]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/cfq-iosched.c
io-controller: Add a new interface "weight_device" for IO-Controller
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
17
18 /*
19 * tunables
20 */
21 /* max queue in one round of service */
22 static const int cfq_quantum = 8;
23 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max = 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty = 2;
28 static const int cfq_slice_sync = HZ / 10;
29 static int cfq_slice_async = HZ / 25;
30 static const int cfq_slice_async_rq = 2;
31 static int cfq_slice_idle = HZ / 125;
32 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33 static const int cfq_hist_divisor = 4;
34
35 /*
36 * offset from end of service tree
37 */
38 #define CFQ_IDLE_DELAY (HZ / 5)
39
40 /*
41 * below this threshold, we consider thinktime immediate
42 */
43 #define CFQ_MIN_TT (2)
44
45 #define CFQ_SLICE_SCALE (5)
46 #define CFQ_HW_QUEUE_MIN (5)
47 #define CFQ_SERVICE_SHIFT 12
48
49 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
50 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
51 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
52 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
53
54 #define RQ_CIC(rq) \
55 ((struct cfq_io_context *) (rq)->elevator_private)
56 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
57
58 static struct kmem_cache *cfq_pool;
59 static struct kmem_cache *cfq_ioc_pool;
60
61 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
62 static struct completion *ioc_gone;
63 static DEFINE_SPINLOCK(ioc_gone_lock);
64
65 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
66 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
67 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
68
69 #define sample_valid(samples) ((samples) > 80)
70 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
71
72 /*
73 * Most of our rbtree usage is for sorting with min extraction, so
74 * if we cache the leftmost node we don't have to walk down the tree
75 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
76 * move this into the elevator for the rq sorting as well.
77 */
78 struct cfq_rb_root {
79 struct rb_root rb;
80 struct rb_node *left;
81 unsigned count;
82 unsigned total_weight;
83 u64 min_vdisktime;
84 struct rb_node *active;
85 };
86 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
87 .count = 0, .min_vdisktime = 0, }
88
89 /*
90 * Per process-grouping structure
91 */
92 struct cfq_queue {
93 /* reference count */
94 atomic_t ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
117
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
120 unsigned int allocated_slice;
121 unsigned int slice_dispatch;
122 /* time when first request from queue completed and slice started. */
123 unsigned long slice_start;
124 unsigned long slice_end;
125 long slice_resid;
126
127 /* pending metadata requests */
128 int meta_pending;
129 /* number of requests that are on the dispatch list or inside driver */
130 int dispatched;
131
132 /* io prio of this group */
133 unsigned short ioprio, org_ioprio;
134 unsigned short ioprio_class, org_ioprio_class;
135
136 pid_t pid;
137
138 u32 seek_history;
139 sector_t last_request_pos;
140
141 struct cfq_rb_root *service_tree;
142 struct cfq_queue *new_cfqq;
143 struct cfq_group *cfqg;
144 struct cfq_group *orig_cfqg;
145 };
146
147 /*
148 * First index in the service_trees.
149 * IDLE is handled separately, so it has negative index
150 */
151 enum wl_prio_t {
152 BE_WORKLOAD = 0,
153 RT_WORKLOAD = 1,
154 IDLE_WORKLOAD = 2,
155 };
156
157 /*
158 * Second index in the service_trees.
159 */
160 enum wl_type_t {
161 ASYNC_WORKLOAD = 0,
162 SYNC_NOIDLE_WORKLOAD = 1,
163 SYNC_WORKLOAD = 2
164 };
165
166 /* This is per cgroup per device grouping structure */
167 struct cfq_group {
168 /* group service_tree member */
169 struct rb_node rb_node;
170
171 /* group service_tree key */
172 u64 vdisktime;
173 unsigned int weight;
174 bool on_st;
175
176 /* number of cfqq currently on this group */
177 int nr_cfqq;
178
179 /* Per group busy queus average. Useful for workload slice calc. */
180 unsigned int busy_queues_avg[2];
181 /*
182 * rr lists of queues with requests, onle rr for each priority class.
183 * Counts are embedded in the cfq_rb_root
184 */
185 struct cfq_rb_root service_trees[2][3];
186 struct cfq_rb_root service_tree_idle;
187
188 unsigned long saved_workload_slice;
189 enum wl_type_t saved_workload;
190 enum wl_prio_t saved_serving_prio;
191 struct blkio_group blkg;
192 #ifdef CONFIG_CFQ_GROUP_IOSCHED
193 struct hlist_node cfqd_node;
194 atomic_t ref;
195 #endif
196 };
197
198 /*
199 * Per block device queue structure
200 */
201 struct cfq_data {
202 struct request_queue *queue;
203 /* Root service tree for cfq_groups */
204 struct cfq_rb_root grp_service_tree;
205 struct cfq_group root_group;
206
207 /*
208 * The priority currently being served
209 */
210 enum wl_prio_t serving_prio;
211 enum wl_type_t serving_type;
212 unsigned long workload_expires;
213 struct cfq_group *serving_group;
214 bool noidle_tree_requires_idle;
215
216 /*
217 * Each priority tree is sorted by next_request position. These
218 * trees are used when determining if two or more queues are
219 * interleaving requests (see cfq_close_cooperator).
220 */
221 struct rb_root prio_trees[CFQ_PRIO_LISTS];
222
223 unsigned int busy_queues;
224
225 int rq_in_driver;
226 int rq_in_flight[2];
227
228 /*
229 * queue-depth detection
230 */
231 int rq_queued;
232 int hw_tag;
233 /*
234 * hw_tag can be
235 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
236 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
237 * 0 => no NCQ
238 */
239 int hw_tag_est_depth;
240 unsigned int hw_tag_samples;
241
242 /*
243 * idle window management
244 */
245 struct timer_list idle_slice_timer;
246 struct work_struct unplug_work;
247
248 struct cfq_queue *active_queue;
249 struct cfq_io_context *active_cic;
250
251 /*
252 * async queue for each priority case
253 */
254 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
255 struct cfq_queue *async_idle_cfqq;
256
257 sector_t last_position;
258
259 /*
260 * tunables, see top of file
261 */
262 unsigned int cfq_quantum;
263 unsigned int cfq_fifo_expire[2];
264 unsigned int cfq_back_penalty;
265 unsigned int cfq_back_max;
266 unsigned int cfq_slice[2];
267 unsigned int cfq_slice_async_rq;
268 unsigned int cfq_slice_idle;
269 unsigned int cfq_latency;
270 unsigned int cfq_group_isolation;
271
272 struct list_head cic_list;
273
274 /*
275 * Fallback dummy cfqq for extreme OOM conditions
276 */
277 struct cfq_queue oom_cfqq;
278
279 unsigned long last_delayed_sync;
280
281 /* List of cfq groups being managed on this device*/
282 struct hlist_head cfqg_list;
283 struct rcu_head rcu;
284 };
285
286 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
287
288 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
289 enum wl_prio_t prio,
290 enum wl_type_t type)
291 {
292 if (!cfqg)
293 return NULL;
294
295 if (prio == IDLE_WORKLOAD)
296 return &cfqg->service_tree_idle;
297
298 return &cfqg->service_trees[prio][type];
299 }
300
301 enum cfqq_state_flags {
302 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
303 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
304 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
305 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
306 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
307 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
308 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
309 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
310 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
311 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
312 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
313 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
314 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
315 };
316
317 #define CFQ_CFQQ_FNS(name) \
318 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
319 { \
320 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
321 } \
322 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
323 { \
324 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
325 } \
326 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
327 { \
328 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
329 }
330
331 CFQ_CFQQ_FNS(on_rr);
332 CFQ_CFQQ_FNS(wait_request);
333 CFQ_CFQQ_FNS(must_dispatch);
334 CFQ_CFQQ_FNS(must_alloc_slice);
335 CFQ_CFQQ_FNS(fifo_expire);
336 CFQ_CFQQ_FNS(idle_window);
337 CFQ_CFQQ_FNS(prio_changed);
338 CFQ_CFQQ_FNS(slice_new);
339 CFQ_CFQQ_FNS(sync);
340 CFQ_CFQQ_FNS(coop);
341 CFQ_CFQQ_FNS(split_coop);
342 CFQ_CFQQ_FNS(deep);
343 CFQ_CFQQ_FNS(wait_busy);
344 #undef CFQ_CFQQ_FNS
345
346 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
347 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
348 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
349 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
350 blkg_path(&(cfqq)->cfqg->blkg), ##args);
351
352 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
353 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
354 blkg_path(&(cfqg)->blkg), ##args); \
355
356 #else
357 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
358 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
359 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
360 #endif
361 #define cfq_log(cfqd, fmt, args...) \
362 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
363
364 /* Traverses through cfq group service trees */
365 #define for_each_cfqg_st(cfqg, i, j, st) \
366 for (i = 0; i <= IDLE_WORKLOAD; i++) \
367 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
368 : &cfqg->service_tree_idle; \
369 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
370 (i == IDLE_WORKLOAD && j == 0); \
371 j++, st = i < IDLE_WORKLOAD ? \
372 &cfqg->service_trees[i][j]: NULL) \
373
374
375 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
376 {
377 if (cfq_class_idle(cfqq))
378 return IDLE_WORKLOAD;
379 if (cfq_class_rt(cfqq))
380 return RT_WORKLOAD;
381 return BE_WORKLOAD;
382 }
383
384
385 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
386 {
387 if (!cfq_cfqq_sync(cfqq))
388 return ASYNC_WORKLOAD;
389 if (!cfq_cfqq_idle_window(cfqq))
390 return SYNC_NOIDLE_WORKLOAD;
391 return SYNC_WORKLOAD;
392 }
393
394 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
395 struct cfq_data *cfqd,
396 struct cfq_group *cfqg)
397 {
398 if (wl == IDLE_WORKLOAD)
399 return cfqg->service_tree_idle.count;
400
401 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
402 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
403 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
404 }
405
406 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
407 struct cfq_group *cfqg)
408 {
409 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
410 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
411 }
412
413 static void cfq_dispatch_insert(struct request_queue *, struct request *);
414 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
415 struct io_context *, gfp_t);
416 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
417 struct io_context *);
418
419 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
420 bool is_sync)
421 {
422 return cic->cfqq[is_sync];
423 }
424
425 static inline void cic_set_cfqq(struct cfq_io_context *cic,
426 struct cfq_queue *cfqq, bool is_sync)
427 {
428 cic->cfqq[is_sync] = cfqq;
429 }
430
431 /*
432 * We regard a request as SYNC, if it's either a read or has the SYNC bit
433 * set (in which case it could also be direct WRITE).
434 */
435 static inline bool cfq_bio_sync(struct bio *bio)
436 {
437 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
438 }
439
440 /*
441 * scheduler run of queue, if there are requests pending and no one in the
442 * driver that will restart queueing
443 */
444 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
445 {
446 if (cfqd->busy_queues) {
447 cfq_log(cfqd, "schedule dispatch");
448 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
449 }
450 }
451
452 static int cfq_queue_empty(struct request_queue *q)
453 {
454 struct cfq_data *cfqd = q->elevator->elevator_data;
455
456 return !cfqd->rq_queued;
457 }
458
459 /*
460 * Scale schedule slice based on io priority. Use the sync time slice only
461 * if a queue is marked sync and has sync io queued. A sync queue with async
462 * io only, should not get full sync slice length.
463 */
464 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
465 unsigned short prio)
466 {
467 const int base_slice = cfqd->cfq_slice[sync];
468
469 WARN_ON(prio >= IOPRIO_BE_NR);
470
471 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
472 }
473
474 static inline int
475 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
476 {
477 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
478 }
479
480 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
481 {
482 u64 d = delta << CFQ_SERVICE_SHIFT;
483
484 d = d * BLKIO_WEIGHT_DEFAULT;
485 do_div(d, cfqg->weight);
486 return d;
487 }
488
489 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
490 {
491 s64 delta = (s64)(vdisktime - min_vdisktime);
492 if (delta > 0)
493 min_vdisktime = vdisktime;
494
495 return min_vdisktime;
496 }
497
498 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
499 {
500 s64 delta = (s64)(vdisktime - min_vdisktime);
501 if (delta < 0)
502 min_vdisktime = vdisktime;
503
504 return min_vdisktime;
505 }
506
507 static void update_min_vdisktime(struct cfq_rb_root *st)
508 {
509 u64 vdisktime = st->min_vdisktime;
510 struct cfq_group *cfqg;
511
512 if (st->active) {
513 cfqg = rb_entry_cfqg(st->active);
514 vdisktime = cfqg->vdisktime;
515 }
516
517 if (st->left) {
518 cfqg = rb_entry_cfqg(st->left);
519 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
520 }
521
522 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
523 }
524
525 /*
526 * get averaged number of queues of RT/BE priority.
527 * average is updated, with a formula that gives more weight to higher numbers,
528 * to quickly follows sudden increases and decrease slowly
529 */
530
531 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
532 struct cfq_group *cfqg, bool rt)
533 {
534 unsigned min_q, max_q;
535 unsigned mult = cfq_hist_divisor - 1;
536 unsigned round = cfq_hist_divisor / 2;
537 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
538
539 min_q = min(cfqg->busy_queues_avg[rt], busy);
540 max_q = max(cfqg->busy_queues_avg[rt], busy);
541 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
542 cfq_hist_divisor;
543 return cfqg->busy_queues_avg[rt];
544 }
545
546 static inline unsigned
547 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
548 {
549 struct cfq_rb_root *st = &cfqd->grp_service_tree;
550
551 return cfq_target_latency * cfqg->weight / st->total_weight;
552 }
553
554 static inline void
555 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
556 {
557 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
558 if (cfqd->cfq_latency) {
559 /*
560 * interested queues (we consider only the ones with the same
561 * priority class in the cfq group)
562 */
563 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
564 cfq_class_rt(cfqq));
565 unsigned sync_slice = cfqd->cfq_slice[1];
566 unsigned expect_latency = sync_slice * iq;
567 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
568
569 if (expect_latency > group_slice) {
570 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
571 /* scale low_slice according to IO priority
572 * and sync vs async */
573 unsigned low_slice =
574 min(slice, base_low_slice * slice / sync_slice);
575 /* the adapted slice value is scaled to fit all iqs
576 * into the target latency */
577 slice = max(slice * group_slice / expect_latency,
578 low_slice);
579 }
580 }
581 cfqq->slice_start = jiffies;
582 cfqq->slice_end = jiffies + slice;
583 cfqq->allocated_slice = slice;
584 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
585 }
586
587 /*
588 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
589 * isn't valid until the first request from the dispatch is activated
590 * and the slice time set.
591 */
592 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
593 {
594 if (cfq_cfqq_slice_new(cfqq))
595 return 0;
596 if (time_before(jiffies, cfqq->slice_end))
597 return 0;
598
599 return 1;
600 }
601
602 /*
603 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
604 * We choose the request that is closest to the head right now. Distance
605 * behind the head is penalized and only allowed to a certain extent.
606 */
607 static struct request *
608 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
609 {
610 sector_t s1, s2, d1 = 0, d2 = 0;
611 unsigned long back_max;
612 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
613 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
614 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
615
616 if (rq1 == NULL || rq1 == rq2)
617 return rq2;
618 if (rq2 == NULL)
619 return rq1;
620
621 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
622 return rq1;
623 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
624 return rq2;
625 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
626 return rq1;
627 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
628 return rq2;
629
630 s1 = blk_rq_pos(rq1);
631 s2 = blk_rq_pos(rq2);
632
633 /*
634 * by definition, 1KiB is 2 sectors
635 */
636 back_max = cfqd->cfq_back_max * 2;
637
638 /*
639 * Strict one way elevator _except_ in the case where we allow
640 * short backward seeks which are biased as twice the cost of a
641 * similar forward seek.
642 */
643 if (s1 >= last)
644 d1 = s1 - last;
645 else if (s1 + back_max >= last)
646 d1 = (last - s1) * cfqd->cfq_back_penalty;
647 else
648 wrap |= CFQ_RQ1_WRAP;
649
650 if (s2 >= last)
651 d2 = s2 - last;
652 else if (s2 + back_max >= last)
653 d2 = (last - s2) * cfqd->cfq_back_penalty;
654 else
655 wrap |= CFQ_RQ2_WRAP;
656
657 /* Found required data */
658
659 /*
660 * By doing switch() on the bit mask "wrap" we avoid having to
661 * check two variables for all permutations: --> faster!
662 */
663 switch (wrap) {
664 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
665 if (d1 < d2)
666 return rq1;
667 else if (d2 < d1)
668 return rq2;
669 else {
670 if (s1 >= s2)
671 return rq1;
672 else
673 return rq2;
674 }
675
676 case CFQ_RQ2_WRAP:
677 return rq1;
678 case CFQ_RQ1_WRAP:
679 return rq2;
680 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
681 default:
682 /*
683 * Since both rqs are wrapped,
684 * start with the one that's further behind head
685 * (--> only *one* back seek required),
686 * since back seek takes more time than forward.
687 */
688 if (s1 <= s2)
689 return rq1;
690 else
691 return rq2;
692 }
693 }
694
695 /*
696 * The below is leftmost cache rbtree addon
697 */
698 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
699 {
700 /* Service tree is empty */
701 if (!root->count)
702 return NULL;
703
704 if (!root->left)
705 root->left = rb_first(&root->rb);
706
707 if (root->left)
708 return rb_entry(root->left, struct cfq_queue, rb_node);
709
710 return NULL;
711 }
712
713 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
714 {
715 if (!root->left)
716 root->left = rb_first(&root->rb);
717
718 if (root->left)
719 return rb_entry_cfqg(root->left);
720
721 return NULL;
722 }
723
724 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
725 {
726 rb_erase(n, root);
727 RB_CLEAR_NODE(n);
728 }
729
730 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
731 {
732 if (root->left == n)
733 root->left = NULL;
734 rb_erase_init(n, &root->rb);
735 --root->count;
736 }
737
738 /*
739 * would be nice to take fifo expire time into account as well
740 */
741 static struct request *
742 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
743 struct request *last)
744 {
745 struct rb_node *rbnext = rb_next(&last->rb_node);
746 struct rb_node *rbprev = rb_prev(&last->rb_node);
747 struct request *next = NULL, *prev = NULL;
748
749 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
750
751 if (rbprev)
752 prev = rb_entry_rq(rbprev);
753
754 if (rbnext)
755 next = rb_entry_rq(rbnext);
756 else {
757 rbnext = rb_first(&cfqq->sort_list);
758 if (rbnext && rbnext != &last->rb_node)
759 next = rb_entry_rq(rbnext);
760 }
761
762 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
763 }
764
765 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
766 struct cfq_queue *cfqq)
767 {
768 /*
769 * just an approximation, should be ok.
770 */
771 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
772 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
773 }
774
775 static inline s64
776 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
777 {
778 return cfqg->vdisktime - st->min_vdisktime;
779 }
780
781 static void
782 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
783 {
784 struct rb_node **node = &st->rb.rb_node;
785 struct rb_node *parent = NULL;
786 struct cfq_group *__cfqg;
787 s64 key = cfqg_key(st, cfqg);
788 int left = 1;
789
790 while (*node != NULL) {
791 parent = *node;
792 __cfqg = rb_entry_cfqg(parent);
793
794 if (key < cfqg_key(st, __cfqg))
795 node = &parent->rb_left;
796 else {
797 node = &parent->rb_right;
798 left = 0;
799 }
800 }
801
802 if (left)
803 st->left = &cfqg->rb_node;
804
805 rb_link_node(&cfqg->rb_node, parent, node);
806 rb_insert_color(&cfqg->rb_node, &st->rb);
807 }
808
809 static void
810 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
811 {
812 struct cfq_rb_root *st = &cfqd->grp_service_tree;
813 struct cfq_group *__cfqg;
814 struct rb_node *n;
815
816 cfqg->nr_cfqq++;
817 if (cfqg->on_st)
818 return;
819
820 /*
821 * Currently put the group at the end. Later implement something
822 * so that groups get lesser vtime based on their weights, so that
823 * if group does not loose all if it was not continously backlogged.
824 */
825 n = rb_last(&st->rb);
826 if (n) {
827 __cfqg = rb_entry_cfqg(n);
828 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
829 } else
830 cfqg->vdisktime = st->min_vdisktime;
831
832 __cfq_group_service_tree_add(st, cfqg);
833 cfqg->on_st = true;
834 st->total_weight += cfqg->weight;
835 }
836
837 static void
838 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
839 {
840 struct cfq_rb_root *st = &cfqd->grp_service_tree;
841
842 if (st->active == &cfqg->rb_node)
843 st->active = NULL;
844
845 BUG_ON(cfqg->nr_cfqq < 1);
846 cfqg->nr_cfqq--;
847
848 /* If there are other cfq queues under this group, don't delete it */
849 if (cfqg->nr_cfqq)
850 return;
851
852 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
853 cfqg->on_st = false;
854 st->total_weight -= cfqg->weight;
855 if (!RB_EMPTY_NODE(&cfqg->rb_node))
856 cfq_rb_erase(&cfqg->rb_node, st);
857 cfqg->saved_workload_slice = 0;
858 blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
859 }
860
861 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
862 {
863 unsigned int slice_used;
864
865 /*
866 * Queue got expired before even a single request completed or
867 * got expired immediately after first request completion.
868 */
869 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
870 /*
871 * Also charge the seek time incurred to the group, otherwise
872 * if there are mutiple queues in the group, each can dispatch
873 * a single request on seeky media and cause lots of seek time
874 * and group will never know it.
875 */
876 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
877 1);
878 } else {
879 slice_used = jiffies - cfqq->slice_start;
880 if (slice_used > cfqq->allocated_slice)
881 slice_used = cfqq->allocated_slice;
882 }
883
884 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
885 return slice_used;
886 }
887
888 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
889 struct cfq_queue *cfqq, bool forced)
890 {
891 struct cfq_rb_root *st = &cfqd->grp_service_tree;
892 unsigned int used_sl, charge_sl;
893 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
894 - cfqg->service_tree_idle.count;
895
896 BUG_ON(nr_sync < 0);
897 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
898
899 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
900 charge_sl = cfqq->allocated_slice;
901
902 /* Can't update vdisktime while group is on service tree */
903 cfq_rb_erase(&cfqg->rb_node, st);
904 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
905 __cfq_group_service_tree_add(st, cfqg);
906
907 /* This group is being expired. Save the context */
908 if (time_after(cfqd->workload_expires, jiffies)) {
909 cfqg->saved_workload_slice = cfqd->workload_expires
910 - jiffies;
911 cfqg->saved_workload = cfqd->serving_type;
912 cfqg->saved_serving_prio = cfqd->serving_prio;
913 } else
914 cfqg->saved_workload_slice = 0;
915
916 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
917 st->min_vdisktime);
918 blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
919 blkiocg_set_start_empty_time(&cfqg->blkg, forced);
920 }
921
922 #ifdef CONFIG_CFQ_GROUP_IOSCHED
923 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
924 {
925 if (blkg)
926 return container_of(blkg, struct cfq_group, blkg);
927 return NULL;
928 }
929
930 void
931 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
932 {
933 cfqg_of_blkg(blkg)->weight = weight;
934 }
935
936 static struct cfq_group *
937 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
938 {
939 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
940 struct cfq_group *cfqg = NULL;
941 void *key = cfqd;
942 int i, j;
943 struct cfq_rb_root *st;
944 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
945 unsigned int major, minor;
946
947 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
948 if (cfqg || !create)
949 goto done;
950
951 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
952 if (!cfqg)
953 goto done;
954
955 for_each_cfqg_st(cfqg, i, j, st)
956 *st = CFQ_RB_ROOT;
957 RB_CLEAR_NODE(&cfqg->rb_node);
958 blkio_group_init(&cfqg->blkg);
959
960 /*
961 * Take the initial reference that will be released on destroy
962 * This can be thought of a joint reference by cgroup and
963 * elevator which will be dropped by either elevator exit
964 * or cgroup deletion path depending on who is exiting first.
965 */
966 atomic_set(&cfqg->ref, 1);
967
968 /* Add group onto cgroup list */
969 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
970 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
971 MKDEV(major, minor));
972 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
973
974 /* Add group on cfqd list */
975 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
976
977 done:
978 return cfqg;
979 }
980
981 /*
982 * Search for the cfq group current task belongs to. If create = 1, then also
983 * create the cfq group if it does not exist. request_queue lock must be held.
984 */
985 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
986 {
987 struct cgroup *cgroup;
988 struct cfq_group *cfqg = NULL;
989
990 rcu_read_lock();
991 cgroup = task_cgroup(current, blkio_subsys_id);
992 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
993 if (!cfqg && create)
994 cfqg = &cfqd->root_group;
995 rcu_read_unlock();
996 return cfqg;
997 }
998
999 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1000 {
1001 /* Currently, all async queues are mapped to root group */
1002 if (!cfq_cfqq_sync(cfqq))
1003 cfqg = &cfqq->cfqd->root_group;
1004
1005 cfqq->cfqg = cfqg;
1006 /* cfqq reference on cfqg */
1007 atomic_inc(&cfqq->cfqg->ref);
1008 }
1009
1010 static void cfq_put_cfqg(struct cfq_group *cfqg)
1011 {
1012 struct cfq_rb_root *st;
1013 int i, j;
1014
1015 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1016 if (!atomic_dec_and_test(&cfqg->ref))
1017 return;
1018 for_each_cfqg_st(cfqg, i, j, st)
1019 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1020 kfree(cfqg);
1021 }
1022
1023 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1024 {
1025 /* Something wrong if we are trying to remove same group twice */
1026 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1027
1028 hlist_del_init(&cfqg->cfqd_node);
1029
1030 /*
1031 * Put the reference taken at the time of creation so that when all
1032 * queues are gone, group can be destroyed.
1033 */
1034 cfq_put_cfqg(cfqg);
1035 }
1036
1037 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1038 {
1039 struct hlist_node *pos, *n;
1040 struct cfq_group *cfqg;
1041
1042 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1043 /*
1044 * If cgroup removal path got to blk_group first and removed
1045 * it from cgroup list, then it will take care of destroying
1046 * cfqg also.
1047 */
1048 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1049 cfq_destroy_cfqg(cfqd, cfqg);
1050 }
1051 }
1052
1053 /*
1054 * Blk cgroup controller notification saying that blkio_group object is being
1055 * delinked as associated cgroup object is going away. That also means that
1056 * no new IO will come in this group. So get rid of this group as soon as
1057 * any pending IO in the group is finished.
1058 *
1059 * This function is called under rcu_read_lock(). key is the rcu protected
1060 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1061 * read lock.
1062 *
1063 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1064 * it should not be NULL as even if elevator was exiting, cgroup deltion
1065 * path got to it first.
1066 */
1067 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1068 {
1069 unsigned long flags;
1070 struct cfq_data *cfqd = key;
1071
1072 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1073 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1074 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1075 }
1076
1077 #else /* GROUP_IOSCHED */
1078 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1079 {
1080 return &cfqd->root_group;
1081 }
1082 static inline void
1083 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1084 cfqq->cfqg = cfqg;
1085 }
1086
1087 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1088 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1089
1090 #endif /* GROUP_IOSCHED */
1091
1092 /*
1093 * The cfqd->service_trees holds all pending cfq_queue's that have
1094 * requests waiting to be processed. It is sorted in the order that
1095 * we will service the queues.
1096 */
1097 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1098 bool add_front)
1099 {
1100 struct rb_node **p, *parent;
1101 struct cfq_queue *__cfqq;
1102 unsigned long rb_key;
1103 struct cfq_rb_root *service_tree;
1104 int left;
1105 int new_cfqq = 1;
1106 int group_changed = 0;
1107
1108 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1109 if (!cfqd->cfq_group_isolation
1110 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1111 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1112 /* Move this cfq to root group */
1113 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1114 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1115 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1116 cfqq->orig_cfqg = cfqq->cfqg;
1117 cfqq->cfqg = &cfqd->root_group;
1118 atomic_inc(&cfqd->root_group.ref);
1119 group_changed = 1;
1120 } else if (!cfqd->cfq_group_isolation
1121 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1122 /* cfqq is sequential now needs to go to its original group */
1123 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1124 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1125 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1126 cfq_put_cfqg(cfqq->cfqg);
1127 cfqq->cfqg = cfqq->orig_cfqg;
1128 cfqq->orig_cfqg = NULL;
1129 group_changed = 1;
1130 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1131 }
1132 #endif
1133
1134 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1135 cfqq_type(cfqq));
1136 if (cfq_class_idle(cfqq)) {
1137 rb_key = CFQ_IDLE_DELAY;
1138 parent = rb_last(&service_tree->rb);
1139 if (parent && parent != &cfqq->rb_node) {
1140 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1141 rb_key += __cfqq->rb_key;
1142 } else
1143 rb_key += jiffies;
1144 } else if (!add_front) {
1145 /*
1146 * Get our rb key offset. Subtract any residual slice
1147 * value carried from last service. A negative resid
1148 * count indicates slice overrun, and this should position
1149 * the next service time further away in the tree.
1150 */
1151 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1152 rb_key -= cfqq->slice_resid;
1153 cfqq->slice_resid = 0;
1154 } else {
1155 rb_key = -HZ;
1156 __cfqq = cfq_rb_first(service_tree);
1157 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1158 }
1159
1160 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1161 new_cfqq = 0;
1162 /*
1163 * same position, nothing more to do
1164 */
1165 if (rb_key == cfqq->rb_key &&
1166 cfqq->service_tree == service_tree)
1167 return;
1168
1169 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1170 cfqq->service_tree = NULL;
1171 }
1172
1173 left = 1;
1174 parent = NULL;
1175 cfqq->service_tree = service_tree;
1176 p = &service_tree->rb.rb_node;
1177 while (*p) {
1178 struct rb_node **n;
1179
1180 parent = *p;
1181 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1182
1183 /*
1184 * sort by key, that represents service time.
1185 */
1186 if (time_before(rb_key, __cfqq->rb_key))
1187 n = &(*p)->rb_left;
1188 else {
1189 n = &(*p)->rb_right;
1190 left = 0;
1191 }
1192
1193 p = n;
1194 }
1195
1196 if (left)
1197 service_tree->left = &cfqq->rb_node;
1198
1199 cfqq->rb_key = rb_key;
1200 rb_link_node(&cfqq->rb_node, parent, p);
1201 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1202 service_tree->count++;
1203 if ((add_front || !new_cfqq) && !group_changed)
1204 return;
1205 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1206 }
1207
1208 static struct cfq_queue *
1209 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1210 sector_t sector, struct rb_node **ret_parent,
1211 struct rb_node ***rb_link)
1212 {
1213 struct rb_node **p, *parent;
1214 struct cfq_queue *cfqq = NULL;
1215
1216 parent = NULL;
1217 p = &root->rb_node;
1218 while (*p) {
1219 struct rb_node **n;
1220
1221 parent = *p;
1222 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1223
1224 /*
1225 * Sort strictly based on sector. Smallest to the left,
1226 * largest to the right.
1227 */
1228 if (sector > blk_rq_pos(cfqq->next_rq))
1229 n = &(*p)->rb_right;
1230 else if (sector < blk_rq_pos(cfqq->next_rq))
1231 n = &(*p)->rb_left;
1232 else
1233 break;
1234 p = n;
1235 cfqq = NULL;
1236 }
1237
1238 *ret_parent = parent;
1239 if (rb_link)
1240 *rb_link = p;
1241 return cfqq;
1242 }
1243
1244 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1245 {
1246 struct rb_node **p, *parent;
1247 struct cfq_queue *__cfqq;
1248
1249 if (cfqq->p_root) {
1250 rb_erase(&cfqq->p_node, cfqq->p_root);
1251 cfqq->p_root = NULL;
1252 }
1253
1254 if (cfq_class_idle(cfqq))
1255 return;
1256 if (!cfqq->next_rq)
1257 return;
1258
1259 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1260 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1261 blk_rq_pos(cfqq->next_rq), &parent, &p);
1262 if (!__cfqq) {
1263 rb_link_node(&cfqq->p_node, parent, p);
1264 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1265 } else
1266 cfqq->p_root = NULL;
1267 }
1268
1269 /*
1270 * Update cfqq's position in the service tree.
1271 */
1272 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1273 {
1274 /*
1275 * Resorting requires the cfqq to be on the RR list already.
1276 */
1277 if (cfq_cfqq_on_rr(cfqq)) {
1278 cfq_service_tree_add(cfqd, cfqq, 0);
1279 cfq_prio_tree_add(cfqd, cfqq);
1280 }
1281 }
1282
1283 /*
1284 * add to busy list of queues for service, trying to be fair in ordering
1285 * the pending list according to last request service
1286 */
1287 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1288 {
1289 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1290 BUG_ON(cfq_cfqq_on_rr(cfqq));
1291 cfq_mark_cfqq_on_rr(cfqq);
1292 cfqd->busy_queues++;
1293
1294 cfq_resort_rr_list(cfqd, cfqq);
1295 }
1296
1297 /*
1298 * Called when the cfqq no longer has requests pending, remove it from
1299 * the service tree.
1300 */
1301 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1302 {
1303 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1304 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1305 cfq_clear_cfqq_on_rr(cfqq);
1306
1307 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1308 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1309 cfqq->service_tree = NULL;
1310 }
1311 if (cfqq->p_root) {
1312 rb_erase(&cfqq->p_node, cfqq->p_root);
1313 cfqq->p_root = NULL;
1314 }
1315
1316 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1317 BUG_ON(!cfqd->busy_queues);
1318 cfqd->busy_queues--;
1319 }
1320
1321 /*
1322 * rb tree support functions
1323 */
1324 static void cfq_del_rq_rb(struct request *rq)
1325 {
1326 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1327 const int sync = rq_is_sync(rq);
1328
1329 BUG_ON(!cfqq->queued[sync]);
1330 cfqq->queued[sync]--;
1331
1332 elv_rb_del(&cfqq->sort_list, rq);
1333
1334 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1335 /*
1336 * Queue will be deleted from service tree when we actually
1337 * expire it later. Right now just remove it from prio tree
1338 * as it is empty.
1339 */
1340 if (cfqq->p_root) {
1341 rb_erase(&cfqq->p_node, cfqq->p_root);
1342 cfqq->p_root = NULL;
1343 }
1344 }
1345 }
1346
1347 static void cfq_add_rq_rb(struct request *rq)
1348 {
1349 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1350 struct cfq_data *cfqd = cfqq->cfqd;
1351 struct request *__alias, *prev;
1352
1353 cfqq->queued[rq_is_sync(rq)]++;
1354
1355 /*
1356 * looks a little odd, but the first insert might return an alias.
1357 * if that happens, put the alias on the dispatch list
1358 */
1359 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1360 cfq_dispatch_insert(cfqd->queue, __alias);
1361
1362 if (!cfq_cfqq_on_rr(cfqq))
1363 cfq_add_cfqq_rr(cfqd, cfqq);
1364
1365 /*
1366 * check if this request is a better next-serve candidate
1367 */
1368 prev = cfqq->next_rq;
1369 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1370
1371 /*
1372 * adjust priority tree position, if ->next_rq changes
1373 */
1374 if (prev != cfqq->next_rq)
1375 cfq_prio_tree_add(cfqd, cfqq);
1376
1377 BUG_ON(!cfqq->next_rq);
1378 }
1379
1380 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1381 {
1382 elv_rb_del(&cfqq->sort_list, rq);
1383 cfqq->queued[rq_is_sync(rq)]--;
1384 blkiocg_update_request_remove_stats(&cfqq->cfqg->blkg, rq_data_dir(rq),
1385 rq_is_sync(rq));
1386 cfq_add_rq_rb(rq);
1387 blkiocg_update_request_add_stats(
1388 &cfqq->cfqg->blkg, &cfqq->cfqd->serving_group->blkg,
1389 rq_data_dir(rq), rq_is_sync(rq));
1390 }
1391
1392 static struct request *
1393 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1394 {
1395 struct task_struct *tsk = current;
1396 struct cfq_io_context *cic;
1397 struct cfq_queue *cfqq;
1398
1399 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1400 if (!cic)
1401 return NULL;
1402
1403 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1404 if (cfqq) {
1405 sector_t sector = bio->bi_sector + bio_sectors(bio);
1406
1407 return elv_rb_find(&cfqq->sort_list, sector);
1408 }
1409
1410 return NULL;
1411 }
1412
1413 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1414 {
1415 struct cfq_data *cfqd = q->elevator->elevator_data;
1416
1417 cfqd->rq_in_driver++;
1418 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1419 cfqd->rq_in_driver);
1420
1421 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1422 }
1423
1424 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1425 {
1426 struct cfq_data *cfqd = q->elevator->elevator_data;
1427
1428 WARN_ON(!cfqd->rq_in_driver);
1429 cfqd->rq_in_driver--;
1430 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1431 cfqd->rq_in_driver);
1432 }
1433
1434 static void cfq_remove_request(struct request *rq)
1435 {
1436 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1437
1438 if (cfqq->next_rq == rq)
1439 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1440
1441 list_del_init(&rq->queuelist);
1442 cfq_del_rq_rb(rq);
1443
1444 cfqq->cfqd->rq_queued--;
1445 blkiocg_update_request_remove_stats(&cfqq->cfqg->blkg, rq_data_dir(rq),
1446 rq_is_sync(rq));
1447 if (rq_is_meta(rq)) {
1448 WARN_ON(!cfqq->meta_pending);
1449 cfqq->meta_pending--;
1450 }
1451 }
1452
1453 static int cfq_merge(struct request_queue *q, struct request **req,
1454 struct bio *bio)
1455 {
1456 struct cfq_data *cfqd = q->elevator->elevator_data;
1457 struct request *__rq;
1458
1459 __rq = cfq_find_rq_fmerge(cfqd, bio);
1460 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1461 *req = __rq;
1462 return ELEVATOR_FRONT_MERGE;
1463 }
1464
1465 return ELEVATOR_NO_MERGE;
1466 }
1467
1468 static void cfq_merged_request(struct request_queue *q, struct request *req,
1469 int type)
1470 {
1471 if (type == ELEVATOR_FRONT_MERGE) {
1472 struct cfq_queue *cfqq = RQ_CFQQ(req);
1473
1474 cfq_reposition_rq_rb(cfqq, req);
1475 }
1476 }
1477
1478 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1479 struct bio *bio)
1480 {
1481 struct cfq_queue *cfqq = RQ_CFQQ(req);
1482 blkiocg_update_io_merged_stats(&cfqq->cfqg->blkg, bio_data_dir(bio),
1483 cfq_bio_sync(bio));
1484 }
1485
1486 static void
1487 cfq_merged_requests(struct request_queue *q, struct request *rq,
1488 struct request *next)
1489 {
1490 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1491 /*
1492 * reposition in fifo if next is older than rq
1493 */
1494 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1495 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1496 list_move(&rq->queuelist, &next->queuelist);
1497 rq_set_fifo_time(rq, rq_fifo_time(next));
1498 }
1499
1500 if (cfqq->next_rq == next)
1501 cfqq->next_rq = rq;
1502 cfq_remove_request(next);
1503 blkiocg_update_io_merged_stats(&cfqq->cfqg->blkg, rq_data_dir(next),
1504 rq_is_sync(next));
1505 }
1506
1507 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1508 struct bio *bio)
1509 {
1510 struct cfq_data *cfqd = q->elevator->elevator_data;
1511 struct cfq_io_context *cic;
1512 struct cfq_queue *cfqq;
1513
1514 /*
1515 * Disallow merge of a sync bio into an async request.
1516 */
1517 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1518 return false;
1519
1520 /*
1521 * Lookup the cfqq that this bio will be queued with. Allow
1522 * merge only if rq is queued there.
1523 */
1524 cic = cfq_cic_lookup(cfqd, current->io_context);
1525 if (!cic)
1526 return false;
1527
1528 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1529 return cfqq == RQ_CFQQ(rq);
1530 }
1531
1532 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1533 {
1534 del_timer(&cfqd->idle_slice_timer);
1535 blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1536 }
1537
1538 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1539 struct cfq_queue *cfqq)
1540 {
1541 if (cfqq) {
1542 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1543 cfqd->serving_prio, cfqd->serving_type);
1544 blkiocg_update_set_active_queue_stats(&cfqq->cfqg->blkg);
1545 cfqq->slice_start = 0;
1546 cfqq->dispatch_start = jiffies;
1547 cfqq->allocated_slice = 0;
1548 cfqq->slice_end = 0;
1549 cfqq->slice_dispatch = 0;
1550
1551 cfq_clear_cfqq_wait_request(cfqq);
1552 cfq_clear_cfqq_must_dispatch(cfqq);
1553 cfq_clear_cfqq_must_alloc_slice(cfqq);
1554 cfq_clear_cfqq_fifo_expire(cfqq);
1555 cfq_mark_cfqq_slice_new(cfqq);
1556
1557 cfq_del_timer(cfqd, cfqq);
1558 }
1559
1560 cfqd->active_queue = cfqq;
1561 }
1562
1563 /*
1564 * current cfqq expired its slice (or was too idle), select new one
1565 */
1566 static void
1567 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1568 bool timed_out, bool forced)
1569 {
1570 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1571
1572 if (cfq_cfqq_wait_request(cfqq))
1573 cfq_del_timer(cfqd, cfqq);
1574
1575 cfq_clear_cfqq_wait_request(cfqq);
1576 cfq_clear_cfqq_wait_busy(cfqq);
1577
1578 /*
1579 * If this cfqq is shared between multiple processes, check to
1580 * make sure that those processes are still issuing I/Os within
1581 * the mean seek distance. If not, it may be time to break the
1582 * queues apart again.
1583 */
1584 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1585 cfq_mark_cfqq_split_coop(cfqq);
1586
1587 /*
1588 * store what was left of this slice, if the queue idled/timed out
1589 */
1590 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1591 cfqq->slice_resid = cfqq->slice_end - jiffies;
1592 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1593 }
1594
1595 cfq_group_served(cfqd, cfqq->cfqg, cfqq, forced);
1596
1597 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1598 cfq_del_cfqq_rr(cfqd, cfqq);
1599
1600 cfq_resort_rr_list(cfqd, cfqq);
1601
1602 if (cfqq == cfqd->active_queue)
1603 cfqd->active_queue = NULL;
1604
1605 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1606 cfqd->grp_service_tree.active = NULL;
1607
1608 if (cfqd->active_cic) {
1609 put_io_context(cfqd->active_cic->ioc);
1610 cfqd->active_cic = NULL;
1611 }
1612 }
1613
1614 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out,
1615 bool forced)
1616 {
1617 struct cfq_queue *cfqq = cfqd->active_queue;
1618
1619 if (cfqq)
1620 __cfq_slice_expired(cfqd, cfqq, timed_out, forced);
1621 }
1622
1623 /*
1624 * Get next queue for service. Unless we have a queue preemption,
1625 * we'll simply select the first cfqq in the service tree.
1626 */
1627 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1628 {
1629 struct cfq_rb_root *service_tree =
1630 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1631 cfqd->serving_type);
1632
1633 if (!cfqd->rq_queued)
1634 return NULL;
1635
1636 /* There is nothing to dispatch */
1637 if (!service_tree)
1638 return NULL;
1639 if (RB_EMPTY_ROOT(&service_tree->rb))
1640 return NULL;
1641 return cfq_rb_first(service_tree);
1642 }
1643
1644 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1645 {
1646 struct cfq_group *cfqg;
1647 struct cfq_queue *cfqq;
1648 int i, j;
1649 struct cfq_rb_root *st;
1650
1651 if (!cfqd->rq_queued)
1652 return NULL;
1653
1654 cfqg = cfq_get_next_cfqg(cfqd);
1655 if (!cfqg)
1656 return NULL;
1657
1658 for_each_cfqg_st(cfqg, i, j, st)
1659 if ((cfqq = cfq_rb_first(st)) != NULL)
1660 return cfqq;
1661 return NULL;
1662 }
1663
1664 /*
1665 * Get and set a new active queue for service.
1666 */
1667 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1668 struct cfq_queue *cfqq)
1669 {
1670 if (!cfqq)
1671 cfqq = cfq_get_next_queue(cfqd);
1672
1673 __cfq_set_active_queue(cfqd, cfqq);
1674 return cfqq;
1675 }
1676
1677 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1678 struct request *rq)
1679 {
1680 if (blk_rq_pos(rq) >= cfqd->last_position)
1681 return blk_rq_pos(rq) - cfqd->last_position;
1682 else
1683 return cfqd->last_position - blk_rq_pos(rq);
1684 }
1685
1686 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1687 struct request *rq)
1688 {
1689 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1690 }
1691
1692 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1693 struct cfq_queue *cur_cfqq)
1694 {
1695 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1696 struct rb_node *parent, *node;
1697 struct cfq_queue *__cfqq;
1698 sector_t sector = cfqd->last_position;
1699
1700 if (RB_EMPTY_ROOT(root))
1701 return NULL;
1702
1703 /*
1704 * First, if we find a request starting at the end of the last
1705 * request, choose it.
1706 */
1707 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1708 if (__cfqq)
1709 return __cfqq;
1710
1711 /*
1712 * If the exact sector wasn't found, the parent of the NULL leaf
1713 * will contain the closest sector.
1714 */
1715 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1716 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1717 return __cfqq;
1718
1719 if (blk_rq_pos(__cfqq->next_rq) < sector)
1720 node = rb_next(&__cfqq->p_node);
1721 else
1722 node = rb_prev(&__cfqq->p_node);
1723 if (!node)
1724 return NULL;
1725
1726 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1727 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1728 return __cfqq;
1729
1730 return NULL;
1731 }
1732
1733 /*
1734 * cfqd - obvious
1735 * cur_cfqq - passed in so that we don't decide that the current queue is
1736 * closely cooperating with itself.
1737 *
1738 * So, basically we're assuming that that cur_cfqq has dispatched at least
1739 * one request, and that cfqd->last_position reflects a position on the disk
1740 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1741 * assumption.
1742 */
1743 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1744 struct cfq_queue *cur_cfqq)
1745 {
1746 struct cfq_queue *cfqq;
1747
1748 if (cfq_class_idle(cur_cfqq))
1749 return NULL;
1750 if (!cfq_cfqq_sync(cur_cfqq))
1751 return NULL;
1752 if (CFQQ_SEEKY(cur_cfqq))
1753 return NULL;
1754
1755 /*
1756 * Don't search priority tree if it's the only queue in the group.
1757 */
1758 if (cur_cfqq->cfqg->nr_cfqq == 1)
1759 return NULL;
1760
1761 /*
1762 * We should notice if some of the queues are cooperating, eg
1763 * working closely on the same area of the disk. In that case,
1764 * we can group them together and don't waste time idling.
1765 */
1766 cfqq = cfqq_close(cfqd, cur_cfqq);
1767 if (!cfqq)
1768 return NULL;
1769
1770 /* If new queue belongs to different cfq_group, don't choose it */
1771 if (cur_cfqq->cfqg != cfqq->cfqg)
1772 return NULL;
1773
1774 /*
1775 * It only makes sense to merge sync queues.
1776 */
1777 if (!cfq_cfqq_sync(cfqq))
1778 return NULL;
1779 if (CFQQ_SEEKY(cfqq))
1780 return NULL;
1781
1782 /*
1783 * Do not merge queues of different priority classes
1784 */
1785 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1786 return NULL;
1787
1788 return cfqq;
1789 }
1790
1791 /*
1792 * Determine whether we should enforce idle window for this queue.
1793 */
1794
1795 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1796 {
1797 enum wl_prio_t prio = cfqq_prio(cfqq);
1798 struct cfq_rb_root *service_tree = cfqq->service_tree;
1799
1800 BUG_ON(!service_tree);
1801 BUG_ON(!service_tree->count);
1802
1803 /* We never do for idle class queues. */
1804 if (prio == IDLE_WORKLOAD)
1805 return false;
1806
1807 /* We do for queues that were marked with idle window flag. */
1808 if (cfq_cfqq_idle_window(cfqq) &&
1809 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1810 return true;
1811
1812 /*
1813 * Otherwise, we do only if they are the last ones
1814 * in their service tree.
1815 */
1816 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1817 return 1;
1818 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1819 service_tree->count);
1820 return 0;
1821 }
1822
1823 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1824 {
1825 struct cfq_queue *cfqq = cfqd->active_queue;
1826 struct cfq_io_context *cic;
1827 unsigned long sl;
1828
1829 /*
1830 * SSD device without seek penalty, disable idling. But only do so
1831 * for devices that support queuing, otherwise we still have a problem
1832 * with sync vs async workloads.
1833 */
1834 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1835 return;
1836
1837 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1838 WARN_ON(cfq_cfqq_slice_new(cfqq));
1839
1840 /*
1841 * idle is disabled, either manually or by past process history
1842 */
1843 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1844 return;
1845
1846 /*
1847 * still active requests from this queue, don't idle
1848 */
1849 if (cfqq->dispatched)
1850 return;
1851
1852 /*
1853 * task has exited, don't wait
1854 */
1855 cic = cfqd->active_cic;
1856 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1857 return;
1858
1859 /*
1860 * If our average think time is larger than the remaining time
1861 * slice, then don't idle. This avoids overrunning the allotted
1862 * time slice.
1863 */
1864 if (sample_valid(cic->ttime_samples) &&
1865 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1866 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1867 cic->ttime_mean);
1868 return;
1869 }
1870
1871 cfq_mark_cfqq_wait_request(cfqq);
1872
1873 sl = cfqd->cfq_slice_idle;
1874
1875 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1876 blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
1877 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1878 }
1879
1880 /*
1881 * Move request from internal lists to the request queue dispatch list.
1882 */
1883 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1884 {
1885 struct cfq_data *cfqd = q->elevator->elevator_data;
1886 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1887
1888 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1889
1890 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1891 cfq_remove_request(rq);
1892 cfqq->dispatched++;
1893 elv_dispatch_sort(q, rq);
1894
1895 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1896 blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
1897 rq_data_dir(rq), rq_is_sync(rq));
1898 }
1899
1900 /*
1901 * return expired entry, or NULL to just start from scratch in rbtree
1902 */
1903 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1904 {
1905 struct request *rq = NULL;
1906
1907 if (cfq_cfqq_fifo_expire(cfqq))
1908 return NULL;
1909
1910 cfq_mark_cfqq_fifo_expire(cfqq);
1911
1912 if (list_empty(&cfqq->fifo))
1913 return NULL;
1914
1915 rq = rq_entry_fifo(cfqq->fifo.next);
1916 if (time_before(jiffies, rq_fifo_time(rq)))
1917 rq = NULL;
1918
1919 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1920 return rq;
1921 }
1922
1923 static inline int
1924 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1925 {
1926 const int base_rq = cfqd->cfq_slice_async_rq;
1927
1928 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1929
1930 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1931 }
1932
1933 /*
1934 * Must be called with the queue_lock held.
1935 */
1936 static int cfqq_process_refs(struct cfq_queue *cfqq)
1937 {
1938 int process_refs, io_refs;
1939
1940 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1941 process_refs = atomic_read(&cfqq->ref) - io_refs;
1942 BUG_ON(process_refs < 0);
1943 return process_refs;
1944 }
1945
1946 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1947 {
1948 int process_refs, new_process_refs;
1949 struct cfq_queue *__cfqq;
1950
1951 /* Avoid a circular list and skip interim queue merges */
1952 while ((__cfqq = new_cfqq->new_cfqq)) {
1953 if (__cfqq == cfqq)
1954 return;
1955 new_cfqq = __cfqq;
1956 }
1957
1958 process_refs = cfqq_process_refs(cfqq);
1959 /*
1960 * If the process for the cfqq has gone away, there is no
1961 * sense in merging the queues.
1962 */
1963 if (process_refs == 0)
1964 return;
1965
1966 /*
1967 * Merge in the direction of the lesser amount of work.
1968 */
1969 new_process_refs = cfqq_process_refs(new_cfqq);
1970 if (new_process_refs >= process_refs) {
1971 cfqq->new_cfqq = new_cfqq;
1972 atomic_add(process_refs, &new_cfqq->ref);
1973 } else {
1974 new_cfqq->new_cfqq = cfqq;
1975 atomic_add(new_process_refs, &cfqq->ref);
1976 }
1977 }
1978
1979 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1980 struct cfq_group *cfqg, enum wl_prio_t prio)
1981 {
1982 struct cfq_queue *queue;
1983 int i;
1984 bool key_valid = false;
1985 unsigned long lowest_key = 0;
1986 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1987
1988 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
1989 /* select the one with lowest rb_key */
1990 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
1991 if (queue &&
1992 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1993 lowest_key = queue->rb_key;
1994 cur_best = i;
1995 key_valid = true;
1996 }
1997 }
1998
1999 return cur_best;
2000 }
2001
2002 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2003 {
2004 unsigned slice;
2005 unsigned count;
2006 struct cfq_rb_root *st;
2007 unsigned group_slice;
2008
2009 if (!cfqg) {
2010 cfqd->serving_prio = IDLE_WORKLOAD;
2011 cfqd->workload_expires = jiffies + 1;
2012 return;
2013 }
2014
2015 /* Choose next priority. RT > BE > IDLE */
2016 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2017 cfqd->serving_prio = RT_WORKLOAD;
2018 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2019 cfqd->serving_prio = BE_WORKLOAD;
2020 else {
2021 cfqd->serving_prio = IDLE_WORKLOAD;
2022 cfqd->workload_expires = jiffies + 1;
2023 return;
2024 }
2025
2026 /*
2027 * For RT and BE, we have to choose also the type
2028 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2029 * expiration time
2030 */
2031 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2032 count = st->count;
2033
2034 /*
2035 * check workload expiration, and that we still have other queues ready
2036 */
2037 if (count && !time_after(jiffies, cfqd->workload_expires))
2038 return;
2039
2040 /* otherwise select new workload type */
2041 cfqd->serving_type =
2042 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2043 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2044 count = st->count;
2045
2046 /*
2047 * the workload slice is computed as a fraction of target latency
2048 * proportional to the number of queues in that workload, over
2049 * all the queues in the same priority class
2050 */
2051 group_slice = cfq_group_slice(cfqd, cfqg);
2052
2053 slice = group_slice * count /
2054 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2055 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2056
2057 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2058 unsigned int tmp;
2059
2060 /*
2061 * Async queues are currently system wide. Just taking
2062 * proportion of queues with-in same group will lead to higher
2063 * async ratio system wide as generally root group is going
2064 * to have higher weight. A more accurate thing would be to
2065 * calculate system wide asnc/sync ratio.
2066 */
2067 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2068 tmp = tmp/cfqd->busy_queues;
2069 slice = min_t(unsigned, slice, tmp);
2070
2071 /* async workload slice is scaled down according to
2072 * the sync/async slice ratio. */
2073 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2074 } else
2075 /* sync workload slice is at least 2 * cfq_slice_idle */
2076 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2077
2078 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2079 cfq_log(cfqd, "workload slice:%d", slice);
2080 cfqd->workload_expires = jiffies + slice;
2081 cfqd->noidle_tree_requires_idle = false;
2082 }
2083
2084 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2085 {
2086 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2087 struct cfq_group *cfqg;
2088
2089 if (RB_EMPTY_ROOT(&st->rb))
2090 return NULL;
2091 cfqg = cfq_rb_first_group(st);
2092 st->active = &cfqg->rb_node;
2093 update_min_vdisktime(st);
2094 return cfqg;
2095 }
2096
2097 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2098 {
2099 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2100
2101 cfqd->serving_group = cfqg;
2102
2103 /* Restore the workload type data */
2104 if (cfqg->saved_workload_slice) {
2105 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2106 cfqd->serving_type = cfqg->saved_workload;
2107 cfqd->serving_prio = cfqg->saved_serving_prio;
2108 } else
2109 cfqd->workload_expires = jiffies - 1;
2110
2111 choose_service_tree(cfqd, cfqg);
2112 }
2113
2114 /*
2115 * Select a queue for service. If we have a current active queue,
2116 * check whether to continue servicing it, or retrieve and set a new one.
2117 */
2118 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2119 {
2120 struct cfq_queue *cfqq, *new_cfqq = NULL;
2121
2122 cfqq = cfqd->active_queue;
2123 if (!cfqq)
2124 goto new_queue;
2125
2126 if (!cfqd->rq_queued)
2127 return NULL;
2128
2129 /*
2130 * We were waiting for group to get backlogged. Expire the queue
2131 */
2132 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2133 goto expire;
2134
2135 /*
2136 * The active queue has run out of time, expire it and select new.
2137 */
2138 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2139 /*
2140 * If slice had not expired at the completion of last request
2141 * we might not have turned on wait_busy flag. Don't expire
2142 * the queue yet. Allow the group to get backlogged.
2143 *
2144 * The very fact that we have used the slice, that means we
2145 * have been idling all along on this queue and it should be
2146 * ok to wait for this request to complete.
2147 */
2148 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2149 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2150 cfqq = NULL;
2151 goto keep_queue;
2152 } else
2153 goto expire;
2154 }
2155
2156 /*
2157 * The active queue has requests and isn't expired, allow it to
2158 * dispatch.
2159 */
2160 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2161 goto keep_queue;
2162
2163 /*
2164 * If another queue has a request waiting within our mean seek
2165 * distance, let it run. The expire code will check for close
2166 * cooperators and put the close queue at the front of the service
2167 * tree. If possible, merge the expiring queue with the new cfqq.
2168 */
2169 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2170 if (new_cfqq) {
2171 if (!cfqq->new_cfqq)
2172 cfq_setup_merge(cfqq, new_cfqq);
2173 goto expire;
2174 }
2175
2176 /*
2177 * No requests pending. If the active queue still has requests in
2178 * flight or is idling for a new request, allow either of these
2179 * conditions to happen (or time out) before selecting a new queue.
2180 */
2181 if (timer_pending(&cfqd->idle_slice_timer) ||
2182 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2183 cfqq = NULL;
2184 goto keep_queue;
2185 }
2186
2187 expire:
2188 cfq_slice_expired(cfqd, 0, false);
2189 new_queue:
2190 /*
2191 * Current queue expired. Check if we have to switch to a new
2192 * service tree
2193 */
2194 if (!new_cfqq)
2195 cfq_choose_cfqg(cfqd);
2196
2197 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2198 keep_queue:
2199 return cfqq;
2200 }
2201
2202 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2203 {
2204 int dispatched = 0;
2205
2206 while (cfqq->next_rq) {
2207 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2208 dispatched++;
2209 }
2210
2211 BUG_ON(!list_empty(&cfqq->fifo));
2212
2213 /* By default cfqq is not expired if it is empty. Do it explicitly */
2214 __cfq_slice_expired(cfqq->cfqd, cfqq, 0, true);
2215 return dispatched;
2216 }
2217
2218 /*
2219 * Drain our current requests. Used for barriers and when switching
2220 * io schedulers on-the-fly.
2221 */
2222 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2223 {
2224 struct cfq_queue *cfqq;
2225 int dispatched = 0;
2226
2227 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2228 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2229
2230 cfq_slice_expired(cfqd, 0, true);
2231 BUG_ON(cfqd->busy_queues);
2232
2233 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2234 return dispatched;
2235 }
2236
2237 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2238 struct cfq_queue *cfqq)
2239 {
2240 /* the queue hasn't finished any request, can't estimate */
2241 if (cfq_cfqq_slice_new(cfqq))
2242 return 1;
2243 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2244 cfqq->slice_end))
2245 return 1;
2246
2247 return 0;
2248 }
2249
2250 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2251 {
2252 unsigned int max_dispatch;
2253
2254 /*
2255 * Drain async requests before we start sync IO
2256 */
2257 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2258 return false;
2259
2260 /*
2261 * If this is an async queue and we have sync IO in flight, let it wait
2262 */
2263 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2264 return false;
2265
2266 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2267 if (cfq_class_idle(cfqq))
2268 max_dispatch = 1;
2269
2270 /*
2271 * Does this cfqq already have too much IO in flight?
2272 */
2273 if (cfqq->dispatched >= max_dispatch) {
2274 /*
2275 * idle queue must always only have a single IO in flight
2276 */
2277 if (cfq_class_idle(cfqq))
2278 return false;
2279
2280 /*
2281 * We have other queues, don't allow more IO from this one
2282 */
2283 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2284 return false;
2285
2286 /*
2287 * Sole queue user, no limit
2288 */
2289 if (cfqd->busy_queues == 1)
2290 max_dispatch = -1;
2291 else
2292 /*
2293 * Normally we start throttling cfqq when cfq_quantum/2
2294 * requests have been dispatched. But we can drive
2295 * deeper queue depths at the beginning of slice
2296 * subjected to upper limit of cfq_quantum.
2297 * */
2298 max_dispatch = cfqd->cfq_quantum;
2299 }
2300
2301 /*
2302 * Async queues must wait a bit before being allowed dispatch.
2303 * We also ramp up the dispatch depth gradually for async IO,
2304 * based on the last sync IO we serviced
2305 */
2306 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2307 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2308 unsigned int depth;
2309
2310 depth = last_sync / cfqd->cfq_slice[1];
2311 if (!depth && !cfqq->dispatched)
2312 depth = 1;
2313 if (depth < max_dispatch)
2314 max_dispatch = depth;
2315 }
2316
2317 /*
2318 * If we're below the current max, allow a dispatch
2319 */
2320 return cfqq->dispatched < max_dispatch;
2321 }
2322
2323 /*
2324 * Dispatch a request from cfqq, moving them to the request queue
2325 * dispatch list.
2326 */
2327 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2328 {
2329 struct request *rq;
2330
2331 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2332
2333 if (!cfq_may_dispatch(cfqd, cfqq))
2334 return false;
2335
2336 /*
2337 * follow expired path, else get first next available
2338 */
2339 rq = cfq_check_fifo(cfqq);
2340 if (!rq)
2341 rq = cfqq->next_rq;
2342
2343 /*
2344 * insert request into driver dispatch list
2345 */
2346 cfq_dispatch_insert(cfqd->queue, rq);
2347
2348 if (!cfqd->active_cic) {
2349 struct cfq_io_context *cic = RQ_CIC(rq);
2350
2351 atomic_long_inc(&cic->ioc->refcount);
2352 cfqd->active_cic = cic;
2353 }
2354
2355 return true;
2356 }
2357
2358 /*
2359 * Find the cfqq that we need to service and move a request from that to the
2360 * dispatch list
2361 */
2362 static int cfq_dispatch_requests(struct request_queue *q, int force)
2363 {
2364 struct cfq_data *cfqd = q->elevator->elevator_data;
2365 struct cfq_queue *cfqq;
2366
2367 if (!cfqd->busy_queues)
2368 return 0;
2369
2370 if (unlikely(force))
2371 return cfq_forced_dispatch(cfqd);
2372
2373 cfqq = cfq_select_queue(cfqd);
2374 if (!cfqq)
2375 return 0;
2376
2377 /*
2378 * Dispatch a request from this cfqq, if it is allowed
2379 */
2380 if (!cfq_dispatch_request(cfqd, cfqq))
2381 return 0;
2382
2383 cfqq->slice_dispatch++;
2384 cfq_clear_cfqq_must_dispatch(cfqq);
2385
2386 /*
2387 * expire an async queue immediately if it has used up its slice. idle
2388 * queue always expire after 1 dispatch round.
2389 */
2390 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2391 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2392 cfq_class_idle(cfqq))) {
2393 cfqq->slice_end = jiffies + 1;
2394 cfq_slice_expired(cfqd, 0, false);
2395 }
2396
2397 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2398 /*
2399 * This is needed since we don't exactly match the mod_timer() and
2400 * del_timer() calls in CFQ.
2401 */
2402 blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
2403 return 1;
2404 }
2405
2406 /*
2407 * task holds one reference to the queue, dropped when task exits. each rq
2408 * in-flight on this queue also holds a reference, dropped when rq is freed.
2409 *
2410 * Each cfq queue took a reference on the parent group. Drop it now.
2411 * queue lock must be held here.
2412 */
2413 static void cfq_put_queue(struct cfq_queue *cfqq)
2414 {
2415 struct cfq_data *cfqd = cfqq->cfqd;
2416 struct cfq_group *cfqg, *orig_cfqg;
2417
2418 BUG_ON(atomic_read(&cfqq->ref) <= 0);
2419
2420 if (!atomic_dec_and_test(&cfqq->ref))
2421 return;
2422
2423 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2424 BUG_ON(rb_first(&cfqq->sort_list));
2425 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2426 cfqg = cfqq->cfqg;
2427 orig_cfqg = cfqq->orig_cfqg;
2428
2429 if (unlikely(cfqd->active_queue == cfqq)) {
2430 __cfq_slice_expired(cfqd, cfqq, 0, false);
2431 cfq_schedule_dispatch(cfqd);
2432 }
2433
2434 BUG_ON(cfq_cfqq_on_rr(cfqq));
2435 kmem_cache_free(cfq_pool, cfqq);
2436 cfq_put_cfqg(cfqg);
2437 if (orig_cfqg)
2438 cfq_put_cfqg(orig_cfqg);
2439 }
2440
2441 /*
2442 * Must always be called with the rcu_read_lock() held
2443 */
2444 static void
2445 __call_for_each_cic(struct io_context *ioc,
2446 void (*func)(struct io_context *, struct cfq_io_context *))
2447 {
2448 struct cfq_io_context *cic;
2449 struct hlist_node *n;
2450
2451 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2452 func(ioc, cic);
2453 }
2454
2455 /*
2456 * Call func for each cic attached to this ioc.
2457 */
2458 static void
2459 call_for_each_cic(struct io_context *ioc,
2460 void (*func)(struct io_context *, struct cfq_io_context *))
2461 {
2462 rcu_read_lock();
2463 __call_for_each_cic(ioc, func);
2464 rcu_read_unlock();
2465 }
2466
2467 static void cfq_cic_free_rcu(struct rcu_head *head)
2468 {
2469 struct cfq_io_context *cic;
2470
2471 cic = container_of(head, struct cfq_io_context, rcu_head);
2472
2473 kmem_cache_free(cfq_ioc_pool, cic);
2474 elv_ioc_count_dec(cfq_ioc_count);
2475
2476 if (ioc_gone) {
2477 /*
2478 * CFQ scheduler is exiting, grab exit lock and check
2479 * the pending io context count. If it hits zero,
2480 * complete ioc_gone and set it back to NULL
2481 */
2482 spin_lock(&ioc_gone_lock);
2483 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2484 complete(ioc_gone);
2485 ioc_gone = NULL;
2486 }
2487 spin_unlock(&ioc_gone_lock);
2488 }
2489 }
2490
2491 static void cfq_cic_free(struct cfq_io_context *cic)
2492 {
2493 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2494 }
2495
2496 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2497 {
2498 unsigned long flags;
2499
2500 BUG_ON(!cic->dead_key);
2501
2502 spin_lock_irqsave(&ioc->lock, flags);
2503 radix_tree_delete(&ioc->radix_root, cic->dead_key);
2504 hlist_del_rcu(&cic->cic_list);
2505 spin_unlock_irqrestore(&ioc->lock, flags);
2506
2507 cfq_cic_free(cic);
2508 }
2509
2510 /*
2511 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2512 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2513 * and ->trim() which is called with the task lock held
2514 */
2515 static void cfq_free_io_context(struct io_context *ioc)
2516 {
2517 /*
2518 * ioc->refcount is zero here, or we are called from elv_unregister(),
2519 * so no more cic's are allowed to be linked into this ioc. So it
2520 * should be ok to iterate over the known list, we will see all cic's
2521 * since no new ones are added.
2522 */
2523 __call_for_each_cic(ioc, cic_free_func);
2524 }
2525
2526 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2527 {
2528 struct cfq_queue *__cfqq, *next;
2529
2530 if (unlikely(cfqq == cfqd->active_queue)) {
2531 __cfq_slice_expired(cfqd, cfqq, 0, false);
2532 cfq_schedule_dispatch(cfqd);
2533 }
2534
2535 /*
2536 * If this queue was scheduled to merge with another queue, be
2537 * sure to drop the reference taken on that queue (and others in
2538 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2539 */
2540 __cfqq = cfqq->new_cfqq;
2541 while (__cfqq) {
2542 if (__cfqq == cfqq) {
2543 WARN(1, "cfqq->new_cfqq loop detected\n");
2544 break;
2545 }
2546 next = __cfqq->new_cfqq;
2547 cfq_put_queue(__cfqq);
2548 __cfqq = next;
2549 }
2550
2551 cfq_put_queue(cfqq);
2552 }
2553
2554 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2555 struct cfq_io_context *cic)
2556 {
2557 struct io_context *ioc = cic->ioc;
2558
2559 list_del_init(&cic->queue_list);
2560
2561 /*
2562 * Make sure key == NULL is seen for dead queues
2563 */
2564 smp_wmb();
2565 cic->dead_key = (unsigned long) cic->key;
2566 cic->key = NULL;
2567
2568 if (ioc->ioc_data == cic)
2569 rcu_assign_pointer(ioc->ioc_data, NULL);
2570
2571 if (cic->cfqq[BLK_RW_ASYNC]) {
2572 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2573 cic->cfqq[BLK_RW_ASYNC] = NULL;
2574 }
2575
2576 if (cic->cfqq[BLK_RW_SYNC]) {
2577 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2578 cic->cfqq[BLK_RW_SYNC] = NULL;
2579 }
2580 }
2581
2582 static void cfq_exit_single_io_context(struct io_context *ioc,
2583 struct cfq_io_context *cic)
2584 {
2585 struct cfq_data *cfqd = cic->key;
2586
2587 if (cfqd) {
2588 struct request_queue *q = cfqd->queue;
2589 unsigned long flags;
2590
2591 spin_lock_irqsave(q->queue_lock, flags);
2592
2593 /*
2594 * Ensure we get a fresh copy of the ->key to prevent
2595 * race between exiting task and queue
2596 */
2597 smp_read_barrier_depends();
2598 if (cic->key)
2599 __cfq_exit_single_io_context(cfqd, cic);
2600
2601 spin_unlock_irqrestore(q->queue_lock, flags);
2602 }
2603 }
2604
2605 /*
2606 * The process that ioc belongs to has exited, we need to clean up
2607 * and put the internal structures we have that belongs to that process.
2608 */
2609 static void cfq_exit_io_context(struct io_context *ioc)
2610 {
2611 call_for_each_cic(ioc, cfq_exit_single_io_context);
2612 }
2613
2614 static struct cfq_io_context *
2615 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2616 {
2617 struct cfq_io_context *cic;
2618
2619 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2620 cfqd->queue->node);
2621 if (cic) {
2622 cic->last_end_request = jiffies;
2623 INIT_LIST_HEAD(&cic->queue_list);
2624 INIT_HLIST_NODE(&cic->cic_list);
2625 cic->dtor = cfq_free_io_context;
2626 cic->exit = cfq_exit_io_context;
2627 elv_ioc_count_inc(cfq_ioc_count);
2628 }
2629
2630 return cic;
2631 }
2632
2633 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2634 {
2635 struct task_struct *tsk = current;
2636 int ioprio_class;
2637
2638 if (!cfq_cfqq_prio_changed(cfqq))
2639 return;
2640
2641 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2642 switch (ioprio_class) {
2643 default:
2644 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2645 case IOPRIO_CLASS_NONE:
2646 /*
2647 * no prio set, inherit CPU scheduling settings
2648 */
2649 cfqq->ioprio = task_nice_ioprio(tsk);
2650 cfqq->ioprio_class = task_nice_ioclass(tsk);
2651 break;
2652 case IOPRIO_CLASS_RT:
2653 cfqq->ioprio = task_ioprio(ioc);
2654 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2655 break;
2656 case IOPRIO_CLASS_BE:
2657 cfqq->ioprio = task_ioprio(ioc);
2658 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2659 break;
2660 case IOPRIO_CLASS_IDLE:
2661 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2662 cfqq->ioprio = 7;
2663 cfq_clear_cfqq_idle_window(cfqq);
2664 break;
2665 }
2666
2667 /*
2668 * keep track of original prio settings in case we have to temporarily
2669 * elevate the priority of this queue
2670 */
2671 cfqq->org_ioprio = cfqq->ioprio;
2672 cfqq->org_ioprio_class = cfqq->ioprio_class;
2673 cfq_clear_cfqq_prio_changed(cfqq);
2674 }
2675
2676 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2677 {
2678 struct cfq_data *cfqd = cic->key;
2679 struct cfq_queue *cfqq;
2680 unsigned long flags;
2681
2682 if (unlikely(!cfqd))
2683 return;
2684
2685 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2686
2687 cfqq = cic->cfqq[BLK_RW_ASYNC];
2688 if (cfqq) {
2689 struct cfq_queue *new_cfqq;
2690 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2691 GFP_ATOMIC);
2692 if (new_cfqq) {
2693 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2694 cfq_put_queue(cfqq);
2695 }
2696 }
2697
2698 cfqq = cic->cfqq[BLK_RW_SYNC];
2699 if (cfqq)
2700 cfq_mark_cfqq_prio_changed(cfqq);
2701
2702 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2703 }
2704
2705 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2706 {
2707 call_for_each_cic(ioc, changed_ioprio);
2708 ioc->ioprio_changed = 0;
2709 }
2710
2711 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2712 pid_t pid, bool is_sync)
2713 {
2714 RB_CLEAR_NODE(&cfqq->rb_node);
2715 RB_CLEAR_NODE(&cfqq->p_node);
2716 INIT_LIST_HEAD(&cfqq->fifo);
2717
2718 atomic_set(&cfqq->ref, 0);
2719 cfqq->cfqd = cfqd;
2720
2721 cfq_mark_cfqq_prio_changed(cfqq);
2722
2723 if (is_sync) {
2724 if (!cfq_class_idle(cfqq))
2725 cfq_mark_cfqq_idle_window(cfqq);
2726 cfq_mark_cfqq_sync(cfqq);
2727 }
2728 cfqq->pid = pid;
2729 }
2730
2731 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2732 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2733 {
2734 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2735 struct cfq_data *cfqd = cic->key;
2736 unsigned long flags;
2737 struct request_queue *q;
2738
2739 if (unlikely(!cfqd))
2740 return;
2741
2742 q = cfqd->queue;
2743
2744 spin_lock_irqsave(q->queue_lock, flags);
2745
2746 if (sync_cfqq) {
2747 /*
2748 * Drop reference to sync queue. A new sync queue will be
2749 * assigned in new group upon arrival of a fresh request.
2750 */
2751 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2752 cic_set_cfqq(cic, NULL, 1);
2753 cfq_put_queue(sync_cfqq);
2754 }
2755
2756 spin_unlock_irqrestore(q->queue_lock, flags);
2757 }
2758
2759 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2760 {
2761 call_for_each_cic(ioc, changed_cgroup);
2762 ioc->cgroup_changed = 0;
2763 }
2764 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2765
2766 static struct cfq_queue *
2767 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2768 struct io_context *ioc, gfp_t gfp_mask)
2769 {
2770 struct cfq_queue *cfqq, *new_cfqq = NULL;
2771 struct cfq_io_context *cic;
2772 struct cfq_group *cfqg;
2773
2774 retry:
2775 cfqg = cfq_get_cfqg(cfqd, 1);
2776 cic = cfq_cic_lookup(cfqd, ioc);
2777 /* cic always exists here */
2778 cfqq = cic_to_cfqq(cic, is_sync);
2779
2780 /*
2781 * Always try a new alloc if we fell back to the OOM cfqq
2782 * originally, since it should just be a temporary situation.
2783 */
2784 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2785 cfqq = NULL;
2786 if (new_cfqq) {
2787 cfqq = new_cfqq;
2788 new_cfqq = NULL;
2789 } else if (gfp_mask & __GFP_WAIT) {
2790 spin_unlock_irq(cfqd->queue->queue_lock);
2791 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2792 gfp_mask | __GFP_ZERO,
2793 cfqd->queue->node);
2794 spin_lock_irq(cfqd->queue->queue_lock);
2795 if (new_cfqq)
2796 goto retry;
2797 } else {
2798 cfqq = kmem_cache_alloc_node(cfq_pool,
2799 gfp_mask | __GFP_ZERO,
2800 cfqd->queue->node);
2801 }
2802
2803 if (cfqq) {
2804 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2805 cfq_init_prio_data(cfqq, ioc);
2806 cfq_link_cfqq_cfqg(cfqq, cfqg);
2807 cfq_log_cfqq(cfqd, cfqq, "alloced");
2808 } else
2809 cfqq = &cfqd->oom_cfqq;
2810 }
2811
2812 if (new_cfqq)
2813 kmem_cache_free(cfq_pool, new_cfqq);
2814
2815 return cfqq;
2816 }
2817
2818 static struct cfq_queue **
2819 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2820 {
2821 switch (ioprio_class) {
2822 case IOPRIO_CLASS_RT:
2823 return &cfqd->async_cfqq[0][ioprio];
2824 case IOPRIO_CLASS_BE:
2825 return &cfqd->async_cfqq[1][ioprio];
2826 case IOPRIO_CLASS_IDLE:
2827 return &cfqd->async_idle_cfqq;
2828 default:
2829 BUG();
2830 }
2831 }
2832
2833 static struct cfq_queue *
2834 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2835 gfp_t gfp_mask)
2836 {
2837 const int ioprio = task_ioprio(ioc);
2838 const int ioprio_class = task_ioprio_class(ioc);
2839 struct cfq_queue **async_cfqq = NULL;
2840 struct cfq_queue *cfqq = NULL;
2841
2842 if (!is_sync) {
2843 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2844 cfqq = *async_cfqq;
2845 }
2846
2847 if (!cfqq)
2848 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2849
2850 /*
2851 * pin the queue now that it's allocated, scheduler exit will prune it
2852 */
2853 if (!is_sync && !(*async_cfqq)) {
2854 atomic_inc(&cfqq->ref);
2855 *async_cfqq = cfqq;
2856 }
2857
2858 atomic_inc(&cfqq->ref);
2859 return cfqq;
2860 }
2861
2862 /*
2863 * We drop cfq io contexts lazily, so we may find a dead one.
2864 */
2865 static void
2866 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2867 struct cfq_io_context *cic)
2868 {
2869 unsigned long flags;
2870
2871 WARN_ON(!list_empty(&cic->queue_list));
2872
2873 spin_lock_irqsave(&ioc->lock, flags);
2874
2875 BUG_ON(ioc->ioc_data == cic);
2876
2877 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2878 hlist_del_rcu(&cic->cic_list);
2879 spin_unlock_irqrestore(&ioc->lock, flags);
2880
2881 cfq_cic_free(cic);
2882 }
2883
2884 static struct cfq_io_context *
2885 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2886 {
2887 struct cfq_io_context *cic;
2888 unsigned long flags;
2889 void *k;
2890
2891 if (unlikely(!ioc))
2892 return NULL;
2893
2894 rcu_read_lock();
2895
2896 /*
2897 * we maintain a last-hit cache, to avoid browsing over the tree
2898 */
2899 cic = rcu_dereference(ioc->ioc_data);
2900 if (cic && cic->key == cfqd) {
2901 rcu_read_unlock();
2902 return cic;
2903 }
2904
2905 do {
2906 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2907 rcu_read_unlock();
2908 if (!cic)
2909 break;
2910 /* ->key must be copied to avoid race with cfq_exit_queue() */
2911 k = cic->key;
2912 if (unlikely(!k)) {
2913 cfq_drop_dead_cic(cfqd, ioc, cic);
2914 rcu_read_lock();
2915 continue;
2916 }
2917
2918 spin_lock_irqsave(&ioc->lock, flags);
2919 rcu_assign_pointer(ioc->ioc_data, cic);
2920 spin_unlock_irqrestore(&ioc->lock, flags);
2921 break;
2922 } while (1);
2923
2924 return cic;
2925 }
2926
2927 /*
2928 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2929 * the process specific cfq io context when entered from the block layer.
2930 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2931 */
2932 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2933 struct cfq_io_context *cic, gfp_t gfp_mask)
2934 {
2935 unsigned long flags;
2936 int ret;
2937
2938 ret = radix_tree_preload(gfp_mask);
2939 if (!ret) {
2940 cic->ioc = ioc;
2941 cic->key = cfqd;
2942
2943 spin_lock_irqsave(&ioc->lock, flags);
2944 ret = radix_tree_insert(&ioc->radix_root,
2945 (unsigned long) cfqd, cic);
2946 if (!ret)
2947 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2948 spin_unlock_irqrestore(&ioc->lock, flags);
2949
2950 radix_tree_preload_end();
2951
2952 if (!ret) {
2953 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2954 list_add(&cic->queue_list, &cfqd->cic_list);
2955 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2956 }
2957 }
2958
2959 if (ret)
2960 printk(KERN_ERR "cfq: cic link failed!\n");
2961
2962 return ret;
2963 }
2964
2965 /*
2966 * Setup general io context and cfq io context. There can be several cfq
2967 * io contexts per general io context, if this process is doing io to more
2968 * than one device managed by cfq.
2969 */
2970 static struct cfq_io_context *
2971 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2972 {
2973 struct io_context *ioc = NULL;
2974 struct cfq_io_context *cic;
2975
2976 might_sleep_if(gfp_mask & __GFP_WAIT);
2977
2978 ioc = get_io_context(gfp_mask, cfqd->queue->node);
2979 if (!ioc)
2980 return NULL;
2981
2982 cic = cfq_cic_lookup(cfqd, ioc);
2983 if (cic)
2984 goto out;
2985
2986 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2987 if (cic == NULL)
2988 goto err;
2989
2990 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2991 goto err_free;
2992
2993 out:
2994 smp_read_barrier_depends();
2995 if (unlikely(ioc->ioprio_changed))
2996 cfq_ioc_set_ioprio(ioc);
2997
2998 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2999 if (unlikely(ioc->cgroup_changed))
3000 cfq_ioc_set_cgroup(ioc);
3001 #endif
3002 return cic;
3003 err_free:
3004 cfq_cic_free(cic);
3005 err:
3006 put_io_context(ioc);
3007 return NULL;
3008 }
3009
3010 static void
3011 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
3012 {
3013 unsigned long elapsed = jiffies - cic->last_end_request;
3014 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
3015
3016 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3017 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3018 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3019 }
3020
3021 static void
3022 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3023 struct request *rq)
3024 {
3025 sector_t sdist = 0;
3026 sector_t n_sec = blk_rq_sectors(rq);
3027 if (cfqq->last_request_pos) {
3028 if (cfqq->last_request_pos < blk_rq_pos(rq))
3029 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3030 else
3031 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3032 }
3033
3034 cfqq->seek_history <<= 1;
3035 if (blk_queue_nonrot(cfqd->queue))
3036 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3037 else
3038 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3039 }
3040
3041 /*
3042 * Disable idle window if the process thinks too long or seeks so much that
3043 * it doesn't matter
3044 */
3045 static void
3046 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3047 struct cfq_io_context *cic)
3048 {
3049 int old_idle, enable_idle;
3050
3051 /*
3052 * Don't idle for async or idle io prio class
3053 */
3054 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3055 return;
3056
3057 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3058
3059 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3060 cfq_mark_cfqq_deep(cfqq);
3061
3062 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3063 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3064 enable_idle = 0;
3065 else if (sample_valid(cic->ttime_samples)) {
3066 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3067 enable_idle = 0;
3068 else
3069 enable_idle = 1;
3070 }
3071
3072 if (old_idle != enable_idle) {
3073 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3074 if (enable_idle)
3075 cfq_mark_cfqq_idle_window(cfqq);
3076 else
3077 cfq_clear_cfqq_idle_window(cfqq);
3078 }
3079 }
3080
3081 /*
3082 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3083 * no or if we aren't sure, a 1 will cause a preempt.
3084 */
3085 static bool
3086 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3087 struct request *rq)
3088 {
3089 struct cfq_queue *cfqq;
3090
3091 cfqq = cfqd->active_queue;
3092 if (!cfqq)
3093 return false;
3094
3095 if (cfq_class_idle(new_cfqq))
3096 return false;
3097
3098 if (cfq_class_idle(cfqq))
3099 return true;
3100
3101 /*
3102 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3103 */
3104 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3105 return false;
3106
3107 /*
3108 * if the new request is sync, but the currently running queue is
3109 * not, let the sync request have priority.
3110 */
3111 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3112 return true;
3113
3114 if (new_cfqq->cfqg != cfqq->cfqg)
3115 return false;
3116
3117 if (cfq_slice_used(cfqq))
3118 return true;
3119
3120 /* Allow preemption only if we are idling on sync-noidle tree */
3121 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3122 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3123 new_cfqq->service_tree->count == 2 &&
3124 RB_EMPTY_ROOT(&cfqq->sort_list))
3125 return true;
3126
3127 /*
3128 * So both queues are sync. Let the new request get disk time if
3129 * it's a metadata request and the current queue is doing regular IO.
3130 */
3131 if (rq_is_meta(rq) && !cfqq->meta_pending)
3132 return true;
3133
3134 /*
3135 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3136 */
3137 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3138 return true;
3139
3140 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3141 return false;
3142
3143 /*
3144 * if this request is as-good as one we would expect from the
3145 * current cfqq, let it preempt
3146 */
3147 if (cfq_rq_close(cfqd, cfqq, rq))
3148 return true;
3149
3150 return false;
3151 }
3152
3153 /*
3154 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3155 * let it have half of its nominal slice.
3156 */
3157 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3158 {
3159 cfq_log_cfqq(cfqd, cfqq, "preempt");
3160 cfq_slice_expired(cfqd, 1, false);
3161
3162 /*
3163 * Put the new queue at the front of the of the current list,
3164 * so we know that it will be selected next.
3165 */
3166 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3167
3168 cfq_service_tree_add(cfqd, cfqq, 1);
3169
3170 cfqq->slice_end = 0;
3171 cfq_mark_cfqq_slice_new(cfqq);
3172 }
3173
3174 /*
3175 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3176 * something we should do about it
3177 */
3178 static void
3179 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3180 struct request *rq)
3181 {
3182 struct cfq_io_context *cic = RQ_CIC(rq);
3183
3184 cfqd->rq_queued++;
3185 if (rq_is_meta(rq))
3186 cfqq->meta_pending++;
3187
3188 cfq_update_io_thinktime(cfqd, cic);
3189 cfq_update_io_seektime(cfqd, cfqq, rq);
3190 cfq_update_idle_window(cfqd, cfqq, cic);
3191
3192 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3193
3194 if (cfqq == cfqd->active_queue) {
3195 /*
3196 * Remember that we saw a request from this process, but
3197 * don't start queuing just yet. Otherwise we risk seeing lots
3198 * of tiny requests, because we disrupt the normal plugging
3199 * and merging. If the request is already larger than a single
3200 * page, let it rip immediately. For that case we assume that
3201 * merging is already done. Ditto for a busy system that
3202 * has other work pending, don't risk delaying until the
3203 * idle timer unplug to continue working.
3204 */
3205 if (cfq_cfqq_wait_request(cfqq)) {
3206 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3207 cfqd->busy_queues > 1) {
3208 cfq_del_timer(cfqd, cfqq);
3209 cfq_clear_cfqq_wait_request(cfqq);
3210 __blk_run_queue(cfqd->queue);
3211 } else
3212 cfq_mark_cfqq_must_dispatch(cfqq);
3213 }
3214 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3215 /*
3216 * not the active queue - expire current slice if it is
3217 * idle and has expired it's mean thinktime or this new queue
3218 * has some old slice time left and is of higher priority or
3219 * this new queue is RT and the current one is BE
3220 */
3221 cfq_preempt_queue(cfqd, cfqq);
3222 __blk_run_queue(cfqd->queue);
3223 }
3224 }
3225
3226 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3227 {
3228 struct cfq_data *cfqd = q->elevator->elevator_data;
3229 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3230
3231 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3232 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3233
3234 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3235 list_add_tail(&rq->queuelist, &cfqq->fifo);
3236 cfq_add_rq_rb(rq);
3237
3238 blkiocg_update_request_add_stats(&cfqq->cfqg->blkg,
3239 &cfqd->serving_group->blkg, rq_data_dir(rq),
3240 rq_is_sync(rq));
3241 cfq_rq_enqueued(cfqd, cfqq, rq);
3242 }
3243
3244 /*
3245 * Update hw_tag based on peak queue depth over 50 samples under
3246 * sufficient load.
3247 */
3248 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3249 {
3250 struct cfq_queue *cfqq = cfqd->active_queue;
3251
3252 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3253 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3254
3255 if (cfqd->hw_tag == 1)
3256 return;
3257
3258 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3259 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3260 return;
3261
3262 /*
3263 * If active queue hasn't enough requests and can idle, cfq might not
3264 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3265 * case
3266 */
3267 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3268 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3269 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3270 return;
3271
3272 if (cfqd->hw_tag_samples++ < 50)
3273 return;
3274
3275 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3276 cfqd->hw_tag = 1;
3277 else
3278 cfqd->hw_tag = 0;
3279 }
3280
3281 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3282 {
3283 struct cfq_io_context *cic = cfqd->active_cic;
3284
3285 /* If there are other queues in the group, don't wait */
3286 if (cfqq->cfqg->nr_cfqq > 1)
3287 return false;
3288
3289 if (cfq_slice_used(cfqq))
3290 return true;
3291
3292 /* if slice left is less than think time, wait busy */
3293 if (cic && sample_valid(cic->ttime_samples)
3294 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3295 return true;
3296
3297 /*
3298 * If think times is less than a jiffy than ttime_mean=0 and above
3299 * will not be true. It might happen that slice has not expired yet
3300 * but will expire soon (4-5 ns) during select_queue(). To cover the
3301 * case where think time is less than a jiffy, mark the queue wait
3302 * busy if only 1 jiffy is left in the slice.
3303 */
3304 if (cfqq->slice_end - jiffies == 1)
3305 return true;
3306
3307 return false;
3308 }
3309
3310 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3311 {
3312 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3313 struct cfq_data *cfqd = cfqq->cfqd;
3314 const int sync = rq_is_sync(rq);
3315 unsigned long now;
3316
3317 now = jiffies;
3318 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3319
3320 cfq_update_hw_tag(cfqd);
3321
3322 WARN_ON(!cfqd->rq_in_driver);
3323 WARN_ON(!cfqq->dispatched);
3324 cfqd->rq_in_driver--;
3325 cfqq->dispatched--;
3326 blkiocg_update_completion_stats(&cfqq->cfqg->blkg, rq_start_time_ns(rq),
3327 rq_io_start_time_ns(rq), rq_data_dir(rq),
3328 rq_is_sync(rq));
3329
3330 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3331
3332 if (sync) {
3333 RQ_CIC(rq)->last_end_request = now;
3334 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3335 cfqd->last_delayed_sync = now;
3336 }
3337
3338 /*
3339 * If this is the active queue, check if it needs to be expired,
3340 * or if we want to idle in case it has no pending requests.
3341 */
3342 if (cfqd->active_queue == cfqq) {
3343 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3344
3345 if (cfq_cfqq_slice_new(cfqq)) {
3346 cfq_set_prio_slice(cfqd, cfqq);
3347 cfq_clear_cfqq_slice_new(cfqq);
3348 }
3349
3350 /*
3351 * Should we wait for next request to come in before we expire
3352 * the queue.
3353 */
3354 if (cfq_should_wait_busy(cfqd, cfqq)) {
3355 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3356 cfq_mark_cfqq_wait_busy(cfqq);
3357 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3358 }
3359
3360 /*
3361 * Idling is not enabled on:
3362 * - expired queues
3363 * - idle-priority queues
3364 * - async queues
3365 * - queues with still some requests queued
3366 * - when there is a close cooperator
3367 */
3368 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3369 cfq_slice_expired(cfqd, 1, false);
3370 else if (sync && cfqq_empty &&
3371 !cfq_close_cooperator(cfqd, cfqq)) {
3372 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3373 /*
3374 * Idling is enabled for SYNC_WORKLOAD.
3375 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3376 * only if we processed at least one !rq_noidle request
3377 */
3378 if (cfqd->serving_type == SYNC_WORKLOAD
3379 || cfqd->noidle_tree_requires_idle
3380 || cfqq->cfqg->nr_cfqq == 1)
3381 cfq_arm_slice_timer(cfqd);
3382 }
3383 }
3384
3385 if (!cfqd->rq_in_driver)
3386 cfq_schedule_dispatch(cfqd);
3387 }
3388
3389 /*
3390 * we temporarily boost lower priority queues if they are holding fs exclusive
3391 * resources. they are boosted to normal prio (CLASS_BE/4)
3392 */
3393 static void cfq_prio_boost(struct cfq_queue *cfqq)
3394 {
3395 if (has_fs_excl()) {
3396 /*
3397 * boost idle prio on transactions that would lock out other
3398 * users of the filesystem
3399 */
3400 if (cfq_class_idle(cfqq))
3401 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3402 if (cfqq->ioprio > IOPRIO_NORM)
3403 cfqq->ioprio = IOPRIO_NORM;
3404 } else {
3405 /*
3406 * unboost the queue (if needed)
3407 */
3408 cfqq->ioprio_class = cfqq->org_ioprio_class;
3409 cfqq->ioprio = cfqq->org_ioprio;
3410 }
3411 }
3412
3413 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3414 {
3415 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3416 cfq_mark_cfqq_must_alloc_slice(cfqq);
3417 return ELV_MQUEUE_MUST;
3418 }
3419
3420 return ELV_MQUEUE_MAY;
3421 }
3422
3423 static int cfq_may_queue(struct request_queue *q, int rw)
3424 {
3425 struct cfq_data *cfqd = q->elevator->elevator_data;
3426 struct task_struct *tsk = current;
3427 struct cfq_io_context *cic;
3428 struct cfq_queue *cfqq;
3429
3430 /*
3431 * don't force setup of a queue from here, as a call to may_queue
3432 * does not necessarily imply that a request actually will be queued.
3433 * so just lookup a possibly existing queue, or return 'may queue'
3434 * if that fails
3435 */
3436 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3437 if (!cic)
3438 return ELV_MQUEUE_MAY;
3439
3440 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3441 if (cfqq) {
3442 cfq_init_prio_data(cfqq, cic->ioc);
3443 cfq_prio_boost(cfqq);
3444
3445 return __cfq_may_queue(cfqq);
3446 }
3447
3448 return ELV_MQUEUE_MAY;
3449 }
3450
3451 /*
3452 * queue lock held here
3453 */
3454 static void cfq_put_request(struct request *rq)
3455 {
3456 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3457
3458 if (cfqq) {
3459 const int rw = rq_data_dir(rq);
3460
3461 BUG_ON(!cfqq->allocated[rw]);
3462 cfqq->allocated[rw]--;
3463
3464 put_io_context(RQ_CIC(rq)->ioc);
3465
3466 rq->elevator_private = NULL;
3467 rq->elevator_private2 = NULL;
3468
3469 cfq_put_queue(cfqq);
3470 }
3471 }
3472
3473 static struct cfq_queue *
3474 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3475 struct cfq_queue *cfqq)
3476 {
3477 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3478 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3479 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3480 cfq_put_queue(cfqq);
3481 return cic_to_cfqq(cic, 1);
3482 }
3483
3484 /*
3485 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3486 * was the last process referring to said cfqq.
3487 */
3488 static struct cfq_queue *
3489 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3490 {
3491 if (cfqq_process_refs(cfqq) == 1) {
3492 cfqq->pid = current->pid;
3493 cfq_clear_cfqq_coop(cfqq);
3494 cfq_clear_cfqq_split_coop(cfqq);
3495 return cfqq;
3496 }
3497
3498 cic_set_cfqq(cic, NULL, 1);
3499 cfq_put_queue(cfqq);
3500 return NULL;
3501 }
3502 /*
3503 * Allocate cfq data structures associated with this request.
3504 */
3505 static int
3506 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3507 {
3508 struct cfq_data *cfqd = q->elevator->elevator_data;
3509 struct cfq_io_context *cic;
3510 const int rw = rq_data_dir(rq);
3511 const bool is_sync = rq_is_sync(rq);
3512 struct cfq_queue *cfqq;
3513 unsigned long flags;
3514
3515 might_sleep_if(gfp_mask & __GFP_WAIT);
3516
3517 cic = cfq_get_io_context(cfqd, gfp_mask);
3518
3519 spin_lock_irqsave(q->queue_lock, flags);
3520
3521 if (!cic)
3522 goto queue_fail;
3523
3524 new_queue:
3525 cfqq = cic_to_cfqq(cic, is_sync);
3526 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3527 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3528 cic_set_cfqq(cic, cfqq, is_sync);
3529 } else {
3530 /*
3531 * If the queue was seeky for too long, break it apart.
3532 */
3533 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3534 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3535 cfqq = split_cfqq(cic, cfqq);
3536 if (!cfqq)
3537 goto new_queue;
3538 }
3539
3540 /*
3541 * Check to see if this queue is scheduled to merge with
3542 * another, closely cooperating queue. The merging of
3543 * queues happens here as it must be done in process context.
3544 * The reference on new_cfqq was taken in merge_cfqqs.
3545 */
3546 if (cfqq->new_cfqq)
3547 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3548 }
3549
3550 cfqq->allocated[rw]++;
3551 atomic_inc(&cfqq->ref);
3552
3553 spin_unlock_irqrestore(q->queue_lock, flags);
3554
3555 rq->elevator_private = cic;
3556 rq->elevator_private2 = cfqq;
3557 return 0;
3558
3559 queue_fail:
3560 if (cic)
3561 put_io_context(cic->ioc);
3562
3563 cfq_schedule_dispatch(cfqd);
3564 spin_unlock_irqrestore(q->queue_lock, flags);
3565 cfq_log(cfqd, "set_request fail");
3566 return 1;
3567 }
3568
3569 static void cfq_kick_queue(struct work_struct *work)
3570 {
3571 struct cfq_data *cfqd =
3572 container_of(work, struct cfq_data, unplug_work);
3573 struct request_queue *q = cfqd->queue;
3574
3575 spin_lock_irq(q->queue_lock);
3576 __blk_run_queue(cfqd->queue);
3577 spin_unlock_irq(q->queue_lock);
3578 }
3579
3580 /*
3581 * Timer running if the active_queue is currently idling inside its time slice
3582 */
3583 static void cfq_idle_slice_timer(unsigned long data)
3584 {
3585 struct cfq_data *cfqd = (struct cfq_data *) data;
3586 struct cfq_queue *cfqq;
3587 unsigned long flags;
3588 int timed_out = 1;
3589
3590 cfq_log(cfqd, "idle timer fired");
3591
3592 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3593
3594 cfqq = cfqd->active_queue;
3595 if (cfqq) {
3596 timed_out = 0;
3597
3598 /*
3599 * We saw a request before the queue expired, let it through
3600 */
3601 if (cfq_cfqq_must_dispatch(cfqq))
3602 goto out_kick;
3603
3604 /*
3605 * expired
3606 */
3607 if (cfq_slice_used(cfqq))
3608 goto expire;
3609
3610 /*
3611 * only expire and reinvoke request handler, if there are
3612 * other queues with pending requests
3613 */
3614 if (!cfqd->busy_queues)
3615 goto out_cont;
3616
3617 /*
3618 * not expired and it has a request pending, let it dispatch
3619 */
3620 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3621 goto out_kick;
3622
3623 /*
3624 * Queue depth flag is reset only when the idle didn't succeed
3625 */
3626 cfq_clear_cfqq_deep(cfqq);
3627 }
3628 expire:
3629 cfq_slice_expired(cfqd, timed_out, false);
3630 out_kick:
3631 cfq_schedule_dispatch(cfqd);
3632 out_cont:
3633 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3634 }
3635
3636 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3637 {
3638 del_timer_sync(&cfqd->idle_slice_timer);
3639 cancel_work_sync(&cfqd->unplug_work);
3640 }
3641
3642 static void cfq_put_async_queues(struct cfq_data *cfqd)
3643 {
3644 int i;
3645
3646 for (i = 0; i < IOPRIO_BE_NR; i++) {
3647 if (cfqd->async_cfqq[0][i])
3648 cfq_put_queue(cfqd->async_cfqq[0][i]);
3649 if (cfqd->async_cfqq[1][i])
3650 cfq_put_queue(cfqd->async_cfqq[1][i]);
3651 }
3652
3653 if (cfqd->async_idle_cfqq)
3654 cfq_put_queue(cfqd->async_idle_cfqq);
3655 }
3656
3657 static void cfq_cfqd_free(struct rcu_head *head)
3658 {
3659 kfree(container_of(head, struct cfq_data, rcu));
3660 }
3661
3662 static void cfq_exit_queue(struct elevator_queue *e)
3663 {
3664 struct cfq_data *cfqd = e->elevator_data;
3665 struct request_queue *q = cfqd->queue;
3666
3667 cfq_shutdown_timer_wq(cfqd);
3668
3669 spin_lock_irq(q->queue_lock);
3670
3671 if (cfqd->active_queue)
3672 __cfq_slice_expired(cfqd, cfqd->active_queue, 0, false);
3673
3674 while (!list_empty(&cfqd->cic_list)) {
3675 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3676 struct cfq_io_context,
3677 queue_list);
3678
3679 __cfq_exit_single_io_context(cfqd, cic);
3680 }
3681
3682 cfq_put_async_queues(cfqd);
3683 cfq_release_cfq_groups(cfqd);
3684 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3685
3686 spin_unlock_irq(q->queue_lock);
3687
3688 cfq_shutdown_timer_wq(cfqd);
3689
3690 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3691 call_rcu(&cfqd->rcu, cfq_cfqd_free);
3692 }
3693
3694 static void *cfq_init_queue(struct request_queue *q)
3695 {
3696 struct cfq_data *cfqd;
3697 int i, j;
3698 struct cfq_group *cfqg;
3699 struct cfq_rb_root *st;
3700
3701 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3702 if (!cfqd)
3703 return NULL;
3704
3705 /* Init root service tree */
3706 cfqd->grp_service_tree = CFQ_RB_ROOT;
3707
3708 /* Init root group */
3709 cfqg = &cfqd->root_group;
3710 for_each_cfqg_st(cfqg, i, j, st)
3711 *st = CFQ_RB_ROOT;
3712 RB_CLEAR_NODE(&cfqg->rb_node);
3713
3714 /* Give preference to root group over other groups */
3715 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3716
3717 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3718 /*
3719 * Take a reference to root group which we never drop. This is just
3720 * to make sure that cfq_put_cfqg() does not try to kfree root group
3721 */
3722 atomic_set(&cfqg->ref, 1);
3723 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3724 0);
3725 #endif
3726 /*
3727 * Not strictly needed (since RB_ROOT just clears the node and we
3728 * zeroed cfqd on alloc), but better be safe in case someone decides
3729 * to add magic to the rb code
3730 */
3731 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3732 cfqd->prio_trees[i] = RB_ROOT;
3733
3734 /*
3735 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3736 * Grab a permanent reference to it, so that the normal code flow
3737 * will not attempt to free it.
3738 */
3739 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3740 atomic_inc(&cfqd->oom_cfqq.ref);
3741 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3742
3743 INIT_LIST_HEAD(&cfqd->cic_list);
3744
3745 cfqd->queue = q;
3746
3747 init_timer(&cfqd->idle_slice_timer);
3748 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3749 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3750
3751 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3752
3753 cfqd->cfq_quantum = cfq_quantum;
3754 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3755 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3756 cfqd->cfq_back_max = cfq_back_max;
3757 cfqd->cfq_back_penalty = cfq_back_penalty;
3758 cfqd->cfq_slice[0] = cfq_slice_async;
3759 cfqd->cfq_slice[1] = cfq_slice_sync;
3760 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3761 cfqd->cfq_slice_idle = cfq_slice_idle;
3762 cfqd->cfq_latency = 1;
3763 cfqd->cfq_group_isolation = 0;
3764 cfqd->hw_tag = -1;
3765 /*
3766 * we optimistically start assuming sync ops weren't delayed in last
3767 * second, in order to have larger depth for async operations.
3768 */
3769 cfqd->last_delayed_sync = jiffies - HZ;
3770 INIT_RCU_HEAD(&cfqd->rcu);
3771 return cfqd;
3772 }
3773
3774 static void cfq_slab_kill(void)
3775 {
3776 /*
3777 * Caller already ensured that pending RCU callbacks are completed,
3778 * so we should have no busy allocations at this point.
3779 */
3780 if (cfq_pool)
3781 kmem_cache_destroy(cfq_pool);
3782 if (cfq_ioc_pool)
3783 kmem_cache_destroy(cfq_ioc_pool);
3784 }
3785
3786 static int __init cfq_slab_setup(void)
3787 {
3788 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3789 if (!cfq_pool)
3790 goto fail;
3791
3792 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3793 if (!cfq_ioc_pool)
3794 goto fail;
3795
3796 return 0;
3797 fail:
3798 cfq_slab_kill();
3799 return -ENOMEM;
3800 }
3801
3802 /*
3803 * sysfs parts below -->
3804 */
3805 static ssize_t
3806 cfq_var_show(unsigned int var, char *page)
3807 {
3808 return sprintf(page, "%d\n", var);
3809 }
3810
3811 static ssize_t
3812 cfq_var_store(unsigned int *var, const char *page, size_t count)
3813 {
3814 char *p = (char *) page;
3815
3816 *var = simple_strtoul(p, &p, 10);
3817 return count;
3818 }
3819
3820 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3821 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3822 { \
3823 struct cfq_data *cfqd = e->elevator_data; \
3824 unsigned int __data = __VAR; \
3825 if (__CONV) \
3826 __data = jiffies_to_msecs(__data); \
3827 return cfq_var_show(__data, (page)); \
3828 }
3829 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3830 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3831 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3832 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3833 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3834 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3835 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3836 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3837 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3838 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3839 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3840 #undef SHOW_FUNCTION
3841
3842 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3843 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3844 { \
3845 struct cfq_data *cfqd = e->elevator_data; \
3846 unsigned int __data; \
3847 int ret = cfq_var_store(&__data, (page), count); \
3848 if (__data < (MIN)) \
3849 __data = (MIN); \
3850 else if (__data > (MAX)) \
3851 __data = (MAX); \
3852 if (__CONV) \
3853 *(__PTR) = msecs_to_jiffies(__data); \
3854 else \
3855 *(__PTR) = __data; \
3856 return ret; \
3857 }
3858 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3859 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3860 UINT_MAX, 1);
3861 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3862 UINT_MAX, 1);
3863 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3864 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3865 UINT_MAX, 0);
3866 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3867 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3868 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3869 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3870 UINT_MAX, 0);
3871 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3872 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3873 #undef STORE_FUNCTION
3874
3875 #define CFQ_ATTR(name) \
3876 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3877
3878 static struct elv_fs_entry cfq_attrs[] = {
3879 CFQ_ATTR(quantum),
3880 CFQ_ATTR(fifo_expire_sync),
3881 CFQ_ATTR(fifo_expire_async),
3882 CFQ_ATTR(back_seek_max),
3883 CFQ_ATTR(back_seek_penalty),
3884 CFQ_ATTR(slice_sync),
3885 CFQ_ATTR(slice_async),
3886 CFQ_ATTR(slice_async_rq),
3887 CFQ_ATTR(slice_idle),
3888 CFQ_ATTR(low_latency),
3889 CFQ_ATTR(group_isolation),
3890 __ATTR_NULL
3891 };
3892
3893 static struct elevator_type iosched_cfq = {
3894 .ops = {
3895 .elevator_merge_fn = cfq_merge,
3896 .elevator_merged_fn = cfq_merged_request,
3897 .elevator_merge_req_fn = cfq_merged_requests,
3898 .elevator_allow_merge_fn = cfq_allow_merge,
3899 .elevator_bio_merged_fn = cfq_bio_merged,
3900 .elevator_dispatch_fn = cfq_dispatch_requests,
3901 .elevator_add_req_fn = cfq_insert_request,
3902 .elevator_activate_req_fn = cfq_activate_request,
3903 .elevator_deactivate_req_fn = cfq_deactivate_request,
3904 .elevator_queue_empty_fn = cfq_queue_empty,
3905 .elevator_completed_req_fn = cfq_completed_request,
3906 .elevator_former_req_fn = elv_rb_former_request,
3907 .elevator_latter_req_fn = elv_rb_latter_request,
3908 .elevator_set_req_fn = cfq_set_request,
3909 .elevator_put_req_fn = cfq_put_request,
3910 .elevator_may_queue_fn = cfq_may_queue,
3911 .elevator_init_fn = cfq_init_queue,
3912 .elevator_exit_fn = cfq_exit_queue,
3913 .trim = cfq_free_io_context,
3914 },
3915 .elevator_attrs = cfq_attrs,
3916 .elevator_name = "cfq",
3917 .elevator_owner = THIS_MODULE,
3918 };
3919
3920 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3921 static struct blkio_policy_type blkio_policy_cfq = {
3922 .ops = {
3923 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3924 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3925 },
3926 };
3927 #else
3928 static struct blkio_policy_type blkio_policy_cfq;
3929 #endif
3930
3931 static int __init cfq_init(void)
3932 {
3933 /*
3934 * could be 0 on HZ < 1000 setups
3935 */
3936 if (!cfq_slice_async)
3937 cfq_slice_async = 1;
3938 if (!cfq_slice_idle)
3939 cfq_slice_idle = 1;
3940
3941 if (cfq_slab_setup())
3942 return -ENOMEM;
3943
3944 elv_register(&iosched_cfq);
3945 blkio_policy_register(&blkio_policy_cfq);
3946
3947 return 0;
3948 }
3949
3950 static void __exit cfq_exit(void)
3951 {
3952 DECLARE_COMPLETION_ONSTACK(all_gone);
3953 blkio_policy_unregister(&blkio_policy_cfq);
3954 elv_unregister(&iosched_cfq);
3955 ioc_gone = &all_gone;
3956 /* ioc_gone's update must be visible before reading ioc_count */
3957 smp_wmb();
3958
3959 /*
3960 * this also protects us from entering cfq_slab_kill() with
3961 * pending RCU callbacks
3962 */
3963 if (elv_ioc_count_read(cfq_ioc_count))
3964 wait_for_completion(&all_gone);
3965 cfq_slab_kill();
3966 }
3967
3968 module_init(cfq_init);
3969 module_exit(cfq_exit);
3970
3971 MODULE_AUTHOR("Jens Axboe");
3972 MODULE_LICENSE("GPL");
3973 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");