcu_dereference(ioc->ioc_data);
1573 if (cic && cic->key == cfqd) {
1574 rcu_read_unlock();
1575 return cic;
1576 }
1577
1578 do {
1579 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1580 rcu_read_unlock();
1581 if (!cic)
1582 break;
1583 /* ->key must be copied to avoid race with cfq_exit_queue() */
1584 k = cic->key;
1585 if (unlikely(!k)) {
1586 cfq_drop_dead_cic(cfqd, ioc, cic);
1587 rcu_read_lock();
1588 continue;
1589 }
1590
1591 spin_lock_irqsave(&ioc->lock, flags);
1592 rcu_assign_pointer(ioc->ioc_data, cic);
1593 spin_unlock_irqrestore(&ioc->lock, flags);
1594 break;
1595 } while (1);
1596
1597 return cic;
1598 }
1599
1600 /*
1601 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1602 * the process specific cfq io context when entered from the block layer.
1603 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1604 */
1605 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1606 struct cfq_io_context *cic, gfp_t gfp_mask)
1607 {
1608 unsigned long flags;
1609 int ret;
1610
1611 ret = radix_tree_preload(gfp_mask);
1612 if (!ret) {
1613 cic->ioc = ioc;
1614 cic->key = cfqd;
1615
1616 spin_lock_irqsave(&ioc->lock, flags);
1617 ret = radix_tree_insert(&ioc->radix_root,
1618 (unsigned long) cfqd, cic);
1619 if (!ret)
1620 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1621 spin_unlock_irqrestore(&ioc->lock, flags);
1622
1623 radix_tree_preload_end();
1624
1625 if (!ret) {
1626 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1627 list_add(&cic->queue_list, &cfqd->cic_list);
1628 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1629 }
1630 }
1631
1632 if (ret)
1633 printk(KERN_ERR "cfq: cic link failed!\n");
1634
1635 return ret;
1636 }
1637
1638 /*
1639 * Setup general io context and cfq io context. There can be several cfq
1640 * io contexts per general io context, if this process is doing io to more
1641 * than one device managed by cfq.
1642 */
1643 static struct cfq_io_context *
1644 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1645 {
1646 struct io_context *ioc = NULL;
1647 struct cfq_io_context *cic;
1648
1649 might_sleep_if(gfp_mask & __GFP_WAIT);
1650
1651 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1652 if (!ioc)
1653 return NULL;
1654
1655 cic = cfq_cic_lookup(cfqd, ioc);
1656 if (cic)
1657 goto out;
1658
1659 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1660 if (cic == NULL)
1661 goto err;
1662
1663 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1664 goto err_free;
1665
1666 out:
1667 smp_read_barrier_depends();
1668 if (unlikely(ioc->ioprio_changed))
1669 cfq_ioc_set_ioprio(ioc);
1670
1671 return cic;
1672 err_free:
1673 cfq_cic_free(cic);
1674 err:
1675 put_io_context(ioc);
1676 return NULL;
1677 }
1678
1679 static void
1680 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1681 {
1682 unsigned long elapsed = jiffies - cic->last_end_request;
1683 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1684
1685 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1686 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1687 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1688 }
1689
1690 static void
1691 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1692 struct request *rq)
1693 {
1694 sector_t sdist;
1695 u64 total;
1696
1697 if (cic->last_request_pos < rq->sector)
1698 sdist = rq->sector - cic->last_request_pos;
1699 else
1700 sdist = cic->last_request_pos - rq->sector;
1701
1702 /*
1703 * Don't allow the seek distance to get too large from the
1704 * odd fragment, pagein, etc
1705 */
1706 if (cic->seek_samples <= 60) /* second&third seek */
1707 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1708 else
1709 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1710
1711 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1712 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1713 total = cic->seek_total + (cic->seek_samples/2);
1714 do_div(total, cic->seek_samples);
1715 cic->seek_mean = (sector_t)total;
1716 }
1717
1718 /*
1719 * Disable idle window if the process thinks too long or seeks so much that
1720 * it doesn't matter
1721 */
1722 static void
1723 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1724 struct cfq_io_context *cic)
1725 {
1726 int old_idle, enable_idle;
1727
1728 /*
1729 * Don't idle for async or idle io prio class
1730 */
1731 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1732 return;
1733
1734 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1735
1736 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1737 (cfqd->hw_tag && CIC_SEEKY(cic)))
1738 enable_idle = 0;
1739 else if (sample_valid(cic->ttime_samples)) {
1740 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1741 enable_idle = 0;
1742 else
1743 enable_idle = 1;
1744 }
1745
1746 if (old_idle != enable_idle) {
1747 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1748 if (enable_idle)
1749 cfq_mark_cfqq_idle_window(cfqq);
1750 else
1751 cfq_clear_cfqq_idle_window(cfqq);
1752 }
1753 }
1754
1755 /*
1756 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1757 * no or if we aren't sure, a 1 will cause a preempt.
1758 */
1759 static int
1760 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1761 struct request *rq)
1762 {
1763 struct cfq_queue *cfqq;
1764
1765 cfqq = cfqd->active_queue;
1766 if (!cfqq)
1767 return 0;
1768
1769 if (cfq_slice_used(cfqq))
1770 return 1;
1771
1772 if (cfq_class_idle(new_cfqq))
1773 return 0;
1774
1775 if (cfq_class_idle(cfqq))
1776 return 1;
1777
1778 /*
1779 * if the new request is sync, but the currently running queue is
1780 * not, let the sync request have priority.
1781 */
1782 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1783 return 1;
1784
1785 /*
1786 * So both queues are sync. Let the new request get disk time if
1787 * it's a metadata request and the current queue is doing regular IO.
1788 */
1789 if (rq_is_meta(rq) && !cfqq->meta_pending)
1790 return 1;
1791
1792 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1793 return 0;
1794
1795 /*
1796 * if this request is as-good as one we would expect from the
1797 * current cfqq, let it preempt
1798 */
1799 if (cfq_rq_close(cfqd, rq))
1800 return 1;
1801
1802 return 0;
1803 }
1804
1805 /*
1806 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1807 * let it have half of its nominal slice.
1808 */
1809 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1810 {
1811 cfq_log_cfqq(cfqd, cfqq, "preempt");
1812 cfq_slice_expired(cfqd, 1);
1813
1814 /*
1815 * Put the new queue at the front of the of the current list,
1816 * so we know that it will be selected next.
1817 */
1818 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1819
1820 cfq_service_tree_add(cfqd, cfqq, 1);
1821
1822 cfqq->slice_end = 0;
1823 cfq_mark_cfqq_slice_new(cfqq);
1824 }
1825
1826 /*
1827 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1828 * something we should do about it
1829 */
1830 static void
1831 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1832 struct request *rq)
1833 {
1834 struct cfq_io_context *cic = RQ_CIC(rq);
1835
1836 if (rq_is_meta(rq))
1837 cfqq->meta_pending++;
1838
1839 cfq_update_io_thinktime(cfqd, cic);
1840 cfq_update_io_seektime(cfqd, cic, rq);
1841 cfq_update_idle_window(cfqd, cfqq, cic);
1842
1843 cic->last_request_pos = rq->sector + rq->nr_sectors;
1844
1845 if (cfqq == cfqd->active_queue) {
1846 /*
1847 * if we are waiting for a request for this queue, let it rip
1848 * immediately and flag that we must not expire this queue
1849 * just now
1850 */
1851 if (cfq_cfqq_wait_request(cfqq)) {
1852 cfq_mark_cfqq_must_dispatch(cfqq);
1853 del_timer(&cfqd->idle_slice_timer);
1854 blk_start_queueing(cfqd->queue);
1855 }
1856 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1857 /*
1858 * not the active queue - expire current slice if it is
1859 * idle and has expired it's mean thinktime or this new queue
1860 * has some old slice time left and is of higher priority
1861 */
1862 cfq_preempt_queue(cfqd, cfqq);
1863 cfq_mark_cfqq_must_dispatch(cfqq);
1864 blk_start_queueing(cfqd->queue);
1865 }
1866 }
1867
1868 static void cfq_insert_request(struct request_queue *q, struct request *rq)
1869 {
1870 struct cfq_data *cfqd = q->elevator->elevator_data;
1871 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1872
1873 cfq_log_cfqq(cfqd, cfqq, "insert_request");
1874 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1875
1876 cfq_add_rq_rb(rq);
1877
1878 list_add_tail(&rq->queuelist, &cfqq->fifo);
1879
1880 cfq_rq_enqueued(cfqd, cfqq, rq);
1881 }
1882
1883 static void cfq_completed_request(struct request_queue *q, struct request *rq)
1884 {
1885 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1886 struct cfq_data *cfqd = cfqq->cfqd;
1887 const int sync = rq_is_sync(rq);
1888 unsigned long now;
1889
1890 now = jiffies;
1891 cfq_log_cfqq(cfqd, cfqq, "complete");
1892
1893 WARN_ON(!cfqd->rq_in_driver);
1894 WARN_ON(!cfqq->dispatched);
1895 cfqd->rq_in_driver--;
1896 cfqq->dispatched--;
1897
1898 if (cfq_cfqq_sync(cfqq))
1899 cfqd->sync_flight--;
1900
1901 if (!cfq_class_idle(cfqq))
1902 cfqd->last_end_request = now;
1903
1904 if (sync)
1905 RQ_CIC(rq)->last_end_request = now;
1906
1907 /*
1908 * If this is the active queue, check if it needs to be expired,
1909 * or if we want to idle in case it has no pending requests.
1910 */
1911 if (cfqd->active_queue == cfqq) {
1912 if (cfq_cfqq_slice_new(cfqq)) {
1913 cfq_set_prio_slice(cfqd, cfqq);
1914 cfq_clear_cfqq_slice_new(cfqq);
1915 }
1916 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
1917 cfq_slice_expired(cfqd, 1);
1918 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1919 cfq_arm_slice_timer(cfqd);
1920 }
1921
1922 if (!cfqd->rq_in_driver)
1923 cfq_schedule_dispatch(cfqd);
1924 }
1925
1926 /*
1927 * we temporarily boost lower priority queues if they are holding fs exclusive
1928 * resources. they are boosted to normal prio (CLASS_BE/4)
1929 */
1930 static void cfq_prio_boost(struct cfq_queue *cfqq)
1931 {
1932 if (has_fs_excl()) {
1933 /*
1934 * boost idle prio on transactions that would lock out other
1935 * users of the filesystem
1936 */
1937 if (cfq_class_idle(cfqq))
1938 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1939 if (cfqq->ioprio > IOPRIO_NORM)
1940 cfqq->ioprio = IOPRIO_NORM;
1941 } else {
1942 /*
1943 * check if we need to unboost the queue
1944 */
1945 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1946 cfqq->ioprio_class = cfqq->org_ioprio_class;
1947 if (cfqq->ioprio != cfqq->org_ioprio)
1948 cfqq->ioprio = cfqq->org_ioprio;
1949 }
1950 }
1951
1952 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1953 {
1954 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1955 !cfq_cfqq_must_alloc_slice(cfqq)) {
1956 cfq_mark_cfqq_must_alloc_slice(cfqq);
1957 return ELV_MQUEUE_MUST;
1958 }
1959
1960 return ELV_MQUEUE_MAY;
1961 }
1962
1963 static int cfq_may_queue(struct request_queue *q, int rw)
1964 {
1965 struct cfq_data *cfqd = q->elevator->elevator_data;
1966 struct task_struct *tsk = current;
1967 struct cfq_io_context *cic;
1968 struct cfq_queue *cfqq;
1969
1970 /*
1971 * don't force setup of a queue from here, as a call to may_queue
1972 * does not necessarily imply that a request actually will be queued.
1973 * so just lookup a possibly existing queue, or return 'may queue'
1974 * if that fails
1975 */
1976 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1977 if (!cic)
1978 return ELV_MQUEUE_MAY;
1979
1980 cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
1981 if (cfqq) {
1982 cfq_init_prio_data(cfqq, cic->ioc);
1983 cfq_prio_boost(cfqq);
1984
1985 return __cfq_may_queue(cfqq);
1986 }
1987
1988 return ELV_MQUEUE_MAY;
1989 }
1990
1991 /*
1992 * queue lock held here
1993 */
1994 static void cfq_put_request(struct request *rq)
1995 {
1996 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1997
1998 if (cfqq) {
1999 const int rw = rq_data_dir(rq);
2000
2001 BUG_ON(!cfqq->allocated[rw]);
2002 cfqq->allocated[rw]--;
2003
2004 put_io_context(RQ_CIC(rq)->ioc);
2005
2006 rq->elevator_private = NULL;
2007 rq->elevator_private2 = NULL;
2008
2009 cfq_put_queue(cfqq);
2010 }
2011 }
2012
2013 /*
2014 * Allocate cfq data structures associated with this request.
2015 */
2016 static int
2017 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2018 {
2019 struct cfq_data *cfqd = q->elevator->elevator_data;
2020 struct cfq_io_context *cic;
2021 const int rw = rq_data_dir(rq);
2022 const int is_sync = rq_is_sync(rq);
2023 struct cfq_queue *cfqq;
2024 unsigned long flags;
2025
2026 might_sleep_if(gfp_mask & __GFP_WAIT);
2027
2028 cic = cfq_get_io_context(cfqd, gfp_mask);
2029
2030 spin_lock_irqsave(q->queue_lock, flags);
2031
2032 if (!cic)
2033 goto queue_fail;
2034
2035 cfqq = cic_to_cfqq(cic, is_sync);
2036 if (!cfqq) {
2037 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2038
2039 if (!cfqq)
2040 goto queue_fail;
2041
2042 cic_set_cfqq(cic, cfqq, is_sync);
2043 }
2044
2045 cfqq->allocated[rw]++;
2046 cfq_clear_cfqq_must_alloc(cfqq);
2047 atomic_inc(&cfqq->ref);
2048
2049 spin_unlock_irqrestore(q->queue_lock, flags);
2050
2051 rq->elevator_private = cic;
2052 rq->elevator_private2 = cfqq;
2053 return 0;
2054
2055 queue_fail:
2056 if (cic)
2057 put_io_context(cic->ioc);
2058
2059 cfq_schedule_dispatch(cfqd);
2060 spin_unlock_irqrestore(q->queue_lock, flags);
2061 cfq_log(cfqd, "set_request fail");
2062 return 1;
2063 }
2064
2065 static void cfq_kick_queue(struct work_struct *work)
2066 {
2067 struct cfq_data *cfqd =
2068 container_of(work, struct cfq_data, unplug_work);
2069 struct request_queue *q = cfqd->queue;
2070 unsigned long flags;
2071
2072 spin_lock_irqsave(q->queue_lock, flags);
2073 blk_start_queueing(q);
2074 spin_unlock_irqrestore(q->queue_lock, flags);
2075 }
2076
2077 /*
2078 * Timer running if the active_queue is currently idling inside its time slice
2079 */
2080 static void cfq_idle_slice_timer(unsigned long data)
2081 {
2082 struct cfq_data *cfqd = (struct cfq_data *) data;
2083 struct cfq_queue *cfqq;
2084 unsigned long flags;
2085 int timed_out = 1;
2086
2087 cfq_log(cfqd, "idle timer fired");
2088
2089 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2090
2091 cfqq = cfqd->active_queue;
2092 if (cfqq) {
2093 timed_out = 0;
2094
2095 /*
2096 * expired
2097 */
2098 if (cfq_slice_used(cfqq))
2099 goto expire;
2100
2101 /*
2102 * only expire and reinvoke request handler, if there are
2103 * other queues with pending requests
2104 */
2105 if (!cfqd->busy_queues)
2106 goto out_cont;
2107
2108 /*
2109 * not expired and it has a request pending, let it dispatch
2110 */
2111 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
2112 cfq_mark_cfqq_must_dispatch(cfqq);
2113 goto out_kick;
2114 }
2115 }
2116 expire:
2117 cfq_slice_expired(cfqd, timed_out);
2118 out_kick:
2119 cfq_schedule_dispatch(cfqd);
2120 out_cont:
2121 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2122 }
2123
2124 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2125 {
2126 del_timer_sync(&cfqd->idle_slice_timer);
2127 kblockd_flush_work(&cfqd->unplug_work);
2128 }
2129
2130 static void cfq_put_async_queues(struct cfq_data *cfqd)
2131 {
2132 int i;
2133
2134 for (i = 0; i < IOPRIO_BE_NR; i++) {
2135 if (cfqd->async_cfqq[0][i])
2136 cfq_put_queue(cfqd->async_cfqq[0][i]);
2137 if (cfqd->async_cfqq[1][i])
2138 cfq_put_queue(cfqd->async_cfqq[1][i]);
2139 }
2140
2141 if (cfqd->async_idle_cfqq)
2142 cfq_put_queue(cfqd->async_idle_cfqq);
2143 }
2144
2145 static void cfq_exit_queue(elevator_t *e)
2146 {
2147 struct cfq_data *cfqd = e->elevator_data;
2148 struct request_queue *q = cfqd->queue;
2149
2150 cfq_shutdown_timer_wq(cfqd);
2151
2152 spin_lock_irq(q->queue_lock);
2153
2154 if (cfqd->active_queue)
2155 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2156
2157 while (!list_empty(&cfqd->cic_list)) {
2158 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2159 struct cfq_io_context,
2160 queue_list);
2161
2162 __cfq_exit_single_io_context(cfqd, cic);
2163 }
2164
2165 cfq_put_async_queues(cfqd);
2166
2167 spin_unlock_irq(q->queue_lock);
2168
2169 cfq_shutdown_timer_wq(cfqd);
2170
2171 kfree(cfqd);
2172 }
2173
2174 static void *cfq_init_queue(struct request_queue *q)
2175 {
2176 struct cfq_data *cfqd;
2177
2178 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2179 if (!cfqd)
2180 return NULL;
2181
2182 cfqd->service_tree = CFQ_RB_ROOT;
2183 INIT_LIST_HEAD(&cfqd->cic_list);
2184
2185 cfqd->queue = q;
2186
2187 init_timer(&cfqd->idle_slice_timer);
2188 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2189 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2190
2191 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2192
2193 cfqd->last_end_request = jiffies;
2194 cfqd->cfq_quantum = cfq_quantum;
2195 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2196 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2197 cfqd->cfq_back_max = cfq_back_max;
2198 cfqd->cfq_back_penalty = cfq_back_penalty;
2199 cfqd->cfq_slice[0] = cfq_slice_async;
2200 cfqd->cfq_slice[1] = cfq_slice_sync;
2201 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2202 cfqd->cfq_slice_idle = cfq_slice_idle;
2203
2204 return cfqd;
2205 }
2206
2207 static void cfq_slab_kill(void)
2208 {
2209 /*
2210 * Caller already ensured that pending RCU callbacks are completed,
2211 * so we should have no busy allocations at this point.
2212 */
2213 if (cfq_pool)
2214 kmem_cache_destroy(cfq_pool);
2215 if (cfq_ioc_pool)
2216 kmem_cache_destroy(cfq_ioc_pool);
2217 }
2218
2219 static int __init cfq_slab_setup(void)
2220 {
2221 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2222 if (!cfq_pool)
2223 goto fail;
2224
2225 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2226 if (!cfq_ioc_pool)
2227 goto fail;
2228
2229 return 0;
2230 fail:
2231 cfq_slab_kill();
2232 return -ENOMEM;
2233 }
2234
2235 /*
2236 * sysfs parts below -->
2237 */
2238 static ssize_t
2239 cfq_var_show(unsigned int var, char *page)
2240 {
2241 return sprintf(page, "%d\n", var);
2242 }
2243
2244 static ssize_t
2245 cfq_var_store(unsigned int *var, const char *page, size_t count)
2246 {
2247 char *p = (char *) page;
2248
2249 *var = simple_strtoul(p, &p, 10);
2250 return count;
2251 }
2252
2253 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2254 static ssize_t __FUNC(elevator_t *e, char *page) \
2255 { \
2256 struct cfq_data *cfqd = e->elevator_data; \
2257 unsigned int __data = __VAR; \
2258 if (__CONV) \
2259 __data = jiffies_to_msecs(__data); \
2260 return cfq_var_show(__data, (page)); \
2261 }
2262 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2263 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2264 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2265 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2266 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2267 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2268 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2269 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2270 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2271 #undef SHOW_FUNCTION
2272
2273 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2274 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2275 { \
2276 struct cfq_data *cfqd = e->elevator_data; \
2277 unsigned int __data; \
2278 int ret = cfq_var_store(&__data, (page), count); \
2279 if (__data < (MIN)) \
2280 __data = (MIN); \
2281 else if (__data > (MAX)) \
2282 __data = (MAX); \
2283 if (__CONV) \
2284 *(__PTR) = msecs_to_jiffies(__data); \
2285 else \
2286 *(__PTR) = __data; \
2287 return ret; \
2288 }
2289 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2290 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2291 UINT_MAX, 1);
2292 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2293 UINT_MAX, 1);
2294 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2295 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2296 UINT_MAX, 0);
2297 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2298 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2299 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2300 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2301 UINT_MAX, 0);
2302 #undef STORE_FUNCTION
2303
2304 #define CFQ_ATTR(name) \
2305 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2306
2307 static struct elv_fs_entry cfq_attrs[] = {
2308 CFQ_ATTR(quantum),
2309 CFQ_ATTR(fifo_expire_sync),
2310 CFQ_ATTR(fifo_expire_async),
2311 CFQ_ATTR(back_seek_max),
2312 CFQ_ATTR(back_seek_penalty),
2313 CFQ_ATTR(slice_sync),
2314 CFQ_ATTR(slice_async),
2315 CFQ_ATTR(slice_async_rq),
2316 CFQ_ATTR(slice_idle),
2317 __ATTR_NULL
2318 };
2319
2320 static struct elevator_type iosched_cfq = {
2321 .ops = {
2322 .elevator_merge_fn = cfq_merge,
2323 .elevator_merged_fn = cfq_merged_request,
2324 .elevator_merge_req_fn = cfq_merged_requests,
2325 .elevator_allow_merge_fn = cfq_allow_merge,
2326 .elevator_dispatch_fn = cfq_dispatch_requests,
2327 .elevator_add_req_fn = cfq_insert_request,
2328 .elevator_activate_req_fn = cfq_activate_request,
2329 .elevator_deactivate_req_fn = cfq_deactivate_request,
2330 .elevator_queue_empty_fn = cfq_queue_empty,
2331 .elevator_completed_req_fn = cfq_completed_request,
2332 .elevator_former_req_fn = elv_rb_former_request,
2333 .elevator_latter_req_fn = elv_rb_latter_request,
2334 .elevator_set_req_fn = cfq_set_request,
2335 .elevator_put_req_fn = cfq_put_request,
2336 .elevator_may_queue_fn = cfq_may_queue,
2337 .elevator_init_fn = cfq_init_queue,
2338 .elevator_exit_fn = cfq_exit_queue,
2339 .trim = cfq_free_io_context,
2340 },
2341 .elevator_attrs = cfq_attrs,
2342 .elevator_name = "cfq",
2343 .elevator_owner = THIS_MODULE,
2344 };
2345
2346 static int __init cfq_init(void)
2347 {
2348 /*
2349 * could be 0 on HZ < 1000 setups
2350 */
2351 if (!cfq_slice_async)
2352 cfq_slice_async = 1;
2353 if (!cfq_slice_idle)
2354 cfq_slice_idle = 1;
2355
2356 if (cfq_slab_setup())
2357 return -ENOMEM;
2358
2359 elv_register(&iosched_cfq);
2360
2361 return 0;
2362 }
2363
2364 static void __exit cfq_exit(void)
2365 {
2366 DECLARE_COMPLETION_ONSTACK(all_gone);
2367 elv_unregister(&iosched_cfq);
2368 ioc_gone = &all_gone;
2369 /* ioc_gone's update must be visible before reading ioc_count */
2370 smp_wmb();
2371
2372 /*
2373 * this also protects us from entering cfq_slab_kill() with
2374 * pending RCU callbacks
2375 */
2376 if (elv_ioc_count_read(ioc_count))
2377 wait_for_completion(&all_gone);
2378 cfq_slab_kill();
2379 }
2380
2381 module_init(cfq_init);
2382 module_exit(cfq_exit);
2383
2384 MODULE_AUTHOR("Jens Axboe");
2385 MODULE_LICENSE("GPL");
2386 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");