]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/cfq-iosched.c
892afd6d40e2de1fb17afe4641dba72b4b119350
[mirror_ubuntu-artful-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/ktime.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include <linux/blk-cgroup.h>
18 #include "blk.h"
19
20 /*
21 * tunables
22 */
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const u64 cfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const u64 cfq_slice_sync = NSEC_PER_SEC / 10;
31 static u64 cfq_slice_async = NSEC_PER_SEC / 25;
32 static const int cfq_slice_async_rq = 2;
33 static u64 cfq_slice_idle = NSEC_PER_SEC / 125;
34 static u64 cfq_group_idle = NSEC_PER_SEC / 125;
35 static const u64 cfq_target_latency = (u64)NSEC_PER_SEC * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
37
38 /*
39 * offset from end of service tree
40 */
41 #define CFQ_IDLE_DELAY (NSEC_PER_SEC / 5)
42
43 /*
44 * below this threshold, we consider thinktime immediate
45 */
46 #define CFQ_MIN_TT (2 * NSEC_PER_SEC / HZ)
47
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
51
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56
57 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
60
61 static struct kmem_cache *cfq_pool;
62
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
69
70 /* blkio-related constants */
71 #define CFQ_WEIGHT_LEGACY_MIN 10
72 #define CFQ_WEIGHT_LEGACY_DFL 500
73 #define CFQ_WEIGHT_LEGACY_MAX 1000
74
75 struct cfq_ttime {
76 u64 last_end_request;
77
78 u64 ttime_total;
79 u64 ttime_mean;
80 unsigned long ttime_samples;
81 };
82
83 /*
84 * Most of our rbtree usage is for sorting with min extraction, so
85 * if we cache the leftmost node we don't have to walk down the tree
86 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
87 * move this into the elevator for the rq sorting as well.
88 */
89 struct cfq_rb_root {
90 struct rb_root rb;
91 struct rb_node *left;
92 unsigned count;
93 u64 min_vdisktime;
94 struct cfq_ttime ttime;
95 };
96 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
97 .ttime = {.last_end_request = ktime_get_ns(),},}
98
99 /*
100 * Per process-grouping structure
101 */
102 struct cfq_queue {
103 /* reference count */
104 int ref;
105 /* various state flags, see below */
106 unsigned int flags;
107 /* parent cfq_data */
108 struct cfq_data *cfqd;
109 /* service_tree member */
110 struct rb_node rb_node;
111 /* service_tree key */
112 u64 rb_key;
113 /* prio tree member */
114 struct rb_node p_node;
115 /* prio tree root we belong to, if any */
116 struct rb_root *p_root;
117 /* sorted list of pending requests */
118 struct rb_root sort_list;
119 /* if fifo isn't expired, next request to serve */
120 struct request *next_rq;
121 /* requests queued in sort_list */
122 int queued[2];
123 /* currently allocated requests */
124 int allocated[2];
125 /* fifo list of requests in sort_list */
126 struct list_head fifo;
127
128 /* time when queue got scheduled in to dispatch first request. */
129 u64 dispatch_start;
130 u64 allocated_slice;
131 u64 slice_dispatch;
132 /* time when first request from queue completed and slice started. */
133 u64 slice_start;
134 u64 slice_end;
135 s64 slice_resid;
136
137 /* pending priority requests */
138 int prio_pending;
139 /* number of requests that are on the dispatch list or inside driver */
140 int dispatched;
141
142 /* io prio of this group */
143 unsigned short ioprio, org_ioprio;
144 unsigned short ioprio_class, org_ioprio_class;
145
146 pid_t pid;
147
148 u32 seek_history;
149 sector_t last_request_pos;
150
151 struct cfq_rb_root *service_tree;
152 struct cfq_queue *new_cfqq;
153 struct cfq_group *cfqg;
154 /* Number of sectors dispatched from queue in single dispatch round */
155 unsigned long nr_sectors;
156 };
157
158 /*
159 * First index in the service_trees.
160 * IDLE is handled separately, so it has negative index
161 */
162 enum wl_class_t {
163 BE_WORKLOAD = 0,
164 RT_WORKLOAD = 1,
165 IDLE_WORKLOAD = 2,
166 CFQ_PRIO_NR,
167 };
168
169 /*
170 * Second index in the service_trees.
171 */
172 enum wl_type_t {
173 ASYNC_WORKLOAD = 0,
174 SYNC_NOIDLE_WORKLOAD = 1,
175 SYNC_WORKLOAD = 2
176 };
177
178 struct cfqg_stats {
179 #ifdef CONFIG_CFQ_GROUP_IOSCHED
180 /* number of ios merged */
181 struct blkg_rwstat merged;
182 /* total time spent on device in ns, may not be accurate w/ queueing */
183 struct blkg_rwstat service_time;
184 /* total time spent waiting in scheduler queue in ns */
185 struct blkg_rwstat wait_time;
186 /* number of IOs queued up */
187 struct blkg_rwstat queued;
188 /* total disk time and nr sectors dispatched by this group */
189 struct blkg_stat time;
190 #ifdef CONFIG_DEBUG_BLK_CGROUP
191 /* time not charged to this cgroup */
192 struct blkg_stat unaccounted_time;
193 /* sum of number of ios queued across all samples */
194 struct blkg_stat avg_queue_size_sum;
195 /* count of samples taken for average */
196 struct blkg_stat avg_queue_size_samples;
197 /* how many times this group has been removed from service tree */
198 struct blkg_stat dequeue;
199 /* total time spent waiting for it to be assigned a timeslice. */
200 struct blkg_stat group_wait_time;
201 /* time spent idling for this blkcg_gq */
202 struct blkg_stat idle_time;
203 /* total time with empty current active q with other requests queued */
204 struct blkg_stat empty_time;
205 /* fields after this shouldn't be cleared on stat reset */
206 uint64_t start_group_wait_time;
207 uint64_t start_idle_time;
208 uint64_t start_empty_time;
209 uint16_t flags;
210 #endif /* CONFIG_DEBUG_BLK_CGROUP */
211 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
212 };
213
214 /* Per-cgroup data */
215 struct cfq_group_data {
216 /* must be the first member */
217 struct blkcg_policy_data cpd;
218
219 unsigned int weight;
220 unsigned int leaf_weight;
221 };
222
223 /* This is per cgroup per device grouping structure */
224 struct cfq_group {
225 /* must be the first member */
226 struct blkg_policy_data pd;
227
228 /* group service_tree member */
229 struct rb_node rb_node;
230
231 /* group service_tree key */
232 u64 vdisktime;
233
234 /*
235 * The number of active cfqgs and sum of their weights under this
236 * cfqg. This covers this cfqg's leaf_weight and all children's
237 * weights, but does not cover weights of further descendants.
238 *
239 * If a cfqg is on the service tree, it's active. An active cfqg
240 * also activates its parent and contributes to the children_weight
241 * of the parent.
242 */
243 int nr_active;
244 unsigned int children_weight;
245
246 /*
247 * vfraction is the fraction of vdisktime that the tasks in this
248 * cfqg are entitled to. This is determined by compounding the
249 * ratios walking up from this cfqg to the root.
250 *
251 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
252 * vfractions on a service tree is approximately 1. The sum may
253 * deviate a bit due to rounding errors and fluctuations caused by
254 * cfqgs entering and leaving the service tree.
255 */
256 unsigned int vfraction;
257
258 /*
259 * There are two weights - (internal) weight is the weight of this
260 * cfqg against the sibling cfqgs. leaf_weight is the wight of
261 * this cfqg against the child cfqgs. For the root cfqg, both
262 * weights are kept in sync for backward compatibility.
263 */
264 unsigned int weight;
265 unsigned int new_weight;
266 unsigned int dev_weight;
267
268 unsigned int leaf_weight;
269 unsigned int new_leaf_weight;
270 unsigned int dev_leaf_weight;
271
272 /* number of cfqq currently on this group */
273 int nr_cfqq;
274
275 /*
276 * Per group busy queues average. Useful for workload slice calc. We
277 * create the array for each prio class but at run time it is used
278 * only for RT and BE class and slot for IDLE class remains unused.
279 * This is primarily done to avoid confusion and a gcc warning.
280 */
281 unsigned int busy_queues_avg[CFQ_PRIO_NR];
282 /*
283 * rr lists of queues with requests. We maintain service trees for
284 * RT and BE classes. These trees are subdivided in subclasses
285 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
286 * class there is no subclassification and all the cfq queues go on
287 * a single tree service_tree_idle.
288 * Counts are embedded in the cfq_rb_root
289 */
290 struct cfq_rb_root service_trees[2][3];
291 struct cfq_rb_root service_tree_idle;
292
293 u64 saved_wl_slice;
294 enum wl_type_t saved_wl_type;
295 enum wl_class_t saved_wl_class;
296
297 /* number of requests that are on the dispatch list or inside driver */
298 int dispatched;
299 struct cfq_ttime ttime;
300 struct cfqg_stats stats; /* stats for this cfqg */
301
302 /* async queue for each priority case */
303 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
304 struct cfq_queue *async_idle_cfqq;
305
306 };
307
308 struct cfq_io_cq {
309 struct io_cq icq; /* must be the first member */
310 struct cfq_queue *cfqq[2];
311 struct cfq_ttime ttime;
312 int ioprio; /* the current ioprio */
313 #ifdef CONFIG_CFQ_GROUP_IOSCHED
314 uint64_t blkcg_serial_nr; /* the current blkcg serial */
315 #endif
316 };
317
318 /*
319 * Per block device queue structure
320 */
321 struct cfq_data {
322 struct request_queue *queue;
323 /* Root service tree for cfq_groups */
324 struct cfq_rb_root grp_service_tree;
325 struct cfq_group *root_group;
326
327 /*
328 * The priority currently being served
329 */
330 enum wl_class_t serving_wl_class;
331 enum wl_type_t serving_wl_type;
332 u64 workload_expires;
333 struct cfq_group *serving_group;
334
335 /*
336 * Each priority tree is sorted by next_request position. These
337 * trees are used when determining if two or more queues are
338 * interleaving requests (see cfq_close_cooperator).
339 */
340 struct rb_root prio_trees[CFQ_PRIO_LISTS];
341
342 unsigned int busy_queues;
343 unsigned int busy_sync_queues;
344
345 int rq_in_driver;
346 int rq_in_flight[2];
347
348 /*
349 * queue-depth detection
350 */
351 int rq_queued;
352 int hw_tag;
353 /*
354 * hw_tag can be
355 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
356 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
357 * 0 => no NCQ
358 */
359 int hw_tag_est_depth;
360 unsigned int hw_tag_samples;
361
362 /*
363 * idle window management
364 */
365 struct hrtimer idle_slice_timer;
366 struct work_struct unplug_work;
367
368 struct cfq_queue *active_queue;
369 struct cfq_io_cq *active_cic;
370
371 sector_t last_position;
372
373 /*
374 * tunables, see top of file
375 */
376 unsigned int cfq_quantum;
377 unsigned int cfq_back_penalty;
378 unsigned int cfq_back_max;
379 unsigned int cfq_slice_async_rq;
380 unsigned int cfq_latency;
381 u64 cfq_fifo_expire[2];
382 u64 cfq_slice[2];
383 u64 cfq_slice_idle;
384 u64 cfq_group_idle;
385 u64 cfq_target_latency;
386
387 /*
388 * Fallback dummy cfqq for extreme OOM conditions
389 */
390 struct cfq_queue oom_cfqq;
391
392 u64 last_delayed_sync;
393 };
394
395 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
396 static void cfq_put_queue(struct cfq_queue *cfqq);
397
398 static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
399 enum wl_class_t class,
400 enum wl_type_t type)
401 {
402 if (!cfqg)
403 return NULL;
404
405 if (class == IDLE_WORKLOAD)
406 return &cfqg->service_tree_idle;
407
408 return &cfqg->service_trees[class][type];
409 }
410
411 enum cfqq_state_flags {
412 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
413 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
414 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
415 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
416 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
417 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
418 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
419 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
420 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
421 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
422 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
423 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
424 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
425 };
426
427 #define CFQ_CFQQ_FNS(name) \
428 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
429 { \
430 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
431 } \
432 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
433 { \
434 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
435 } \
436 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
437 { \
438 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
439 }
440
441 CFQ_CFQQ_FNS(on_rr);
442 CFQ_CFQQ_FNS(wait_request);
443 CFQ_CFQQ_FNS(must_dispatch);
444 CFQ_CFQQ_FNS(must_alloc_slice);
445 CFQ_CFQQ_FNS(fifo_expire);
446 CFQ_CFQQ_FNS(idle_window);
447 CFQ_CFQQ_FNS(prio_changed);
448 CFQ_CFQQ_FNS(slice_new);
449 CFQ_CFQQ_FNS(sync);
450 CFQ_CFQQ_FNS(coop);
451 CFQ_CFQQ_FNS(split_coop);
452 CFQ_CFQQ_FNS(deep);
453 CFQ_CFQQ_FNS(wait_busy);
454 #undef CFQ_CFQQ_FNS
455
456 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
457
458 /* cfqg stats flags */
459 enum cfqg_stats_flags {
460 CFQG_stats_waiting = 0,
461 CFQG_stats_idling,
462 CFQG_stats_empty,
463 };
464
465 #define CFQG_FLAG_FNS(name) \
466 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
467 { \
468 stats->flags |= (1 << CFQG_stats_##name); \
469 } \
470 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
471 { \
472 stats->flags &= ~(1 << CFQG_stats_##name); \
473 } \
474 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
475 { \
476 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
477 } \
478
479 CFQG_FLAG_FNS(waiting)
480 CFQG_FLAG_FNS(idling)
481 CFQG_FLAG_FNS(empty)
482 #undef CFQG_FLAG_FNS
483
484 /* This should be called with the queue_lock held. */
485 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
486 {
487 unsigned long long now;
488
489 if (!cfqg_stats_waiting(stats))
490 return;
491
492 now = sched_clock();
493 if (time_after64(now, stats->start_group_wait_time))
494 blkg_stat_add(&stats->group_wait_time,
495 now - stats->start_group_wait_time);
496 cfqg_stats_clear_waiting(stats);
497 }
498
499 /* This should be called with the queue_lock held. */
500 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
501 struct cfq_group *curr_cfqg)
502 {
503 struct cfqg_stats *stats = &cfqg->stats;
504
505 if (cfqg_stats_waiting(stats))
506 return;
507 if (cfqg == curr_cfqg)
508 return;
509 stats->start_group_wait_time = sched_clock();
510 cfqg_stats_mark_waiting(stats);
511 }
512
513 /* This should be called with the queue_lock held. */
514 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
515 {
516 unsigned long long now;
517
518 if (!cfqg_stats_empty(stats))
519 return;
520
521 now = sched_clock();
522 if (time_after64(now, stats->start_empty_time))
523 blkg_stat_add(&stats->empty_time,
524 now - stats->start_empty_time);
525 cfqg_stats_clear_empty(stats);
526 }
527
528 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
529 {
530 blkg_stat_add(&cfqg->stats.dequeue, 1);
531 }
532
533 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
534 {
535 struct cfqg_stats *stats = &cfqg->stats;
536
537 if (blkg_rwstat_total(&stats->queued))
538 return;
539
540 /*
541 * group is already marked empty. This can happen if cfqq got new
542 * request in parent group and moved to this group while being added
543 * to service tree. Just ignore the event and move on.
544 */
545 if (cfqg_stats_empty(stats))
546 return;
547
548 stats->start_empty_time = sched_clock();
549 cfqg_stats_mark_empty(stats);
550 }
551
552 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
553 {
554 struct cfqg_stats *stats = &cfqg->stats;
555
556 if (cfqg_stats_idling(stats)) {
557 unsigned long long now = sched_clock();
558
559 if (time_after64(now, stats->start_idle_time))
560 blkg_stat_add(&stats->idle_time,
561 now - stats->start_idle_time);
562 cfqg_stats_clear_idling(stats);
563 }
564 }
565
566 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
567 {
568 struct cfqg_stats *stats = &cfqg->stats;
569
570 BUG_ON(cfqg_stats_idling(stats));
571
572 stats->start_idle_time = sched_clock();
573 cfqg_stats_mark_idling(stats);
574 }
575
576 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
577 {
578 struct cfqg_stats *stats = &cfqg->stats;
579
580 blkg_stat_add(&stats->avg_queue_size_sum,
581 blkg_rwstat_total(&stats->queued));
582 blkg_stat_add(&stats->avg_queue_size_samples, 1);
583 cfqg_stats_update_group_wait_time(stats);
584 }
585
586 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
587
588 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
589 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
590 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
591 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
592 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
593 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
594 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
595
596 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
597
598 #ifdef CONFIG_CFQ_GROUP_IOSCHED
599
600 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
601 {
602 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
603 }
604
605 static struct cfq_group_data
606 *cpd_to_cfqgd(struct blkcg_policy_data *cpd)
607 {
608 return cpd ? container_of(cpd, struct cfq_group_data, cpd) : NULL;
609 }
610
611 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
612 {
613 return pd_to_blkg(&cfqg->pd);
614 }
615
616 static struct blkcg_policy blkcg_policy_cfq;
617
618 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
619 {
620 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
621 }
622
623 static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg)
624 {
625 return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq));
626 }
627
628 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
629 {
630 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
631
632 return pblkg ? blkg_to_cfqg(pblkg) : NULL;
633 }
634
635 static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
636 struct cfq_group *ancestor)
637 {
638 return cgroup_is_descendant(cfqg_to_blkg(cfqg)->blkcg->css.cgroup,
639 cfqg_to_blkg(ancestor)->blkcg->css.cgroup);
640 }
641
642 static inline void cfqg_get(struct cfq_group *cfqg)
643 {
644 return blkg_get(cfqg_to_blkg(cfqg));
645 }
646
647 static inline void cfqg_put(struct cfq_group *cfqg)
648 {
649 return blkg_put(cfqg_to_blkg(cfqg));
650 }
651
652 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
653 char __pbuf[128]; \
654 \
655 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
656 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
657 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
658 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
659 __pbuf, ##args); \
660 } while (0)
661
662 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
663 char __pbuf[128]; \
664 \
665 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
666 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
667 } while (0)
668
669 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
670 struct cfq_group *curr_cfqg, int op,
671 int op_flags)
672 {
673 blkg_rwstat_add(&cfqg->stats.queued, op, op_flags, 1);
674 cfqg_stats_end_empty_time(&cfqg->stats);
675 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
676 }
677
678 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
679 uint64_t time, unsigned long unaccounted_time)
680 {
681 blkg_stat_add(&cfqg->stats.time, time);
682 #ifdef CONFIG_DEBUG_BLK_CGROUP
683 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
684 #endif
685 }
686
687 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int op,
688 int op_flags)
689 {
690 blkg_rwstat_add(&cfqg->stats.queued, op, op_flags, -1);
691 }
692
693 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int op,
694 int op_flags)
695 {
696 blkg_rwstat_add(&cfqg->stats.merged, op, op_flags, 1);
697 }
698
699 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
700 uint64_t start_time, uint64_t io_start_time, int op,
701 int op_flags)
702 {
703 struct cfqg_stats *stats = &cfqg->stats;
704 unsigned long long now = sched_clock();
705
706 if (time_after64(now, io_start_time))
707 blkg_rwstat_add(&stats->service_time, op, op_flags,
708 now - io_start_time);
709 if (time_after64(io_start_time, start_time))
710 blkg_rwstat_add(&stats->wait_time, op, op_flags,
711 io_start_time - start_time);
712 }
713
714 /* @stats = 0 */
715 static void cfqg_stats_reset(struct cfqg_stats *stats)
716 {
717 /* queued stats shouldn't be cleared */
718 blkg_rwstat_reset(&stats->merged);
719 blkg_rwstat_reset(&stats->service_time);
720 blkg_rwstat_reset(&stats->wait_time);
721 blkg_stat_reset(&stats->time);
722 #ifdef CONFIG_DEBUG_BLK_CGROUP
723 blkg_stat_reset(&stats->unaccounted_time);
724 blkg_stat_reset(&stats->avg_queue_size_sum);
725 blkg_stat_reset(&stats->avg_queue_size_samples);
726 blkg_stat_reset(&stats->dequeue);
727 blkg_stat_reset(&stats->group_wait_time);
728 blkg_stat_reset(&stats->idle_time);
729 blkg_stat_reset(&stats->empty_time);
730 #endif
731 }
732
733 /* @to += @from */
734 static void cfqg_stats_add_aux(struct cfqg_stats *to, struct cfqg_stats *from)
735 {
736 /* queued stats shouldn't be cleared */
737 blkg_rwstat_add_aux(&to->merged, &from->merged);
738 blkg_rwstat_add_aux(&to->service_time, &from->service_time);
739 blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
740 blkg_stat_add_aux(&from->time, &from->time);
741 #ifdef CONFIG_DEBUG_BLK_CGROUP
742 blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time);
743 blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
744 blkg_stat_add_aux(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
745 blkg_stat_add_aux(&to->dequeue, &from->dequeue);
746 blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
747 blkg_stat_add_aux(&to->idle_time, &from->idle_time);
748 blkg_stat_add_aux(&to->empty_time, &from->empty_time);
749 #endif
750 }
751
752 /*
753 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
754 * recursive stats can still account for the amount used by this cfqg after
755 * it's gone.
756 */
757 static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
758 {
759 struct cfq_group *parent = cfqg_parent(cfqg);
760
761 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
762
763 if (unlikely(!parent))
764 return;
765
766 cfqg_stats_add_aux(&parent->stats, &cfqg->stats);
767 cfqg_stats_reset(&cfqg->stats);
768 }
769
770 #else /* CONFIG_CFQ_GROUP_IOSCHED */
771
772 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
773 static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
774 struct cfq_group *ancestor)
775 {
776 return true;
777 }
778 static inline void cfqg_get(struct cfq_group *cfqg) { }
779 static inline void cfqg_put(struct cfq_group *cfqg) { }
780
781 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
782 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
783 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
784 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
785 ##args)
786 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
787
788 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
789 struct cfq_group *curr_cfqg, int op, int op_flags) { }
790 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
791 uint64_t time, unsigned long unaccounted_time) { }
792 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int op,
793 int op_flags) { }
794 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int op,
795 int op_flags) { }
796 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
797 uint64_t start_time, uint64_t io_start_time, int op,
798 int op_flags) { }
799
800 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
801
802 #define cfq_log(cfqd, fmt, args...) \
803 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
804
805 /* Traverses through cfq group service trees */
806 #define for_each_cfqg_st(cfqg, i, j, st) \
807 for (i = 0; i <= IDLE_WORKLOAD; i++) \
808 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
809 : &cfqg->service_tree_idle; \
810 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
811 (i == IDLE_WORKLOAD && j == 0); \
812 j++, st = i < IDLE_WORKLOAD ? \
813 &cfqg->service_trees[i][j]: NULL) \
814
815 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
816 struct cfq_ttime *ttime, bool group_idle)
817 {
818 u64 slice;
819 if (!sample_valid(ttime->ttime_samples))
820 return false;
821 if (group_idle)
822 slice = cfqd->cfq_group_idle;
823 else
824 slice = cfqd->cfq_slice_idle;
825 return ttime->ttime_mean > slice;
826 }
827
828 static inline bool iops_mode(struct cfq_data *cfqd)
829 {
830 /*
831 * If we are not idling on queues and it is a NCQ drive, parallel
832 * execution of requests is on and measuring time is not possible
833 * in most of the cases until and unless we drive shallower queue
834 * depths and that becomes a performance bottleneck. In such cases
835 * switch to start providing fairness in terms of number of IOs.
836 */
837 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
838 return true;
839 else
840 return false;
841 }
842
843 static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
844 {
845 if (cfq_class_idle(cfqq))
846 return IDLE_WORKLOAD;
847 if (cfq_class_rt(cfqq))
848 return RT_WORKLOAD;
849 return BE_WORKLOAD;
850 }
851
852
853 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
854 {
855 if (!cfq_cfqq_sync(cfqq))
856 return ASYNC_WORKLOAD;
857 if (!cfq_cfqq_idle_window(cfqq))
858 return SYNC_NOIDLE_WORKLOAD;
859 return SYNC_WORKLOAD;
860 }
861
862 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
863 struct cfq_data *cfqd,
864 struct cfq_group *cfqg)
865 {
866 if (wl_class == IDLE_WORKLOAD)
867 return cfqg->service_tree_idle.count;
868
869 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
870 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
871 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
872 }
873
874 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
875 struct cfq_group *cfqg)
876 {
877 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
878 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
879 }
880
881 static void cfq_dispatch_insert(struct request_queue *, struct request *);
882 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
883 struct cfq_io_cq *cic, struct bio *bio);
884
885 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
886 {
887 /* cic->icq is the first member, %NULL will convert to %NULL */
888 return container_of(icq, struct cfq_io_cq, icq);
889 }
890
891 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
892 struct io_context *ioc)
893 {
894 if (ioc)
895 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
896 return NULL;
897 }
898
899 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
900 {
901 return cic->cfqq[is_sync];
902 }
903
904 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
905 bool is_sync)
906 {
907 cic->cfqq[is_sync] = cfqq;
908 }
909
910 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
911 {
912 return cic->icq.q->elevator->elevator_data;
913 }
914
915 /*
916 * We regard a request as SYNC, if it's either a read or has the SYNC bit
917 * set (in which case it could also be direct WRITE).
918 */
919 static inline bool cfq_bio_sync(struct bio *bio)
920 {
921 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
922 }
923
924 /*
925 * scheduler run of queue, if there are requests pending and no one in the
926 * driver that will restart queueing
927 */
928 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
929 {
930 if (cfqd->busy_queues) {
931 cfq_log(cfqd, "schedule dispatch");
932 kblockd_schedule_work(&cfqd->unplug_work);
933 }
934 }
935
936 /*
937 * Scale schedule slice based on io priority. Use the sync time slice only
938 * if a queue is marked sync and has sync io queued. A sync queue with async
939 * io only, should not get full sync slice length.
940 */
941 static inline u64 cfq_prio_slice(struct cfq_data *cfqd, bool sync,
942 unsigned short prio)
943 {
944 u64 base_slice = cfqd->cfq_slice[sync];
945 u64 slice = div_u64(base_slice, CFQ_SLICE_SCALE);
946
947 WARN_ON(prio >= IOPRIO_BE_NR);
948
949 return base_slice + (slice * (4 - prio));
950 }
951
952 static inline u64
953 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
954 {
955 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
956 }
957
958 /**
959 * cfqg_scale_charge - scale disk time charge according to cfqg weight
960 * @charge: disk time being charged
961 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
962 *
963 * Scale @charge according to @vfraction, which is in range (0, 1]. The
964 * scaling is inversely proportional.
965 *
966 * scaled = charge / vfraction
967 *
968 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
969 */
970 static inline u64 cfqg_scale_charge(u64 charge,
971 unsigned int vfraction)
972 {
973 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
974
975 /* charge / vfraction */
976 c <<= CFQ_SERVICE_SHIFT;
977 return div_u64(c, vfraction);
978 }
979
980 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
981 {
982 s64 delta = (s64)(vdisktime - min_vdisktime);
983 if (delta > 0)
984 min_vdisktime = vdisktime;
985
986 return min_vdisktime;
987 }
988
989 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
990 {
991 s64 delta = (s64)(vdisktime - min_vdisktime);
992 if (delta < 0)
993 min_vdisktime = vdisktime;
994
995 return min_vdisktime;
996 }
997
998 static void update_min_vdisktime(struct cfq_rb_root *st)
999 {
1000 struct cfq_group *cfqg;
1001
1002 if (st->left) {
1003 cfqg = rb_entry_cfqg(st->left);
1004 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
1005 cfqg->vdisktime);
1006 }
1007 }
1008
1009 /*
1010 * get averaged number of queues of RT/BE priority.
1011 * average is updated, with a formula that gives more weight to higher numbers,
1012 * to quickly follows sudden increases and decrease slowly
1013 */
1014
1015 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
1016 struct cfq_group *cfqg, bool rt)
1017 {
1018 unsigned min_q, max_q;
1019 unsigned mult = cfq_hist_divisor - 1;
1020 unsigned round = cfq_hist_divisor / 2;
1021 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1022
1023 min_q = min(cfqg->busy_queues_avg[rt], busy);
1024 max_q = max(cfqg->busy_queues_avg[rt], busy);
1025 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1026 cfq_hist_divisor;
1027 return cfqg->busy_queues_avg[rt];
1028 }
1029
1030 static inline u64
1031 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1032 {
1033 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1034 }
1035
1036 static inline u64
1037 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1038 {
1039 u64 slice = cfq_prio_to_slice(cfqd, cfqq);
1040 if (cfqd->cfq_latency) {
1041 /*
1042 * interested queues (we consider only the ones with the same
1043 * priority class in the cfq group)
1044 */
1045 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1046 cfq_class_rt(cfqq));
1047 u64 sync_slice = cfqd->cfq_slice[1];
1048 u64 expect_latency = sync_slice * iq;
1049 u64 group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1050
1051 if (expect_latency > group_slice) {
1052 u64 base_low_slice = 2 * cfqd->cfq_slice_idle;
1053 u64 low_slice;
1054
1055 /* scale low_slice according to IO priority
1056 * and sync vs async */
1057 low_slice = div64_u64(base_low_slice*slice, sync_slice);
1058 low_slice = min(slice, low_slice);
1059 /* the adapted slice value is scaled to fit all iqs
1060 * into the target latency */
1061 slice = div64_u64(slice*group_slice, expect_latency);
1062 slice = max(slice, low_slice);
1063 }
1064 }
1065 return slice;
1066 }
1067
1068 static inline void
1069 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1070 {
1071 u64 slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1072 u64 now = ktime_get_ns();
1073
1074 cfqq->slice_start = now;
1075 cfqq->slice_end = now + slice;
1076 cfqq->allocated_slice = slice;
1077 cfq_log_cfqq(cfqd, cfqq, "set_slice=%llu", cfqq->slice_end - now);
1078 }
1079
1080 /*
1081 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1082 * isn't valid until the first request from the dispatch is activated
1083 * and the slice time set.
1084 */
1085 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1086 {
1087 if (cfq_cfqq_slice_new(cfqq))
1088 return false;
1089 if (ktime_get_ns() < cfqq->slice_end)
1090 return false;
1091
1092 return true;
1093 }
1094
1095 /*
1096 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1097 * We choose the request that is closest to the head right now. Distance
1098 * behind the head is penalized and only allowed to a certain extent.
1099 */
1100 static struct request *
1101 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1102 {
1103 sector_t s1, s2, d1 = 0, d2 = 0;
1104 unsigned long back_max;
1105 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1106 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1107 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1108
1109 if (rq1 == NULL || rq1 == rq2)
1110 return rq2;
1111 if (rq2 == NULL)
1112 return rq1;
1113
1114 if (rq_is_sync(rq1) != rq_is_sync(rq2))
1115 return rq_is_sync(rq1) ? rq1 : rq2;
1116
1117 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1118 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1119
1120 s1 = blk_rq_pos(rq1);
1121 s2 = blk_rq_pos(rq2);
1122
1123 /*
1124 * by definition, 1KiB is 2 sectors
1125 */
1126 back_max = cfqd->cfq_back_max * 2;
1127
1128 /*
1129 * Strict one way elevator _except_ in the case where we allow
1130 * short backward seeks which are biased as twice the cost of a
1131 * similar forward seek.
1132 */
1133 if (s1 >= last)
1134 d1 = s1 - last;
1135 else if (s1 + back_max >= last)
1136 d1 = (last - s1) * cfqd->cfq_back_penalty;
1137 else
1138 wrap |= CFQ_RQ1_WRAP;
1139
1140 if (s2 >= last)
1141 d2 = s2 - last;
1142 else if (s2 + back_max >= last)
1143 d2 = (last - s2) * cfqd->cfq_back_penalty;
1144 else
1145 wrap |= CFQ_RQ2_WRAP;
1146
1147 /* Found required data */
1148
1149 /*
1150 * By doing switch() on the bit mask "wrap" we avoid having to
1151 * check two variables for all permutations: --> faster!
1152 */
1153 switch (wrap) {
1154 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1155 if (d1 < d2)
1156 return rq1;
1157 else if (d2 < d1)
1158 return rq2;
1159 else {
1160 if (s1 >= s2)
1161 return rq1;
1162 else
1163 return rq2;
1164 }
1165
1166 case CFQ_RQ2_WRAP:
1167 return rq1;
1168 case CFQ_RQ1_WRAP:
1169 return rq2;
1170 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1171 default:
1172 /*
1173 * Since both rqs are wrapped,
1174 * start with the one that's further behind head
1175 * (--> only *one* back seek required),
1176 * since back seek takes more time than forward.
1177 */
1178 if (s1 <= s2)
1179 return rq1;
1180 else
1181 return rq2;
1182 }
1183 }
1184
1185 /*
1186 * The below is leftmost cache rbtree addon
1187 */
1188 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1189 {
1190 /* Service tree is empty */
1191 if (!root->count)
1192 return NULL;
1193
1194 if (!root->left)
1195 root->left = rb_first(&root->rb);
1196
1197 if (root->left)
1198 return rb_entry(root->left, struct cfq_queue, rb_node);
1199
1200 return NULL;
1201 }
1202
1203 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1204 {
1205 if (!root->left)
1206 root->left = rb_first(&root->rb);
1207
1208 if (root->left)
1209 return rb_entry_cfqg(root->left);
1210
1211 return NULL;
1212 }
1213
1214 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1215 {
1216 rb_erase(n, root);
1217 RB_CLEAR_NODE(n);
1218 }
1219
1220 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1221 {
1222 if (root->left == n)
1223 root->left = NULL;
1224 rb_erase_init(n, &root->rb);
1225 --root->count;
1226 }
1227
1228 /*
1229 * would be nice to take fifo expire time into account as well
1230 */
1231 static struct request *
1232 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1233 struct request *last)
1234 {
1235 struct rb_node *rbnext = rb_next(&last->rb_node);
1236 struct rb_node *rbprev = rb_prev(&last->rb_node);
1237 struct request *next = NULL, *prev = NULL;
1238
1239 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1240
1241 if (rbprev)
1242 prev = rb_entry_rq(rbprev);
1243
1244 if (rbnext)
1245 next = rb_entry_rq(rbnext);
1246 else {
1247 rbnext = rb_first(&cfqq->sort_list);
1248 if (rbnext && rbnext != &last->rb_node)
1249 next = rb_entry_rq(rbnext);
1250 }
1251
1252 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1253 }
1254
1255 static u64 cfq_slice_offset(struct cfq_data *cfqd,
1256 struct cfq_queue *cfqq)
1257 {
1258 /*
1259 * just an approximation, should be ok.
1260 */
1261 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1262 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1263 }
1264
1265 static inline s64
1266 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1267 {
1268 return cfqg->vdisktime - st->min_vdisktime;
1269 }
1270
1271 static void
1272 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1273 {
1274 struct rb_node **node = &st->rb.rb_node;
1275 struct rb_node *parent = NULL;
1276 struct cfq_group *__cfqg;
1277 s64 key = cfqg_key(st, cfqg);
1278 int left = 1;
1279
1280 while (*node != NULL) {
1281 parent = *node;
1282 __cfqg = rb_entry_cfqg(parent);
1283
1284 if (key < cfqg_key(st, __cfqg))
1285 node = &parent->rb_left;
1286 else {
1287 node = &parent->rb_right;
1288 left = 0;
1289 }
1290 }
1291
1292 if (left)
1293 st->left = &cfqg->rb_node;
1294
1295 rb_link_node(&cfqg->rb_node, parent, node);
1296 rb_insert_color(&cfqg->rb_node, &st->rb);
1297 }
1298
1299 /*
1300 * This has to be called only on activation of cfqg
1301 */
1302 static void
1303 cfq_update_group_weight(struct cfq_group *cfqg)
1304 {
1305 if (cfqg->new_weight) {
1306 cfqg->weight = cfqg->new_weight;
1307 cfqg->new_weight = 0;
1308 }
1309 }
1310
1311 static void
1312 cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1313 {
1314 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1315
1316 if (cfqg->new_leaf_weight) {
1317 cfqg->leaf_weight = cfqg->new_leaf_weight;
1318 cfqg->new_leaf_weight = 0;
1319 }
1320 }
1321
1322 static void
1323 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1324 {
1325 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1326 struct cfq_group *pos = cfqg;
1327 struct cfq_group *parent;
1328 bool propagate;
1329
1330 /* add to the service tree */
1331 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1332
1333 /*
1334 * Update leaf_weight. We cannot update weight at this point
1335 * because cfqg might already have been activated and is
1336 * contributing its current weight to the parent's child_weight.
1337 */
1338 cfq_update_group_leaf_weight(cfqg);
1339 __cfq_group_service_tree_add(st, cfqg);
1340
1341 /*
1342 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1343 * entitled to. vfraction is calculated by walking the tree
1344 * towards the root calculating the fraction it has at each level.
1345 * The compounded ratio is how much vfraction @cfqg owns.
1346 *
1347 * Start with the proportion tasks in this cfqg has against active
1348 * children cfqgs - its leaf_weight against children_weight.
1349 */
1350 propagate = !pos->nr_active++;
1351 pos->children_weight += pos->leaf_weight;
1352 vfr = vfr * pos->leaf_weight / pos->children_weight;
1353
1354 /*
1355 * Compound ->weight walking up the tree. Both activation and
1356 * vfraction calculation are done in the same loop. Propagation
1357 * stops once an already activated node is met. vfraction
1358 * calculation should always continue to the root.
1359 */
1360 while ((parent = cfqg_parent(pos))) {
1361 if (propagate) {
1362 cfq_update_group_weight(pos);
1363 propagate = !parent->nr_active++;
1364 parent->children_weight += pos->weight;
1365 }
1366 vfr = vfr * pos->weight / parent->children_weight;
1367 pos = parent;
1368 }
1369
1370 cfqg->vfraction = max_t(unsigned, vfr, 1);
1371 }
1372
1373 static void
1374 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1375 {
1376 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1377 struct cfq_group *__cfqg;
1378 struct rb_node *n;
1379
1380 cfqg->nr_cfqq++;
1381 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1382 return;
1383
1384 /*
1385 * Currently put the group at the end. Later implement something
1386 * so that groups get lesser vtime based on their weights, so that
1387 * if group does not loose all if it was not continuously backlogged.
1388 */
1389 n = rb_last(&st->rb);
1390 if (n) {
1391 __cfqg = rb_entry_cfqg(n);
1392 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1393 } else
1394 cfqg->vdisktime = st->min_vdisktime;
1395 cfq_group_service_tree_add(st, cfqg);
1396 }
1397
1398 static void
1399 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1400 {
1401 struct cfq_group *pos = cfqg;
1402 bool propagate;
1403
1404 /*
1405 * Undo activation from cfq_group_service_tree_add(). Deactivate
1406 * @cfqg and propagate deactivation upwards.
1407 */
1408 propagate = !--pos->nr_active;
1409 pos->children_weight -= pos->leaf_weight;
1410
1411 while (propagate) {
1412 struct cfq_group *parent = cfqg_parent(pos);
1413
1414 /* @pos has 0 nr_active at this point */
1415 WARN_ON_ONCE(pos->children_weight);
1416 pos->vfraction = 0;
1417
1418 if (!parent)
1419 break;
1420
1421 propagate = !--parent->nr_active;
1422 parent->children_weight -= pos->weight;
1423 pos = parent;
1424 }
1425
1426 /* remove from the service tree */
1427 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1428 cfq_rb_erase(&cfqg->rb_node, st);
1429 }
1430
1431 static void
1432 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1433 {
1434 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1435
1436 BUG_ON(cfqg->nr_cfqq < 1);
1437 cfqg->nr_cfqq--;
1438
1439 /* If there are other cfq queues under this group, don't delete it */
1440 if (cfqg->nr_cfqq)
1441 return;
1442
1443 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1444 cfq_group_service_tree_del(st, cfqg);
1445 cfqg->saved_wl_slice = 0;
1446 cfqg_stats_update_dequeue(cfqg);
1447 }
1448
1449 static inline u64 cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1450 u64 *unaccounted_time)
1451 {
1452 u64 slice_used;
1453 u64 now = ktime_get_ns();
1454
1455 /*
1456 * Queue got expired before even a single request completed or
1457 * got expired immediately after first request completion.
1458 */
1459 if (!cfqq->slice_start || cfqq->slice_start == now) {
1460 /*
1461 * Also charge the seek time incurred to the group, otherwise
1462 * if there are mutiple queues in the group, each can dispatch
1463 * a single request on seeky media and cause lots of seek time
1464 * and group will never know it.
1465 */
1466 slice_used = max_t(u64, (now - cfqq->dispatch_start),
1467 jiffies_to_nsecs(1));
1468 } else {
1469 slice_used = now - cfqq->slice_start;
1470 if (slice_used > cfqq->allocated_slice) {
1471 *unaccounted_time = slice_used - cfqq->allocated_slice;
1472 slice_used = cfqq->allocated_slice;
1473 }
1474 if (cfqq->slice_start > cfqq->dispatch_start)
1475 *unaccounted_time += cfqq->slice_start -
1476 cfqq->dispatch_start;
1477 }
1478
1479 return slice_used;
1480 }
1481
1482 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1483 struct cfq_queue *cfqq)
1484 {
1485 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1486 u64 used_sl, charge, unaccounted_sl = 0;
1487 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1488 - cfqg->service_tree_idle.count;
1489 unsigned int vfr;
1490 u64 now = ktime_get_ns();
1491
1492 BUG_ON(nr_sync < 0);
1493 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1494
1495 if (iops_mode(cfqd))
1496 charge = cfqq->slice_dispatch;
1497 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1498 charge = cfqq->allocated_slice;
1499
1500 /*
1501 * Can't update vdisktime while on service tree and cfqg->vfraction
1502 * is valid only while on it. Cache vfr, leave the service tree,
1503 * update vdisktime and go back on. The re-addition to the tree
1504 * will also update the weights as necessary.
1505 */
1506 vfr = cfqg->vfraction;
1507 cfq_group_service_tree_del(st, cfqg);
1508 cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1509 cfq_group_service_tree_add(st, cfqg);
1510
1511 /* This group is being expired. Save the context */
1512 if (cfqd->workload_expires > now) {
1513 cfqg->saved_wl_slice = cfqd->workload_expires - now;
1514 cfqg->saved_wl_type = cfqd->serving_wl_type;
1515 cfqg->saved_wl_class = cfqd->serving_wl_class;
1516 } else
1517 cfqg->saved_wl_slice = 0;
1518
1519 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1520 st->min_vdisktime);
1521 cfq_log_cfqq(cfqq->cfqd, cfqq,
1522 "sl_used=%llu disp=%llu charge=%llu iops=%u sect=%lu",
1523 used_sl, cfqq->slice_dispatch, charge,
1524 iops_mode(cfqd), cfqq->nr_sectors);
1525 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1526 cfqg_stats_set_start_empty_time(cfqg);
1527 }
1528
1529 /**
1530 * cfq_init_cfqg_base - initialize base part of a cfq_group
1531 * @cfqg: cfq_group to initialize
1532 *
1533 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1534 * is enabled or not.
1535 */
1536 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1537 {
1538 struct cfq_rb_root *st;
1539 int i, j;
1540
1541 for_each_cfqg_st(cfqg, i, j, st)
1542 *st = CFQ_RB_ROOT;
1543 RB_CLEAR_NODE(&cfqg->rb_node);
1544
1545 cfqg->ttime.last_end_request = ktime_get_ns();
1546 }
1547
1548 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1549 static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1550 bool on_dfl, bool reset_dev, bool is_leaf_weight);
1551
1552 static void cfqg_stats_exit(struct cfqg_stats *stats)
1553 {
1554 blkg_rwstat_exit(&stats->merged);
1555 blkg_rwstat_exit(&stats->service_time);
1556 blkg_rwstat_exit(&stats->wait_time);
1557 blkg_rwstat_exit(&stats->queued);
1558 blkg_stat_exit(&stats->time);
1559 #ifdef CONFIG_DEBUG_BLK_CGROUP
1560 blkg_stat_exit(&stats->unaccounted_time);
1561 blkg_stat_exit(&stats->avg_queue_size_sum);
1562 blkg_stat_exit(&stats->avg_queue_size_samples);
1563 blkg_stat_exit(&stats->dequeue);
1564 blkg_stat_exit(&stats->group_wait_time);
1565 blkg_stat_exit(&stats->idle_time);
1566 blkg_stat_exit(&stats->empty_time);
1567 #endif
1568 }
1569
1570 static int cfqg_stats_init(struct cfqg_stats *stats, gfp_t gfp)
1571 {
1572 if (blkg_rwstat_init(&stats->merged, gfp) ||
1573 blkg_rwstat_init(&stats->service_time, gfp) ||
1574 blkg_rwstat_init(&stats->wait_time, gfp) ||
1575 blkg_rwstat_init(&stats->queued, gfp) ||
1576 blkg_stat_init(&stats->time, gfp))
1577 goto err;
1578
1579 #ifdef CONFIG_DEBUG_BLK_CGROUP
1580 if (blkg_stat_init(&stats->unaccounted_time, gfp) ||
1581 blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
1582 blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
1583 blkg_stat_init(&stats->dequeue, gfp) ||
1584 blkg_stat_init(&stats->group_wait_time, gfp) ||
1585 blkg_stat_init(&stats->idle_time, gfp) ||
1586 blkg_stat_init(&stats->empty_time, gfp))
1587 goto err;
1588 #endif
1589 return 0;
1590 err:
1591 cfqg_stats_exit(stats);
1592 return -ENOMEM;
1593 }
1594
1595 static struct blkcg_policy_data *cfq_cpd_alloc(gfp_t gfp)
1596 {
1597 struct cfq_group_data *cgd;
1598
1599 cgd = kzalloc(sizeof(*cgd), GFP_KERNEL);
1600 if (!cgd)
1601 return NULL;
1602 return &cgd->cpd;
1603 }
1604
1605 static void cfq_cpd_init(struct blkcg_policy_data *cpd)
1606 {
1607 struct cfq_group_data *cgd = cpd_to_cfqgd(cpd);
1608 unsigned int weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ?
1609 CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1610
1611 if (cpd_to_blkcg(cpd) == &blkcg_root)
1612 weight *= 2;
1613
1614 cgd->weight = weight;
1615 cgd->leaf_weight = weight;
1616 }
1617
1618 static void cfq_cpd_free(struct blkcg_policy_data *cpd)
1619 {
1620 kfree(cpd_to_cfqgd(cpd));
1621 }
1622
1623 static void cfq_cpd_bind(struct blkcg_policy_data *cpd)
1624 {
1625 struct blkcg *blkcg = cpd_to_blkcg(cpd);
1626 bool on_dfl = cgroup_subsys_on_dfl(io_cgrp_subsys);
1627 unsigned int weight = on_dfl ? CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1628
1629 if (blkcg == &blkcg_root)
1630 weight *= 2;
1631
1632 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, false));
1633 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, true));
1634 }
1635
1636 static struct blkg_policy_data *cfq_pd_alloc(gfp_t gfp, int node)
1637 {
1638 struct cfq_group *cfqg;
1639
1640 cfqg = kzalloc_node(sizeof(*cfqg), gfp, node);
1641 if (!cfqg)
1642 return NULL;
1643
1644 cfq_init_cfqg_base(cfqg);
1645 if (cfqg_stats_init(&cfqg->stats, gfp)) {
1646 kfree(cfqg);
1647 return NULL;
1648 }
1649
1650 return &cfqg->pd;
1651 }
1652
1653 static void cfq_pd_init(struct blkg_policy_data *pd)
1654 {
1655 struct cfq_group *cfqg = pd_to_cfqg(pd);
1656 struct cfq_group_data *cgd = blkcg_to_cfqgd(pd->blkg->blkcg);
1657
1658 cfqg->weight = cgd->weight;
1659 cfqg->leaf_weight = cgd->leaf_weight;
1660 }
1661
1662 static void cfq_pd_offline(struct blkg_policy_data *pd)
1663 {
1664 struct cfq_group *cfqg = pd_to_cfqg(pd);
1665 int i;
1666
1667 for (i = 0; i < IOPRIO_BE_NR; i++) {
1668 if (cfqg->async_cfqq[0][i])
1669 cfq_put_queue(cfqg->async_cfqq[0][i]);
1670 if (cfqg->async_cfqq[1][i])
1671 cfq_put_queue(cfqg->async_cfqq[1][i]);
1672 }
1673
1674 if (cfqg->async_idle_cfqq)
1675 cfq_put_queue(cfqg->async_idle_cfqq);
1676
1677 /*
1678 * @blkg is going offline and will be ignored by
1679 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1680 * that they don't get lost. If IOs complete after this point, the
1681 * stats for them will be lost. Oh well...
1682 */
1683 cfqg_stats_xfer_dead(cfqg);
1684 }
1685
1686 static void cfq_pd_free(struct blkg_policy_data *pd)
1687 {
1688 struct cfq_group *cfqg = pd_to_cfqg(pd);
1689
1690 cfqg_stats_exit(&cfqg->stats);
1691 return kfree(cfqg);
1692 }
1693
1694 static void cfq_pd_reset_stats(struct blkg_policy_data *pd)
1695 {
1696 struct cfq_group *cfqg = pd_to_cfqg(pd);
1697
1698 cfqg_stats_reset(&cfqg->stats);
1699 }
1700
1701 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
1702 struct blkcg *blkcg)
1703 {
1704 struct blkcg_gq *blkg;
1705
1706 blkg = blkg_lookup(blkcg, cfqd->queue);
1707 if (likely(blkg))
1708 return blkg_to_cfqg(blkg);
1709 return NULL;
1710 }
1711
1712 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1713 {
1714 cfqq->cfqg = cfqg;
1715 /* cfqq reference on cfqg */
1716 cfqg_get(cfqg);
1717 }
1718
1719 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1720 struct blkg_policy_data *pd, int off)
1721 {
1722 struct cfq_group *cfqg = pd_to_cfqg(pd);
1723
1724 if (!cfqg->dev_weight)
1725 return 0;
1726 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1727 }
1728
1729 static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1730 {
1731 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1732 cfqg_prfill_weight_device, &blkcg_policy_cfq,
1733 0, false);
1734 return 0;
1735 }
1736
1737 static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1738 struct blkg_policy_data *pd, int off)
1739 {
1740 struct cfq_group *cfqg = pd_to_cfqg(pd);
1741
1742 if (!cfqg->dev_leaf_weight)
1743 return 0;
1744 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1745 }
1746
1747 static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1748 {
1749 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1750 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1751 0, false);
1752 return 0;
1753 }
1754
1755 static int cfq_print_weight(struct seq_file *sf, void *v)
1756 {
1757 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1758 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1759 unsigned int val = 0;
1760
1761 if (cgd)
1762 val = cgd->weight;
1763
1764 seq_printf(sf, "%u\n", val);
1765 return 0;
1766 }
1767
1768 static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1769 {
1770 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1771 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1772 unsigned int val = 0;
1773
1774 if (cgd)
1775 val = cgd->leaf_weight;
1776
1777 seq_printf(sf, "%u\n", val);
1778 return 0;
1779 }
1780
1781 static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1782 char *buf, size_t nbytes, loff_t off,
1783 bool on_dfl, bool is_leaf_weight)
1784 {
1785 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1786 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1787 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1788 struct blkg_conf_ctx ctx;
1789 struct cfq_group *cfqg;
1790 struct cfq_group_data *cfqgd;
1791 int ret;
1792 u64 v;
1793
1794 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1795 if (ret)
1796 return ret;
1797
1798 if (sscanf(ctx.body, "%llu", &v) == 1) {
1799 /* require "default" on dfl */
1800 ret = -ERANGE;
1801 if (!v && on_dfl)
1802 goto out_finish;
1803 } else if (!strcmp(strim(ctx.body), "default")) {
1804 v = 0;
1805 } else {
1806 ret = -EINVAL;
1807 goto out_finish;
1808 }
1809
1810 cfqg = blkg_to_cfqg(ctx.blkg);
1811 cfqgd = blkcg_to_cfqgd(blkcg);
1812
1813 ret = -ERANGE;
1814 if (!v || (v >= min && v <= max)) {
1815 if (!is_leaf_weight) {
1816 cfqg->dev_weight = v;
1817 cfqg->new_weight = v ?: cfqgd->weight;
1818 } else {
1819 cfqg->dev_leaf_weight = v;
1820 cfqg->new_leaf_weight = v ?: cfqgd->leaf_weight;
1821 }
1822 ret = 0;
1823 }
1824 out_finish:
1825 blkg_conf_finish(&ctx);
1826 return ret ?: nbytes;
1827 }
1828
1829 static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1830 char *buf, size_t nbytes, loff_t off)
1831 {
1832 return __cfqg_set_weight_device(of, buf, nbytes, off, false, false);
1833 }
1834
1835 static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1836 char *buf, size_t nbytes, loff_t off)
1837 {
1838 return __cfqg_set_weight_device(of, buf, nbytes, off, false, true);
1839 }
1840
1841 static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1842 bool on_dfl, bool reset_dev, bool is_leaf_weight)
1843 {
1844 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1845 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1846 struct blkcg *blkcg = css_to_blkcg(css);
1847 struct blkcg_gq *blkg;
1848 struct cfq_group_data *cfqgd;
1849 int ret = 0;
1850
1851 if (val < min || val > max)
1852 return -ERANGE;
1853
1854 spin_lock_irq(&blkcg->lock);
1855 cfqgd = blkcg_to_cfqgd(blkcg);
1856 if (!cfqgd) {
1857 ret = -EINVAL;
1858 goto out;
1859 }
1860
1861 if (!is_leaf_weight)
1862 cfqgd->weight = val;
1863 else
1864 cfqgd->leaf_weight = val;
1865
1866 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1867 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1868
1869 if (!cfqg)
1870 continue;
1871
1872 if (!is_leaf_weight) {
1873 if (reset_dev)
1874 cfqg->dev_weight = 0;
1875 if (!cfqg->dev_weight)
1876 cfqg->new_weight = cfqgd->weight;
1877 } else {
1878 if (reset_dev)
1879 cfqg->dev_leaf_weight = 0;
1880 if (!cfqg->dev_leaf_weight)
1881 cfqg->new_leaf_weight = cfqgd->leaf_weight;
1882 }
1883 }
1884
1885 out:
1886 spin_unlock_irq(&blkcg->lock);
1887 return ret;
1888 }
1889
1890 static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1891 u64 val)
1892 {
1893 return __cfq_set_weight(css, val, false, false, false);
1894 }
1895
1896 static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1897 struct cftype *cft, u64 val)
1898 {
1899 return __cfq_set_weight(css, val, false, false, true);
1900 }
1901
1902 static int cfqg_print_stat(struct seq_file *sf, void *v)
1903 {
1904 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1905 &blkcg_policy_cfq, seq_cft(sf)->private, false);
1906 return 0;
1907 }
1908
1909 static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1910 {
1911 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1912 &blkcg_policy_cfq, seq_cft(sf)->private, true);
1913 return 0;
1914 }
1915
1916 static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1917 struct blkg_policy_data *pd, int off)
1918 {
1919 u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd),
1920 &blkcg_policy_cfq, off);
1921 return __blkg_prfill_u64(sf, pd, sum);
1922 }
1923
1924 static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1925 struct blkg_policy_data *pd, int off)
1926 {
1927 struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd),
1928 &blkcg_policy_cfq, off);
1929 return __blkg_prfill_rwstat(sf, pd, &sum);
1930 }
1931
1932 static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1933 {
1934 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1935 cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1936 seq_cft(sf)->private, false);
1937 return 0;
1938 }
1939
1940 static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1941 {
1942 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1943 cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1944 seq_cft(sf)->private, true);
1945 return 0;
1946 }
1947
1948 static u64 cfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd,
1949 int off)
1950 {
1951 u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes);
1952
1953 return __blkg_prfill_u64(sf, pd, sum >> 9);
1954 }
1955
1956 static int cfqg_print_stat_sectors(struct seq_file *sf, void *v)
1957 {
1958 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1959 cfqg_prfill_sectors, &blkcg_policy_cfq, 0, false);
1960 return 0;
1961 }
1962
1963 static u64 cfqg_prfill_sectors_recursive(struct seq_file *sf,
1964 struct blkg_policy_data *pd, int off)
1965 {
1966 struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL,
1967 offsetof(struct blkcg_gq, stat_bytes));
1968 u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) +
1969 atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]);
1970
1971 return __blkg_prfill_u64(sf, pd, sum >> 9);
1972 }
1973
1974 static int cfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v)
1975 {
1976 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1977 cfqg_prfill_sectors_recursive, &blkcg_policy_cfq, 0,
1978 false);
1979 return 0;
1980 }
1981
1982 #ifdef CONFIG_DEBUG_BLK_CGROUP
1983 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1984 struct blkg_policy_data *pd, int off)
1985 {
1986 struct cfq_group *cfqg = pd_to_cfqg(pd);
1987 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1988 u64 v = 0;
1989
1990 if (samples) {
1991 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1992 v = div64_u64(v, samples);
1993 }
1994 __blkg_prfill_u64(sf, pd, v);
1995 return 0;
1996 }
1997
1998 /* print avg_queue_size */
1999 static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
2000 {
2001 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
2002 cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
2003 0, false);
2004 return 0;
2005 }
2006 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2007
2008 static struct cftype cfq_blkcg_legacy_files[] = {
2009 /* on root, weight is mapped to leaf_weight */
2010 {
2011 .name = "weight_device",
2012 .flags = CFTYPE_ONLY_ON_ROOT,
2013 .seq_show = cfqg_print_leaf_weight_device,
2014 .write = cfqg_set_leaf_weight_device,
2015 },
2016 {
2017 .name = "weight",
2018 .flags = CFTYPE_ONLY_ON_ROOT,
2019 .seq_show = cfq_print_leaf_weight,
2020 .write_u64 = cfq_set_leaf_weight,
2021 },
2022
2023 /* no such mapping necessary for !roots */
2024 {
2025 .name = "weight_device",
2026 .flags = CFTYPE_NOT_ON_ROOT,
2027 .seq_show = cfqg_print_weight_device,
2028 .write = cfqg_set_weight_device,
2029 },
2030 {
2031 .name = "weight",
2032 .flags = CFTYPE_NOT_ON_ROOT,
2033 .seq_show = cfq_print_weight,
2034 .write_u64 = cfq_set_weight,
2035 },
2036
2037 {
2038 .name = "leaf_weight_device",
2039 .seq_show = cfqg_print_leaf_weight_device,
2040 .write = cfqg_set_leaf_weight_device,
2041 },
2042 {
2043 .name = "leaf_weight",
2044 .seq_show = cfq_print_leaf_weight,
2045 .write_u64 = cfq_set_leaf_weight,
2046 },
2047
2048 /* statistics, covers only the tasks in the cfqg */
2049 {
2050 .name = "time",
2051 .private = offsetof(struct cfq_group, stats.time),
2052 .seq_show = cfqg_print_stat,
2053 },
2054 {
2055 .name = "sectors",
2056 .seq_show = cfqg_print_stat_sectors,
2057 },
2058 {
2059 .name = "io_service_bytes",
2060 .private = (unsigned long)&blkcg_policy_cfq,
2061 .seq_show = blkg_print_stat_bytes,
2062 },
2063 {
2064 .name = "io_serviced",
2065 .private = (unsigned long)&blkcg_policy_cfq,
2066 .seq_show = blkg_print_stat_ios,
2067 },
2068 {
2069 .name = "io_service_time",
2070 .private = offsetof(struct cfq_group, stats.service_time),
2071 .seq_show = cfqg_print_rwstat,
2072 },
2073 {
2074 .name = "io_wait_time",
2075 .private = offsetof(struct cfq_group, stats.wait_time),
2076 .seq_show = cfqg_print_rwstat,
2077 },
2078 {
2079 .name = "io_merged",
2080 .private = offsetof(struct cfq_group, stats.merged),
2081 .seq_show = cfqg_print_rwstat,
2082 },
2083 {
2084 .name = "io_queued",
2085 .private = offsetof(struct cfq_group, stats.queued),
2086 .seq_show = cfqg_print_rwstat,
2087 },
2088
2089 /* the same statictics which cover the cfqg and its descendants */
2090 {
2091 .name = "time_recursive",
2092 .private = offsetof(struct cfq_group, stats.time),
2093 .seq_show = cfqg_print_stat_recursive,
2094 },
2095 {
2096 .name = "sectors_recursive",
2097 .seq_show = cfqg_print_stat_sectors_recursive,
2098 },
2099 {
2100 .name = "io_service_bytes_recursive",
2101 .private = (unsigned long)&blkcg_policy_cfq,
2102 .seq_show = blkg_print_stat_bytes_recursive,
2103 },
2104 {
2105 .name = "io_serviced_recursive",
2106 .private = (unsigned long)&blkcg_policy_cfq,
2107 .seq_show = blkg_print_stat_ios_recursive,
2108 },
2109 {
2110 .name = "io_service_time_recursive",
2111 .private = offsetof(struct cfq_group, stats.service_time),
2112 .seq_show = cfqg_print_rwstat_recursive,
2113 },
2114 {
2115 .name = "io_wait_time_recursive",
2116 .private = offsetof(struct cfq_group, stats.wait_time),
2117 .seq_show = cfqg_print_rwstat_recursive,
2118 },
2119 {
2120 .name = "io_merged_recursive",
2121 .private = offsetof(struct cfq_group, stats.merged),
2122 .seq_show = cfqg_print_rwstat_recursive,
2123 },
2124 {
2125 .name = "io_queued_recursive",
2126 .private = offsetof(struct cfq_group, stats.queued),
2127 .seq_show = cfqg_print_rwstat_recursive,
2128 },
2129 #ifdef CONFIG_DEBUG_BLK_CGROUP
2130 {
2131 .name = "avg_queue_size",
2132 .seq_show = cfqg_print_avg_queue_size,
2133 },
2134 {
2135 .name = "group_wait_time",
2136 .private = offsetof(struct cfq_group, stats.group_wait_time),
2137 .seq_show = cfqg_print_stat,
2138 },
2139 {
2140 .name = "idle_time",
2141 .private = offsetof(struct cfq_group, stats.idle_time),
2142 .seq_show = cfqg_print_stat,
2143 },
2144 {
2145 .name = "empty_time",
2146 .private = offsetof(struct cfq_group, stats.empty_time),
2147 .seq_show = cfqg_print_stat,
2148 },
2149 {
2150 .name = "dequeue",
2151 .private = offsetof(struct cfq_group, stats.dequeue),
2152 .seq_show = cfqg_print_stat,
2153 },
2154 {
2155 .name = "unaccounted_time",
2156 .private = offsetof(struct cfq_group, stats.unaccounted_time),
2157 .seq_show = cfqg_print_stat,
2158 },
2159 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2160 { } /* terminate */
2161 };
2162
2163 static int cfq_print_weight_on_dfl(struct seq_file *sf, void *v)
2164 {
2165 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2166 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
2167
2168 seq_printf(sf, "default %u\n", cgd->weight);
2169 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_weight_device,
2170 &blkcg_policy_cfq, 0, false);
2171 return 0;
2172 }
2173
2174 static ssize_t cfq_set_weight_on_dfl(struct kernfs_open_file *of,
2175 char *buf, size_t nbytes, loff_t off)
2176 {
2177 char *endp;
2178 int ret;
2179 u64 v;
2180
2181 buf = strim(buf);
2182
2183 /* "WEIGHT" or "default WEIGHT" sets the default weight */
2184 v = simple_strtoull(buf, &endp, 0);
2185 if (*endp == '\0' || sscanf(buf, "default %llu", &v) == 1) {
2186 ret = __cfq_set_weight(of_css(of), v, true, false, false);
2187 return ret ?: nbytes;
2188 }
2189
2190 /* "MAJ:MIN WEIGHT" */
2191 return __cfqg_set_weight_device(of, buf, nbytes, off, true, false);
2192 }
2193
2194 static struct cftype cfq_blkcg_files[] = {
2195 {
2196 .name = "weight",
2197 .flags = CFTYPE_NOT_ON_ROOT,
2198 .seq_show = cfq_print_weight_on_dfl,
2199 .write = cfq_set_weight_on_dfl,
2200 },
2201 { } /* terminate */
2202 };
2203
2204 #else /* GROUP_IOSCHED */
2205 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
2206 struct blkcg *blkcg)
2207 {
2208 return cfqd->root_group;
2209 }
2210
2211 static inline void
2212 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2213 cfqq->cfqg = cfqg;
2214 }
2215
2216 #endif /* GROUP_IOSCHED */
2217
2218 /*
2219 * The cfqd->service_trees holds all pending cfq_queue's that have
2220 * requests waiting to be processed. It is sorted in the order that
2221 * we will service the queues.
2222 */
2223 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2224 bool add_front)
2225 {
2226 struct rb_node **p, *parent;
2227 struct cfq_queue *__cfqq;
2228 u64 rb_key;
2229 struct cfq_rb_root *st;
2230 int left;
2231 int new_cfqq = 1;
2232 u64 now = ktime_get_ns();
2233
2234 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2235 if (cfq_class_idle(cfqq)) {
2236 rb_key = CFQ_IDLE_DELAY;
2237 parent = rb_last(&st->rb);
2238 if (parent && parent != &cfqq->rb_node) {
2239 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2240 rb_key += __cfqq->rb_key;
2241 } else
2242 rb_key += now;
2243 } else if (!add_front) {
2244 /*
2245 * Get our rb key offset. Subtract any residual slice
2246 * value carried from last service. A negative resid
2247 * count indicates slice overrun, and this should position
2248 * the next service time further away in the tree.
2249 */
2250 rb_key = cfq_slice_offset(cfqd, cfqq) + now;
2251 rb_key -= cfqq->slice_resid;
2252 cfqq->slice_resid = 0;
2253 } else {
2254 rb_key = -NSEC_PER_SEC;
2255 __cfqq = cfq_rb_first(st);
2256 rb_key += __cfqq ? __cfqq->rb_key : now;
2257 }
2258
2259 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2260 new_cfqq = 0;
2261 /*
2262 * same position, nothing more to do
2263 */
2264 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2265 return;
2266
2267 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2268 cfqq->service_tree = NULL;
2269 }
2270
2271 left = 1;
2272 parent = NULL;
2273 cfqq->service_tree = st;
2274 p = &st->rb.rb_node;
2275 while (*p) {
2276 parent = *p;
2277 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2278
2279 /*
2280 * sort by key, that represents service time.
2281 */
2282 if (rb_key < __cfqq->rb_key)
2283 p = &parent->rb_left;
2284 else {
2285 p = &parent->rb_right;
2286 left = 0;
2287 }
2288 }
2289
2290 if (left)
2291 st->left = &cfqq->rb_node;
2292
2293 cfqq->rb_key = rb_key;
2294 rb_link_node(&cfqq->rb_node, parent, p);
2295 rb_insert_color(&cfqq->rb_node, &st->rb);
2296 st->count++;
2297 if (add_front || !new_cfqq)
2298 return;
2299 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2300 }
2301
2302 static struct cfq_queue *
2303 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2304 sector_t sector, struct rb_node **ret_parent,
2305 struct rb_node ***rb_link)
2306 {
2307 struct rb_node **p, *parent;
2308 struct cfq_queue *cfqq = NULL;
2309
2310 parent = NULL;
2311 p = &root->rb_node;
2312 while (*p) {
2313 struct rb_node **n;
2314
2315 parent = *p;
2316 cfqq = rb_entry(parent, struct cfq_queue, p_node);
2317
2318 /*
2319 * Sort strictly based on sector. Smallest to the left,
2320 * largest to the right.
2321 */
2322 if (sector > blk_rq_pos(cfqq->next_rq))
2323 n = &(*p)->rb_right;
2324 else if (sector < blk_rq_pos(cfqq->next_rq))
2325 n = &(*p)->rb_left;
2326 else
2327 break;
2328 p = n;
2329 cfqq = NULL;
2330 }
2331
2332 *ret_parent = parent;
2333 if (rb_link)
2334 *rb_link = p;
2335 return cfqq;
2336 }
2337
2338 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2339 {
2340 struct rb_node **p, *parent;
2341 struct cfq_queue *__cfqq;
2342
2343 if (cfqq->p_root) {
2344 rb_erase(&cfqq->p_node, cfqq->p_root);
2345 cfqq->p_root = NULL;
2346 }
2347
2348 if (cfq_class_idle(cfqq))
2349 return;
2350 if (!cfqq->next_rq)
2351 return;
2352
2353 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2354 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2355 blk_rq_pos(cfqq->next_rq), &parent, &p);
2356 if (!__cfqq) {
2357 rb_link_node(&cfqq->p_node, parent, p);
2358 rb_insert_color(&cfqq->p_node, cfqq->p_root);
2359 } else
2360 cfqq->p_root = NULL;
2361 }
2362
2363 /*
2364 * Update cfqq's position in the service tree.
2365 */
2366 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2367 {
2368 /*
2369 * Resorting requires the cfqq to be on the RR list already.
2370 */
2371 if (cfq_cfqq_on_rr(cfqq)) {
2372 cfq_service_tree_add(cfqd, cfqq, 0);
2373 cfq_prio_tree_add(cfqd, cfqq);
2374 }
2375 }
2376
2377 /*
2378 * add to busy list of queues for service, trying to be fair in ordering
2379 * the pending list according to last request service
2380 */
2381 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2382 {
2383 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2384 BUG_ON(cfq_cfqq_on_rr(cfqq));
2385 cfq_mark_cfqq_on_rr(cfqq);
2386 cfqd->busy_queues++;
2387 if (cfq_cfqq_sync(cfqq))
2388 cfqd->busy_sync_queues++;
2389
2390 cfq_resort_rr_list(cfqd, cfqq);
2391 }
2392
2393 /*
2394 * Called when the cfqq no longer has requests pending, remove it from
2395 * the service tree.
2396 */
2397 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2398 {
2399 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2400 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2401 cfq_clear_cfqq_on_rr(cfqq);
2402
2403 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2404 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2405 cfqq->service_tree = NULL;
2406 }
2407 if (cfqq->p_root) {
2408 rb_erase(&cfqq->p_node, cfqq->p_root);
2409 cfqq->p_root = NULL;
2410 }
2411
2412 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2413 BUG_ON(!cfqd->busy_queues);
2414 cfqd->busy_queues--;
2415 if (cfq_cfqq_sync(cfqq))
2416 cfqd->busy_sync_queues--;
2417 }
2418
2419 /*
2420 * rb tree support functions
2421 */
2422 static void cfq_del_rq_rb(struct request *rq)
2423 {
2424 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2425 const int sync = rq_is_sync(rq);
2426
2427 BUG_ON(!cfqq->queued[sync]);
2428 cfqq->queued[sync]--;
2429
2430 elv_rb_del(&cfqq->sort_list, rq);
2431
2432 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2433 /*
2434 * Queue will be deleted from service tree when we actually
2435 * expire it later. Right now just remove it from prio tree
2436 * as it is empty.
2437 */
2438 if (cfqq->p_root) {
2439 rb_erase(&cfqq->p_node, cfqq->p_root);
2440 cfqq->p_root = NULL;
2441 }
2442 }
2443 }
2444
2445 static void cfq_add_rq_rb(struct request *rq)
2446 {
2447 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2448 struct cfq_data *cfqd = cfqq->cfqd;
2449 struct request *prev;
2450
2451 cfqq->queued[rq_is_sync(rq)]++;
2452
2453 elv_rb_add(&cfqq->sort_list, rq);
2454
2455 if (!cfq_cfqq_on_rr(cfqq))
2456 cfq_add_cfqq_rr(cfqd, cfqq);
2457
2458 /*
2459 * check if this request is a better next-serve candidate
2460 */
2461 prev = cfqq->next_rq;
2462 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2463
2464 /*
2465 * adjust priority tree position, if ->next_rq changes
2466 */
2467 if (prev != cfqq->next_rq)
2468 cfq_prio_tree_add(cfqd, cfqq);
2469
2470 BUG_ON(!cfqq->next_rq);
2471 }
2472
2473 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2474 {
2475 elv_rb_del(&cfqq->sort_list, rq);
2476 cfqq->queued[rq_is_sync(rq)]--;
2477 cfqg_stats_update_io_remove(RQ_CFQG(rq), req_op(rq), rq->cmd_flags);
2478 cfq_add_rq_rb(rq);
2479 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2480 req_op(rq), rq->cmd_flags);
2481 }
2482
2483 static struct request *
2484 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2485 {
2486 struct task_struct *tsk = current;
2487 struct cfq_io_cq *cic;
2488 struct cfq_queue *cfqq;
2489
2490 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2491 if (!cic)
2492 return NULL;
2493
2494 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2495 if (cfqq)
2496 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2497
2498 return NULL;
2499 }
2500
2501 static void cfq_activate_request(struct request_queue *q, struct request *rq)
2502 {
2503 struct cfq_data *cfqd = q->elevator->elevator_data;
2504
2505 cfqd->rq_in_driver++;
2506 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2507 cfqd->rq_in_driver);
2508
2509 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2510 }
2511
2512 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2513 {
2514 struct cfq_data *cfqd = q->elevator->elevator_data;
2515
2516 WARN_ON(!cfqd->rq_in_driver);
2517 cfqd->rq_in_driver--;
2518 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2519 cfqd->rq_in_driver);
2520 }
2521
2522 static void cfq_remove_request(struct request *rq)
2523 {
2524 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2525
2526 if (cfqq->next_rq == rq)
2527 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2528
2529 list_del_init(&rq->queuelist);
2530 cfq_del_rq_rb(rq);
2531
2532 cfqq->cfqd->rq_queued--;
2533 cfqg_stats_update_io_remove(RQ_CFQG(rq), req_op(rq), rq->cmd_flags);
2534 if (rq->cmd_flags & REQ_PRIO) {
2535 WARN_ON(!cfqq->prio_pending);
2536 cfqq->prio_pending--;
2537 }
2538 }
2539
2540 static int cfq_merge(struct request_queue *q, struct request **req,
2541 struct bio *bio)
2542 {
2543 struct cfq_data *cfqd = q->elevator->elevator_data;
2544 struct request *__rq;
2545
2546 __rq = cfq_find_rq_fmerge(cfqd, bio);
2547 if (__rq && elv_rq_merge_ok(__rq, bio)) {
2548 *req = __rq;
2549 return ELEVATOR_FRONT_MERGE;
2550 }
2551
2552 return ELEVATOR_NO_MERGE;
2553 }
2554
2555 static void cfq_merged_request(struct request_queue *q, struct request *req,
2556 int type)
2557 {
2558 if (type == ELEVATOR_FRONT_MERGE) {
2559 struct cfq_queue *cfqq = RQ_CFQQ(req);
2560
2561 cfq_reposition_rq_rb(cfqq, req);
2562 }
2563 }
2564
2565 static void cfq_bio_merged(struct request_queue *q, struct request *req,
2566 struct bio *bio)
2567 {
2568 cfqg_stats_update_io_merged(RQ_CFQG(req), bio_op(bio), bio->bi_rw);
2569 }
2570
2571 static void
2572 cfq_merged_requests(struct request_queue *q, struct request *rq,
2573 struct request *next)
2574 {
2575 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2576 struct cfq_data *cfqd = q->elevator->elevator_data;
2577
2578 /*
2579 * reposition in fifo if next is older than rq
2580 */
2581 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2582 next->fifo_time < rq->fifo_time &&
2583 cfqq == RQ_CFQQ(next)) {
2584 list_move(&rq->queuelist, &next->queuelist);
2585 rq->fifo_time = next->fifo_time;
2586 }
2587
2588 if (cfqq->next_rq == next)
2589 cfqq->next_rq = rq;
2590 cfq_remove_request(next);
2591 cfqg_stats_update_io_merged(RQ_CFQG(rq), req_op(next), next->cmd_flags);
2592
2593 cfqq = RQ_CFQQ(next);
2594 /*
2595 * all requests of this queue are merged to other queues, delete it
2596 * from the service tree. If it's the active_queue,
2597 * cfq_dispatch_requests() will choose to expire it or do idle
2598 */
2599 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2600 cfqq != cfqd->active_queue)
2601 cfq_del_cfqq_rr(cfqd, cfqq);
2602 }
2603
2604 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
2605 struct bio *bio)
2606 {
2607 struct cfq_data *cfqd = q->elevator->elevator_data;
2608 struct cfq_io_cq *cic;
2609 struct cfq_queue *cfqq;
2610
2611 /*
2612 * Disallow merge of a sync bio into an async request.
2613 */
2614 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2615 return false;
2616
2617 /*
2618 * Lookup the cfqq that this bio will be queued with and allow
2619 * merge only if rq is queued there.
2620 */
2621 cic = cfq_cic_lookup(cfqd, current->io_context);
2622 if (!cic)
2623 return false;
2624
2625 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2626 return cfqq == RQ_CFQQ(rq);
2627 }
2628
2629 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2630 {
2631 hrtimer_try_to_cancel(&cfqd->idle_slice_timer);
2632 cfqg_stats_update_idle_time(cfqq->cfqg);
2633 }
2634
2635 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2636 struct cfq_queue *cfqq)
2637 {
2638 if (cfqq) {
2639 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2640 cfqd->serving_wl_class, cfqd->serving_wl_type);
2641 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2642 cfqq->slice_start = 0;
2643 cfqq->dispatch_start = ktime_get_ns();
2644 cfqq->allocated_slice = 0;
2645 cfqq->slice_end = 0;
2646 cfqq->slice_dispatch = 0;
2647 cfqq->nr_sectors = 0;
2648
2649 cfq_clear_cfqq_wait_request(cfqq);
2650 cfq_clear_cfqq_must_dispatch(cfqq);
2651 cfq_clear_cfqq_must_alloc_slice(cfqq);
2652 cfq_clear_cfqq_fifo_expire(cfqq);
2653 cfq_mark_cfqq_slice_new(cfqq);
2654
2655 cfq_del_timer(cfqd, cfqq);
2656 }
2657
2658 cfqd->active_queue = cfqq;
2659 }
2660
2661 /*
2662 * current cfqq expired its slice (or was too idle), select new one
2663 */
2664 static void
2665 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2666 bool timed_out)
2667 {
2668 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2669
2670 if (cfq_cfqq_wait_request(cfqq))
2671 cfq_del_timer(cfqd, cfqq);
2672
2673 cfq_clear_cfqq_wait_request(cfqq);
2674 cfq_clear_cfqq_wait_busy(cfqq);
2675
2676 /*
2677 * If this cfqq is shared between multiple processes, check to
2678 * make sure that those processes are still issuing I/Os within
2679 * the mean seek distance. If not, it may be time to break the
2680 * queues apart again.
2681 */
2682 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2683 cfq_mark_cfqq_split_coop(cfqq);
2684
2685 /*
2686 * store what was left of this slice, if the queue idled/timed out
2687 */
2688 if (timed_out) {
2689 if (cfq_cfqq_slice_new(cfqq))
2690 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2691 else
2692 cfqq->slice_resid = cfqq->slice_end - ktime_get_ns();
2693 cfq_log_cfqq(cfqd, cfqq, "resid=%lld", cfqq->slice_resid);
2694 }
2695
2696 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2697
2698 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2699 cfq_del_cfqq_rr(cfqd, cfqq);
2700
2701 cfq_resort_rr_list(cfqd, cfqq);
2702
2703 if (cfqq == cfqd->active_queue)
2704 cfqd->active_queue = NULL;
2705
2706 if (cfqd->active_cic) {
2707 put_io_context(cfqd->active_cic->icq.ioc);
2708 cfqd->active_cic = NULL;
2709 }
2710 }
2711
2712 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2713 {
2714 struct cfq_queue *cfqq = cfqd->active_queue;
2715
2716 if (cfqq)
2717 __cfq_slice_expired(cfqd, cfqq, timed_out);
2718 }
2719
2720 /*
2721 * Get next queue for service. Unless we have a queue preemption,
2722 * we'll simply select the first cfqq in the service tree.
2723 */
2724 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2725 {
2726 struct cfq_rb_root *st = st_for(cfqd->serving_group,
2727 cfqd->serving_wl_class, cfqd->serving_wl_type);
2728
2729 if (!cfqd->rq_queued)
2730 return NULL;
2731
2732 /* There is nothing to dispatch */
2733 if (!st)
2734 return NULL;
2735 if (RB_EMPTY_ROOT(&st->rb))
2736 return NULL;
2737 return cfq_rb_first(st);
2738 }
2739
2740 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2741 {
2742 struct cfq_group *cfqg;
2743 struct cfq_queue *cfqq;
2744 int i, j;
2745 struct cfq_rb_root *st;
2746
2747 if (!cfqd->rq_queued)
2748 return NULL;
2749
2750 cfqg = cfq_get_next_cfqg(cfqd);
2751 if (!cfqg)
2752 return NULL;
2753
2754 for_each_cfqg_st(cfqg, i, j, st)
2755 if ((cfqq = cfq_rb_first(st)) != NULL)
2756 return cfqq;
2757 return NULL;
2758 }
2759
2760 /*
2761 * Get and set a new active queue for service.
2762 */
2763 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2764 struct cfq_queue *cfqq)
2765 {
2766 if (!cfqq)
2767 cfqq = cfq_get_next_queue(cfqd);
2768
2769 __cfq_set_active_queue(cfqd, cfqq);
2770 return cfqq;
2771 }
2772
2773 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2774 struct request *rq)
2775 {
2776 if (blk_rq_pos(rq) >= cfqd->last_position)
2777 return blk_rq_pos(rq) - cfqd->last_position;
2778 else
2779 return cfqd->last_position - blk_rq_pos(rq);
2780 }
2781
2782 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2783 struct request *rq)
2784 {
2785 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2786 }
2787
2788 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2789 struct cfq_queue *cur_cfqq)
2790 {
2791 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2792 struct rb_node *parent, *node;
2793 struct cfq_queue *__cfqq;
2794 sector_t sector = cfqd->last_position;
2795
2796 if (RB_EMPTY_ROOT(root))
2797 return NULL;
2798
2799 /*
2800 * First, if we find a request starting at the end of the last
2801 * request, choose it.
2802 */
2803 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2804 if (__cfqq)
2805 return __cfqq;
2806
2807 /*
2808 * If the exact sector wasn't found, the parent of the NULL leaf
2809 * will contain the closest sector.
2810 */
2811 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2812 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2813 return __cfqq;
2814
2815 if (blk_rq_pos(__cfqq->next_rq) < sector)
2816 node = rb_next(&__cfqq->p_node);
2817 else
2818 node = rb_prev(&__cfqq->p_node);
2819 if (!node)
2820 return NULL;
2821
2822 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2823 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2824 return __cfqq;
2825
2826 return NULL;
2827 }
2828
2829 /*
2830 * cfqd - obvious
2831 * cur_cfqq - passed in so that we don't decide that the current queue is
2832 * closely cooperating with itself.
2833 *
2834 * So, basically we're assuming that that cur_cfqq has dispatched at least
2835 * one request, and that cfqd->last_position reflects a position on the disk
2836 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2837 * assumption.
2838 */
2839 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2840 struct cfq_queue *cur_cfqq)
2841 {
2842 struct cfq_queue *cfqq;
2843
2844 if (cfq_class_idle(cur_cfqq))
2845 return NULL;
2846 if (!cfq_cfqq_sync(cur_cfqq))
2847 return NULL;
2848 if (CFQQ_SEEKY(cur_cfqq))
2849 return NULL;
2850
2851 /*
2852 * Don't search priority tree if it's the only queue in the group.
2853 */
2854 if (cur_cfqq->cfqg->nr_cfqq == 1)
2855 return NULL;
2856
2857 /*
2858 * We should notice if some of the queues are cooperating, eg
2859 * working closely on the same area of the disk. In that case,
2860 * we can group them together and don't waste time idling.
2861 */
2862 cfqq = cfqq_close(cfqd, cur_cfqq);
2863 if (!cfqq)
2864 return NULL;
2865
2866 /* If new queue belongs to different cfq_group, don't choose it */
2867 if (cur_cfqq->cfqg != cfqq->cfqg)
2868 return NULL;
2869
2870 /*
2871 * It only makes sense to merge sync queues.
2872 */
2873 if (!cfq_cfqq_sync(cfqq))
2874 return NULL;
2875 if (CFQQ_SEEKY(cfqq))
2876 return NULL;
2877
2878 /*
2879 * Do not merge queues of different priority classes
2880 */
2881 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2882 return NULL;
2883
2884 return cfqq;
2885 }
2886
2887 /*
2888 * Determine whether we should enforce idle window for this queue.
2889 */
2890
2891 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2892 {
2893 enum wl_class_t wl_class = cfqq_class(cfqq);
2894 struct cfq_rb_root *st = cfqq->service_tree;
2895
2896 BUG_ON(!st);
2897 BUG_ON(!st->count);
2898
2899 if (!cfqd->cfq_slice_idle)
2900 return false;
2901
2902 /* We never do for idle class queues. */
2903 if (wl_class == IDLE_WORKLOAD)
2904 return false;
2905
2906 /* We do for queues that were marked with idle window flag. */
2907 if (cfq_cfqq_idle_window(cfqq) &&
2908 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2909 return true;
2910
2911 /*
2912 * Otherwise, we do only if they are the last ones
2913 * in their service tree.
2914 */
2915 if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2916 !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2917 return true;
2918 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2919 return false;
2920 }
2921
2922 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2923 {
2924 struct cfq_queue *cfqq = cfqd->active_queue;
2925 struct cfq_rb_root *st = cfqq->service_tree;
2926 struct cfq_io_cq *cic;
2927 u64 sl, group_idle = 0;
2928 u64 now = ktime_get_ns();
2929
2930 /*
2931 * SSD device without seek penalty, disable idling. But only do so
2932 * for devices that support queuing, otherwise we still have a problem
2933 * with sync vs async workloads.
2934 */
2935 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2936 return;
2937
2938 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2939 WARN_ON(cfq_cfqq_slice_new(cfqq));
2940
2941 /*
2942 * idle is disabled, either manually or by past process history
2943 */
2944 if (!cfq_should_idle(cfqd, cfqq)) {
2945 /* no queue idling. Check for group idling */
2946 if (cfqd->cfq_group_idle)
2947 group_idle = cfqd->cfq_group_idle;
2948 else
2949 return;
2950 }
2951
2952 /*
2953 * still active requests from this queue, don't idle
2954 */
2955 if (cfqq->dispatched)
2956 return;
2957
2958 /*
2959 * task has exited, don't wait
2960 */
2961 cic = cfqd->active_cic;
2962 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2963 return;
2964
2965 /*
2966 * If our average think time is larger than the remaining time
2967 * slice, then don't idle. This avoids overrunning the allotted
2968 * time slice.
2969 */
2970 if (sample_valid(cic->ttime.ttime_samples) &&
2971 (cfqq->slice_end - now < cic->ttime.ttime_mean)) {
2972 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%llu",
2973 cic->ttime.ttime_mean);
2974 return;
2975 }
2976
2977 /*
2978 * There are other queues in the group or this is the only group and
2979 * it has too big thinktime, don't do group idle.
2980 */
2981 if (group_idle &&
2982 (cfqq->cfqg->nr_cfqq > 1 ||
2983 cfq_io_thinktime_big(cfqd, &st->ttime, true)))
2984 return;
2985
2986 cfq_mark_cfqq_wait_request(cfqq);
2987
2988 if (group_idle)
2989 sl = cfqd->cfq_group_idle;
2990 else
2991 sl = cfqd->cfq_slice_idle;
2992
2993 hrtimer_start(&cfqd->idle_slice_timer, ns_to_ktime(sl),
2994 HRTIMER_MODE_REL);
2995 cfqg_stats_set_start_idle_time(cfqq->cfqg);
2996 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %llu group_idle: %d", sl,
2997 group_idle ? 1 : 0);
2998 }
2999
3000 /*
3001 * Move request from internal lists to the request queue dispatch list.
3002 */
3003 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
3004 {
3005 struct cfq_data *cfqd = q->elevator->elevator_data;
3006 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3007
3008 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
3009
3010 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
3011 cfq_remove_request(rq);
3012 cfqq->dispatched++;
3013 (RQ_CFQG(rq))->dispatched++;
3014 elv_dispatch_sort(q, rq);
3015
3016 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
3017 cfqq->nr_sectors += blk_rq_sectors(rq);
3018 }
3019
3020 /*
3021 * return expired entry, or NULL to just start from scratch in rbtree
3022 */
3023 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
3024 {
3025 struct request *rq = NULL;
3026
3027 if (cfq_cfqq_fifo_expire(cfqq))
3028 return NULL;
3029
3030 cfq_mark_cfqq_fifo_expire(cfqq);
3031
3032 if (list_empty(&cfqq->fifo))
3033 return NULL;
3034
3035 rq = rq_entry_fifo(cfqq->fifo.next);
3036 if (ktime_get_ns() < rq->fifo_time)
3037 rq = NULL;
3038
3039 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
3040 return rq;
3041 }
3042
3043 static inline int
3044 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3045 {
3046 const int base_rq = cfqd->cfq_slice_async_rq;
3047
3048 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
3049
3050 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
3051 }
3052
3053 /*
3054 * Must be called with the queue_lock held.
3055 */
3056 static int cfqq_process_refs(struct cfq_queue *cfqq)
3057 {
3058 int process_refs, io_refs;
3059
3060 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
3061 process_refs = cfqq->ref - io_refs;
3062 BUG_ON(process_refs < 0);
3063 return process_refs;
3064 }
3065
3066 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
3067 {
3068 int process_refs, new_process_refs;
3069 struct cfq_queue *__cfqq;
3070
3071 /*
3072 * If there are no process references on the new_cfqq, then it is
3073 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
3074 * chain may have dropped their last reference (not just their
3075 * last process reference).
3076 */
3077 if (!cfqq_process_refs(new_cfqq))
3078 return;
3079
3080 /* Avoid a circular list and skip interim queue merges */
3081 while ((__cfqq = new_cfqq->new_cfqq)) {
3082 if (__cfqq == cfqq)
3083 return;
3084 new_cfqq = __cfqq;
3085 }
3086
3087 process_refs = cfqq_process_refs(cfqq);
3088 new_process_refs = cfqq_process_refs(new_cfqq);
3089 /*
3090 * If the process for the cfqq has gone away, there is no
3091 * sense in merging the queues.
3092 */
3093 if (process_refs == 0 || new_process_refs == 0)
3094 return;
3095
3096 /*
3097 * Merge in the direction of the lesser amount of work.
3098 */
3099 if (new_process_refs >= process_refs) {
3100 cfqq->new_cfqq = new_cfqq;
3101 new_cfqq->ref += process_refs;
3102 } else {
3103 new_cfqq->new_cfqq = cfqq;
3104 cfqq->ref += new_process_refs;
3105 }
3106 }
3107
3108 static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
3109 struct cfq_group *cfqg, enum wl_class_t wl_class)
3110 {
3111 struct cfq_queue *queue;
3112 int i;
3113 bool key_valid = false;
3114 u64 lowest_key = 0;
3115 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
3116
3117 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
3118 /* select the one with lowest rb_key */
3119 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
3120 if (queue &&
3121 (!key_valid || queue->rb_key < lowest_key)) {
3122 lowest_key = queue->rb_key;
3123 cur_best = i;
3124 key_valid = true;
3125 }
3126 }
3127
3128 return cur_best;
3129 }
3130
3131 static void
3132 choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
3133 {
3134 u64 slice;
3135 unsigned count;
3136 struct cfq_rb_root *st;
3137 u64 group_slice;
3138 enum wl_class_t original_class = cfqd->serving_wl_class;
3139 u64 now = ktime_get_ns();
3140
3141 /* Choose next priority. RT > BE > IDLE */
3142 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
3143 cfqd->serving_wl_class = RT_WORKLOAD;
3144 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
3145 cfqd->serving_wl_class = BE_WORKLOAD;
3146 else {
3147 cfqd->serving_wl_class = IDLE_WORKLOAD;
3148 cfqd->workload_expires = now + jiffies_to_nsecs(1);
3149 return;
3150 }
3151
3152 if (original_class != cfqd->serving_wl_class)
3153 goto new_workload;
3154
3155 /*
3156 * For RT and BE, we have to choose also the type
3157 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3158 * expiration time
3159 */
3160 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3161 count = st->count;
3162
3163 /*
3164 * check workload expiration, and that we still have other queues ready
3165 */
3166 if (count && !(now > cfqd->workload_expires))
3167 return;
3168
3169 new_workload:
3170 /* otherwise select new workload type */
3171 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
3172 cfqd->serving_wl_class);
3173 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3174 count = st->count;
3175
3176 /*
3177 * the workload slice is computed as a fraction of target latency
3178 * proportional to the number of queues in that workload, over
3179 * all the queues in the same priority class
3180 */
3181 group_slice = cfq_group_slice(cfqd, cfqg);
3182
3183 slice = div_u64(group_slice * count,
3184 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
3185 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
3186 cfqg)));
3187
3188 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
3189 u64 tmp;
3190
3191 /*
3192 * Async queues are currently system wide. Just taking
3193 * proportion of queues with-in same group will lead to higher
3194 * async ratio system wide as generally root group is going
3195 * to have higher weight. A more accurate thing would be to
3196 * calculate system wide asnc/sync ratio.
3197 */
3198 tmp = cfqd->cfq_target_latency *
3199 cfqg_busy_async_queues(cfqd, cfqg);
3200 tmp = div_u64(tmp, cfqd->busy_queues);
3201 slice = min_t(u64, slice, tmp);
3202
3203 /* async workload slice is scaled down according to
3204 * the sync/async slice ratio. */
3205 slice = div64_u64(slice*cfqd->cfq_slice[0], cfqd->cfq_slice[1]);
3206 } else
3207 /* sync workload slice is at least 2 * cfq_slice_idle */
3208 slice = max(slice, 2 * cfqd->cfq_slice_idle);
3209
3210 slice = max_t(u64, slice, CFQ_MIN_TT);
3211 cfq_log(cfqd, "workload slice:%llu", slice);
3212 cfqd->workload_expires = now + slice;
3213 }
3214
3215 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3216 {
3217 struct cfq_rb_root *st = &cfqd->grp_service_tree;
3218 struct cfq_group *cfqg;
3219
3220 if (RB_EMPTY_ROOT(&st->rb))
3221 return NULL;
3222 cfqg = cfq_rb_first_group(st);
3223 update_min_vdisktime(st);
3224 return cfqg;
3225 }
3226
3227 static void cfq_choose_cfqg(struct cfq_data *cfqd)
3228 {
3229 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3230 u64 now = ktime_get_ns();
3231
3232 cfqd->serving_group = cfqg;
3233
3234 /* Restore the workload type data */
3235 if (cfqg->saved_wl_slice) {
3236 cfqd->workload_expires = now + cfqg->saved_wl_slice;
3237 cfqd->serving_wl_type = cfqg->saved_wl_type;
3238 cfqd->serving_wl_class = cfqg->saved_wl_class;
3239 } else
3240 cfqd->workload_expires = now - 1;
3241
3242 choose_wl_class_and_type(cfqd, cfqg);
3243 }
3244
3245 /*
3246 * Select a queue for service. If we have a current active queue,
3247 * check whether to continue servicing it, or retrieve and set a new one.
3248 */
3249 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3250 {
3251 struct cfq_queue *cfqq, *new_cfqq = NULL;
3252 u64 now = ktime_get_ns();
3253
3254 cfqq = cfqd->active_queue;
3255 if (!cfqq)
3256 goto new_queue;
3257
3258 if (!cfqd->rq_queued)
3259 return NULL;
3260
3261 /*
3262 * We were waiting for group to get backlogged. Expire the queue
3263 */
3264 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3265 goto expire;
3266
3267 /*
3268 * The active queue has run out of time, expire it and select new.
3269 */
3270 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3271 /*
3272 * If slice had not expired at the completion of last request
3273 * we might not have turned on wait_busy flag. Don't expire
3274 * the queue yet. Allow the group to get backlogged.
3275 *
3276 * The very fact that we have used the slice, that means we
3277 * have been idling all along on this queue and it should be
3278 * ok to wait for this request to complete.
3279 */
3280 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3281 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3282 cfqq = NULL;
3283 goto keep_queue;
3284 } else
3285 goto check_group_idle;
3286 }
3287
3288 /*
3289 * The active queue has requests and isn't expired, allow it to
3290 * dispatch.
3291 */
3292 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3293 goto keep_queue;
3294
3295 /*
3296 * If another queue has a request waiting within our mean seek
3297 * distance, let it run. The expire code will check for close
3298 * cooperators and put the close queue at the front of the service
3299 * tree. If possible, merge the expiring queue with the new cfqq.
3300 */
3301 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3302 if (new_cfqq) {
3303 if (!cfqq->new_cfqq)
3304 cfq_setup_merge(cfqq, new_cfqq);
3305 goto expire;
3306 }
3307
3308 /*
3309 * No requests pending. If the active queue still has requests in
3310 * flight or is idling for a new request, allow either of these
3311 * conditions to happen (or time out) before selecting a new queue.
3312 */
3313 if (hrtimer_active(&cfqd->idle_slice_timer)) {
3314 cfqq = NULL;
3315 goto keep_queue;
3316 }
3317
3318 /*
3319 * This is a deep seek queue, but the device is much faster than
3320 * the queue can deliver, don't idle
3321 **/
3322 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3323 (cfq_cfqq_slice_new(cfqq) ||
3324 (cfqq->slice_end - now > now - cfqq->slice_start))) {
3325 cfq_clear_cfqq_deep(cfqq);
3326 cfq_clear_cfqq_idle_window(cfqq);
3327 }
3328
3329 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3330 cfqq = NULL;
3331 goto keep_queue;
3332 }
3333
3334 /*
3335 * If group idle is enabled and there are requests dispatched from
3336 * this group, wait for requests to complete.
3337 */
3338 check_group_idle:
3339 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3340 cfqq->cfqg->dispatched &&
3341 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3342 cfqq = NULL;
3343 goto keep_queue;
3344 }
3345
3346 expire:
3347 cfq_slice_expired(cfqd, 0);
3348 new_queue:
3349 /*
3350 * Current queue expired. Check if we have to switch to a new
3351 * service tree
3352 */
3353 if (!new_cfqq)
3354 cfq_choose_cfqg(cfqd);
3355
3356 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3357 keep_queue:
3358 return cfqq;
3359 }
3360
3361 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3362 {
3363 int dispatched = 0;
3364
3365 while (cfqq->next_rq) {
3366 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3367 dispatched++;
3368 }
3369
3370 BUG_ON(!list_empty(&cfqq->fifo));
3371
3372 /* By default cfqq is not expired if it is empty. Do it explicitly */
3373 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3374 return dispatched;
3375 }
3376
3377 /*
3378 * Drain our current requests. Used for barriers and when switching
3379 * io schedulers on-the-fly.
3380 */
3381 static int cfq_forced_dispatch(struct cfq_data *cfqd)
3382 {
3383 struct cfq_queue *cfqq;
3384 int dispatched = 0;
3385
3386 /* Expire the timeslice of the current active queue first */
3387 cfq_slice_expired(cfqd, 0);
3388 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3389 __cfq_set_active_queue(cfqd, cfqq);
3390 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3391 }
3392
3393 BUG_ON(cfqd->busy_queues);
3394
3395 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3396 return dispatched;
3397 }
3398
3399 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3400 struct cfq_queue *cfqq)
3401 {
3402 u64 now = ktime_get_ns();
3403
3404 /* the queue hasn't finished any request, can't estimate */
3405 if (cfq_cfqq_slice_new(cfqq))
3406 return true;
3407 if (now + cfqd->cfq_slice_idle * cfqq->dispatched > cfqq->slice_end)
3408 return true;
3409
3410 return false;
3411 }
3412
3413 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3414 {
3415 unsigned int max_dispatch;
3416
3417 /*
3418 * Drain async requests before we start sync IO
3419 */
3420 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3421 return false;
3422
3423 /*
3424 * If this is an async queue and we have sync IO in flight, let it wait
3425 */
3426 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3427 return false;
3428
3429 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3430 if (cfq_class_idle(cfqq))
3431 max_dispatch = 1;
3432
3433 /*
3434 * Does this cfqq already have too much IO in flight?
3435 */
3436 if (cfqq->dispatched >= max_dispatch) {
3437 bool promote_sync = false;
3438 /*
3439 * idle queue must always only have a single IO in flight
3440 */
3441 if (cfq_class_idle(cfqq))
3442 return false;
3443
3444 /*
3445 * If there is only one sync queue
3446 * we can ignore async queue here and give the sync
3447 * queue no dispatch limit. The reason is a sync queue can
3448 * preempt async queue, limiting the sync queue doesn't make
3449 * sense. This is useful for aiostress test.
3450 */
3451 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3452 promote_sync = true;
3453
3454 /*
3455 * We have other queues, don't allow more IO from this one
3456 */
3457 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3458 !promote_sync)
3459 return false;
3460
3461 /*
3462 * Sole queue user, no limit
3463 */
3464 if (cfqd->busy_queues == 1 || promote_sync)
3465 max_dispatch = -1;
3466 else
3467 /*
3468 * Normally we start throttling cfqq when cfq_quantum/2
3469 * requests have been dispatched. But we can drive
3470 * deeper queue depths at the beginning of slice
3471 * subjected to upper limit of cfq_quantum.
3472 * */
3473 max_dispatch = cfqd->cfq_quantum;
3474 }
3475
3476 /*
3477 * Async queues must wait a bit before being allowed dispatch.
3478 * We also ramp up the dispatch depth gradually for async IO,
3479 * based on the last sync IO we serviced
3480 */
3481 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3482 u64 last_sync = ktime_get_ns() - cfqd->last_delayed_sync;
3483 unsigned int depth;
3484
3485 depth = div64_u64(last_sync, cfqd->cfq_slice[1]);
3486 if (!depth && !cfqq->dispatched)
3487 depth = 1;
3488 if (depth < max_dispatch)
3489 max_dispatch = depth;
3490 }
3491
3492 /*
3493 * If we're below the current max, allow a dispatch
3494 */
3495 return cfqq->dispatched < max_dispatch;
3496 }
3497
3498 /*
3499 * Dispatch a request from cfqq, moving them to the request queue
3500 * dispatch list.
3501 */
3502 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3503 {
3504 struct request *rq;
3505
3506 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3507
3508 if (!cfq_may_dispatch(cfqd, cfqq))
3509 return false;
3510
3511 /*
3512 * follow expired path, else get first next available
3513 */
3514 rq = cfq_check_fifo(cfqq);
3515 if (!rq)
3516 rq = cfqq->next_rq;
3517
3518 /*
3519 * insert request into driver dispatch list
3520 */
3521 cfq_dispatch_insert(cfqd->queue, rq);
3522
3523 if (!cfqd->active_cic) {
3524 struct cfq_io_cq *cic = RQ_CIC(rq);
3525
3526 atomic_long_inc(&cic->icq.ioc->refcount);
3527 cfqd->active_cic = cic;
3528 }
3529
3530 return true;
3531 }
3532
3533 /*
3534 * Find the cfqq that we need to service and move a request from that to the
3535 * dispatch list
3536 */
3537 static int cfq_dispatch_requests(struct request_queue *q, int force)
3538 {
3539 struct cfq_data *cfqd = q->elevator->elevator_data;
3540 struct cfq_queue *cfqq;
3541
3542 if (!cfqd->busy_queues)
3543 return 0;
3544
3545 if (unlikely(force))
3546 return cfq_forced_dispatch(cfqd);
3547
3548 cfqq = cfq_select_queue(cfqd);
3549 if (!cfqq)
3550 return 0;
3551
3552 /*
3553 * Dispatch a request from this cfqq, if it is allowed
3554 */
3555 if (!cfq_dispatch_request(cfqd, cfqq))
3556 return 0;
3557
3558 cfqq->slice_dispatch++;
3559 cfq_clear_cfqq_must_dispatch(cfqq);
3560
3561 /*
3562 * expire an async queue immediately if it has used up its slice. idle
3563 * queue always expire after 1 dispatch round.
3564 */
3565 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3566 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3567 cfq_class_idle(cfqq))) {
3568 cfqq->slice_end = ktime_get_ns() + 1;
3569 cfq_slice_expired(cfqd, 0);
3570 }
3571
3572 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3573 return 1;
3574 }
3575
3576 /*
3577 * task holds one reference to the queue, dropped when task exits. each rq
3578 * in-flight on this queue also holds a reference, dropped when rq is freed.
3579 *
3580 * Each cfq queue took a reference on the parent group. Drop it now.
3581 * queue lock must be held here.
3582 */
3583 static void cfq_put_queue(struct cfq_queue *cfqq)
3584 {
3585 struct cfq_data *cfqd = cfqq->cfqd;
3586 struct cfq_group *cfqg;
3587
3588 BUG_ON(cfqq->ref <= 0);
3589
3590 cfqq->ref--;
3591 if (cfqq->ref)
3592 return;
3593
3594 cfq_log_cfqq(cfqd, cfqq, "put_queue");
3595 BUG_ON(rb_first(&cfqq->sort_list));
3596 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3597 cfqg = cfqq->cfqg;
3598
3599 if (unlikely(cfqd->active_queue == cfqq)) {
3600 __cfq_slice_expired(cfqd, cfqq, 0);
3601 cfq_schedule_dispatch(cfqd);
3602 }
3603
3604 BUG_ON(cfq_cfqq_on_rr(cfqq));
3605 kmem_cache_free(cfq_pool, cfqq);
3606 cfqg_put(cfqg);
3607 }
3608
3609 static void cfq_put_cooperator(struct cfq_queue *cfqq)
3610 {
3611 struct cfq_queue *__cfqq, *next;
3612
3613 /*
3614 * If this queue was scheduled to merge with another queue, be
3615 * sure to drop the reference taken on that queue (and others in
3616 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3617 */
3618 __cfqq = cfqq->new_cfqq;
3619 while (__cfqq) {
3620 if (__cfqq == cfqq) {
3621 WARN(1, "cfqq->new_cfqq loop detected\n");
3622 break;
3623 }
3624 next = __cfqq->new_cfqq;
3625 cfq_put_queue(__cfqq);
3626 __cfqq = next;
3627 }
3628 }
3629
3630 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3631 {
3632 if (unlikely(cfqq == cfqd->active_queue)) {
3633 __cfq_slice_expired(cfqd, cfqq, 0);
3634 cfq_schedule_dispatch(cfqd);
3635 }
3636
3637 cfq_put_cooperator(cfqq);
3638
3639 cfq_put_queue(cfqq);
3640 }
3641
3642 static void cfq_init_icq(struct io_cq *icq)
3643 {
3644 struct cfq_io_cq *cic = icq_to_cic(icq);
3645
3646 cic->ttime.last_end_request = ktime_get_ns();
3647 }
3648
3649 static void cfq_exit_icq(struct io_cq *icq)
3650 {
3651 struct cfq_io_cq *cic = icq_to_cic(icq);
3652 struct cfq_data *cfqd = cic_to_cfqd(cic);
3653
3654 if (cic_to_cfqq(cic, false)) {
3655 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false));
3656 cic_set_cfqq(cic, NULL, false);
3657 }
3658
3659 if (cic_to_cfqq(cic, true)) {
3660 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true));
3661 cic_set_cfqq(cic, NULL, true);
3662 }
3663 }
3664
3665 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3666 {
3667 struct task_struct *tsk = current;
3668 int ioprio_class;
3669
3670 if (!cfq_cfqq_prio_changed(cfqq))
3671 return;
3672
3673 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3674 switch (ioprio_class) {
3675 default:
3676 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3677 case IOPRIO_CLASS_NONE:
3678 /*
3679 * no prio set, inherit CPU scheduling settings
3680 */
3681 cfqq->ioprio = task_nice_ioprio(tsk);
3682 cfqq->ioprio_class = task_nice_ioclass(tsk);
3683 break;
3684 case IOPRIO_CLASS_RT:
3685 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3686 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3687 break;
3688 case IOPRIO_CLASS_BE:
3689 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3690 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3691 break;
3692 case IOPRIO_CLASS_IDLE:
3693 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3694 cfqq->ioprio = 7;
3695 cfq_clear_cfqq_idle_window(cfqq);
3696 break;
3697 }
3698
3699 /*
3700 * keep track of original prio settings in case we have to temporarily
3701 * elevate the priority of this queue
3702 */
3703 cfqq->org_ioprio = cfqq->ioprio;
3704 cfqq->org_ioprio_class = cfqq->ioprio_class;
3705 cfq_clear_cfqq_prio_changed(cfqq);
3706 }
3707
3708 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3709 {
3710 int ioprio = cic->icq.ioc->ioprio;
3711 struct cfq_data *cfqd = cic_to_cfqd(cic);
3712 struct cfq_queue *cfqq;
3713
3714 /*
3715 * Check whether ioprio has changed. The condition may trigger
3716 * spuriously on a newly created cic but there's no harm.
3717 */
3718 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3719 return;
3720
3721 cfqq = cic_to_cfqq(cic, false);
3722 if (cfqq) {
3723 cfq_put_queue(cfqq);
3724 cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio);
3725 cic_set_cfqq(cic, cfqq, false);
3726 }
3727
3728 cfqq = cic_to_cfqq(cic, true);
3729 if (cfqq)
3730 cfq_mark_cfqq_prio_changed(cfqq);
3731
3732 cic->ioprio = ioprio;
3733 }
3734
3735 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3736 pid_t pid, bool is_sync)
3737 {
3738 RB_CLEAR_NODE(&cfqq->rb_node);
3739 RB_CLEAR_NODE(&cfqq->p_node);
3740 INIT_LIST_HEAD(&cfqq->fifo);
3741
3742 cfqq->ref = 0;
3743 cfqq->cfqd = cfqd;
3744
3745 cfq_mark_cfqq_prio_changed(cfqq);
3746
3747 if (is_sync) {
3748 if (!cfq_class_idle(cfqq))
3749 cfq_mark_cfqq_idle_window(cfqq);
3750 cfq_mark_cfqq_sync(cfqq);
3751 }
3752 cfqq->pid = pid;
3753 }
3754
3755 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3756 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3757 {
3758 struct cfq_data *cfqd = cic_to_cfqd(cic);
3759 struct cfq_queue *cfqq;
3760 uint64_t serial_nr;
3761
3762 rcu_read_lock();
3763 serial_nr = bio_blkcg(bio)->css.serial_nr;
3764 rcu_read_unlock();
3765
3766 /*
3767 * Check whether blkcg has changed. The condition may trigger
3768 * spuriously on a newly created cic but there's no harm.
3769 */
3770 if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr))
3771 return;
3772
3773 /*
3774 * Drop reference to queues. New queues will be assigned in new
3775 * group upon arrival of fresh requests.
3776 */
3777 cfqq = cic_to_cfqq(cic, false);
3778 if (cfqq) {
3779 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3780 cic_set_cfqq(cic, NULL, false);
3781 cfq_put_queue(cfqq);
3782 }
3783
3784 cfqq = cic_to_cfqq(cic, true);
3785 if (cfqq) {
3786 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3787 cic_set_cfqq(cic, NULL, true);
3788 cfq_put_queue(cfqq);
3789 }
3790
3791 cic->blkcg_serial_nr = serial_nr;
3792 }
3793 #else
3794 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3795 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3796
3797 static struct cfq_queue **
3798 cfq_async_queue_prio(struct cfq_group *cfqg, int ioprio_class, int ioprio)
3799 {
3800 switch (ioprio_class) {
3801 case IOPRIO_CLASS_RT:
3802 return &cfqg->async_cfqq[0][ioprio];
3803 case IOPRIO_CLASS_NONE:
3804 ioprio = IOPRIO_NORM;
3805 /* fall through */
3806 case IOPRIO_CLASS_BE:
3807 return &cfqg->async_cfqq[1][ioprio];
3808 case IOPRIO_CLASS_IDLE:
3809 return &cfqg->async_idle_cfqq;
3810 default:
3811 BUG();
3812 }
3813 }
3814
3815 static struct cfq_queue *
3816 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3817 struct bio *bio)
3818 {
3819 int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3820 int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3821 struct cfq_queue **async_cfqq = NULL;
3822 struct cfq_queue *cfqq;
3823 struct cfq_group *cfqg;
3824
3825 rcu_read_lock();
3826 cfqg = cfq_lookup_cfqg(cfqd, bio_blkcg(bio));
3827 if (!cfqg) {
3828 cfqq = &cfqd->oom_cfqq;
3829 goto out;
3830 }
3831
3832 if (!is_sync) {
3833 if (!ioprio_valid(cic->ioprio)) {
3834 struct task_struct *tsk = current;
3835 ioprio = task_nice_ioprio(tsk);
3836 ioprio_class = task_nice_ioclass(tsk);
3837 }
3838 async_cfqq = cfq_async_queue_prio(cfqg, ioprio_class, ioprio);
3839 cfqq = *async_cfqq;
3840 if (cfqq)
3841 goto out;
3842 }
3843
3844 cfqq = kmem_cache_alloc_node(cfq_pool, GFP_NOWAIT | __GFP_ZERO,
3845 cfqd->queue->node);
3846 if (!cfqq) {
3847 cfqq = &cfqd->oom_cfqq;
3848 goto out;
3849 }
3850
3851 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3852 cfq_init_prio_data(cfqq, cic);
3853 cfq_link_cfqq_cfqg(cfqq, cfqg);
3854 cfq_log_cfqq(cfqd, cfqq, "alloced");
3855
3856 if (async_cfqq) {
3857 /* a new async queue is created, pin and remember */
3858 cfqq->ref++;
3859 *async_cfqq = cfqq;
3860 }
3861 out:
3862 cfqq->ref++;
3863 rcu_read_unlock();
3864 return cfqq;
3865 }
3866
3867 static void
3868 __cfq_update_io_thinktime(struct cfq_ttime *ttime, u64 slice_idle)
3869 {
3870 u64 elapsed = ktime_get_ns() - ttime->last_end_request;
3871 elapsed = min(elapsed, 2UL * slice_idle);
3872
3873 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3874 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
3875 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
3876 ttime->ttime_samples);
3877 }
3878
3879 static void
3880 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3881 struct cfq_io_cq *cic)
3882 {
3883 if (cfq_cfqq_sync(cfqq)) {
3884 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3885 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3886 cfqd->cfq_slice_idle);
3887 }
3888 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3889 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3890 #endif
3891 }
3892
3893 static void
3894 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3895 struct request *rq)
3896 {
3897 sector_t sdist = 0;
3898 sector_t n_sec = blk_rq_sectors(rq);
3899 if (cfqq->last_request_pos) {
3900 if (cfqq->last_request_pos < blk_rq_pos(rq))
3901 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3902 else
3903 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3904 }
3905
3906 cfqq->seek_history <<= 1;
3907 if (blk_queue_nonrot(cfqd->queue))
3908 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3909 else
3910 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3911 }
3912
3913 /*
3914 * Disable idle window if the process thinks too long or seeks so much that
3915 * it doesn't matter
3916 */
3917 static void
3918 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3919 struct cfq_io_cq *cic)
3920 {
3921 int old_idle, enable_idle;
3922
3923 /*
3924 * Don't idle for async or idle io prio class
3925 */
3926 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3927 return;
3928
3929 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3930
3931 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3932 cfq_mark_cfqq_deep(cfqq);
3933
3934 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3935 enable_idle = 0;
3936 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3937 !cfqd->cfq_slice_idle ||
3938 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3939 enable_idle = 0;
3940 else if (sample_valid(cic->ttime.ttime_samples)) {
3941 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3942 enable_idle = 0;
3943 else
3944 enable_idle = 1;
3945 }
3946
3947 if (old_idle != enable_idle) {
3948 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3949 if (enable_idle)
3950 cfq_mark_cfqq_idle_window(cfqq);
3951 else
3952 cfq_clear_cfqq_idle_window(cfqq);
3953 }
3954 }
3955
3956 /*
3957 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3958 * no or if we aren't sure, a 1 will cause a preempt.
3959 */
3960 static bool
3961 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3962 struct request *rq)
3963 {
3964 struct cfq_queue *cfqq;
3965
3966 cfqq = cfqd->active_queue;
3967 if (!cfqq)
3968 return false;
3969
3970 if (cfq_class_idle(new_cfqq))
3971 return false;
3972
3973 if (cfq_class_idle(cfqq))
3974 return true;
3975
3976 /*
3977 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3978 */
3979 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3980 return false;
3981
3982 /*
3983 * if the new request is sync, but the currently running queue is
3984 * not, let the sync request have priority.
3985 */
3986 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3987 return true;
3988
3989 /*
3990 * Treat ancestors of current cgroup the same way as current cgroup.
3991 * For anybody else we disallow preemption to guarantee service
3992 * fairness among cgroups.
3993 */
3994 if (!cfqg_is_descendant(cfqq->cfqg, new_cfqq->cfqg))
3995 return false;
3996
3997 if (cfq_slice_used(cfqq))
3998 return true;
3999
4000 /*
4001 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
4002 */
4003 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
4004 return true;
4005
4006 WARN_ON_ONCE(cfqq->ioprio_class != new_cfqq->ioprio_class);
4007 /* Allow preemption only if we are idling on sync-noidle tree */
4008 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
4009 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
4010 RB_EMPTY_ROOT(&cfqq->sort_list))
4011 return true;
4012
4013 /*
4014 * So both queues are sync. Let the new request get disk time if
4015 * it's a metadata request and the current queue is doing regular IO.
4016 */
4017 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
4018 return true;
4019
4020 /* An idle queue should not be idle now for some reason */
4021 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
4022 return true;
4023
4024 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
4025 return false;
4026
4027 /*
4028 * if this request is as-good as one we would expect from the
4029 * current cfqq, let it preempt
4030 */
4031 if (cfq_rq_close(cfqd, cfqq, rq))
4032 return true;
4033
4034 return false;
4035 }
4036
4037 /*
4038 * cfqq preempts the active queue. if we allowed preempt with no slice left,
4039 * let it have half of its nominal slice.
4040 */
4041 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4042 {
4043 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
4044
4045 cfq_log_cfqq(cfqd, cfqq, "preempt");
4046 cfq_slice_expired(cfqd, 1);
4047
4048 /*
4049 * workload type is changed, don't save slice, otherwise preempt
4050 * doesn't happen
4051 */
4052 if (old_type != cfqq_type(cfqq))
4053 cfqq->cfqg->saved_wl_slice = 0;
4054
4055 /*
4056 * Put the new queue at the front of the of the current list,
4057 * so we know that it will be selected next.
4058 */
4059 BUG_ON(!cfq_cfqq_on_rr(cfqq));
4060
4061 cfq_service_tree_add(cfqd, cfqq, 1);
4062
4063 cfqq->slice_end = 0;
4064 cfq_mark_cfqq_slice_new(cfqq);
4065 }
4066
4067 /*
4068 * Called when a new fs request (rq) is added (to cfqq). Check if there's
4069 * something we should do about it
4070 */
4071 static void
4072 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
4073 struct request *rq)
4074 {
4075 struct cfq_io_cq *cic = RQ_CIC(rq);
4076
4077 cfqd->rq_queued++;
4078 if (rq->cmd_flags & REQ_PRIO)
4079 cfqq->prio_pending++;
4080
4081 cfq_update_io_thinktime(cfqd, cfqq, cic);
4082 cfq_update_io_seektime(cfqd, cfqq, rq);
4083 cfq_update_idle_window(cfqd, cfqq, cic);
4084
4085 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4086
4087 if (cfqq == cfqd->active_queue) {
4088 /*
4089 * Remember that we saw a request from this process, but
4090 * don't start queuing just yet. Otherwise we risk seeing lots
4091 * of tiny requests, because we disrupt the normal plugging
4092 * and merging. If the request is already larger than a single
4093 * page, let it rip immediately. For that case we assume that
4094 * merging is already done. Ditto for a busy system that
4095 * has other work pending, don't risk delaying until the
4096 * idle timer unplug to continue working.
4097 */
4098 if (cfq_cfqq_wait_request(cfqq)) {
4099 if (blk_rq_bytes(rq) > PAGE_SIZE ||
4100 cfqd->busy_queues > 1) {
4101 cfq_del_timer(cfqd, cfqq);
4102 cfq_clear_cfqq_wait_request(cfqq);
4103 __blk_run_queue(cfqd->queue);
4104 } else {
4105 cfqg_stats_update_idle_time(cfqq->cfqg);
4106 cfq_mark_cfqq_must_dispatch(cfqq);
4107 }
4108 }
4109 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
4110 /*
4111 * not the active queue - expire current slice if it is
4112 * idle and has expired it's mean thinktime or this new queue
4113 * has some old slice time left and is of higher priority or
4114 * this new queue is RT and the current one is BE
4115 */
4116 cfq_preempt_queue(cfqd, cfqq);
4117 __blk_run_queue(cfqd->queue);
4118 }
4119 }
4120
4121 static void cfq_insert_request(struct request_queue *q, struct request *rq)
4122 {
4123 struct cfq_data *cfqd = q->elevator->elevator_data;
4124 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4125
4126 cfq_log_cfqq(cfqd, cfqq, "insert_request");
4127 cfq_init_prio_data(cfqq, RQ_CIC(rq));
4128
4129 rq->fifo_time = ktime_get_ns() + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
4130 list_add_tail(&rq->queuelist, &cfqq->fifo);
4131 cfq_add_rq_rb(rq);
4132 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group, req_op(rq),
4133 rq->cmd_flags);
4134 cfq_rq_enqueued(cfqd, cfqq, rq);
4135 }
4136
4137 /*
4138 * Update hw_tag based on peak queue depth over 50 samples under
4139 * sufficient load.
4140 */
4141 static void cfq_update_hw_tag(struct cfq_data *cfqd)
4142 {
4143 struct cfq_queue *cfqq = cfqd->active_queue;
4144
4145 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
4146 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
4147
4148 if (cfqd->hw_tag == 1)
4149 return;
4150
4151 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
4152 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
4153 return;
4154
4155 /*
4156 * If active queue hasn't enough requests and can idle, cfq might not
4157 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4158 * case
4159 */
4160 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
4161 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
4162 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
4163 return;
4164
4165 if (cfqd->hw_tag_samples++ < 50)
4166 return;
4167
4168 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
4169 cfqd->hw_tag = 1;
4170 else
4171 cfqd->hw_tag = 0;
4172 }
4173
4174 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4175 {
4176 struct cfq_io_cq *cic = cfqd->active_cic;
4177 u64 now = ktime_get_ns();
4178
4179 /* If the queue already has requests, don't wait */
4180 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4181 return false;
4182
4183 /* If there are other queues in the group, don't wait */
4184 if (cfqq->cfqg->nr_cfqq > 1)
4185 return false;
4186
4187 /* the only queue in the group, but think time is big */
4188 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
4189 return false;
4190
4191 if (cfq_slice_used(cfqq))
4192 return true;
4193
4194 /* if slice left is less than think time, wait busy */
4195 if (cic && sample_valid(cic->ttime.ttime_samples)
4196 && (cfqq->slice_end - now < cic->ttime.ttime_mean))
4197 return true;
4198
4199 /*
4200 * If think times is less than a jiffy than ttime_mean=0 and above
4201 * will not be true. It might happen that slice has not expired yet
4202 * but will expire soon (4-5 ns) during select_queue(). To cover the
4203 * case where think time is less than a jiffy, mark the queue wait
4204 * busy if only 1 jiffy is left in the slice.
4205 */
4206 if (cfqq->slice_end - now <= jiffies_to_nsecs(1))
4207 return true;
4208
4209 return false;
4210 }
4211
4212 static void cfq_completed_request(struct request_queue *q, struct request *rq)
4213 {
4214 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4215 struct cfq_data *cfqd = cfqq->cfqd;
4216 const int sync = rq_is_sync(rq);
4217 u64 now = ktime_get_ns();
4218
4219 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
4220 !!(rq->cmd_flags & REQ_NOIDLE));
4221
4222 cfq_update_hw_tag(cfqd);
4223
4224 WARN_ON(!cfqd->rq_in_driver);
4225 WARN_ON(!cfqq->dispatched);
4226 cfqd->rq_in_driver--;
4227 cfqq->dispatched--;
4228 (RQ_CFQG(rq))->dispatched--;
4229 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4230 rq_io_start_time_ns(rq), req_op(rq),
4231 rq->cmd_flags);
4232
4233 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4234
4235 if (sync) {
4236 struct cfq_rb_root *st;
4237
4238 RQ_CIC(rq)->ttime.last_end_request = now;
4239
4240 if (cfq_cfqq_on_rr(cfqq))
4241 st = cfqq->service_tree;
4242 else
4243 st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4244 cfqq_type(cfqq));
4245
4246 st->ttime.last_end_request = now;
4247 /*
4248 * We have to do this check in jiffies since start_time is in
4249 * jiffies and it is not trivial to convert to ns. If
4250 * cfq_fifo_expire[1] ever comes close to 1 jiffie, this test
4251 * will become problematic but so far we are fine (the default
4252 * is 128 ms).
4253 */
4254 if (!time_after(rq->start_time +
4255 nsecs_to_jiffies(cfqd->cfq_fifo_expire[1]),
4256 jiffies))
4257 cfqd->last_delayed_sync = now;
4258 }
4259
4260 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4261 cfqq->cfqg->ttime.last_end_request = now;
4262 #endif
4263
4264 /*
4265 * If this is the active queue, check if it needs to be expired,
4266 * or if we want to idle in case it has no pending requests.
4267 */
4268 if (cfqd->active_queue == cfqq) {
4269 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4270
4271 if (cfq_cfqq_slice_new(cfqq)) {
4272 cfq_set_prio_slice(cfqd, cfqq);
4273 cfq_clear_cfqq_slice_new(cfqq);
4274 }
4275
4276 /*
4277 * Should we wait for next request to come in before we expire
4278 * the queue.
4279 */
4280 if (cfq_should_wait_busy(cfqd, cfqq)) {
4281 u64 extend_sl = cfqd->cfq_slice_idle;
4282 if (!cfqd->cfq_slice_idle)
4283 extend_sl = cfqd->cfq_group_idle;
4284 cfqq->slice_end = now + extend_sl;
4285 cfq_mark_cfqq_wait_busy(cfqq);
4286 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4287 }
4288
4289 /*
4290 * Idling is not enabled on:
4291 * - expired queues
4292 * - idle-priority queues
4293 * - async queues
4294 * - queues with still some requests queued
4295 * - when there is a close cooperator
4296 */
4297 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4298 cfq_slice_expired(cfqd, 1);
4299 else if (sync && cfqq_empty &&
4300 !cfq_close_cooperator(cfqd, cfqq)) {
4301 cfq_arm_slice_timer(cfqd);
4302 }
4303 }
4304
4305 if (!cfqd->rq_in_driver)
4306 cfq_schedule_dispatch(cfqd);
4307 }
4308
4309 static void cfqq_boost_on_prio(struct cfq_queue *cfqq, int op_flags)
4310 {
4311 /*
4312 * If REQ_PRIO is set, boost class and prio level, if it's below
4313 * BE/NORM. If prio is not set, restore the potentially boosted
4314 * class/prio level.
4315 */
4316 if (!(op_flags & REQ_PRIO)) {
4317 cfqq->ioprio_class = cfqq->org_ioprio_class;
4318 cfqq->ioprio = cfqq->org_ioprio;
4319 } else {
4320 if (cfq_class_idle(cfqq))
4321 cfqq->ioprio_class = IOPRIO_CLASS_BE;
4322 if (cfqq->ioprio > IOPRIO_NORM)
4323 cfqq->ioprio = IOPRIO_NORM;
4324 }
4325 }
4326
4327 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4328 {
4329 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4330 cfq_mark_cfqq_must_alloc_slice(cfqq);
4331 return ELV_MQUEUE_MUST;
4332 }
4333
4334 return ELV_MQUEUE_MAY;
4335 }
4336
4337 static int cfq_may_queue(struct request_queue *q, int op, int op_flags)
4338 {
4339 struct cfq_data *cfqd = q->elevator->elevator_data;
4340 struct task_struct *tsk = current;
4341 struct cfq_io_cq *cic;
4342 struct cfq_queue *cfqq;
4343
4344 /*
4345 * don't force setup of a queue from here, as a call to may_queue
4346 * does not necessarily imply that a request actually will be queued.
4347 * so just lookup a possibly existing queue, or return 'may queue'
4348 * if that fails
4349 */
4350 cic = cfq_cic_lookup(cfqd, tsk->io_context);
4351 if (!cic)
4352 return ELV_MQUEUE_MAY;
4353
4354 cfqq = cic_to_cfqq(cic, rw_is_sync(op, op_flags));
4355 if (cfqq) {
4356 cfq_init_prio_data(cfqq, cic);
4357 cfqq_boost_on_prio(cfqq, op_flags);
4358
4359 return __cfq_may_queue(cfqq);
4360 }
4361
4362 return ELV_MQUEUE_MAY;
4363 }
4364
4365 /*
4366 * queue lock held here
4367 */
4368 static void cfq_put_request(struct request *rq)
4369 {
4370 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4371
4372 if (cfqq) {
4373 const int rw = rq_data_dir(rq);
4374
4375 BUG_ON(!cfqq->allocated[rw]);
4376 cfqq->allocated[rw]--;
4377
4378 /* Put down rq reference on cfqg */
4379 cfqg_put(RQ_CFQG(rq));
4380 rq->elv.priv[0] = NULL;
4381 rq->elv.priv[1] = NULL;
4382
4383 cfq_put_queue(cfqq);
4384 }
4385 }
4386
4387 static struct cfq_queue *
4388 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4389 struct cfq_queue *cfqq)
4390 {
4391 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4392 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4393 cfq_mark_cfqq_coop(cfqq->new_cfqq);
4394 cfq_put_queue(cfqq);
4395 return cic_to_cfqq(cic, 1);
4396 }
4397
4398 /*
4399 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4400 * was the last process referring to said cfqq.
4401 */
4402 static struct cfq_queue *
4403 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4404 {
4405 if (cfqq_process_refs(cfqq) == 1) {
4406 cfqq->pid = current->pid;
4407 cfq_clear_cfqq_coop(cfqq);
4408 cfq_clear_cfqq_split_coop(cfqq);
4409 return cfqq;
4410 }
4411
4412 cic_set_cfqq(cic, NULL, 1);
4413
4414 cfq_put_cooperator(cfqq);
4415
4416 cfq_put_queue(cfqq);
4417 return NULL;
4418 }
4419 /*
4420 * Allocate cfq data structures associated with this request.
4421 */
4422 static int
4423 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4424 gfp_t gfp_mask)
4425 {
4426 struct cfq_data *cfqd = q->elevator->elevator_data;
4427 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4428 const int rw = rq_data_dir(rq);
4429 const bool is_sync = rq_is_sync(rq);
4430 struct cfq_queue *cfqq;
4431
4432 spin_lock_irq(q->queue_lock);
4433
4434 check_ioprio_changed(cic, bio);
4435 check_blkcg_changed(cic, bio);
4436 new_queue:
4437 cfqq = cic_to_cfqq(cic, is_sync);
4438 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4439 if (cfqq)
4440 cfq_put_queue(cfqq);
4441 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio);
4442 cic_set_cfqq(cic, cfqq, is_sync);
4443 } else {
4444 /*
4445 * If the queue was seeky for too long, break it apart.
4446 */
4447 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4448 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4449 cfqq = split_cfqq(cic, cfqq);
4450 if (!cfqq)
4451 goto new_queue;
4452 }
4453
4454 /*
4455 * Check to see if this queue is scheduled to merge with
4456 * another, closely cooperating queue. The merging of
4457 * queues happens here as it must be done in process context.
4458 * The reference on new_cfqq was taken in merge_cfqqs.
4459 */
4460 if (cfqq->new_cfqq)
4461 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4462 }
4463
4464 cfqq->allocated[rw]++;
4465
4466 cfqq->ref++;
4467 cfqg_get(cfqq->cfqg);
4468 rq->elv.priv[0] = cfqq;
4469 rq->elv.priv[1] = cfqq->cfqg;
4470 spin_unlock_irq(q->queue_lock);
4471 return 0;
4472 }
4473
4474 static void cfq_kick_queue(struct work_struct *work)
4475 {
4476 struct cfq_data *cfqd =
4477 container_of(work, struct cfq_data, unplug_work);
4478 struct request_queue *q = cfqd->queue;
4479
4480 spin_lock_irq(q->queue_lock);
4481 __blk_run_queue(cfqd->queue);
4482 spin_unlock_irq(q->queue_lock);
4483 }
4484
4485 /*
4486 * Timer running if the active_queue is currently idling inside its time slice
4487 */
4488 static enum hrtimer_restart cfq_idle_slice_timer(struct hrtimer *timer)
4489 {
4490 struct cfq_data *cfqd = container_of(timer, struct cfq_data,
4491 idle_slice_timer);
4492 struct cfq_queue *cfqq;
4493 unsigned long flags;
4494 int timed_out = 1;
4495
4496 cfq_log(cfqd, "idle timer fired");
4497
4498 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4499
4500 cfqq = cfqd->active_queue;
4501 if (cfqq) {
4502 timed_out = 0;
4503
4504 /*
4505 * We saw a request before the queue expired, let it through
4506 */
4507 if (cfq_cfqq_must_dispatch(cfqq))
4508 goto out_kick;
4509
4510 /*
4511 * expired
4512 */
4513 if (cfq_slice_used(cfqq))
4514 goto expire;
4515
4516 /*
4517 * only expire and reinvoke request handler, if there are
4518 * other queues with pending requests
4519 */
4520 if (!cfqd->busy_queues)
4521 goto out_cont;
4522
4523 /*
4524 * not expired and it has a request pending, let it dispatch
4525 */
4526 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4527 goto out_kick;
4528
4529 /*
4530 * Queue depth flag is reset only when the idle didn't succeed
4531 */
4532 cfq_clear_cfqq_deep(cfqq);
4533 }
4534 expire:
4535 cfq_slice_expired(cfqd, timed_out);
4536 out_kick:
4537 cfq_schedule_dispatch(cfqd);
4538 out_cont:
4539 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4540 return HRTIMER_NORESTART;
4541 }
4542
4543 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4544 {
4545 hrtimer_cancel(&cfqd->idle_slice_timer);
4546 cancel_work_sync(&cfqd->unplug_work);
4547 }
4548
4549 static void cfq_exit_queue(struct elevator_queue *e)
4550 {
4551 struct cfq_data *cfqd = e->elevator_data;
4552 struct request_queue *q = cfqd->queue;
4553
4554 cfq_shutdown_timer_wq(cfqd);
4555
4556 spin_lock_irq(q->queue_lock);
4557
4558 if (cfqd->active_queue)
4559 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4560
4561 spin_unlock_irq(q->queue_lock);
4562
4563 cfq_shutdown_timer_wq(cfqd);
4564
4565 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4566 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4567 #else
4568 kfree(cfqd->root_group);
4569 #endif
4570 kfree(cfqd);
4571 }
4572
4573 static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4574 {
4575 struct cfq_data *cfqd;
4576 struct blkcg_gq *blkg __maybe_unused;
4577 int i, ret;
4578 struct elevator_queue *eq;
4579
4580 eq = elevator_alloc(q, e);
4581 if (!eq)
4582 return -ENOMEM;
4583
4584 cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4585 if (!cfqd) {
4586 kobject_put(&eq->kobj);
4587 return -ENOMEM;
4588 }
4589 eq->elevator_data = cfqd;
4590
4591 cfqd->queue = q;
4592 spin_lock_irq(q->queue_lock);
4593 q->elevator = eq;
4594 spin_unlock_irq(q->queue_lock);
4595
4596 /* Init root service tree */
4597 cfqd->grp_service_tree = CFQ_RB_ROOT;
4598
4599 /* Init root group and prefer root group over other groups by default */
4600 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4601 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4602 if (ret)
4603 goto out_free;
4604
4605 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4606 #else
4607 ret = -ENOMEM;
4608 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4609 GFP_KERNEL, cfqd->queue->node);
4610 if (!cfqd->root_group)
4611 goto out_free;
4612
4613 cfq_init_cfqg_base(cfqd->root_group);
4614 cfqd->root_group->weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4615 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4616 #endif
4617
4618 /*
4619 * Not strictly needed (since RB_ROOT just clears the node and we
4620 * zeroed cfqd on alloc), but better be safe in case someone decides
4621 * to add magic to the rb code
4622 */
4623 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4624 cfqd->prio_trees[i] = RB_ROOT;
4625
4626 /*
4627 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4628 * Grab a permanent reference to it, so that the normal code flow
4629 * will not attempt to free it. oom_cfqq is linked to root_group
4630 * but shouldn't hold a reference as it'll never be unlinked. Lose
4631 * the reference from linking right away.
4632 */
4633 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4634 cfqd->oom_cfqq.ref++;
4635
4636 spin_lock_irq(q->queue_lock);
4637 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4638 cfqg_put(cfqd->root_group);
4639 spin_unlock_irq(q->queue_lock);
4640
4641 hrtimer_init(&cfqd->idle_slice_timer, CLOCK_MONOTONIC,
4642 HRTIMER_MODE_REL);
4643 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4644
4645 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4646
4647 cfqd->cfq_quantum = cfq_quantum;
4648 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4649 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4650 cfqd->cfq_back_max = cfq_back_max;
4651 cfqd->cfq_back_penalty = cfq_back_penalty;
4652 cfqd->cfq_slice[0] = cfq_slice_async;
4653 cfqd->cfq_slice[1] = cfq_slice_sync;
4654 cfqd->cfq_target_latency = cfq_target_latency;
4655 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4656 cfqd->cfq_slice_idle = cfq_slice_idle;
4657 cfqd->cfq_group_idle = cfq_group_idle;
4658 cfqd->cfq_latency = 1;
4659 cfqd->hw_tag = -1;
4660 /*
4661 * we optimistically start assuming sync ops weren't delayed in last
4662 * second, in order to have larger depth for async operations.
4663 */
4664 cfqd->last_delayed_sync = ktime_get_ns() - NSEC_PER_SEC;
4665 return 0;
4666
4667 out_free:
4668 kfree(cfqd);
4669 kobject_put(&eq->kobj);
4670 return ret;
4671 }
4672
4673 static void cfq_registered_queue(struct request_queue *q)
4674 {
4675 struct elevator_queue *e = q->elevator;
4676 struct cfq_data *cfqd = e->elevator_data;
4677
4678 /*
4679 * Default to IOPS mode with no idling for SSDs
4680 */
4681 if (blk_queue_nonrot(q))
4682 cfqd->cfq_slice_idle = 0;
4683 }
4684
4685 /*
4686 * sysfs parts below -->
4687 */
4688 static ssize_t
4689 cfq_var_show(unsigned int var, char *page)
4690 {
4691 return sprintf(page, "%u\n", var);
4692 }
4693
4694 static ssize_t
4695 cfq_var_store(unsigned int *var, const char *page, size_t count)
4696 {
4697 char *p = (char *) page;
4698
4699 *var = simple_strtoul(p, &p, 10);
4700 return count;
4701 }
4702
4703 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4704 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4705 { \
4706 struct cfq_data *cfqd = e->elevator_data; \
4707 u64 __data = __VAR; \
4708 if (__CONV) \
4709 __data = div_u64(__data, NSEC_PER_MSEC); \
4710 return cfq_var_show(__data, (page)); \
4711 }
4712 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4713 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4714 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4715 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4716 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4717 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4718 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4719 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4720 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4721 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4722 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4723 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4724 #undef SHOW_FUNCTION
4725
4726 #define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
4727 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4728 { \
4729 struct cfq_data *cfqd = e->elevator_data; \
4730 u64 __data = __VAR; \
4731 __data = div_u64(__data, NSEC_PER_USEC); \
4732 return cfq_var_show(__data, (page)); \
4733 }
4734 USEC_SHOW_FUNCTION(cfq_slice_idle_us_show, cfqd->cfq_slice_idle);
4735 USEC_SHOW_FUNCTION(cfq_group_idle_us_show, cfqd->cfq_group_idle);
4736 USEC_SHOW_FUNCTION(cfq_slice_sync_us_show, cfqd->cfq_slice[1]);
4737 USEC_SHOW_FUNCTION(cfq_slice_async_us_show, cfqd->cfq_slice[0]);
4738 USEC_SHOW_FUNCTION(cfq_target_latency_us_show, cfqd->cfq_target_latency);
4739 #undef USEC_SHOW_FUNCTION
4740
4741 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4742 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4743 { \
4744 struct cfq_data *cfqd = e->elevator_data; \
4745 unsigned int __data; \
4746 int ret = cfq_var_store(&__data, (page), count); \
4747 if (__data < (MIN)) \
4748 __data = (MIN); \
4749 else if (__data > (MAX)) \
4750 __data = (MAX); \
4751 if (__CONV) \
4752 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
4753 else \
4754 *(__PTR) = __data; \
4755 return ret; \
4756 }
4757 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4758 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4759 UINT_MAX, 1);
4760 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4761 UINT_MAX, 1);
4762 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4763 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4764 UINT_MAX, 0);
4765 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4766 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4767 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4768 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4769 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4770 UINT_MAX, 0);
4771 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4772 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4773 #undef STORE_FUNCTION
4774
4775 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
4776 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4777 { \
4778 struct cfq_data *cfqd = e->elevator_data; \
4779 unsigned int __data; \
4780 int ret = cfq_var_store(&__data, (page), count); \
4781 if (__data < (MIN)) \
4782 __data = (MIN); \
4783 else if (__data > (MAX)) \
4784 __data = (MAX); \
4785 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
4786 return ret; \
4787 }
4788 USEC_STORE_FUNCTION(cfq_slice_idle_us_store, &cfqd->cfq_slice_idle, 0, UINT_MAX);
4789 USEC_STORE_FUNCTION(cfq_group_idle_us_store, &cfqd->cfq_group_idle, 0, UINT_MAX);
4790 USEC_STORE_FUNCTION(cfq_slice_sync_us_store, &cfqd->cfq_slice[1], 1, UINT_MAX);
4791 USEC_STORE_FUNCTION(cfq_slice_async_us_store, &cfqd->cfq_slice[0], 1, UINT_MAX);
4792 USEC_STORE_FUNCTION(cfq_target_latency_us_store, &cfqd->cfq_target_latency, 1, UINT_MAX);
4793 #undef USEC_STORE_FUNCTION
4794
4795 #define CFQ_ATTR(name) \
4796 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4797
4798 static struct elv_fs_entry cfq_attrs[] = {
4799 CFQ_ATTR(quantum),
4800 CFQ_ATTR(fifo_expire_sync),
4801 CFQ_ATTR(fifo_expire_async),
4802 CFQ_ATTR(back_seek_max),
4803 CFQ_ATTR(back_seek_penalty),
4804 CFQ_ATTR(slice_sync),
4805 CFQ_ATTR(slice_sync_us),
4806 CFQ_ATTR(slice_async),
4807 CFQ_ATTR(slice_async_us),
4808 CFQ_ATTR(slice_async_rq),
4809 CFQ_ATTR(slice_idle),
4810 CFQ_ATTR(slice_idle_us),
4811 CFQ_ATTR(group_idle),
4812 CFQ_ATTR(group_idle_us),
4813 CFQ_ATTR(low_latency),
4814 CFQ_ATTR(target_latency),
4815 CFQ_ATTR(target_latency_us),
4816 __ATTR_NULL
4817 };
4818
4819 static struct elevator_type iosched_cfq = {
4820 .ops = {
4821 .elevator_merge_fn = cfq_merge,
4822 .elevator_merged_fn = cfq_merged_request,
4823 .elevator_merge_req_fn = cfq_merged_requests,
4824 .elevator_allow_merge_fn = cfq_allow_merge,
4825 .elevator_bio_merged_fn = cfq_bio_merged,
4826 .elevator_dispatch_fn = cfq_dispatch_requests,
4827 .elevator_add_req_fn = cfq_insert_request,
4828 .elevator_activate_req_fn = cfq_activate_request,
4829 .elevator_deactivate_req_fn = cfq_deactivate_request,
4830 .elevator_completed_req_fn = cfq_completed_request,
4831 .elevator_former_req_fn = elv_rb_former_request,
4832 .elevator_latter_req_fn = elv_rb_latter_request,
4833 .elevator_init_icq_fn = cfq_init_icq,
4834 .elevator_exit_icq_fn = cfq_exit_icq,
4835 .elevator_set_req_fn = cfq_set_request,
4836 .elevator_put_req_fn = cfq_put_request,
4837 .elevator_may_queue_fn = cfq_may_queue,
4838 .elevator_init_fn = cfq_init_queue,
4839 .elevator_exit_fn = cfq_exit_queue,
4840 .elevator_registered_fn = cfq_registered_queue,
4841 },
4842 .icq_size = sizeof(struct cfq_io_cq),
4843 .icq_align = __alignof__(struct cfq_io_cq),
4844 .elevator_attrs = cfq_attrs,
4845 .elevator_name = "cfq",
4846 .elevator_owner = THIS_MODULE,
4847 };
4848
4849 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4850 static struct blkcg_policy blkcg_policy_cfq = {
4851 .dfl_cftypes = cfq_blkcg_files,
4852 .legacy_cftypes = cfq_blkcg_legacy_files,
4853
4854 .cpd_alloc_fn = cfq_cpd_alloc,
4855 .cpd_init_fn = cfq_cpd_init,
4856 .cpd_free_fn = cfq_cpd_free,
4857 .cpd_bind_fn = cfq_cpd_bind,
4858
4859 .pd_alloc_fn = cfq_pd_alloc,
4860 .pd_init_fn = cfq_pd_init,
4861 .pd_offline_fn = cfq_pd_offline,
4862 .pd_free_fn = cfq_pd_free,
4863 .pd_reset_stats_fn = cfq_pd_reset_stats,
4864 };
4865 #endif
4866
4867 static int __init cfq_init(void)
4868 {
4869 int ret;
4870
4871 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4872 ret = blkcg_policy_register(&blkcg_policy_cfq);
4873 if (ret)
4874 return ret;
4875 #else
4876 cfq_group_idle = 0;
4877 #endif
4878
4879 ret = -ENOMEM;
4880 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4881 if (!cfq_pool)
4882 goto err_pol_unreg;
4883
4884 ret = elv_register(&iosched_cfq);
4885 if (ret)
4886 goto err_free_pool;
4887
4888 return 0;
4889
4890 err_free_pool:
4891 kmem_cache_destroy(cfq_pool);
4892 err_pol_unreg:
4893 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4894 blkcg_policy_unregister(&blkcg_policy_cfq);
4895 #endif
4896 return ret;
4897 }
4898
4899 static void __exit cfq_exit(void)
4900 {
4901 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4902 blkcg_policy_unregister(&blkcg_policy_cfq);
4903 #endif
4904 elv_unregister(&iosched_cfq);
4905 kmem_cache_destroy(cfq_pool);
4906 }
4907
4908 module_init(cfq_init);
4909 module_exit(cfq_exit);
4910
4911 MODULE_AUTHOR("Jens Axboe");
4912 MODULE_LICENSE("GPL");
4913 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");