]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/cfq-iosched.c
blkcg: make blkcg_policy methods take a pointer to blkcg_policy_data
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include <linux/blk-cgroup.h>
18 #include "blk.h"
19
20 /*
21 * tunables
22 */
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const int cfq_slice_sync = HZ / 10;
31 static int cfq_slice_async = HZ / 25;
32 static const int cfq_slice_async_rq = 2;
33 static int cfq_slice_idle = HZ / 125;
34 static int cfq_group_idle = HZ / 125;
35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
37
38 /*
39 * offset from end of service tree
40 */
41 #define CFQ_IDLE_DELAY (HZ / 5)
42
43 /*
44 * below this threshold, we consider thinktime immediate
45 */
46 #define CFQ_MIN_TT (2)
47
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
51
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56
57 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
60
61 static struct kmem_cache *cfq_pool;
62
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
69
70 /* blkio-related constants */
71 #define CFQ_WEIGHT_MIN 10
72 #define CFQ_WEIGHT_MAX 1000
73 #define CFQ_WEIGHT_DEFAULT 500
74
75 struct cfq_ttime {
76 unsigned long last_end_request;
77
78 unsigned long ttime_total;
79 unsigned long ttime_samples;
80 unsigned long ttime_mean;
81 };
82
83 /*
84 * Most of our rbtree usage is for sorting with min extraction, so
85 * if we cache the leftmost node we don't have to walk down the tree
86 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
87 * move this into the elevator for the rq sorting as well.
88 */
89 struct cfq_rb_root {
90 struct rb_root rb;
91 struct rb_node *left;
92 unsigned count;
93 u64 min_vdisktime;
94 struct cfq_ttime ttime;
95 };
96 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
97 .ttime = {.last_end_request = jiffies,},}
98
99 /*
100 * Per process-grouping structure
101 */
102 struct cfq_queue {
103 /* reference count */
104 int ref;
105 /* various state flags, see below */
106 unsigned int flags;
107 /* parent cfq_data */
108 struct cfq_data *cfqd;
109 /* service_tree member */
110 struct rb_node rb_node;
111 /* service_tree key */
112 unsigned long rb_key;
113 /* prio tree member */
114 struct rb_node p_node;
115 /* prio tree root we belong to, if any */
116 struct rb_root *p_root;
117 /* sorted list of pending requests */
118 struct rb_root sort_list;
119 /* if fifo isn't expired, next request to serve */
120 struct request *next_rq;
121 /* requests queued in sort_list */
122 int queued[2];
123 /* currently allocated requests */
124 int allocated[2];
125 /* fifo list of requests in sort_list */
126 struct list_head fifo;
127
128 /* time when queue got scheduled in to dispatch first request. */
129 unsigned long dispatch_start;
130 unsigned int allocated_slice;
131 unsigned int slice_dispatch;
132 /* time when first request from queue completed and slice started. */
133 unsigned long slice_start;
134 unsigned long slice_end;
135 long slice_resid;
136
137 /* pending priority requests */
138 int prio_pending;
139 /* number of requests that are on the dispatch list or inside driver */
140 int dispatched;
141
142 /* io prio of this group */
143 unsigned short ioprio, org_ioprio;
144 unsigned short ioprio_class;
145
146 pid_t pid;
147
148 u32 seek_history;
149 sector_t last_request_pos;
150
151 struct cfq_rb_root *service_tree;
152 struct cfq_queue *new_cfqq;
153 struct cfq_group *cfqg;
154 /* Number of sectors dispatched from queue in single dispatch round */
155 unsigned long nr_sectors;
156 };
157
158 /*
159 * First index in the service_trees.
160 * IDLE is handled separately, so it has negative index
161 */
162 enum wl_class_t {
163 BE_WORKLOAD = 0,
164 RT_WORKLOAD = 1,
165 IDLE_WORKLOAD = 2,
166 CFQ_PRIO_NR,
167 };
168
169 /*
170 * Second index in the service_trees.
171 */
172 enum wl_type_t {
173 ASYNC_WORKLOAD = 0,
174 SYNC_NOIDLE_WORKLOAD = 1,
175 SYNC_WORKLOAD = 2
176 };
177
178 struct cfqg_stats {
179 #ifdef CONFIG_CFQ_GROUP_IOSCHED
180 /* total bytes transferred */
181 struct blkg_rwstat service_bytes;
182 /* total IOs serviced, post merge */
183 struct blkg_rwstat serviced;
184 /* number of ios merged */
185 struct blkg_rwstat merged;
186 /* total time spent on device in ns, may not be accurate w/ queueing */
187 struct blkg_rwstat service_time;
188 /* total time spent waiting in scheduler queue in ns */
189 struct blkg_rwstat wait_time;
190 /* number of IOs queued up */
191 struct blkg_rwstat queued;
192 /* total sectors transferred */
193 struct blkg_stat sectors;
194 /* total disk time and nr sectors dispatched by this group */
195 struct blkg_stat time;
196 #ifdef CONFIG_DEBUG_BLK_CGROUP
197 /* time not charged to this cgroup */
198 struct blkg_stat unaccounted_time;
199 /* sum of number of ios queued across all samples */
200 struct blkg_stat avg_queue_size_sum;
201 /* count of samples taken for average */
202 struct blkg_stat avg_queue_size_samples;
203 /* how many times this group has been removed from service tree */
204 struct blkg_stat dequeue;
205 /* total time spent waiting for it to be assigned a timeslice. */
206 struct blkg_stat group_wait_time;
207 /* time spent idling for this blkcg_gq */
208 struct blkg_stat idle_time;
209 /* total time with empty current active q with other requests queued */
210 struct blkg_stat empty_time;
211 /* fields after this shouldn't be cleared on stat reset */
212 uint64_t start_group_wait_time;
213 uint64_t start_idle_time;
214 uint64_t start_empty_time;
215 uint16_t flags;
216 #endif /* CONFIG_DEBUG_BLK_CGROUP */
217 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
218 };
219
220 /* Per-cgroup data */
221 struct cfq_group_data {
222 /* must be the first member */
223 struct blkcg_policy_data pd;
224
225 unsigned int weight;
226 unsigned int leaf_weight;
227 };
228
229 /* This is per cgroup per device grouping structure */
230 struct cfq_group {
231 /* must be the first member */
232 struct blkg_policy_data pd;
233
234 /* group service_tree member */
235 struct rb_node rb_node;
236
237 /* group service_tree key */
238 u64 vdisktime;
239
240 /*
241 * The number of active cfqgs and sum of their weights under this
242 * cfqg. This covers this cfqg's leaf_weight and all children's
243 * weights, but does not cover weights of further descendants.
244 *
245 * If a cfqg is on the service tree, it's active. An active cfqg
246 * also activates its parent and contributes to the children_weight
247 * of the parent.
248 */
249 int nr_active;
250 unsigned int children_weight;
251
252 /*
253 * vfraction is the fraction of vdisktime that the tasks in this
254 * cfqg are entitled to. This is determined by compounding the
255 * ratios walking up from this cfqg to the root.
256 *
257 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
258 * vfractions on a service tree is approximately 1. The sum may
259 * deviate a bit due to rounding errors and fluctuations caused by
260 * cfqgs entering and leaving the service tree.
261 */
262 unsigned int vfraction;
263
264 /*
265 * There are two weights - (internal) weight is the weight of this
266 * cfqg against the sibling cfqgs. leaf_weight is the wight of
267 * this cfqg against the child cfqgs. For the root cfqg, both
268 * weights are kept in sync for backward compatibility.
269 */
270 unsigned int weight;
271 unsigned int new_weight;
272 unsigned int dev_weight;
273
274 unsigned int leaf_weight;
275 unsigned int new_leaf_weight;
276 unsigned int dev_leaf_weight;
277
278 /* number of cfqq currently on this group */
279 int nr_cfqq;
280
281 /*
282 * Per group busy queues average. Useful for workload slice calc. We
283 * create the array for each prio class but at run time it is used
284 * only for RT and BE class and slot for IDLE class remains unused.
285 * This is primarily done to avoid confusion and a gcc warning.
286 */
287 unsigned int busy_queues_avg[CFQ_PRIO_NR];
288 /*
289 * rr lists of queues with requests. We maintain service trees for
290 * RT and BE classes. These trees are subdivided in subclasses
291 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
292 * class there is no subclassification and all the cfq queues go on
293 * a single tree service_tree_idle.
294 * Counts are embedded in the cfq_rb_root
295 */
296 struct cfq_rb_root service_trees[2][3];
297 struct cfq_rb_root service_tree_idle;
298
299 unsigned long saved_wl_slice;
300 enum wl_type_t saved_wl_type;
301 enum wl_class_t saved_wl_class;
302
303 /* number of requests that are on the dispatch list or inside driver */
304 int dispatched;
305 struct cfq_ttime ttime;
306 struct cfqg_stats stats; /* stats for this cfqg */
307 struct cfqg_stats dead_stats; /* stats pushed from dead children */
308
309 /* async queue for each priority case */
310 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
311 struct cfq_queue *async_idle_cfqq;
312
313 };
314
315 struct cfq_io_cq {
316 struct io_cq icq; /* must be the first member */
317 struct cfq_queue *cfqq[2];
318 struct cfq_ttime ttime;
319 int ioprio; /* the current ioprio */
320 #ifdef CONFIG_CFQ_GROUP_IOSCHED
321 uint64_t blkcg_serial_nr; /* the current blkcg serial */
322 #endif
323 };
324
325 /*
326 * Per block device queue structure
327 */
328 struct cfq_data {
329 struct request_queue *queue;
330 /* Root service tree for cfq_groups */
331 struct cfq_rb_root grp_service_tree;
332 struct cfq_group *root_group;
333
334 /*
335 * The priority currently being served
336 */
337 enum wl_class_t serving_wl_class;
338 enum wl_type_t serving_wl_type;
339 unsigned long workload_expires;
340 struct cfq_group *serving_group;
341
342 /*
343 * Each priority tree is sorted by next_request position. These
344 * trees are used when determining if two or more queues are
345 * interleaving requests (see cfq_close_cooperator).
346 */
347 struct rb_root prio_trees[CFQ_PRIO_LISTS];
348
349 unsigned int busy_queues;
350 unsigned int busy_sync_queues;
351
352 int rq_in_driver;
353 int rq_in_flight[2];
354
355 /*
356 * queue-depth detection
357 */
358 int rq_queued;
359 int hw_tag;
360 /*
361 * hw_tag can be
362 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
363 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
364 * 0 => no NCQ
365 */
366 int hw_tag_est_depth;
367 unsigned int hw_tag_samples;
368
369 /*
370 * idle window management
371 */
372 struct timer_list idle_slice_timer;
373 struct work_struct unplug_work;
374
375 struct cfq_queue *active_queue;
376 struct cfq_io_cq *active_cic;
377
378 sector_t last_position;
379
380 /*
381 * tunables, see top of file
382 */
383 unsigned int cfq_quantum;
384 unsigned int cfq_fifo_expire[2];
385 unsigned int cfq_back_penalty;
386 unsigned int cfq_back_max;
387 unsigned int cfq_slice[2];
388 unsigned int cfq_slice_async_rq;
389 unsigned int cfq_slice_idle;
390 unsigned int cfq_group_idle;
391 unsigned int cfq_latency;
392 unsigned int cfq_target_latency;
393
394 /*
395 * Fallback dummy cfqq for extreme OOM conditions
396 */
397 struct cfq_queue oom_cfqq;
398
399 unsigned long last_delayed_sync;
400 };
401
402 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
403 static void cfq_put_queue(struct cfq_queue *cfqq);
404
405 static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
406 enum wl_class_t class,
407 enum wl_type_t type)
408 {
409 if (!cfqg)
410 return NULL;
411
412 if (class == IDLE_WORKLOAD)
413 return &cfqg->service_tree_idle;
414
415 return &cfqg->service_trees[class][type];
416 }
417
418 enum cfqq_state_flags {
419 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
420 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
421 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
422 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
423 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
424 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
425 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
426 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
427 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
428 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
429 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
430 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
431 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
432 };
433
434 #define CFQ_CFQQ_FNS(name) \
435 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
436 { \
437 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
438 } \
439 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
440 { \
441 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
442 } \
443 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
444 { \
445 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
446 }
447
448 CFQ_CFQQ_FNS(on_rr);
449 CFQ_CFQQ_FNS(wait_request);
450 CFQ_CFQQ_FNS(must_dispatch);
451 CFQ_CFQQ_FNS(must_alloc_slice);
452 CFQ_CFQQ_FNS(fifo_expire);
453 CFQ_CFQQ_FNS(idle_window);
454 CFQ_CFQQ_FNS(prio_changed);
455 CFQ_CFQQ_FNS(slice_new);
456 CFQ_CFQQ_FNS(sync);
457 CFQ_CFQQ_FNS(coop);
458 CFQ_CFQQ_FNS(split_coop);
459 CFQ_CFQQ_FNS(deep);
460 CFQ_CFQQ_FNS(wait_busy);
461 #undef CFQ_CFQQ_FNS
462
463 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
464
465 /* cfqg stats flags */
466 enum cfqg_stats_flags {
467 CFQG_stats_waiting = 0,
468 CFQG_stats_idling,
469 CFQG_stats_empty,
470 };
471
472 #define CFQG_FLAG_FNS(name) \
473 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
474 { \
475 stats->flags |= (1 << CFQG_stats_##name); \
476 } \
477 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
478 { \
479 stats->flags &= ~(1 << CFQG_stats_##name); \
480 } \
481 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
482 { \
483 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
484 } \
485
486 CFQG_FLAG_FNS(waiting)
487 CFQG_FLAG_FNS(idling)
488 CFQG_FLAG_FNS(empty)
489 #undef CFQG_FLAG_FNS
490
491 /* This should be called with the queue_lock held. */
492 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
493 {
494 unsigned long long now;
495
496 if (!cfqg_stats_waiting(stats))
497 return;
498
499 now = sched_clock();
500 if (time_after64(now, stats->start_group_wait_time))
501 blkg_stat_add(&stats->group_wait_time,
502 now - stats->start_group_wait_time);
503 cfqg_stats_clear_waiting(stats);
504 }
505
506 /* This should be called with the queue_lock held. */
507 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
508 struct cfq_group *curr_cfqg)
509 {
510 struct cfqg_stats *stats = &cfqg->stats;
511
512 if (cfqg_stats_waiting(stats))
513 return;
514 if (cfqg == curr_cfqg)
515 return;
516 stats->start_group_wait_time = sched_clock();
517 cfqg_stats_mark_waiting(stats);
518 }
519
520 /* This should be called with the queue_lock held. */
521 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
522 {
523 unsigned long long now;
524
525 if (!cfqg_stats_empty(stats))
526 return;
527
528 now = sched_clock();
529 if (time_after64(now, stats->start_empty_time))
530 blkg_stat_add(&stats->empty_time,
531 now - stats->start_empty_time);
532 cfqg_stats_clear_empty(stats);
533 }
534
535 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
536 {
537 blkg_stat_add(&cfqg->stats.dequeue, 1);
538 }
539
540 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
541 {
542 struct cfqg_stats *stats = &cfqg->stats;
543
544 if (blkg_rwstat_total(&stats->queued))
545 return;
546
547 /*
548 * group is already marked empty. This can happen if cfqq got new
549 * request in parent group and moved to this group while being added
550 * to service tree. Just ignore the event and move on.
551 */
552 if (cfqg_stats_empty(stats))
553 return;
554
555 stats->start_empty_time = sched_clock();
556 cfqg_stats_mark_empty(stats);
557 }
558
559 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
560 {
561 struct cfqg_stats *stats = &cfqg->stats;
562
563 if (cfqg_stats_idling(stats)) {
564 unsigned long long now = sched_clock();
565
566 if (time_after64(now, stats->start_idle_time))
567 blkg_stat_add(&stats->idle_time,
568 now - stats->start_idle_time);
569 cfqg_stats_clear_idling(stats);
570 }
571 }
572
573 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
574 {
575 struct cfqg_stats *stats = &cfqg->stats;
576
577 BUG_ON(cfqg_stats_idling(stats));
578
579 stats->start_idle_time = sched_clock();
580 cfqg_stats_mark_idling(stats);
581 }
582
583 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
584 {
585 struct cfqg_stats *stats = &cfqg->stats;
586
587 blkg_stat_add(&stats->avg_queue_size_sum,
588 blkg_rwstat_total(&stats->queued));
589 blkg_stat_add(&stats->avg_queue_size_samples, 1);
590 cfqg_stats_update_group_wait_time(stats);
591 }
592
593 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
594
595 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
596 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
597 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
598 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
599 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
600 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
601 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
602
603 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
604
605 #ifdef CONFIG_CFQ_GROUP_IOSCHED
606
607 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
608 {
609 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
610 }
611
612 static struct cfq_group_data
613 *cpd_to_cfqgd(struct blkcg_policy_data *cpd)
614 {
615 return cpd ? container_of(cpd, struct cfq_group_data, pd) : NULL;
616 }
617
618 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
619 {
620 return pd_to_blkg(&cfqg->pd);
621 }
622
623 static struct blkcg_policy blkcg_policy_cfq;
624
625 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
626 {
627 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
628 }
629
630 static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg)
631 {
632 return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq));
633 }
634
635 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
636 {
637 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
638
639 return pblkg ? blkg_to_cfqg(pblkg) : NULL;
640 }
641
642 static inline void cfqg_get(struct cfq_group *cfqg)
643 {
644 return blkg_get(cfqg_to_blkg(cfqg));
645 }
646
647 static inline void cfqg_put(struct cfq_group *cfqg)
648 {
649 return blkg_put(cfqg_to_blkg(cfqg));
650 }
651
652 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
653 char __pbuf[128]; \
654 \
655 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
656 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
657 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
658 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
659 __pbuf, ##args); \
660 } while (0)
661
662 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
663 char __pbuf[128]; \
664 \
665 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
666 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
667 } while (0)
668
669 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
670 struct cfq_group *curr_cfqg, int rw)
671 {
672 blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
673 cfqg_stats_end_empty_time(&cfqg->stats);
674 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
675 }
676
677 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
678 unsigned long time, unsigned long unaccounted_time)
679 {
680 blkg_stat_add(&cfqg->stats.time, time);
681 #ifdef CONFIG_DEBUG_BLK_CGROUP
682 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
683 #endif
684 }
685
686 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
687 {
688 blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
689 }
690
691 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
692 {
693 blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
694 }
695
696 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
697 uint64_t bytes, int rw)
698 {
699 blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
700 blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
701 blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
702 }
703
704 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
705 uint64_t start_time, uint64_t io_start_time, int rw)
706 {
707 struct cfqg_stats *stats = &cfqg->stats;
708 unsigned long long now = sched_clock();
709
710 if (time_after64(now, io_start_time))
711 blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
712 if (time_after64(io_start_time, start_time))
713 blkg_rwstat_add(&stats->wait_time, rw,
714 io_start_time - start_time);
715 }
716
717 /* @stats = 0 */
718 static void cfqg_stats_reset(struct cfqg_stats *stats)
719 {
720 /* queued stats shouldn't be cleared */
721 blkg_rwstat_reset(&stats->service_bytes);
722 blkg_rwstat_reset(&stats->serviced);
723 blkg_rwstat_reset(&stats->merged);
724 blkg_rwstat_reset(&stats->service_time);
725 blkg_rwstat_reset(&stats->wait_time);
726 blkg_stat_reset(&stats->time);
727 #ifdef CONFIG_DEBUG_BLK_CGROUP
728 blkg_stat_reset(&stats->unaccounted_time);
729 blkg_stat_reset(&stats->avg_queue_size_sum);
730 blkg_stat_reset(&stats->avg_queue_size_samples);
731 blkg_stat_reset(&stats->dequeue);
732 blkg_stat_reset(&stats->group_wait_time);
733 blkg_stat_reset(&stats->idle_time);
734 blkg_stat_reset(&stats->empty_time);
735 #endif
736 }
737
738 /* @to += @from */
739 static void cfqg_stats_merge(struct cfqg_stats *to, struct cfqg_stats *from)
740 {
741 /* queued stats shouldn't be cleared */
742 blkg_rwstat_merge(&to->service_bytes, &from->service_bytes);
743 blkg_rwstat_merge(&to->serviced, &from->serviced);
744 blkg_rwstat_merge(&to->merged, &from->merged);
745 blkg_rwstat_merge(&to->service_time, &from->service_time);
746 blkg_rwstat_merge(&to->wait_time, &from->wait_time);
747 blkg_stat_merge(&from->time, &from->time);
748 #ifdef CONFIG_DEBUG_BLK_CGROUP
749 blkg_stat_merge(&to->unaccounted_time, &from->unaccounted_time);
750 blkg_stat_merge(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
751 blkg_stat_merge(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
752 blkg_stat_merge(&to->dequeue, &from->dequeue);
753 blkg_stat_merge(&to->group_wait_time, &from->group_wait_time);
754 blkg_stat_merge(&to->idle_time, &from->idle_time);
755 blkg_stat_merge(&to->empty_time, &from->empty_time);
756 #endif
757 }
758
759 /*
760 * Transfer @cfqg's stats to its parent's dead_stats so that the ancestors'
761 * recursive stats can still account for the amount used by this cfqg after
762 * it's gone.
763 */
764 static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
765 {
766 struct cfq_group *parent = cfqg_parent(cfqg);
767
768 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
769
770 if (unlikely(!parent))
771 return;
772
773 cfqg_stats_merge(&parent->dead_stats, &cfqg->stats);
774 cfqg_stats_merge(&parent->dead_stats, &cfqg->dead_stats);
775 cfqg_stats_reset(&cfqg->stats);
776 cfqg_stats_reset(&cfqg->dead_stats);
777 }
778
779 #else /* CONFIG_CFQ_GROUP_IOSCHED */
780
781 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
782 static inline void cfqg_get(struct cfq_group *cfqg) { }
783 static inline void cfqg_put(struct cfq_group *cfqg) { }
784
785 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
786 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
787 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
788 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
789 ##args)
790 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
791
792 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
793 struct cfq_group *curr_cfqg, int rw) { }
794 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
795 unsigned long time, unsigned long unaccounted_time) { }
796 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
797 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
798 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
799 uint64_t bytes, int rw) { }
800 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
801 uint64_t start_time, uint64_t io_start_time, int rw) { }
802
803 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
804
805 #define cfq_log(cfqd, fmt, args...) \
806 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
807
808 /* Traverses through cfq group service trees */
809 #define for_each_cfqg_st(cfqg, i, j, st) \
810 for (i = 0; i <= IDLE_WORKLOAD; i++) \
811 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
812 : &cfqg->service_tree_idle; \
813 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
814 (i == IDLE_WORKLOAD && j == 0); \
815 j++, st = i < IDLE_WORKLOAD ? \
816 &cfqg->service_trees[i][j]: NULL) \
817
818 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
819 struct cfq_ttime *ttime, bool group_idle)
820 {
821 unsigned long slice;
822 if (!sample_valid(ttime->ttime_samples))
823 return false;
824 if (group_idle)
825 slice = cfqd->cfq_group_idle;
826 else
827 slice = cfqd->cfq_slice_idle;
828 return ttime->ttime_mean > slice;
829 }
830
831 static inline bool iops_mode(struct cfq_data *cfqd)
832 {
833 /*
834 * If we are not idling on queues and it is a NCQ drive, parallel
835 * execution of requests is on and measuring time is not possible
836 * in most of the cases until and unless we drive shallower queue
837 * depths and that becomes a performance bottleneck. In such cases
838 * switch to start providing fairness in terms of number of IOs.
839 */
840 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
841 return true;
842 else
843 return false;
844 }
845
846 static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
847 {
848 if (cfq_class_idle(cfqq))
849 return IDLE_WORKLOAD;
850 if (cfq_class_rt(cfqq))
851 return RT_WORKLOAD;
852 return BE_WORKLOAD;
853 }
854
855
856 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
857 {
858 if (!cfq_cfqq_sync(cfqq))
859 return ASYNC_WORKLOAD;
860 if (!cfq_cfqq_idle_window(cfqq))
861 return SYNC_NOIDLE_WORKLOAD;
862 return SYNC_WORKLOAD;
863 }
864
865 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
866 struct cfq_data *cfqd,
867 struct cfq_group *cfqg)
868 {
869 if (wl_class == IDLE_WORKLOAD)
870 return cfqg->service_tree_idle.count;
871
872 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
873 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
874 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
875 }
876
877 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
878 struct cfq_group *cfqg)
879 {
880 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
881 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
882 }
883
884 static void cfq_dispatch_insert(struct request_queue *, struct request *);
885 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
886 struct cfq_io_cq *cic, struct bio *bio);
887
888 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
889 {
890 /* cic->icq is the first member, %NULL will convert to %NULL */
891 return container_of(icq, struct cfq_io_cq, icq);
892 }
893
894 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
895 struct io_context *ioc)
896 {
897 if (ioc)
898 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
899 return NULL;
900 }
901
902 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
903 {
904 return cic->cfqq[is_sync];
905 }
906
907 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
908 bool is_sync)
909 {
910 cic->cfqq[is_sync] = cfqq;
911 }
912
913 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
914 {
915 return cic->icq.q->elevator->elevator_data;
916 }
917
918 /*
919 * We regard a request as SYNC, if it's either a read or has the SYNC bit
920 * set (in which case it could also be direct WRITE).
921 */
922 static inline bool cfq_bio_sync(struct bio *bio)
923 {
924 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
925 }
926
927 /*
928 * scheduler run of queue, if there are requests pending and no one in the
929 * driver that will restart queueing
930 */
931 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
932 {
933 if (cfqd->busy_queues) {
934 cfq_log(cfqd, "schedule dispatch");
935 kblockd_schedule_work(&cfqd->unplug_work);
936 }
937 }
938
939 /*
940 * Scale schedule slice based on io priority. Use the sync time slice only
941 * if a queue is marked sync and has sync io queued. A sync queue with async
942 * io only, should not get full sync slice length.
943 */
944 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
945 unsigned short prio)
946 {
947 const int base_slice = cfqd->cfq_slice[sync];
948
949 WARN_ON(prio >= IOPRIO_BE_NR);
950
951 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
952 }
953
954 static inline int
955 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
956 {
957 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
958 }
959
960 /**
961 * cfqg_scale_charge - scale disk time charge according to cfqg weight
962 * @charge: disk time being charged
963 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
964 *
965 * Scale @charge according to @vfraction, which is in range (0, 1]. The
966 * scaling is inversely proportional.
967 *
968 * scaled = charge / vfraction
969 *
970 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
971 */
972 static inline u64 cfqg_scale_charge(unsigned long charge,
973 unsigned int vfraction)
974 {
975 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
976
977 /* charge / vfraction */
978 c <<= CFQ_SERVICE_SHIFT;
979 do_div(c, vfraction);
980 return c;
981 }
982
983 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
984 {
985 s64 delta = (s64)(vdisktime - min_vdisktime);
986 if (delta > 0)
987 min_vdisktime = vdisktime;
988
989 return min_vdisktime;
990 }
991
992 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
993 {
994 s64 delta = (s64)(vdisktime - min_vdisktime);
995 if (delta < 0)
996 min_vdisktime = vdisktime;
997
998 return min_vdisktime;
999 }
1000
1001 static void update_min_vdisktime(struct cfq_rb_root *st)
1002 {
1003 struct cfq_group *cfqg;
1004
1005 if (st->left) {
1006 cfqg = rb_entry_cfqg(st->left);
1007 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
1008 cfqg->vdisktime);
1009 }
1010 }
1011
1012 /*
1013 * get averaged number of queues of RT/BE priority.
1014 * average is updated, with a formula that gives more weight to higher numbers,
1015 * to quickly follows sudden increases and decrease slowly
1016 */
1017
1018 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
1019 struct cfq_group *cfqg, bool rt)
1020 {
1021 unsigned min_q, max_q;
1022 unsigned mult = cfq_hist_divisor - 1;
1023 unsigned round = cfq_hist_divisor / 2;
1024 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1025
1026 min_q = min(cfqg->busy_queues_avg[rt], busy);
1027 max_q = max(cfqg->busy_queues_avg[rt], busy);
1028 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1029 cfq_hist_divisor;
1030 return cfqg->busy_queues_avg[rt];
1031 }
1032
1033 static inline unsigned
1034 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1035 {
1036 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1037 }
1038
1039 static inline unsigned
1040 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1041 {
1042 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
1043 if (cfqd->cfq_latency) {
1044 /*
1045 * interested queues (we consider only the ones with the same
1046 * priority class in the cfq group)
1047 */
1048 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1049 cfq_class_rt(cfqq));
1050 unsigned sync_slice = cfqd->cfq_slice[1];
1051 unsigned expect_latency = sync_slice * iq;
1052 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1053
1054 if (expect_latency > group_slice) {
1055 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
1056 /* scale low_slice according to IO priority
1057 * and sync vs async */
1058 unsigned low_slice =
1059 min(slice, base_low_slice * slice / sync_slice);
1060 /* the adapted slice value is scaled to fit all iqs
1061 * into the target latency */
1062 slice = max(slice * group_slice / expect_latency,
1063 low_slice);
1064 }
1065 }
1066 return slice;
1067 }
1068
1069 static inline void
1070 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1071 {
1072 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1073
1074 cfqq->slice_start = jiffies;
1075 cfqq->slice_end = jiffies + slice;
1076 cfqq->allocated_slice = slice;
1077 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
1078 }
1079
1080 /*
1081 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1082 * isn't valid until the first request from the dispatch is activated
1083 * and the slice time set.
1084 */
1085 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1086 {
1087 if (cfq_cfqq_slice_new(cfqq))
1088 return false;
1089 if (time_before(jiffies, cfqq->slice_end))
1090 return false;
1091
1092 return true;
1093 }
1094
1095 /*
1096 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1097 * We choose the request that is closest to the head right now. Distance
1098 * behind the head is penalized and only allowed to a certain extent.
1099 */
1100 static struct request *
1101 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1102 {
1103 sector_t s1, s2, d1 = 0, d2 = 0;
1104 unsigned long back_max;
1105 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1106 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1107 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1108
1109 if (rq1 == NULL || rq1 == rq2)
1110 return rq2;
1111 if (rq2 == NULL)
1112 return rq1;
1113
1114 if (rq_is_sync(rq1) != rq_is_sync(rq2))
1115 return rq_is_sync(rq1) ? rq1 : rq2;
1116
1117 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1118 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1119
1120 s1 = blk_rq_pos(rq1);
1121 s2 = blk_rq_pos(rq2);
1122
1123 /*
1124 * by definition, 1KiB is 2 sectors
1125 */
1126 back_max = cfqd->cfq_back_max * 2;
1127
1128 /*
1129 * Strict one way elevator _except_ in the case where we allow
1130 * short backward seeks which are biased as twice the cost of a
1131 * similar forward seek.
1132 */
1133 if (s1 >= last)
1134 d1 = s1 - last;
1135 else if (s1 + back_max >= last)
1136 d1 = (last - s1) * cfqd->cfq_back_penalty;
1137 else
1138 wrap |= CFQ_RQ1_WRAP;
1139
1140 if (s2 >= last)
1141 d2 = s2 - last;
1142 else if (s2 + back_max >= last)
1143 d2 = (last - s2) * cfqd->cfq_back_penalty;
1144 else
1145 wrap |= CFQ_RQ2_WRAP;
1146
1147 /* Found required data */
1148
1149 /*
1150 * By doing switch() on the bit mask "wrap" we avoid having to
1151 * check two variables for all permutations: --> faster!
1152 */
1153 switch (wrap) {
1154 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1155 if (d1 < d2)
1156 return rq1;
1157 else if (d2 < d1)
1158 return rq2;
1159 else {
1160 if (s1 >= s2)
1161 return rq1;
1162 else
1163 return rq2;
1164 }
1165
1166 case CFQ_RQ2_WRAP:
1167 return rq1;
1168 case CFQ_RQ1_WRAP:
1169 return rq2;
1170 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1171 default:
1172 /*
1173 * Since both rqs are wrapped,
1174 * start with the one that's further behind head
1175 * (--> only *one* back seek required),
1176 * since back seek takes more time than forward.
1177 */
1178 if (s1 <= s2)
1179 return rq1;
1180 else
1181 return rq2;
1182 }
1183 }
1184
1185 /*
1186 * The below is leftmost cache rbtree addon
1187 */
1188 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1189 {
1190 /* Service tree is empty */
1191 if (!root->count)
1192 return NULL;
1193
1194 if (!root->left)
1195 root->left = rb_first(&root->rb);
1196
1197 if (root->left)
1198 return rb_entry(root->left, struct cfq_queue, rb_node);
1199
1200 return NULL;
1201 }
1202
1203 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1204 {
1205 if (!root->left)
1206 root->left = rb_first(&root->rb);
1207
1208 if (root->left)
1209 return rb_entry_cfqg(root->left);
1210
1211 return NULL;
1212 }
1213
1214 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1215 {
1216 rb_erase(n, root);
1217 RB_CLEAR_NODE(n);
1218 }
1219
1220 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1221 {
1222 if (root->left == n)
1223 root->left = NULL;
1224 rb_erase_init(n, &root->rb);
1225 --root->count;
1226 }
1227
1228 /*
1229 * would be nice to take fifo expire time into account as well
1230 */
1231 static struct request *
1232 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1233 struct request *last)
1234 {
1235 struct rb_node *rbnext = rb_next(&last->rb_node);
1236 struct rb_node *rbprev = rb_prev(&last->rb_node);
1237 struct request *next = NULL, *prev = NULL;
1238
1239 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1240
1241 if (rbprev)
1242 prev = rb_entry_rq(rbprev);
1243
1244 if (rbnext)
1245 next = rb_entry_rq(rbnext);
1246 else {
1247 rbnext = rb_first(&cfqq->sort_list);
1248 if (rbnext && rbnext != &last->rb_node)
1249 next = rb_entry_rq(rbnext);
1250 }
1251
1252 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1253 }
1254
1255 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1256 struct cfq_queue *cfqq)
1257 {
1258 /*
1259 * just an approximation, should be ok.
1260 */
1261 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1262 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1263 }
1264
1265 static inline s64
1266 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1267 {
1268 return cfqg->vdisktime - st->min_vdisktime;
1269 }
1270
1271 static void
1272 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1273 {
1274 struct rb_node **node = &st->rb.rb_node;
1275 struct rb_node *parent = NULL;
1276 struct cfq_group *__cfqg;
1277 s64 key = cfqg_key(st, cfqg);
1278 int left = 1;
1279
1280 while (*node != NULL) {
1281 parent = *node;
1282 __cfqg = rb_entry_cfqg(parent);
1283
1284 if (key < cfqg_key(st, __cfqg))
1285 node = &parent->rb_left;
1286 else {
1287 node = &parent->rb_right;
1288 left = 0;
1289 }
1290 }
1291
1292 if (left)
1293 st->left = &cfqg->rb_node;
1294
1295 rb_link_node(&cfqg->rb_node, parent, node);
1296 rb_insert_color(&cfqg->rb_node, &st->rb);
1297 }
1298
1299 /*
1300 * This has to be called only on activation of cfqg
1301 */
1302 static void
1303 cfq_update_group_weight(struct cfq_group *cfqg)
1304 {
1305 if (cfqg->new_weight) {
1306 cfqg->weight = cfqg->new_weight;
1307 cfqg->new_weight = 0;
1308 }
1309 }
1310
1311 static void
1312 cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1313 {
1314 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1315
1316 if (cfqg->new_leaf_weight) {
1317 cfqg->leaf_weight = cfqg->new_leaf_weight;
1318 cfqg->new_leaf_weight = 0;
1319 }
1320 }
1321
1322 static void
1323 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1324 {
1325 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1326 struct cfq_group *pos = cfqg;
1327 struct cfq_group *parent;
1328 bool propagate;
1329
1330 /* add to the service tree */
1331 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1332
1333 /*
1334 * Update leaf_weight. We cannot update weight at this point
1335 * because cfqg might already have been activated and is
1336 * contributing its current weight to the parent's child_weight.
1337 */
1338 cfq_update_group_leaf_weight(cfqg);
1339 __cfq_group_service_tree_add(st, cfqg);
1340
1341 /*
1342 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1343 * entitled to. vfraction is calculated by walking the tree
1344 * towards the root calculating the fraction it has at each level.
1345 * The compounded ratio is how much vfraction @cfqg owns.
1346 *
1347 * Start with the proportion tasks in this cfqg has against active
1348 * children cfqgs - its leaf_weight against children_weight.
1349 */
1350 propagate = !pos->nr_active++;
1351 pos->children_weight += pos->leaf_weight;
1352 vfr = vfr * pos->leaf_weight / pos->children_weight;
1353
1354 /*
1355 * Compound ->weight walking up the tree. Both activation and
1356 * vfraction calculation are done in the same loop. Propagation
1357 * stops once an already activated node is met. vfraction
1358 * calculation should always continue to the root.
1359 */
1360 while ((parent = cfqg_parent(pos))) {
1361 if (propagate) {
1362 cfq_update_group_weight(pos);
1363 propagate = !parent->nr_active++;
1364 parent->children_weight += pos->weight;
1365 }
1366 vfr = vfr * pos->weight / parent->children_weight;
1367 pos = parent;
1368 }
1369
1370 cfqg->vfraction = max_t(unsigned, vfr, 1);
1371 }
1372
1373 static void
1374 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1375 {
1376 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1377 struct cfq_group *__cfqg;
1378 struct rb_node *n;
1379
1380 cfqg->nr_cfqq++;
1381 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1382 return;
1383
1384 /*
1385 * Currently put the group at the end. Later implement something
1386 * so that groups get lesser vtime based on their weights, so that
1387 * if group does not loose all if it was not continuously backlogged.
1388 */
1389 n = rb_last(&st->rb);
1390 if (n) {
1391 __cfqg = rb_entry_cfqg(n);
1392 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1393 } else
1394 cfqg->vdisktime = st->min_vdisktime;
1395 cfq_group_service_tree_add(st, cfqg);
1396 }
1397
1398 static void
1399 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1400 {
1401 struct cfq_group *pos = cfqg;
1402 bool propagate;
1403
1404 /*
1405 * Undo activation from cfq_group_service_tree_add(). Deactivate
1406 * @cfqg and propagate deactivation upwards.
1407 */
1408 propagate = !--pos->nr_active;
1409 pos->children_weight -= pos->leaf_weight;
1410
1411 while (propagate) {
1412 struct cfq_group *parent = cfqg_parent(pos);
1413
1414 /* @pos has 0 nr_active at this point */
1415 WARN_ON_ONCE(pos->children_weight);
1416 pos->vfraction = 0;
1417
1418 if (!parent)
1419 break;
1420
1421 propagate = !--parent->nr_active;
1422 parent->children_weight -= pos->weight;
1423 pos = parent;
1424 }
1425
1426 /* remove from the service tree */
1427 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1428 cfq_rb_erase(&cfqg->rb_node, st);
1429 }
1430
1431 static void
1432 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1433 {
1434 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1435
1436 BUG_ON(cfqg->nr_cfqq < 1);
1437 cfqg->nr_cfqq--;
1438
1439 /* If there are other cfq queues under this group, don't delete it */
1440 if (cfqg->nr_cfqq)
1441 return;
1442
1443 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1444 cfq_group_service_tree_del(st, cfqg);
1445 cfqg->saved_wl_slice = 0;
1446 cfqg_stats_update_dequeue(cfqg);
1447 }
1448
1449 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1450 unsigned int *unaccounted_time)
1451 {
1452 unsigned int slice_used;
1453
1454 /*
1455 * Queue got expired before even a single request completed or
1456 * got expired immediately after first request completion.
1457 */
1458 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1459 /*
1460 * Also charge the seek time incurred to the group, otherwise
1461 * if there are mutiple queues in the group, each can dispatch
1462 * a single request on seeky media and cause lots of seek time
1463 * and group will never know it.
1464 */
1465 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1466 1);
1467 } else {
1468 slice_used = jiffies - cfqq->slice_start;
1469 if (slice_used > cfqq->allocated_slice) {
1470 *unaccounted_time = slice_used - cfqq->allocated_slice;
1471 slice_used = cfqq->allocated_slice;
1472 }
1473 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1474 *unaccounted_time += cfqq->slice_start -
1475 cfqq->dispatch_start;
1476 }
1477
1478 return slice_used;
1479 }
1480
1481 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1482 struct cfq_queue *cfqq)
1483 {
1484 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1485 unsigned int used_sl, charge, unaccounted_sl = 0;
1486 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1487 - cfqg->service_tree_idle.count;
1488 unsigned int vfr;
1489
1490 BUG_ON(nr_sync < 0);
1491 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1492
1493 if (iops_mode(cfqd))
1494 charge = cfqq->slice_dispatch;
1495 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1496 charge = cfqq->allocated_slice;
1497
1498 /*
1499 * Can't update vdisktime while on service tree and cfqg->vfraction
1500 * is valid only while on it. Cache vfr, leave the service tree,
1501 * update vdisktime and go back on. The re-addition to the tree
1502 * will also update the weights as necessary.
1503 */
1504 vfr = cfqg->vfraction;
1505 cfq_group_service_tree_del(st, cfqg);
1506 cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1507 cfq_group_service_tree_add(st, cfqg);
1508
1509 /* This group is being expired. Save the context */
1510 if (time_after(cfqd->workload_expires, jiffies)) {
1511 cfqg->saved_wl_slice = cfqd->workload_expires
1512 - jiffies;
1513 cfqg->saved_wl_type = cfqd->serving_wl_type;
1514 cfqg->saved_wl_class = cfqd->serving_wl_class;
1515 } else
1516 cfqg->saved_wl_slice = 0;
1517
1518 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1519 st->min_vdisktime);
1520 cfq_log_cfqq(cfqq->cfqd, cfqq,
1521 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1522 used_sl, cfqq->slice_dispatch, charge,
1523 iops_mode(cfqd), cfqq->nr_sectors);
1524 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1525 cfqg_stats_set_start_empty_time(cfqg);
1526 }
1527
1528 /**
1529 * cfq_init_cfqg_base - initialize base part of a cfq_group
1530 * @cfqg: cfq_group to initialize
1531 *
1532 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1533 * is enabled or not.
1534 */
1535 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1536 {
1537 struct cfq_rb_root *st;
1538 int i, j;
1539
1540 for_each_cfqg_st(cfqg, i, j, st)
1541 *st = CFQ_RB_ROOT;
1542 RB_CLEAR_NODE(&cfqg->rb_node);
1543
1544 cfqg->ttime.last_end_request = jiffies;
1545 }
1546
1547 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1548 static void cfqg_stats_init(struct cfqg_stats *stats)
1549 {
1550 blkg_rwstat_init(&stats->service_bytes);
1551 blkg_rwstat_init(&stats->serviced);
1552 blkg_rwstat_init(&stats->merged);
1553 blkg_rwstat_init(&stats->service_time);
1554 blkg_rwstat_init(&stats->wait_time);
1555 blkg_rwstat_init(&stats->queued);
1556
1557 blkg_stat_init(&stats->sectors);
1558 blkg_stat_init(&stats->time);
1559
1560 #ifdef CONFIG_DEBUG_BLK_CGROUP
1561 blkg_stat_init(&stats->unaccounted_time);
1562 blkg_stat_init(&stats->avg_queue_size_sum);
1563 blkg_stat_init(&stats->avg_queue_size_samples);
1564 blkg_stat_init(&stats->dequeue);
1565 blkg_stat_init(&stats->group_wait_time);
1566 blkg_stat_init(&stats->idle_time);
1567 blkg_stat_init(&stats->empty_time);
1568 #endif
1569 }
1570
1571 static void cfq_cpd_init(const struct blkcg *blkcg)
1572 {
1573 struct cfq_group_data *cgd =
1574 cpd_to_cfqgd(blkcg->pd[blkcg_policy_cfq.plid]);
1575
1576 if (blkcg == &blkcg_root) {
1577 cgd->weight = 2 * CFQ_WEIGHT_DEFAULT;
1578 cgd->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
1579 } else {
1580 cgd->weight = CFQ_WEIGHT_DEFAULT;
1581 cgd->leaf_weight = CFQ_WEIGHT_DEFAULT;
1582 }
1583 }
1584
1585 static struct blkg_policy_data *cfq_pd_alloc(gfp_t gfp, int node)
1586 {
1587 struct cfq_group *cfqg;
1588
1589 cfqg = kzalloc_node(sizeof(*cfqg), gfp, node);
1590 if (!cfqg)
1591 return NULL;
1592
1593 cfq_init_cfqg_base(cfqg);
1594 cfqg_stats_init(&cfqg->stats);
1595 cfqg_stats_init(&cfqg->dead_stats);
1596
1597 return &cfqg->pd;
1598 }
1599
1600 static void cfq_pd_init(struct blkg_policy_data *pd)
1601 {
1602 struct cfq_group *cfqg = pd_to_cfqg(pd);
1603 struct cfq_group_data *cgd = blkcg_to_cfqgd(pd->blkg->blkcg);
1604
1605 cfqg->weight = cgd->weight;
1606 cfqg->leaf_weight = cgd->leaf_weight;
1607 }
1608
1609 static void cfq_pd_offline(struct blkg_policy_data *pd)
1610 {
1611 struct cfq_group *cfqg = pd_to_cfqg(pd);
1612 int i;
1613
1614 for (i = 0; i < IOPRIO_BE_NR; i++) {
1615 if (cfqg->async_cfqq[0][i])
1616 cfq_put_queue(cfqg->async_cfqq[0][i]);
1617 if (cfqg->async_cfqq[1][i])
1618 cfq_put_queue(cfqg->async_cfqq[1][i]);
1619 }
1620
1621 if (cfqg->async_idle_cfqq)
1622 cfq_put_queue(cfqg->async_idle_cfqq);
1623
1624 /*
1625 * @blkg is going offline and will be ignored by
1626 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1627 * that they don't get lost. If IOs complete after this point, the
1628 * stats for them will be lost. Oh well...
1629 */
1630 cfqg_stats_xfer_dead(cfqg);
1631 }
1632
1633 static void cfq_pd_free(struct blkg_policy_data *pd)
1634 {
1635 return kfree(pd);
1636 }
1637
1638 /* offset delta from cfqg->stats to cfqg->dead_stats */
1639 static const int dead_stats_off_delta = offsetof(struct cfq_group, dead_stats) -
1640 offsetof(struct cfq_group, stats);
1641
1642 /* to be used by recursive prfill, sums live and dead stats recursively */
1643 static u64 cfqg_stat_pd_recursive_sum(struct blkg_policy_data *pd, int off)
1644 {
1645 u64 sum = 0;
1646
1647 sum += blkg_stat_recursive_sum(pd, off);
1648 sum += blkg_stat_recursive_sum(pd, off + dead_stats_off_delta);
1649 return sum;
1650 }
1651
1652 /* to be used by recursive prfill, sums live and dead rwstats recursively */
1653 static struct blkg_rwstat cfqg_rwstat_pd_recursive_sum(struct blkg_policy_data *pd,
1654 int off)
1655 {
1656 struct blkg_rwstat a, b;
1657
1658 a = blkg_rwstat_recursive_sum(pd, off);
1659 b = blkg_rwstat_recursive_sum(pd, off + dead_stats_off_delta);
1660 blkg_rwstat_merge(&a, &b);
1661 return a;
1662 }
1663
1664 static void cfq_pd_reset_stats(struct blkg_policy_data *pd)
1665 {
1666 struct cfq_group *cfqg = pd_to_cfqg(pd);
1667
1668 cfqg_stats_reset(&cfqg->stats);
1669 cfqg_stats_reset(&cfqg->dead_stats);
1670 }
1671
1672 /*
1673 * Search for the cfq group current task belongs to. request_queue lock must
1674 * be held.
1675 */
1676 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1677 struct blkcg *blkcg)
1678 {
1679 struct request_queue *q = cfqd->queue;
1680 struct cfq_group *cfqg = NULL;
1681
1682 /* avoid lookup for the common case where there's no blkcg */
1683 if (blkcg == &blkcg_root) {
1684 cfqg = cfqd->root_group;
1685 } else {
1686 struct blkcg_gq *blkg;
1687
1688 blkg = blkg_lookup_create(blkcg, q);
1689 if (!IS_ERR(blkg))
1690 cfqg = blkg_to_cfqg(blkg);
1691 }
1692
1693 return cfqg;
1694 }
1695
1696 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1697 {
1698 cfqq->cfqg = cfqg;
1699 /* cfqq reference on cfqg */
1700 cfqg_get(cfqg);
1701 }
1702
1703 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1704 struct blkg_policy_data *pd, int off)
1705 {
1706 struct cfq_group *cfqg = pd_to_cfqg(pd);
1707
1708 if (!cfqg->dev_weight)
1709 return 0;
1710 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1711 }
1712
1713 static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1714 {
1715 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1716 cfqg_prfill_weight_device, &blkcg_policy_cfq,
1717 0, false);
1718 return 0;
1719 }
1720
1721 static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1722 struct blkg_policy_data *pd, int off)
1723 {
1724 struct cfq_group *cfqg = pd_to_cfqg(pd);
1725
1726 if (!cfqg->dev_leaf_weight)
1727 return 0;
1728 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1729 }
1730
1731 static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1732 {
1733 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1734 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1735 0, false);
1736 return 0;
1737 }
1738
1739 static int cfq_print_weight(struct seq_file *sf, void *v)
1740 {
1741 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1742 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1743 unsigned int val = 0;
1744
1745 if (cgd)
1746 val = cgd->weight;
1747
1748 seq_printf(sf, "%u\n", val);
1749 return 0;
1750 }
1751
1752 static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1753 {
1754 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1755 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1756 unsigned int val = 0;
1757
1758 if (cgd)
1759 val = cgd->leaf_weight;
1760
1761 seq_printf(sf, "%u\n", val);
1762 return 0;
1763 }
1764
1765 static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1766 char *buf, size_t nbytes, loff_t off,
1767 bool is_leaf_weight)
1768 {
1769 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1770 struct blkg_conf_ctx ctx;
1771 struct cfq_group *cfqg;
1772 struct cfq_group_data *cfqgd;
1773 int ret;
1774
1775 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1776 if (ret)
1777 return ret;
1778
1779 ret = -EINVAL;
1780 cfqg = blkg_to_cfqg(ctx.blkg);
1781 cfqgd = blkcg_to_cfqgd(blkcg);
1782 if (!cfqg || !cfqgd)
1783 goto err;
1784
1785 if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) {
1786 if (!is_leaf_weight) {
1787 cfqg->dev_weight = ctx.v;
1788 cfqg->new_weight = ctx.v ?: cfqgd->weight;
1789 } else {
1790 cfqg->dev_leaf_weight = ctx.v;
1791 cfqg->new_leaf_weight = ctx.v ?: cfqgd->leaf_weight;
1792 }
1793 ret = 0;
1794 }
1795
1796 err:
1797 blkg_conf_finish(&ctx);
1798 return ret ?: nbytes;
1799 }
1800
1801 static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1802 char *buf, size_t nbytes, loff_t off)
1803 {
1804 return __cfqg_set_weight_device(of, buf, nbytes, off, false);
1805 }
1806
1807 static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1808 char *buf, size_t nbytes, loff_t off)
1809 {
1810 return __cfqg_set_weight_device(of, buf, nbytes, off, true);
1811 }
1812
1813 static int __cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1814 u64 val, bool is_leaf_weight)
1815 {
1816 struct blkcg *blkcg = css_to_blkcg(css);
1817 struct blkcg_gq *blkg;
1818 struct cfq_group_data *cfqgd;
1819 int ret = 0;
1820
1821 if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
1822 return -EINVAL;
1823
1824 spin_lock_irq(&blkcg->lock);
1825 cfqgd = blkcg_to_cfqgd(blkcg);
1826 if (!cfqgd) {
1827 ret = -EINVAL;
1828 goto out;
1829 }
1830
1831 if (!is_leaf_weight)
1832 cfqgd->weight = val;
1833 else
1834 cfqgd->leaf_weight = val;
1835
1836 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1837 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1838
1839 if (!cfqg)
1840 continue;
1841
1842 if (!is_leaf_weight) {
1843 if (!cfqg->dev_weight)
1844 cfqg->new_weight = cfqgd->weight;
1845 } else {
1846 if (!cfqg->dev_leaf_weight)
1847 cfqg->new_leaf_weight = cfqgd->leaf_weight;
1848 }
1849 }
1850
1851 out:
1852 spin_unlock_irq(&blkcg->lock);
1853 return ret;
1854 }
1855
1856 static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1857 u64 val)
1858 {
1859 return __cfq_set_weight(css, cft, val, false);
1860 }
1861
1862 static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1863 struct cftype *cft, u64 val)
1864 {
1865 return __cfq_set_weight(css, cft, val, true);
1866 }
1867
1868 static int cfqg_print_stat(struct seq_file *sf, void *v)
1869 {
1870 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1871 &blkcg_policy_cfq, seq_cft(sf)->private, false);
1872 return 0;
1873 }
1874
1875 static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1876 {
1877 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1878 &blkcg_policy_cfq, seq_cft(sf)->private, true);
1879 return 0;
1880 }
1881
1882 static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1883 struct blkg_policy_data *pd, int off)
1884 {
1885 u64 sum = cfqg_stat_pd_recursive_sum(pd, off);
1886
1887 return __blkg_prfill_u64(sf, pd, sum);
1888 }
1889
1890 static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1891 struct blkg_policy_data *pd, int off)
1892 {
1893 struct blkg_rwstat sum = cfqg_rwstat_pd_recursive_sum(pd, off);
1894
1895 return __blkg_prfill_rwstat(sf, pd, &sum);
1896 }
1897
1898 static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1899 {
1900 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1901 cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1902 seq_cft(sf)->private, false);
1903 return 0;
1904 }
1905
1906 static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1907 {
1908 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1909 cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1910 seq_cft(sf)->private, true);
1911 return 0;
1912 }
1913
1914 #ifdef CONFIG_DEBUG_BLK_CGROUP
1915 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1916 struct blkg_policy_data *pd, int off)
1917 {
1918 struct cfq_group *cfqg = pd_to_cfqg(pd);
1919 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1920 u64 v = 0;
1921
1922 if (samples) {
1923 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1924 v = div64_u64(v, samples);
1925 }
1926 __blkg_prfill_u64(sf, pd, v);
1927 return 0;
1928 }
1929
1930 /* print avg_queue_size */
1931 static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
1932 {
1933 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1934 cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
1935 0, false);
1936 return 0;
1937 }
1938 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1939
1940 static struct cftype cfq_blkcg_files[] = {
1941 /* on root, weight is mapped to leaf_weight */
1942 {
1943 .name = "weight_device",
1944 .flags = CFTYPE_ONLY_ON_ROOT,
1945 .seq_show = cfqg_print_leaf_weight_device,
1946 .write = cfqg_set_leaf_weight_device,
1947 },
1948 {
1949 .name = "weight",
1950 .flags = CFTYPE_ONLY_ON_ROOT,
1951 .seq_show = cfq_print_leaf_weight,
1952 .write_u64 = cfq_set_leaf_weight,
1953 },
1954
1955 /* no such mapping necessary for !roots */
1956 {
1957 .name = "weight_device",
1958 .flags = CFTYPE_NOT_ON_ROOT,
1959 .seq_show = cfqg_print_weight_device,
1960 .write = cfqg_set_weight_device,
1961 },
1962 {
1963 .name = "weight",
1964 .flags = CFTYPE_NOT_ON_ROOT,
1965 .seq_show = cfq_print_weight,
1966 .write_u64 = cfq_set_weight,
1967 },
1968
1969 {
1970 .name = "leaf_weight_device",
1971 .seq_show = cfqg_print_leaf_weight_device,
1972 .write = cfqg_set_leaf_weight_device,
1973 },
1974 {
1975 .name = "leaf_weight",
1976 .seq_show = cfq_print_leaf_weight,
1977 .write_u64 = cfq_set_leaf_weight,
1978 },
1979
1980 /* statistics, covers only the tasks in the cfqg */
1981 {
1982 .name = "time",
1983 .private = offsetof(struct cfq_group, stats.time),
1984 .seq_show = cfqg_print_stat,
1985 },
1986 {
1987 .name = "sectors",
1988 .private = offsetof(struct cfq_group, stats.sectors),
1989 .seq_show = cfqg_print_stat,
1990 },
1991 {
1992 .name = "io_service_bytes",
1993 .private = offsetof(struct cfq_group, stats.service_bytes),
1994 .seq_show = cfqg_print_rwstat,
1995 },
1996 {
1997 .name = "io_serviced",
1998 .private = offsetof(struct cfq_group, stats.serviced),
1999 .seq_show = cfqg_print_rwstat,
2000 },
2001 {
2002 .name = "io_service_time",
2003 .private = offsetof(struct cfq_group, stats.service_time),
2004 .seq_show = cfqg_print_rwstat,
2005 },
2006 {
2007 .name = "io_wait_time",
2008 .private = offsetof(struct cfq_group, stats.wait_time),
2009 .seq_show = cfqg_print_rwstat,
2010 },
2011 {
2012 .name = "io_merged",
2013 .private = offsetof(struct cfq_group, stats.merged),
2014 .seq_show = cfqg_print_rwstat,
2015 },
2016 {
2017 .name = "io_queued",
2018 .private = offsetof(struct cfq_group, stats.queued),
2019 .seq_show = cfqg_print_rwstat,
2020 },
2021
2022 /* the same statictics which cover the cfqg and its descendants */
2023 {
2024 .name = "time_recursive",
2025 .private = offsetof(struct cfq_group, stats.time),
2026 .seq_show = cfqg_print_stat_recursive,
2027 },
2028 {
2029 .name = "sectors_recursive",
2030 .private = offsetof(struct cfq_group, stats.sectors),
2031 .seq_show = cfqg_print_stat_recursive,
2032 },
2033 {
2034 .name = "io_service_bytes_recursive",
2035 .private = offsetof(struct cfq_group, stats.service_bytes),
2036 .seq_show = cfqg_print_rwstat_recursive,
2037 },
2038 {
2039 .name = "io_serviced_recursive",
2040 .private = offsetof(struct cfq_group, stats.serviced),
2041 .seq_show = cfqg_print_rwstat_recursive,
2042 },
2043 {
2044 .name = "io_service_time_recursive",
2045 .private = offsetof(struct cfq_group, stats.service_time),
2046 .seq_show = cfqg_print_rwstat_recursive,
2047 },
2048 {
2049 .name = "io_wait_time_recursive",
2050 .private = offsetof(struct cfq_group, stats.wait_time),
2051 .seq_show = cfqg_print_rwstat_recursive,
2052 },
2053 {
2054 .name = "io_merged_recursive",
2055 .private = offsetof(struct cfq_group, stats.merged),
2056 .seq_show = cfqg_print_rwstat_recursive,
2057 },
2058 {
2059 .name = "io_queued_recursive",
2060 .private = offsetof(struct cfq_group, stats.queued),
2061 .seq_show = cfqg_print_rwstat_recursive,
2062 },
2063 #ifdef CONFIG_DEBUG_BLK_CGROUP
2064 {
2065 .name = "avg_queue_size",
2066 .seq_show = cfqg_print_avg_queue_size,
2067 },
2068 {
2069 .name = "group_wait_time",
2070 .private = offsetof(struct cfq_group, stats.group_wait_time),
2071 .seq_show = cfqg_print_stat,
2072 },
2073 {
2074 .name = "idle_time",
2075 .private = offsetof(struct cfq_group, stats.idle_time),
2076 .seq_show = cfqg_print_stat,
2077 },
2078 {
2079 .name = "empty_time",
2080 .private = offsetof(struct cfq_group, stats.empty_time),
2081 .seq_show = cfqg_print_stat,
2082 },
2083 {
2084 .name = "dequeue",
2085 .private = offsetof(struct cfq_group, stats.dequeue),
2086 .seq_show = cfqg_print_stat,
2087 },
2088 {
2089 .name = "unaccounted_time",
2090 .private = offsetof(struct cfq_group, stats.unaccounted_time),
2091 .seq_show = cfqg_print_stat,
2092 },
2093 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2094 { } /* terminate */
2095 };
2096 #else /* GROUP_IOSCHED */
2097 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
2098 struct blkcg *blkcg)
2099 {
2100 return cfqd->root_group;
2101 }
2102
2103 static inline void
2104 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2105 cfqq->cfqg = cfqg;
2106 }
2107
2108 #endif /* GROUP_IOSCHED */
2109
2110 /*
2111 * The cfqd->service_trees holds all pending cfq_queue's that have
2112 * requests waiting to be processed. It is sorted in the order that
2113 * we will service the queues.
2114 */
2115 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2116 bool add_front)
2117 {
2118 struct rb_node **p, *parent;
2119 struct cfq_queue *__cfqq;
2120 unsigned long rb_key;
2121 struct cfq_rb_root *st;
2122 int left;
2123 int new_cfqq = 1;
2124
2125 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2126 if (cfq_class_idle(cfqq)) {
2127 rb_key = CFQ_IDLE_DELAY;
2128 parent = rb_last(&st->rb);
2129 if (parent && parent != &cfqq->rb_node) {
2130 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2131 rb_key += __cfqq->rb_key;
2132 } else
2133 rb_key += jiffies;
2134 } else if (!add_front) {
2135 /*
2136 * Get our rb key offset. Subtract any residual slice
2137 * value carried from last service. A negative resid
2138 * count indicates slice overrun, and this should position
2139 * the next service time further away in the tree.
2140 */
2141 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
2142 rb_key -= cfqq->slice_resid;
2143 cfqq->slice_resid = 0;
2144 } else {
2145 rb_key = -HZ;
2146 __cfqq = cfq_rb_first(st);
2147 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
2148 }
2149
2150 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2151 new_cfqq = 0;
2152 /*
2153 * same position, nothing more to do
2154 */
2155 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2156 return;
2157
2158 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2159 cfqq->service_tree = NULL;
2160 }
2161
2162 left = 1;
2163 parent = NULL;
2164 cfqq->service_tree = st;
2165 p = &st->rb.rb_node;
2166 while (*p) {
2167 parent = *p;
2168 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2169
2170 /*
2171 * sort by key, that represents service time.
2172 */
2173 if (time_before(rb_key, __cfqq->rb_key))
2174 p = &parent->rb_left;
2175 else {
2176 p = &parent->rb_right;
2177 left = 0;
2178 }
2179 }
2180
2181 if (left)
2182 st->left = &cfqq->rb_node;
2183
2184 cfqq->rb_key = rb_key;
2185 rb_link_node(&cfqq->rb_node, parent, p);
2186 rb_insert_color(&cfqq->rb_node, &st->rb);
2187 st->count++;
2188 if (add_front || !new_cfqq)
2189 return;
2190 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2191 }
2192
2193 static struct cfq_queue *
2194 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2195 sector_t sector, struct rb_node **ret_parent,
2196 struct rb_node ***rb_link)
2197 {
2198 struct rb_node **p, *parent;
2199 struct cfq_queue *cfqq = NULL;
2200
2201 parent = NULL;
2202 p = &root->rb_node;
2203 while (*p) {
2204 struct rb_node **n;
2205
2206 parent = *p;
2207 cfqq = rb_entry(parent, struct cfq_queue, p_node);
2208
2209 /*
2210 * Sort strictly based on sector. Smallest to the left,
2211 * largest to the right.
2212 */
2213 if (sector > blk_rq_pos(cfqq->next_rq))
2214 n = &(*p)->rb_right;
2215 else if (sector < blk_rq_pos(cfqq->next_rq))
2216 n = &(*p)->rb_left;
2217 else
2218 break;
2219 p = n;
2220 cfqq = NULL;
2221 }
2222
2223 *ret_parent = parent;
2224 if (rb_link)
2225 *rb_link = p;
2226 return cfqq;
2227 }
2228
2229 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2230 {
2231 struct rb_node **p, *parent;
2232 struct cfq_queue *__cfqq;
2233
2234 if (cfqq->p_root) {
2235 rb_erase(&cfqq->p_node, cfqq->p_root);
2236 cfqq->p_root = NULL;
2237 }
2238
2239 if (cfq_class_idle(cfqq))
2240 return;
2241 if (!cfqq->next_rq)
2242 return;
2243
2244 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2245 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2246 blk_rq_pos(cfqq->next_rq), &parent, &p);
2247 if (!__cfqq) {
2248 rb_link_node(&cfqq->p_node, parent, p);
2249 rb_insert_color(&cfqq->p_node, cfqq->p_root);
2250 } else
2251 cfqq->p_root = NULL;
2252 }
2253
2254 /*
2255 * Update cfqq's position in the service tree.
2256 */
2257 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2258 {
2259 /*
2260 * Resorting requires the cfqq to be on the RR list already.
2261 */
2262 if (cfq_cfqq_on_rr(cfqq)) {
2263 cfq_service_tree_add(cfqd, cfqq, 0);
2264 cfq_prio_tree_add(cfqd, cfqq);
2265 }
2266 }
2267
2268 /*
2269 * add to busy list of queues for service, trying to be fair in ordering
2270 * the pending list according to last request service
2271 */
2272 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2273 {
2274 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2275 BUG_ON(cfq_cfqq_on_rr(cfqq));
2276 cfq_mark_cfqq_on_rr(cfqq);
2277 cfqd->busy_queues++;
2278 if (cfq_cfqq_sync(cfqq))
2279 cfqd->busy_sync_queues++;
2280
2281 cfq_resort_rr_list(cfqd, cfqq);
2282 }
2283
2284 /*
2285 * Called when the cfqq no longer has requests pending, remove it from
2286 * the service tree.
2287 */
2288 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2289 {
2290 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2291 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2292 cfq_clear_cfqq_on_rr(cfqq);
2293
2294 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2295 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2296 cfqq->service_tree = NULL;
2297 }
2298 if (cfqq->p_root) {
2299 rb_erase(&cfqq->p_node, cfqq->p_root);
2300 cfqq->p_root = NULL;
2301 }
2302
2303 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2304 BUG_ON(!cfqd->busy_queues);
2305 cfqd->busy_queues--;
2306 if (cfq_cfqq_sync(cfqq))
2307 cfqd->busy_sync_queues--;
2308 }
2309
2310 /*
2311 * rb tree support functions
2312 */
2313 static void cfq_del_rq_rb(struct request *rq)
2314 {
2315 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2316 const int sync = rq_is_sync(rq);
2317
2318 BUG_ON(!cfqq->queued[sync]);
2319 cfqq->queued[sync]--;
2320
2321 elv_rb_del(&cfqq->sort_list, rq);
2322
2323 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2324 /*
2325 * Queue will be deleted from service tree when we actually
2326 * expire it later. Right now just remove it from prio tree
2327 * as it is empty.
2328 */
2329 if (cfqq->p_root) {
2330 rb_erase(&cfqq->p_node, cfqq->p_root);
2331 cfqq->p_root = NULL;
2332 }
2333 }
2334 }
2335
2336 static void cfq_add_rq_rb(struct request *rq)
2337 {
2338 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2339 struct cfq_data *cfqd = cfqq->cfqd;
2340 struct request *prev;
2341
2342 cfqq->queued[rq_is_sync(rq)]++;
2343
2344 elv_rb_add(&cfqq->sort_list, rq);
2345
2346 if (!cfq_cfqq_on_rr(cfqq))
2347 cfq_add_cfqq_rr(cfqd, cfqq);
2348
2349 /*
2350 * check if this request is a better next-serve candidate
2351 */
2352 prev = cfqq->next_rq;
2353 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2354
2355 /*
2356 * adjust priority tree position, if ->next_rq changes
2357 */
2358 if (prev != cfqq->next_rq)
2359 cfq_prio_tree_add(cfqd, cfqq);
2360
2361 BUG_ON(!cfqq->next_rq);
2362 }
2363
2364 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2365 {
2366 elv_rb_del(&cfqq->sort_list, rq);
2367 cfqq->queued[rq_is_sync(rq)]--;
2368 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2369 cfq_add_rq_rb(rq);
2370 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2371 rq->cmd_flags);
2372 }
2373
2374 static struct request *
2375 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2376 {
2377 struct task_struct *tsk = current;
2378 struct cfq_io_cq *cic;
2379 struct cfq_queue *cfqq;
2380
2381 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2382 if (!cic)
2383 return NULL;
2384
2385 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2386 if (cfqq)
2387 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2388
2389 return NULL;
2390 }
2391
2392 static void cfq_activate_request(struct request_queue *q, struct request *rq)
2393 {
2394 struct cfq_data *cfqd = q->elevator->elevator_data;
2395
2396 cfqd->rq_in_driver++;
2397 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2398 cfqd->rq_in_driver);
2399
2400 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2401 }
2402
2403 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2404 {
2405 struct cfq_data *cfqd = q->elevator->elevator_data;
2406
2407 WARN_ON(!cfqd->rq_in_driver);
2408 cfqd->rq_in_driver--;
2409 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2410 cfqd->rq_in_driver);
2411 }
2412
2413 static void cfq_remove_request(struct request *rq)
2414 {
2415 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2416
2417 if (cfqq->next_rq == rq)
2418 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2419
2420 list_del_init(&rq->queuelist);
2421 cfq_del_rq_rb(rq);
2422
2423 cfqq->cfqd->rq_queued--;
2424 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2425 if (rq->cmd_flags & REQ_PRIO) {
2426 WARN_ON(!cfqq->prio_pending);
2427 cfqq->prio_pending--;
2428 }
2429 }
2430
2431 static int cfq_merge(struct request_queue *q, struct request **req,
2432 struct bio *bio)
2433 {
2434 struct cfq_data *cfqd = q->elevator->elevator_data;
2435 struct request *__rq;
2436
2437 __rq = cfq_find_rq_fmerge(cfqd, bio);
2438 if (__rq && elv_rq_merge_ok(__rq, bio)) {
2439 *req = __rq;
2440 return ELEVATOR_FRONT_MERGE;
2441 }
2442
2443 return ELEVATOR_NO_MERGE;
2444 }
2445
2446 static void cfq_merged_request(struct request_queue *q, struct request *req,
2447 int type)
2448 {
2449 if (type == ELEVATOR_FRONT_MERGE) {
2450 struct cfq_queue *cfqq = RQ_CFQQ(req);
2451
2452 cfq_reposition_rq_rb(cfqq, req);
2453 }
2454 }
2455
2456 static void cfq_bio_merged(struct request_queue *q, struct request *req,
2457 struct bio *bio)
2458 {
2459 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
2460 }
2461
2462 static void
2463 cfq_merged_requests(struct request_queue *q, struct request *rq,
2464 struct request *next)
2465 {
2466 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2467 struct cfq_data *cfqd = q->elevator->elevator_data;
2468
2469 /*
2470 * reposition in fifo if next is older than rq
2471 */
2472 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2473 time_before(next->fifo_time, rq->fifo_time) &&
2474 cfqq == RQ_CFQQ(next)) {
2475 list_move(&rq->queuelist, &next->queuelist);
2476 rq->fifo_time = next->fifo_time;
2477 }
2478
2479 if (cfqq->next_rq == next)
2480 cfqq->next_rq = rq;
2481 cfq_remove_request(next);
2482 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2483
2484 cfqq = RQ_CFQQ(next);
2485 /*
2486 * all requests of this queue are merged to other queues, delete it
2487 * from the service tree. If it's the active_queue,
2488 * cfq_dispatch_requests() will choose to expire it or do idle
2489 */
2490 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2491 cfqq != cfqd->active_queue)
2492 cfq_del_cfqq_rr(cfqd, cfqq);
2493 }
2494
2495 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
2496 struct bio *bio)
2497 {
2498 struct cfq_data *cfqd = q->elevator->elevator_data;
2499 struct cfq_io_cq *cic;
2500 struct cfq_queue *cfqq;
2501
2502 /*
2503 * Disallow merge of a sync bio into an async request.
2504 */
2505 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2506 return false;
2507
2508 /*
2509 * Lookup the cfqq that this bio will be queued with and allow
2510 * merge only if rq is queued there.
2511 */
2512 cic = cfq_cic_lookup(cfqd, current->io_context);
2513 if (!cic)
2514 return false;
2515
2516 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2517 return cfqq == RQ_CFQQ(rq);
2518 }
2519
2520 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2521 {
2522 del_timer(&cfqd->idle_slice_timer);
2523 cfqg_stats_update_idle_time(cfqq->cfqg);
2524 }
2525
2526 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2527 struct cfq_queue *cfqq)
2528 {
2529 if (cfqq) {
2530 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2531 cfqd->serving_wl_class, cfqd->serving_wl_type);
2532 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2533 cfqq->slice_start = 0;
2534 cfqq->dispatch_start = jiffies;
2535 cfqq->allocated_slice = 0;
2536 cfqq->slice_end = 0;
2537 cfqq->slice_dispatch = 0;
2538 cfqq->nr_sectors = 0;
2539
2540 cfq_clear_cfqq_wait_request(cfqq);
2541 cfq_clear_cfqq_must_dispatch(cfqq);
2542 cfq_clear_cfqq_must_alloc_slice(cfqq);
2543 cfq_clear_cfqq_fifo_expire(cfqq);
2544 cfq_mark_cfqq_slice_new(cfqq);
2545
2546 cfq_del_timer(cfqd, cfqq);
2547 }
2548
2549 cfqd->active_queue = cfqq;
2550 }
2551
2552 /*
2553 * current cfqq expired its slice (or was too idle), select new one
2554 */
2555 static void
2556 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2557 bool timed_out)
2558 {
2559 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2560
2561 if (cfq_cfqq_wait_request(cfqq))
2562 cfq_del_timer(cfqd, cfqq);
2563
2564 cfq_clear_cfqq_wait_request(cfqq);
2565 cfq_clear_cfqq_wait_busy(cfqq);
2566
2567 /*
2568 * If this cfqq is shared between multiple processes, check to
2569 * make sure that those processes are still issuing I/Os within
2570 * the mean seek distance. If not, it may be time to break the
2571 * queues apart again.
2572 */
2573 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2574 cfq_mark_cfqq_split_coop(cfqq);
2575
2576 /*
2577 * store what was left of this slice, if the queue idled/timed out
2578 */
2579 if (timed_out) {
2580 if (cfq_cfqq_slice_new(cfqq))
2581 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2582 else
2583 cfqq->slice_resid = cfqq->slice_end - jiffies;
2584 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2585 }
2586
2587 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2588
2589 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2590 cfq_del_cfqq_rr(cfqd, cfqq);
2591
2592 cfq_resort_rr_list(cfqd, cfqq);
2593
2594 if (cfqq == cfqd->active_queue)
2595 cfqd->active_queue = NULL;
2596
2597 if (cfqd->active_cic) {
2598 put_io_context(cfqd->active_cic->icq.ioc);
2599 cfqd->active_cic = NULL;
2600 }
2601 }
2602
2603 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2604 {
2605 struct cfq_queue *cfqq = cfqd->active_queue;
2606
2607 if (cfqq)
2608 __cfq_slice_expired(cfqd, cfqq, timed_out);
2609 }
2610
2611 /*
2612 * Get next queue for service. Unless we have a queue preemption,
2613 * we'll simply select the first cfqq in the service tree.
2614 */
2615 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2616 {
2617 struct cfq_rb_root *st = st_for(cfqd->serving_group,
2618 cfqd->serving_wl_class, cfqd->serving_wl_type);
2619
2620 if (!cfqd->rq_queued)
2621 return NULL;
2622
2623 /* There is nothing to dispatch */
2624 if (!st)
2625 return NULL;
2626 if (RB_EMPTY_ROOT(&st->rb))
2627 return NULL;
2628 return cfq_rb_first(st);
2629 }
2630
2631 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2632 {
2633 struct cfq_group *cfqg;
2634 struct cfq_queue *cfqq;
2635 int i, j;
2636 struct cfq_rb_root *st;
2637
2638 if (!cfqd->rq_queued)
2639 return NULL;
2640
2641 cfqg = cfq_get_next_cfqg(cfqd);
2642 if (!cfqg)
2643 return NULL;
2644
2645 for_each_cfqg_st(cfqg, i, j, st)
2646 if ((cfqq = cfq_rb_first(st)) != NULL)
2647 return cfqq;
2648 return NULL;
2649 }
2650
2651 /*
2652 * Get and set a new active queue for service.
2653 */
2654 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2655 struct cfq_queue *cfqq)
2656 {
2657 if (!cfqq)
2658 cfqq = cfq_get_next_queue(cfqd);
2659
2660 __cfq_set_active_queue(cfqd, cfqq);
2661 return cfqq;
2662 }
2663
2664 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2665 struct request *rq)
2666 {
2667 if (blk_rq_pos(rq) >= cfqd->last_position)
2668 return blk_rq_pos(rq) - cfqd->last_position;
2669 else
2670 return cfqd->last_position - blk_rq_pos(rq);
2671 }
2672
2673 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2674 struct request *rq)
2675 {
2676 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2677 }
2678
2679 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2680 struct cfq_queue *cur_cfqq)
2681 {
2682 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2683 struct rb_node *parent, *node;
2684 struct cfq_queue *__cfqq;
2685 sector_t sector = cfqd->last_position;
2686
2687 if (RB_EMPTY_ROOT(root))
2688 return NULL;
2689
2690 /*
2691 * First, if we find a request starting at the end of the last
2692 * request, choose it.
2693 */
2694 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2695 if (__cfqq)
2696 return __cfqq;
2697
2698 /*
2699 * If the exact sector wasn't found, the parent of the NULL leaf
2700 * will contain the closest sector.
2701 */
2702 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2703 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2704 return __cfqq;
2705
2706 if (blk_rq_pos(__cfqq->next_rq) < sector)
2707 node = rb_next(&__cfqq->p_node);
2708 else
2709 node = rb_prev(&__cfqq->p_node);
2710 if (!node)
2711 return NULL;
2712
2713 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2714 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2715 return __cfqq;
2716
2717 return NULL;
2718 }
2719
2720 /*
2721 * cfqd - obvious
2722 * cur_cfqq - passed in so that we don't decide that the current queue is
2723 * closely cooperating with itself.
2724 *
2725 * So, basically we're assuming that that cur_cfqq has dispatched at least
2726 * one request, and that cfqd->last_position reflects a position on the disk
2727 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2728 * assumption.
2729 */
2730 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2731 struct cfq_queue *cur_cfqq)
2732 {
2733 struct cfq_queue *cfqq;
2734
2735 if (cfq_class_idle(cur_cfqq))
2736 return NULL;
2737 if (!cfq_cfqq_sync(cur_cfqq))
2738 return NULL;
2739 if (CFQQ_SEEKY(cur_cfqq))
2740 return NULL;
2741
2742 /*
2743 * Don't search priority tree if it's the only queue in the group.
2744 */
2745 if (cur_cfqq->cfqg->nr_cfqq == 1)
2746 return NULL;
2747
2748 /*
2749 * We should notice if some of the queues are cooperating, eg
2750 * working closely on the same area of the disk. In that case,
2751 * we can group them together and don't waste time idling.
2752 */
2753 cfqq = cfqq_close(cfqd, cur_cfqq);
2754 if (!cfqq)
2755 return NULL;
2756
2757 /* If new queue belongs to different cfq_group, don't choose it */
2758 if (cur_cfqq->cfqg != cfqq->cfqg)
2759 return NULL;
2760
2761 /*
2762 * It only makes sense to merge sync queues.
2763 */
2764 if (!cfq_cfqq_sync(cfqq))
2765 return NULL;
2766 if (CFQQ_SEEKY(cfqq))
2767 return NULL;
2768
2769 /*
2770 * Do not merge queues of different priority classes
2771 */
2772 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2773 return NULL;
2774
2775 return cfqq;
2776 }
2777
2778 /*
2779 * Determine whether we should enforce idle window for this queue.
2780 */
2781
2782 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2783 {
2784 enum wl_class_t wl_class = cfqq_class(cfqq);
2785 struct cfq_rb_root *st = cfqq->service_tree;
2786
2787 BUG_ON(!st);
2788 BUG_ON(!st->count);
2789
2790 if (!cfqd->cfq_slice_idle)
2791 return false;
2792
2793 /* We never do for idle class queues. */
2794 if (wl_class == IDLE_WORKLOAD)
2795 return false;
2796
2797 /* We do for queues that were marked with idle window flag. */
2798 if (cfq_cfqq_idle_window(cfqq) &&
2799 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2800 return true;
2801
2802 /*
2803 * Otherwise, we do only if they are the last ones
2804 * in their service tree.
2805 */
2806 if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2807 !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2808 return true;
2809 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2810 return false;
2811 }
2812
2813 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2814 {
2815 struct cfq_queue *cfqq = cfqd->active_queue;
2816 struct cfq_io_cq *cic;
2817 unsigned long sl, group_idle = 0;
2818
2819 /*
2820 * SSD device without seek penalty, disable idling. But only do so
2821 * for devices that support queuing, otherwise we still have a problem
2822 * with sync vs async workloads.
2823 */
2824 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2825 return;
2826
2827 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2828 WARN_ON(cfq_cfqq_slice_new(cfqq));
2829
2830 /*
2831 * idle is disabled, either manually or by past process history
2832 */
2833 if (!cfq_should_idle(cfqd, cfqq)) {
2834 /* no queue idling. Check for group idling */
2835 if (cfqd->cfq_group_idle)
2836 group_idle = cfqd->cfq_group_idle;
2837 else
2838 return;
2839 }
2840
2841 /*
2842 * still active requests from this queue, don't idle
2843 */
2844 if (cfqq->dispatched)
2845 return;
2846
2847 /*
2848 * task has exited, don't wait
2849 */
2850 cic = cfqd->active_cic;
2851 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2852 return;
2853
2854 /*
2855 * If our average think time is larger than the remaining time
2856 * slice, then don't idle. This avoids overrunning the allotted
2857 * time slice.
2858 */
2859 if (sample_valid(cic->ttime.ttime_samples) &&
2860 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2861 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2862 cic->ttime.ttime_mean);
2863 return;
2864 }
2865
2866 /* There are other queues in the group, don't do group idle */
2867 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2868 return;
2869
2870 cfq_mark_cfqq_wait_request(cfqq);
2871
2872 if (group_idle)
2873 sl = cfqd->cfq_group_idle;
2874 else
2875 sl = cfqd->cfq_slice_idle;
2876
2877 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2878 cfqg_stats_set_start_idle_time(cfqq->cfqg);
2879 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2880 group_idle ? 1 : 0);
2881 }
2882
2883 /*
2884 * Move request from internal lists to the request queue dispatch list.
2885 */
2886 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2887 {
2888 struct cfq_data *cfqd = q->elevator->elevator_data;
2889 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2890
2891 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2892
2893 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2894 cfq_remove_request(rq);
2895 cfqq->dispatched++;
2896 (RQ_CFQG(rq))->dispatched++;
2897 elv_dispatch_sort(q, rq);
2898
2899 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2900 cfqq->nr_sectors += blk_rq_sectors(rq);
2901 cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
2902 }
2903
2904 /*
2905 * return expired entry, or NULL to just start from scratch in rbtree
2906 */
2907 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2908 {
2909 struct request *rq = NULL;
2910
2911 if (cfq_cfqq_fifo_expire(cfqq))
2912 return NULL;
2913
2914 cfq_mark_cfqq_fifo_expire(cfqq);
2915
2916 if (list_empty(&cfqq->fifo))
2917 return NULL;
2918
2919 rq = rq_entry_fifo(cfqq->fifo.next);
2920 if (time_before(jiffies, rq->fifo_time))
2921 rq = NULL;
2922
2923 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2924 return rq;
2925 }
2926
2927 static inline int
2928 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2929 {
2930 const int base_rq = cfqd->cfq_slice_async_rq;
2931
2932 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2933
2934 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2935 }
2936
2937 /*
2938 * Must be called with the queue_lock held.
2939 */
2940 static int cfqq_process_refs(struct cfq_queue *cfqq)
2941 {
2942 int process_refs, io_refs;
2943
2944 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2945 process_refs = cfqq->ref - io_refs;
2946 BUG_ON(process_refs < 0);
2947 return process_refs;
2948 }
2949
2950 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2951 {
2952 int process_refs, new_process_refs;
2953 struct cfq_queue *__cfqq;
2954
2955 /*
2956 * If there are no process references on the new_cfqq, then it is
2957 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2958 * chain may have dropped their last reference (not just their
2959 * last process reference).
2960 */
2961 if (!cfqq_process_refs(new_cfqq))
2962 return;
2963
2964 /* Avoid a circular list and skip interim queue merges */
2965 while ((__cfqq = new_cfqq->new_cfqq)) {
2966 if (__cfqq == cfqq)
2967 return;
2968 new_cfqq = __cfqq;
2969 }
2970
2971 process_refs = cfqq_process_refs(cfqq);
2972 new_process_refs = cfqq_process_refs(new_cfqq);
2973 /*
2974 * If the process for the cfqq has gone away, there is no
2975 * sense in merging the queues.
2976 */
2977 if (process_refs == 0 || new_process_refs == 0)
2978 return;
2979
2980 /*
2981 * Merge in the direction of the lesser amount of work.
2982 */
2983 if (new_process_refs >= process_refs) {
2984 cfqq->new_cfqq = new_cfqq;
2985 new_cfqq->ref += process_refs;
2986 } else {
2987 new_cfqq->new_cfqq = cfqq;
2988 cfqq->ref += new_process_refs;
2989 }
2990 }
2991
2992 static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
2993 struct cfq_group *cfqg, enum wl_class_t wl_class)
2994 {
2995 struct cfq_queue *queue;
2996 int i;
2997 bool key_valid = false;
2998 unsigned long lowest_key = 0;
2999 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
3000
3001 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
3002 /* select the one with lowest rb_key */
3003 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
3004 if (queue &&
3005 (!key_valid || time_before(queue->rb_key, lowest_key))) {
3006 lowest_key = queue->rb_key;
3007 cur_best = i;
3008 key_valid = true;
3009 }
3010 }
3011
3012 return cur_best;
3013 }
3014
3015 static void
3016 choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
3017 {
3018 unsigned slice;
3019 unsigned count;
3020 struct cfq_rb_root *st;
3021 unsigned group_slice;
3022 enum wl_class_t original_class = cfqd->serving_wl_class;
3023
3024 /* Choose next priority. RT > BE > IDLE */
3025 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
3026 cfqd->serving_wl_class = RT_WORKLOAD;
3027 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
3028 cfqd->serving_wl_class = BE_WORKLOAD;
3029 else {
3030 cfqd->serving_wl_class = IDLE_WORKLOAD;
3031 cfqd->workload_expires = jiffies + 1;
3032 return;
3033 }
3034
3035 if (original_class != cfqd->serving_wl_class)
3036 goto new_workload;
3037
3038 /*
3039 * For RT and BE, we have to choose also the type
3040 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3041 * expiration time
3042 */
3043 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3044 count = st->count;
3045
3046 /*
3047 * check workload expiration, and that we still have other queues ready
3048 */
3049 if (count && !time_after(jiffies, cfqd->workload_expires))
3050 return;
3051
3052 new_workload:
3053 /* otherwise select new workload type */
3054 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
3055 cfqd->serving_wl_class);
3056 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3057 count = st->count;
3058
3059 /*
3060 * the workload slice is computed as a fraction of target latency
3061 * proportional to the number of queues in that workload, over
3062 * all the queues in the same priority class
3063 */
3064 group_slice = cfq_group_slice(cfqd, cfqg);
3065
3066 slice = group_slice * count /
3067 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
3068 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
3069 cfqg));
3070
3071 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
3072 unsigned int tmp;
3073
3074 /*
3075 * Async queues are currently system wide. Just taking
3076 * proportion of queues with-in same group will lead to higher
3077 * async ratio system wide as generally root group is going
3078 * to have higher weight. A more accurate thing would be to
3079 * calculate system wide asnc/sync ratio.
3080 */
3081 tmp = cfqd->cfq_target_latency *
3082 cfqg_busy_async_queues(cfqd, cfqg);
3083 tmp = tmp/cfqd->busy_queues;
3084 slice = min_t(unsigned, slice, tmp);
3085
3086 /* async workload slice is scaled down according to
3087 * the sync/async slice ratio. */
3088 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
3089 } else
3090 /* sync workload slice is at least 2 * cfq_slice_idle */
3091 slice = max(slice, 2 * cfqd->cfq_slice_idle);
3092
3093 slice = max_t(unsigned, slice, CFQ_MIN_TT);
3094 cfq_log(cfqd, "workload slice:%d", slice);
3095 cfqd->workload_expires = jiffies + slice;
3096 }
3097
3098 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3099 {
3100 struct cfq_rb_root *st = &cfqd->grp_service_tree;
3101 struct cfq_group *cfqg;
3102
3103 if (RB_EMPTY_ROOT(&st->rb))
3104 return NULL;
3105 cfqg = cfq_rb_first_group(st);
3106 update_min_vdisktime(st);
3107 return cfqg;
3108 }
3109
3110 static void cfq_choose_cfqg(struct cfq_data *cfqd)
3111 {
3112 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3113
3114 cfqd->serving_group = cfqg;
3115
3116 /* Restore the workload type data */
3117 if (cfqg->saved_wl_slice) {
3118 cfqd->workload_expires = jiffies + cfqg->saved_wl_slice;
3119 cfqd->serving_wl_type = cfqg->saved_wl_type;
3120 cfqd->serving_wl_class = cfqg->saved_wl_class;
3121 } else
3122 cfqd->workload_expires = jiffies - 1;
3123
3124 choose_wl_class_and_type(cfqd, cfqg);
3125 }
3126
3127 /*
3128 * Select a queue for service. If we have a current active queue,
3129 * check whether to continue servicing it, or retrieve and set a new one.
3130 */
3131 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3132 {
3133 struct cfq_queue *cfqq, *new_cfqq = NULL;
3134
3135 cfqq = cfqd->active_queue;
3136 if (!cfqq)
3137 goto new_queue;
3138
3139 if (!cfqd->rq_queued)
3140 return NULL;
3141
3142 /*
3143 * We were waiting for group to get backlogged. Expire the queue
3144 */
3145 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3146 goto expire;
3147
3148 /*
3149 * The active queue has run out of time, expire it and select new.
3150 */
3151 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3152 /*
3153 * If slice had not expired at the completion of last request
3154 * we might not have turned on wait_busy flag. Don't expire
3155 * the queue yet. Allow the group to get backlogged.
3156 *
3157 * The very fact that we have used the slice, that means we
3158 * have been idling all along on this queue and it should be
3159 * ok to wait for this request to complete.
3160 */
3161 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3162 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3163 cfqq = NULL;
3164 goto keep_queue;
3165 } else
3166 goto check_group_idle;
3167 }
3168
3169 /*
3170 * The active queue has requests and isn't expired, allow it to
3171 * dispatch.
3172 */
3173 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3174 goto keep_queue;
3175
3176 /*
3177 * If another queue has a request waiting within our mean seek
3178 * distance, let it run. The expire code will check for close
3179 * cooperators and put the close queue at the front of the service
3180 * tree. If possible, merge the expiring queue with the new cfqq.
3181 */
3182 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3183 if (new_cfqq) {
3184 if (!cfqq->new_cfqq)
3185 cfq_setup_merge(cfqq, new_cfqq);
3186 goto expire;
3187 }
3188
3189 /*
3190 * No requests pending. If the active queue still has requests in
3191 * flight or is idling for a new request, allow either of these
3192 * conditions to happen (or time out) before selecting a new queue.
3193 */
3194 if (timer_pending(&cfqd->idle_slice_timer)) {
3195 cfqq = NULL;
3196 goto keep_queue;
3197 }
3198
3199 /*
3200 * This is a deep seek queue, but the device is much faster than
3201 * the queue can deliver, don't idle
3202 **/
3203 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3204 (cfq_cfqq_slice_new(cfqq) ||
3205 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
3206 cfq_clear_cfqq_deep(cfqq);
3207 cfq_clear_cfqq_idle_window(cfqq);
3208 }
3209
3210 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3211 cfqq = NULL;
3212 goto keep_queue;
3213 }
3214
3215 /*
3216 * If group idle is enabled and there are requests dispatched from
3217 * this group, wait for requests to complete.
3218 */
3219 check_group_idle:
3220 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3221 cfqq->cfqg->dispatched &&
3222 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3223 cfqq = NULL;
3224 goto keep_queue;
3225 }
3226
3227 expire:
3228 cfq_slice_expired(cfqd, 0);
3229 new_queue:
3230 /*
3231 * Current queue expired. Check if we have to switch to a new
3232 * service tree
3233 */
3234 if (!new_cfqq)
3235 cfq_choose_cfqg(cfqd);
3236
3237 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3238 keep_queue:
3239 return cfqq;
3240 }
3241
3242 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3243 {
3244 int dispatched = 0;
3245
3246 while (cfqq->next_rq) {
3247 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3248 dispatched++;
3249 }
3250
3251 BUG_ON(!list_empty(&cfqq->fifo));
3252
3253 /* By default cfqq is not expired if it is empty. Do it explicitly */
3254 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3255 return dispatched;
3256 }
3257
3258 /*
3259 * Drain our current requests. Used for barriers and when switching
3260 * io schedulers on-the-fly.
3261 */
3262 static int cfq_forced_dispatch(struct cfq_data *cfqd)
3263 {
3264 struct cfq_queue *cfqq;
3265 int dispatched = 0;
3266
3267 /* Expire the timeslice of the current active queue first */
3268 cfq_slice_expired(cfqd, 0);
3269 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3270 __cfq_set_active_queue(cfqd, cfqq);
3271 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3272 }
3273
3274 BUG_ON(cfqd->busy_queues);
3275
3276 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3277 return dispatched;
3278 }
3279
3280 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3281 struct cfq_queue *cfqq)
3282 {
3283 /* the queue hasn't finished any request, can't estimate */
3284 if (cfq_cfqq_slice_new(cfqq))
3285 return true;
3286 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
3287 cfqq->slice_end))
3288 return true;
3289
3290 return false;
3291 }
3292
3293 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3294 {
3295 unsigned int max_dispatch;
3296
3297 /*
3298 * Drain async requests before we start sync IO
3299 */
3300 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3301 return false;
3302
3303 /*
3304 * If this is an async queue and we have sync IO in flight, let it wait
3305 */
3306 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3307 return false;
3308
3309 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3310 if (cfq_class_idle(cfqq))
3311 max_dispatch = 1;
3312
3313 /*
3314 * Does this cfqq already have too much IO in flight?
3315 */
3316 if (cfqq->dispatched >= max_dispatch) {
3317 bool promote_sync = false;
3318 /*
3319 * idle queue must always only have a single IO in flight
3320 */
3321 if (cfq_class_idle(cfqq))
3322 return false;
3323
3324 /*
3325 * If there is only one sync queue
3326 * we can ignore async queue here and give the sync
3327 * queue no dispatch limit. The reason is a sync queue can
3328 * preempt async queue, limiting the sync queue doesn't make
3329 * sense. This is useful for aiostress test.
3330 */
3331 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3332 promote_sync = true;
3333
3334 /*
3335 * We have other queues, don't allow more IO from this one
3336 */
3337 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3338 !promote_sync)
3339 return false;
3340
3341 /*
3342 * Sole queue user, no limit
3343 */
3344 if (cfqd->busy_queues == 1 || promote_sync)
3345 max_dispatch = -1;
3346 else
3347 /*
3348 * Normally we start throttling cfqq when cfq_quantum/2
3349 * requests have been dispatched. But we can drive
3350 * deeper queue depths at the beginning of slice
3351 * subjected to upper limit of cfq_quantum.
3352 * */
3353 max_dispatch = cfqd->cfq_quantum;
3354 }
3355
3356 /*
3357 * Async queues must wait a bit before being allowed dispatch.
3358 * We also ramp up the dispatch depth gradually for async IO,
3359 * based on the last sync IO we serviced
3360 */
3361 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3362 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
3363 unsigned int depth;
3364
3365 depth = last_sync / cfqd->cfq_slice[1];
3366 if (!depth && !cfqq->dispatched)
3367 depth = 1;
3368 if (depth < max_dispatch)
3369 max_dispatch = depth;
3370 }
3371
3372 /*
3373 * If we're below the current max, allow a dispatch
3374 */
3375 return cfqq->dispatched < max_dispatch;
3376 }
3377
3378 /*
3379 * Dispatch a request from cfqq, moving them to the request queue
3380 * dispatch list.
3381 */
3382 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3383 {
3384 struct request *rq;
3385
3386 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3387
3388 if (!cfq_may_dispatch(cfqd, cfqq))
3389 return false;
3390
3391 /*
3392 * follow expired path, else get first next available
3393 */
3394 rq = cfq_check_fifo(cfqq);
3395 if (!rq)
3396 rq = cfqq->next_rq;
3397
3398 /*
3399 * insert request into driver dispatch list
3400 */
3401 cfq_dispatch_insert(cfqd->queue, rq);
3402
3403 if (!cfqd->active_cic) {
3404 struct cfq_io_cq *cic = RQ_CIC(rq);
3405
3406 atomic_long_inc(&cic->icq.ioc->refcount);
3407 cfqd->active_cic = cic;
3408 }
3409
3410 return true;
3411 }
3412
3413 /*
3414 * Find the cfqq that we need to service and move a request from that to the
3415 * dispatch list
3416 */
3417 static int cfq_dispatch_requests(struct request_queue *q, int force)
3418 {
3419 struct cfq_data *cfqd = q->elevator->elevator_data;
3420 struct cfq_queue *cfqq;
3421
3422 if (!cfqd->busy_queues)
3423 return 0;
3424
3425 if (unlikely(force))
3426 return cfq_forced_dispatch(cfqd);
3427
3428 cfqq = cfq_select_queue(cfqd);
3429 if (!cfqq)
3430 return 0;
3431
3432 /*
3433 * Dispatch a request from this cfqq, if it is allowed
3434 */
3435 if (!cfq_dispatch_request(cfqd, cfqq))
3436 return 0;
3437
3438 cfqq->slice_dispatch++;
3439 cfq_clear_cfqq_must_dispatch(cfqq);
3440
3441 /*
3442 * expire an async queue immediately if it has used up its slice. idle
3443 * queue always expire after 1 dispatch round.
3444 */
3445 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3446 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3447 cfq_class_idle(cfqq))) {
3448 cfqq->slice_end = jiffies + 1;
3449 cfq_slice_expired(cfqd, 0);
3450 }
3451
3452 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3453 return 1;
3454 }
3455
3456 /*
3457 * task holds one reference to the queue, dropped when task exits. each rq
3458 * in-flight on this queue also holds a reference, dropped when rq is freed.
3459 *
3460 * Each cfq queue took a reference on the parent group. Drop it now.
3461 * queue lock must be held here.
3462 */
3463 static void cfq_put_queue(struct cfq_queue *cfqq)
3464 {
3465 struct cfq_data *cfqd = cfqq->cfqd;
3466 struct cfq_group *cfqg;
3467
3468 BUG_ON(cfqq->ref <= 0);
3469
3470 cfqq->ref--;
3471 if (cfqq->ref)
3472 return;
3473
3474 cfq_log_cfqq(cfqd, cfqq, "put_queue");
3475 BUG_ON(rb_first(&cfqq->sort_list));
3476 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3477 cfqg = cfqq->cfqg;
3478
3479 if (unlikely(cfqd->active_queue == cfqq)) {
3480 __cfq_slice_expired(cfqd, cfqq, 0);
3481 cfq_schedule_dispatch(cfqd);
3482 }
3483
3484 BUG_ON(cfq_cfqq_on_rr(cfqq));
3485 kmem_cache_free(cfq_pool, cfqq);
3486 cfqg_put(cfqg);
3487 }
3488
3489 static void cfq_put_cooperator(struct cfq_queue *cfqq)
3490 {
3491 struct cfq_queue *__cfqq, *next;
3492
3493 /*
3494 * If this queue was scheduled to merge with another queue, be
3495 * sure to drop the reference taken on that queue (and others in
3496 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3497 */
3498 __cfqq = cfqq->new_cfqq;
3499 while (__cfqq) {
3500 if (__cfqq == cfqq) {
3501 WARN(1, "cfqq->new_cfqq loop detected\n");
3502 break;
3503 }
3504 next = __cfqq->new_cfqq;
3505 cfq_put_queue(__cfqq);
3506 __cfqq = next;
3507 }
3508 }
3509
3510 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3511 {
3512 if (unlikely(cfqq == cfqd->active_queue)) {
3513 __cfq_slice_expired(cfqd, cfqq, 0);
3514 cfq_schedule_dispatch(cfqd);
3515 }
3516
3517 cfq_put_cooperator(cfqq);
3518
3519 cfq_put_queue(cfqq);
3520 }
3521
3522 static void cfq_init_icq(struct io_cq *icq)
3523 {
3524 struct cfq_io_cq *cic = icq_to_cic(icq);
3525
3526 cic->ttime.last_end_request = jiffies;
3527 }
3528
3529 static void cfq_exit_icq(struct io_cq *icq)
3530 {
3531 struct cfq_io_cq *cic = icq_to_cic(icq);
3532 struct cfq_data *cfqd = cic_to_cfqd(cic);
3533
3534 if (cic_to_cfqq(cic, false)) {
3535 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false));
3536 cic_set_cfqq(cic, NULL, false);
3537 }
3538
3539 if (cic_to_cfqq(cic, true)) {
3540 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true));
3541 cic_set_cfqq(cic, NULL, true);
3542 }
3543 }
3544
3545 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3546 {
3547 struct task_struct *tsk = current;
3548 int ioprio_class;
3549
3550 if (!cfq_cfqq_prio_changed(cfqq))
3551 return;
3552
3553 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3554 switch (ioprio_class) {
3555 default:
3556 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3557 case IOPRIO_CLASS_NONE:
3558 /*
3559 * no prio set, inherit CPU scheduling settings
3560 */
3561 cfqq->ioprio = task_nice_ioprio(tsk);
3562 cfqq->ioprio_class = task_nice_ioclass(tsk);
3563 break;
3564 case IOPRIO_CLASS_RT:
3565 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3566 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3567 break;
3568 case IOPRIO_CLASS_BE:
3569 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3570 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3571 break;
3572 case IOPRIO_CLASS_IDLE:
3573 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3574 cfqq->ioprio = 7;
3575 cfq_clear_cfqq_idle_window(cfqq);
3576 break;
3577 }
3578
3579 /*
3580 * keep track of original prio settings in case we have to temporarily
3581 * elevate the priority of this queue
3582 */
3583 cfqq->org_ioprio = cfqq->ioprio;
3584 cfq_clear_cfqq_prio_changed(cfqq);
3585 }
3586
3587 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3588 {
3589 int ioprio = cic->icq.ioc->ioprio;
3590 struct cfq_data *cfqd = cic_to_cfqd(cic);
3591 struct cfq_queue *cfqq;
3592
3593 /*
3594 * Check whether ioprio has changed. The condition may trigger
3595 * spuriously on a newly created cic but there's no harm.
3596 */
3597 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3598 return;
3599
3600 cfqq = cic_to_cfqq(cic, false);
3601 if (cfqq) {
3602 cfq_put_queue(cfqq);
3603 cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio);
3604 cic_set_cfqq(cic, cfqq, false);
3605 }
3606
3607 cfqq = cic_to_cfqq(cic, true);
3608 if (cfqq)
3609 cfq_mark_cfqq_prio_changed(cfqq);
3610
3611 cic->ioprio = ioprio;
3612 }
3613
3614 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3615 pid_t pid, bool is_sync)
3616 {
3617 RB_CLEAR_NODE(&cfqq->rb_node);
3618 RB_CLEAR_NODE(&cfqq->p_node);
3619 INIT_LIST_HEAD(&cfqq->fifo);
3620
3621 cfqq->ref = 0;
3622 cfqq->cfqd = cfqd;
3623
3624 cfq_mark_cfqq_prio_changed(cfqq);
3625
3626 if (is_sync) {
3627 if (!cfq_class_idle(cfqq))
3628 cfq_mark_cfqq_idle_window(cfqq);
3629 cfq_mark_cfqq_sync(cfqq);
3630 }
3631 cfqq->pid = pid;
3632 }
3633
3634 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3635 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3636 {
3637 struct cfq_data *cfqd = cic_to_cfqd(cic);
3638 struct cfq_queue *cfqq;
3639 uint64_t serial_nr;
3640
3641 rcu_read_lock();
3642 serial_nr = bio_blkcg(bio)->css.serial_nr;
3643 rcu_read_unlock();
3644
3645 /*
3646 * Check whether blkcg has changed. The condition may trigger
3647 * spuriously on a newly created cic but there's no harm.
3648 */
3649 if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr))
3650 return;
3651
3652 /*
3653 * Drop reference to queues. New queues will be assigned in new
3654 * group upon arrival of fresh requests.
3655 */
3656 cfqq = cic_to_cfqq(cic, false);
3657 if (cfqq) {
3658 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3659 cic_set_cfqq(cic, NULL, false);
3660 cfq_put_queue(cfqq);
3661 }
3662
3663 cfqq = cic_to_cfqq(cic, true);
3664 if (cfqq) {
3665 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3666 cic_set_cfqq(cic, NULL, true);
3667 cfq_put_queue(cfqq);
3668 }
3669
3670 cic->blkcg_serial_nr = serial_nr;
3671 }
3672 #else
3673 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3674 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3675
3676 static struct cfq_queue **
3677 cfq_async_queue_prio(struct cfq_group *cfqg, int ioprio_class, int ioprio)
3678 {
3679 switch (ioprio_class) {
3680 case IOPRIO_CLASS_RT:
3681 return &cfqg->async_cfqq[0][ioprio];
3682 case IOPRIO_CLASS_NONE:
3683 ioprio = IOPRIO_NORM;
3684 /* fall through */
3685 case IOPRIO_CLASS_BE:
3686 return &cfqg->async_cfqq[1][ioprio];
3687 case IOPRIO_CLASS_IDLE:
3688 return &cfqg->async_idle_cfqq;
3689 default:
3690 BUG();
3691 }
3692 }
3693
3694 static struct cfq_queue *
3695 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3696 struct bio *bio)
3697 {
3698 int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3699 int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3700 struct cfq_queue **async_cfqq = NULL;
3701 struct cfq_queue *cfqq;
3702 struct cfq_group *cfqg;
3703
3704 rcu_read_lock();
3705 cfqg = cfq_lookup_create_cfqg(cfqd, bio_blkcg(bio));
3706 if (!cfqg) {
3707 cfqq = &cfqd->oom_cfqq;
3708 goto out;
3709 }
3710
3711 if (!is_sync) {
3712 if (!ioprio_valid(cic->ioprio)) {
3713 struct task_struct *tsk = current;
3714 ioprio = task_nice_ioprio(tsk);
3715 ioprio_class = task_nice_ioclass(tsk);
3716 }
3717 async_cfqq = cfq_async_queue_prio(cfqg, ioprio_class, ioprio);
3718 cfqq = *async_cfqq;
3719 if (cfqq)
3720 goto out;
3721 }
3722
3723 cfqq = kmem_cache_alloc_node(cfq_pool, GFP_NOWAIT | __GFP_ZERO,
3724 cfqd->queue->node);
3725 if (!cfqq) {
3726 cfqq = &cfqd->oom_cfqq;
3727 goto out;
3728 }
3729
3730 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3731 cfq_init_prio_data(cfqq, cic);
3732 cfq_link_cfqq_cfqg(cfqq, cfqg);
3733 cfq_log_cfqq(cfqd, cfqq, "alloced");
3734
3735 if (async_cfqq) {
3736 /* a new async queue is created, pin and remember */
3737 cfqq->ref++;
3738 *async_cfqq = cfqq;
3739 }
3740 out:
3741 cfqq->ref++;
3742 rcu_read_unlock();
3743 return cfqq;
3744 }
3745
3746 static void
3747 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3748 {
3749 unsigned long elapsed = jiffies - ttime->last_end_request;
3750 elapsed = min(elapsed, 2UL * slice_idle);
3751
3752 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3753 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3754 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3755 }
3756
3757 static void
3758 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3759 struct cfq_io_cq *cic)
3760 {
3761 if (cfq_cfqq_sync(cfqq)) {
3762 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3763 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3764 cfqd->cfq_slice_idle);
3765 }
3766 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3767 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3768 #endif
3769 }
3770
3771 static void
3772 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3773 struct request *rq)
3774 {
3775 sector_t sdist = 0;
3776 sector_t n_sec = blk_rq_sectors(rq);
3777 if (cfqq->last_request_pos) {
3778 if (cfqq->last_request_pos < blk_rq_pos(rq))
3779 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3780 else
3781 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3782 }
3783
3784 cfqq->seek_history <<= 1;
3785 if (blk_queue_nonrot(cfqd->queue))
3786 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3787 else
3788 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3789 }
3790
3791 /*
3792 * Disable idle window if the process thinks too long or seeks so much that
3793 * it doesn't matter
3794 */
3795 static void
3796 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3797 struct cfq_io_cq *cic)
3798 {
3799 int old_idle, enable_idle;
3800
3801 /*
3802 * Don't idle for async or idle io prio class
3803 */
3804 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3805 return;
3806
3807 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3808
3809 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3810 cfq_mark_cfqq_deep(cfqq);
3811
3812 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3813 enable_idle = 0;
3814 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3815 !cfqd->cfq_slice_idle ||
3816 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3817 enable_idle = 0;
3818 else if (sample_valid(cic->ttime.ttime_samples)) {
3819 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3820 enable_idle = 0;
3821 else
3822 enable_idle = 1;
3823 }
3824
3825 if (old_idle != enable_idle) {
3826 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3827 if (enable_idle)
3828 cfq_mark_cfqq_idle_window(cfqq);
3829 else
3830 cfq_clear_cfqq_idle_window(cfqq);
3831 }
3832 }
3833
3834 /*
3835 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3836 * no or if we aren't sure, a 1 will cause a preempt.
3837 */
3838 static bool
3839 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3840 struct request *rq)
3841 {
3842 struct cfq_queue *cfqq;
3843
3844 cfqq = cfqd->active_queue;
3845 if (!cfqq)
3846 return false;
3847
3848 if (cfq_class_idle(new_cfqq))
3849 return false;
3850
3851 if (cfq_class_idle(cfqq))
3852 return true;
3853
3854 /*
3855 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3856 */
3857 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3858 return false;
3859
3860 /*
3861 * if the new request is sync, but the currently running queue is
3862 * not, let the sync request have priority.
3863 */
3864 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3865 return true;
3866
3867 if (new_cfqq->cfqg != cfqq->cfqg)
3868 return false;
3869
3870 if (cfq_slice_used(cfqq))
3871 return true;
3872
3873 /* Allow preemption only if we are idling on sync-noidle tree */
3874 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
3875 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3876 new_cfqq->service_tree->count == 2 &&
3877 RB_EMPTY_ROOT(&cfqq->sort_list))
3878 return true;
3879
3880 /*
3881 * So both queues are sync. Let the new request get disk time if
3882 * it's a metadata request and the current queue is doing regular IO.
3883 */
3884 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3885 return true;
3886
3887 /*
3888 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3889 */
3890 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3891 return true;
3892
3893 /* An idle queue should not be idle now for some reason */
3894 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3895 return true;
3896
3897 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3898 return false;
3899
3900 /*
3901 * if this request is as-good as one we would expect from the
3902 * current cfqq, let it preempt
3903 */
3904 if (cfq_rq_close(cfqd, cfqq, rq))
3905 return true;
3906
3907 return false;
3908 }
3909
3910 /*
3911 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3912 * let it have half of its nominal slice.
3913 */
3914 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3915 {
3916 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3917
3918 cfq_log_cfqq(cfqd, cfqq, "preempt");
3919 cfq_slice_expired(cfqd, 1);
3920
3921 /*
3922 * workload type is changed, don't save slice, otherwise preempt
3923 * doesn't happen
3924 */
3925 if (old_type != cfqq_type(cfqq))
3926 cfqq->cfqg->saved_wl_slice = 0;
3927
3928 /*
3929 * Put the new queue at the front of the of the current list,
3930 * so we know that it will be selected next.
3931 */
3932 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3933
3934 cfq_service_tree_add(cfqd, cfqq, 1);
3935
3936 cfqq->slice_end = 0;
3937 cfq_mark_cfqq_slice_new(cfqq);
3938 }
3939
3940 /*
3941 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3942 * something we should do about it
3943 */
3944 static void
3945 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3946 struct request *rq)
3947 {
3948 struct cfq_io_cq *cic = RQ_CIC(rq);
3949
3950 cfqd->rq_queued++;
3951 if (rq->cmd_flags & REQ_PRIO)
3952 cfqq->prio_pending++;
3953
3954 cfq_update_io_thinktime(cfqd, cfqq, cic);
3955 cfq_update_io_seektime(cfqd, cfqq, rq);
3956 cfq_update_idle_window(cfqd, cfqq, cic);
3957
3958 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3959
3960 if (cfqq == cfqd->active_queue) {
3961 /*
3962 * Remember that we saw a request from this process, but
3963 * don't start queuing just yet. Otherwise we risk seeing lots
3964 * of tiny requests, because we disrupt the normal plugging
3965 * and merging. If the request is already larger than a single
3966 * page, let it rip immediately. For that case we assume that
3967 * merging is already done. Ditto for a busy system that
3968 * has other work pending, don't risk delaying until the
3969 * idle timer unplug to continue working.
3970 */
3971 if (cfq_cfqq_wait_request(cfqq)) {
3972 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3973 cfqd->busy_queues > 1) {
3974 cfq_del_timer(cfqd, cfqq);
3975 cfq_clear_cfqq_wait_request(cfqq);
3976 __blk_run_queue(cfqd->queue);
3977 } else {
3978 cfqg_stats_update_idle_time(cfqq->cfqg);
3979 cfq_mark_cfqq_must_dispatch(cfqq);
3980 }
3981 }
3982 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3983 /*
3984 * not the active queue - expire current slice if it is
3985 * idle and has expired it's mean thinktime or this new queue
3986 * has some old slice time left and is of higher priority or
3987 * this new queue is RT and the current one is BE
3988 */
3989 cfq_preempt_queue(cfqd, cfqq);
3990 __blk_run_queue(cfqd->queue);
3991 }
3992 }
3993
3994 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3995 {
3996 struct cfq_data *cfqd = q->elevator->elevator_data;
3997 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3998
3999 cfq_log_cfqq(cfqd, cfqq, "insert_request");
4000 cfq_init_prio_data(cfqq, RQ_CIC(rq));
4001
4002 rq->fifo_time = jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
4003 list_add_tail(&rq->queuelist, &cfqq->fifo);
4004 cfq_add_rq_rb(rq);
4005 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
4006 rq->cmd_flags);
4007 cfq_rq_enqueued(cfqd, cfqq, rq);
4008 }
4009
4010 /*
4011 * Update hw_tag based on peak queue depth over 50 samples under
4012 * sufficient load.
4013 */
4014 static void cfq_update_hw_tag(struct cfq_data *cfqd)
4015 {
4016 struct cfq_queue *cfqq = cfqd->active_queue;
4017
4018 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
4019 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
4020
4021 if (cfqd->hw_tag == 1)
4022 return;
4023
4024 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
4025 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
4026 return;
4027
4028 /*
4029 * If active queue hasn't enough requests and can idle, cfq might not
4030 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4031 * case
4032 */
4033 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
4034 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
4035 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
4036 return;
4037
4038 if (cfqd->hw_tag_samples++ < 50)
4039 return;
4040
4041 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
4042 cfqd->hw_tag = 1;
4043 else
4044 cfqd->hw_tag = 0;
4045 }
4046
4047 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4048 {
4049 struct cfq_io_cq *cic = cfqd->active_cic;
4050
4051 /* If the queue already has requests, don't wait */
4052 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4053 return false;
4054
4055 /* If there are other queues in the group, don't wait */
4056 if (cfqq->cfqg->nr_cfqq > 1)
4057 return false;
4058
4059 /* the only queue in the group, but think time is big */
4060 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
4061 return false;
4062
4063 if (cfq_slice_used(cfqq))
4064 return true;
4065
4066 /* if slice left is less than think time, wait busy */
4067 if (cic && sample_valid(cic->ttime.ttime_samples)
4068 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
4069 return true;
4070
4071 /*
4072 * If think times is less than a jiffy than ttime_mean=0 and above
4073 * will not be true. It might happen that slice has not expired yet
4074 * but will expire soon (4-5 ns) during select_queue(). To cover the
4075 * case where think time is less than a jiffy, mark the queue wait
4076 * busy if only 1 jiffy is left in the slice.
4077 */
4078 if (cfqq->slice_end - jiffies == 1)
4079 return true;
4080
4081 return false;
4082 }
4083
4084 static void cfq_completed_request(struct request_queue *q, struct request *rq)
4085 {
4086 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4087 struct cfq_data *cfqd = cfqq->cfqd;
4088 const int sync = rq_is_sync(rq);
4089 unsigned long now;
4090
4091 now = jiffies;
4092 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
4093 !!(rq->cmd_flags & REQ_NOIDLE));
4094
4095 cfq_update_hw_tag(cfqd);
4096
4097 WARN_ON(!cfqd->rq_in_driver);
4098 WARN_ON(!cfqq->dispatched);
4099 cfqd->rq_in_driver--;
4100 cfqq->dispatched--;
4101 (RQ_CFQG(rq))->dispatched--;
4102 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4103 rq_io_start_time_ns(rq), rq->cmd_flags);
4104
4105 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4106
4107 if (sync) {
4108 struct cfq_rb_root *st;
4109
4110 RQ_CIC(rq)->ttime.last_end_request = now;
4111
4112 if (cfq_cfqq_on_rr(cfqq))
4113 st = cfqq->service_tree;
4114 else
4115 st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4116 cfqq_type(cfqq));
4117
4118 st->ttime.last_end_request = now;
4119 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
4120 cfqd->last_delayed_sync = now;
4121 }
4122
4123 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4124 cfqq->cfqg->ttime.last_end_request = now;
4125 #endif
4126
4127 /*
4128 * If this is the active queue, check if it needs to be expired,
4129 * or if we want to idle in case it has no pending requests.
4130 */
4131 if (cfqd->active_queue == cfqq) {
4132 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4133
4134 if (cfq_cfqq_slice_new(cfqq)) {
4135 cfq_set_prio_slice(cfqd, cfqq);
4136 cfq_clear_cfqq_slice_new(cfqq);
4137 }
4138
4139 /*
4140 * Should we wait for next request to come in before we expire
4141 * the queue.
4142 */
4143 if (cfq_should_wait_busy(cfqd, cfqq)) {
4144 unsigned long extend_sl = cfqd->cfq_slice_idle;
4145 if (!cfqd->cfq_slice_idle)
4146 extend_sl = cfqd->cfq_group_idle;
4147 cfqq->slice_end = jiffies + extend_sl;
4148 cfq_mark_cfqq_wait_busy(cfqq);
4149 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4150 }
4151
4152 /*
4153 * Idling is not enabled on:
4154 * - expired queues
4155 * - idle-priority queues
4156 * - async queues
4157 * - queues with still some requests queued
4158 * - when there is a close cooperator
4159 */
4160 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4161 cfq_slice_expired(cfqd, 1);
4162 else if (sync && cfqq_empty &&
4163 !cfq_close_cooperator(cfqd, cfqq)) {
4164 cfq_arm_slice_timer(cfqd);
4165 }
4166 }
4167
4168 if (!cfqd->rq_in_driver)
4169 cfq_schedule_dispatch(cfqd);
4170 }
4171
4172 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4173 {
4174 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4175 cfq_mark_cfqq_must_alloc_slice(cfqq);
4176 return ELV_MQUEUE_MUST;
4177 }
4178
4179 return ELV_MQUEUE_MAY;
4180 }
4181
4182 static int cfq_may_queue(struct request_queue *q, int rw)
4183 {
4184 struct cfq_data *cfqd = q->elevator->elevator_data;
4185 struct task_struct *tsk = current;
4186 struct cfq_io_cq *cic;
4187 struct cfq_queue *cfqq;
4188
4189 /*
4190 * don't force setup of a queue from here, as a call to may_queue
4191 * does not necessarily imply that a request actually will be queued.
4192 * so just lookup a possibly existing queue, or return 'may queue'
4193 * if that fails
4194 */
4195 cic = cfq_cic_lookup(cfqd, tsk->io_context);
4196 if (!cic)
4197 return ELV_MQUEUE_MAY;
4198
4199 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
4200 if (cfqq) {
4201 cfq_init_prio_data(cfqq, cic);
4202
4203 return __cfq_may_queue(cfqq);
4204 }
4205
4206 return ELV_MQUEUE_MAY;
4207 }
4208
4209 /*
4210 * queue lock held here
4211 */
4212 static void cfq_put_request(struct request *rq)
4213 {
4214 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4215
4216 if (cfqq) {
4217 const int rw = rq_data_dir(rq);
4218
4219 BUG_ON(!cfqq->allocated[rw]);
4220 cfqq->allocated[rw]--;
4221
4222 /* Put down rq reference on cfqg */
4223 cfqg_put(RQ_CFQG(rq));
4224 rq->elv.priv[0] = NULL;
4225 rq->elv.priv[1] = NULL;
4226
4227 cfq_put_queue(cfqq);
4228 }
4229 }
4230
4231 static struct cfq_queue *
4232 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4233 struct cfq_queue *cfqq)
4234 {
4235 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4236 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4237 cfq_mark_cfqq_coop(cfqq->new_cfqq);
4238 cfq_put_queue(cfqq);
4239 return cic_to_cfqq(cic, 1);
4240 }
4241
4242 /*
4243 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4244 * was the last process referring to said cfqq.
4245 */
4246 static struct cfq_queue *
4247 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4248 {
4249 if (cfqq_process_refs(cfqq) == 1) {
4250 cfqq->pid = current->pid;
4251 cfq_clear_cfqq_coop(cfqq);
4252 cfq_clear_cfqq_split_coop(cfqq);
4253 return cfqq;
4254 }
4255
4256 cic_set_cfqq(cic, NULL, 1);
4257
4258 cfq_put_cooperator(cfqq);
4259
4260 cfq_put_queue(cfqq);
4261 return NULL;
4262 }
4263 /*
4264 * Allocate cfq data structures associated with this request.
4265 */
4266 static int
4267 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4268 gfp_t gfp_mask)
4269 {
4270 struct cfq_data *cfqd = q->elevator->elevator_data;
4271 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4272 const int rw = rq_data_dir(rq);
4273 const bool is_sync = rq_is_sync(rq);
4274 struct cfq_queue *cfqq;
4275
4276 spin_lock_irq(q->queue_lock);
4277
4278 check_ioprio_changed(cic, bio);
4279 check_blkcg_changed(cic, bio);
4280 new_queue:
4281 cfqq = cic_to_cfqq(cic, is_sync);
4282 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4283 if (cfqq)
4284 cfq_put_queue(cfqq);
4285 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio);
4286 cic_set_cfqq(cic, cfqq, is_sync);
4287 } else {
4288 /*
4289 * If the queue was seeky for too long, break it apart.
4290 */
4291 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4292 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4293 cfqq = split_cfqq(cic, cfqq);
4294 if (!cfqq)
4295 goto new_queue;
4296 }
4297
4298 /*
4299 * Check to see if this queue is scheduled to merge with
4300 * another, closely cooperating queue. The merging of
4301 * queues happens here as it must be done in process context.
4302 * The reference on new_cfqq was taken in merge_cfqqs.
4303 */
4304 if (cfqq->new_cfqq)
4305 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4306 }
4307
4308 cfqq->allocated[rw]++;
4309
4310 cfqq->ref++;
4311 cfqg_get(cfqq->cfqg);
4312 rq->elv.priv[0] = cfqq;
4313 rq->elv.priv[1] = cfqq->cfqg;
4314 spin_unlock_irq(q->queue_lock);
4315 return 0;
4316 }
4317
4318 static void cfq_kick_queue(struct work_struct *work)
4319 {
4320 struct cfq_data *cfqd =
4321 container_of(work, struct cfq_data, unplug_work);
4322 struct request_queue *q = cfqd->queue;
4323
4324 spin_lock_irq(q->queue_lock);
4325 __blk_run_queue(cfqd->queue);
4326 spin_unlock_irq(q->queue_lock);
4327 }
4328
4329 /*
4330 * Timer running if the active_queue is currently idling inside its time slice
4331 */
4332 static void cfq_idle_slice_timer(unsigned long data)
4333 {
4334 struct cfq_data *cfqd = (struct cfq_data *) data;
4335 struct cfq_queue *cfqq;
4336 unsigned long flags;
4337 int timed_out = 1;
4338
4339 cfq_log(cfqd, "idle timer fired");
4340
4341 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4342
4343 cfqq = cfqd->active_queue;
4344 if (cfqq) {
4345 timed_out = 0;
4346
4347 /*
4348 * We saw a request before the queue expired, let it through
4349 */
4350 if (cfq_cfqq_must_dispatch(cfqq))
4351 goto out_kick;
4352
4353 /*
4354 * expired
4355 */
4356 if (cfq_slice_used(cfqq))
4357 goto expire;
4358
4359 /*
4360 * only expire and reinvoke request handler, if there are
4361 * other queues with pending requests
4362 */
4363 if (!cfqd->busy_queues)
4364 goto out_cont;
4365
4366 /*
4367 * not expired and it has a request pending, let it dispatch
4368 */
4369 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4370 goto out_kick;
4371
4372 /*
4373 * Queue depth flag is reset only when the idle didn't succeed
4374 */
4375 cfq_clear_cfqq_deep(cfqq);
4376 }
4377 expire:
4378 cfq_slice_expired(cfqd, timed_out);
4379 out_kick:
4380 cfq_schedule_dispatch(cfqd);
4381 out_cont:
4382 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4383 }
4384
4385 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4386 {
4387 del_timer_sync(&cfqd->idle_slice_timer);
4388 cancel_work_sync(&cfqd->unplug_work);
4389 }
4390
4391 static void cfq_exit_queue(struct elevator_queue *e)
4392 {
4393 struct cfq_data *cfqd = e->elevator_data;
4394 struct request_queue *q = cfqd->queue;
4395
4396 cfq_shutdown_timer_wq(cfqd);
4397
4398 spin_lock_irq(q->queue_lock);
4399
4400 if (cfqd->active_queue)
4401 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4402
4403 spin_unlock_irq(q->queue_lock);
4404
4405 cfq_shutdown_timer_wq(cfqd);
4406
4407 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4408 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4409 #else
4410 kfree(cfqd->root_group);
4411 #endif
4412 kfree(cfqd);
4413 }
4414
4415 static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4416 {
4417 struct cfq_data *cfqd;
4418 struct blkcg_gq *blkg __maybe_unused;
4419 int i, ret;
4420 struct elevator_queue *eq;
4421
4422 eq = elevator_alloc(q, e);
4423 if (!eq)
4424 return -ENOMEM;
4425
4426 cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4427 if (!cfqd) {
4428 kobject_put(&eq->kobj);
4429 return -ENOMEM;
4430 }
4431 eq->elevator_data = cfqd;
4432
4433 cfqd->queue = q;
4434 spin_lock_irq(q->queue_lock);
4435 q->elevator = eq;
4436 spin_unlock_irq(q->queue_lock);
4437
4438 /* Init root service tree */
4439 cfqd->grp_service_tree = CFQ_RB_ROOT;
4440
4441 /* Init root group and prefer root group over other groups by default */
4442 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4443 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4444 if (ret)
4445 goto out_free;
4446
4447 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4448 #else
4449 ret = -ENOMEM;
4450 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4451 GFP_KERNEL, cfqd->queue->node);
4452 if (!cfqd->root_group)
4453 goto out_free;
4454
4455 cfq_init_cfqg_base(cfqd->root_group);
4456 #endif
4457 cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
4458 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
4459
4460 /*
4461 * Not strictly needed (since RB_ROOT just clears the node and we
4462 * zeroed cfqd on alloc), but better be safe in case someone decides
4463 * to add magic to the rb code
4464 */
4465 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4466 cfqd->prio_trees[i] = RB_ROOT;
4467
4468 /*
4469 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4470 * Grab a permanent reference to it, so that the normal code flow
4471 * will not attempt to free it. oom_cfqq is linked to root_group
4472 * but shouldn't hold a reference as it'll never be unlinked. Lose
4473 * the reference from linking right away.
4474 */
4475 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4476 cfqd->oom_cfqq.ref++;
4477
4478 spin_lock_irq(q->queue_lock);
4479 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4480 cfqg_put(cfqd->root_group);
4481 spin_unlock_irq(q->queue_lock);
4482
4483 init_timer(&cfqd->idle_slice_timer);
4484 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4485 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4486
4487 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4488
4489 cfqd->cfq_quantum = cfq_quantum;
4490 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4491 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4492 cfqd->cfq_back_max = cfq_back_max;
4493 cfqd->cfq_back_penalty = cfq_back_penalty;
4494 cfqd->cfq_slice[0] = cfq_slice_async;
4495 cfqd->cfq_slice[1] = cfq_slice_sync;
4496 cfqd->cfq_target_latency = cfq_target_latency;
4497 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4498 cfqd->cfq_slice_idle = cfq_slice_idle;
4499 cfqd->cfq_group_idle = cfq_group_idle;
4500 cfqd->cfq_latency = 1;
4501 cfqd->hw_tag = -1;
4502 /*
4503 * we optimistically start assuming sync ops weren't delayed in last
4504 * second, in order to have larger depth for async operations.
4505 */
4506 cfqd->last_delayed_sync = jiffies - HZ;
4507 return 0;
4508
4509 out_free:
4510 kfree(cfqd);
4511 kobject_put(&eq->kobj);
4512 return ret;
4513 }
4514
4515 static void cfq_registered_queue(struct request_queue *q)
4516 {
4517 struct elevator_queue *e = q->elevator;
4518 struct cfq_data *cfqd = e->elevator_data;
4519
4520 /*
4521 * Default to IOPS mode with no idling for SSDs
4522 */
4523 if (blk_queue_nonrot(q))
4524 cfqd->cfq_slice_idle = 0;
4525 }
4526
4527 /*
4528 * sysfs parts below -->
4529 */
4530 static ssize_t
4531 cfq_var_show(unsigned int var, char *page)
4532 {
4533 return sprintf(page, "%u\n", var);
4534 }
4535
4536 static ssize_t
4537 cfq_var_store(unsigned int *var, const char *page, size_t count)
4538 {
4539 char *p = (char *) page;
4540
4541 *var = simple_strtoul(p, &p, 10);
4542 return count;
4543 }
4544
4545 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4546 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4547 { \
4548 struct cfq_data *cfqd = e->elevator_data; \
4549 unsigned int __data = __VAR; \
4550 if (__CONV) \
4551 __data = jiffies_to_msecs(__data); \
4552 return cfq_var_show(__data, (page)); \
4553 }
4554 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4555 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4556 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4557 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4558 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4559 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4560 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4561 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4562 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4563 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4564 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4565 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4566 #undef SHOW_FUNCTION
4567
4568 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4569 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4570 { \
4571 struct cfq_data *cfqd = e->elevator_data; \
4572 unsigned int __data; \
4573 int ret = cfq_var_store(&__data, (page), count); \
4574 if (__data < (MIN)) \
4575 __data = (MIN); \
4576 else if (__data > (MAX)) \
4577 __data = (MAX); \
4578 if (__CONV) \
4579 *(__PTR) = msecs_to_jiffies(__data); \
4580 else \
4581 *(__PTR) = __data; \
4582 return ret; \
4583 }
4584 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4585 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4586 UINT_MAX, 1);
4587 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4588 UINT_MAX, 1);
4589 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4590 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4591 UINT_MAX, 0);
4592 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4593 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4594 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4595 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4596 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4597 UINT_MAX, 0);
4598 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4599 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4600 #undef STORE_FUNCTION
4601
4602 #define CFQ_ATTR(name) \
4603 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4604
4605 static struct elv_fs_entry cfq_attrs[] = {
4606 CFQ_ATTR(quantum),
4607 CFQ_ATTR(fifo_expire_sync),
4608 CFQ_ATTR(fifo_expire_async),
4609 CFQ_ATTR(back_seek_max),
4610 CFQ_ATTR(back_seek_penalty),
4611 CFQ_ATTR(slice_sync),
4612 CFQ_ATTR(slice_async),
4613 CFQ_ATTR(slice_async_rq),
4614 CFQ_ATTR(slice_idle),
4615 CFQ_ATTR(group_idle),
4616 CFQ_ATTR(low_latency),
4617 CFQ_ATTR(target_latency),
4618 __ATTR_NULL
4619 };
4620
4621 static struct elevator_type iosched_cfq = {
4622 .ops = {
4623 .elevator_merge_fn = cfq_merge,
4624 .elevator_merged_fn = cfq_merged_request,
4625 .elevator_merge_req_fn = cfq_merged_requests,
4626 .elevator_allow_merge_fn = cfq_allow_merge,
4627 .elevator_bio_merged_fn = cfq_bio_merged,
4628 .elevator_dispatch_fn = cfq_dispatch_requests,
4629 .elevator_add_req_fn = cfq_insert_request,
4630 .elevator_activate_req_fn = cfq_activate_request,
4631 .elevator_deactivate_req_fn = cfq_deactivate_request,
4632 .elevator_completed_req_fn = cfq_completed_request,
4633 .elevator_former_req_fn = elv_rb_former_request,
4634 .elevator_latter_req_fn = elv_rb_latter_request,
4635 .elevator_init_icq_fn = cfq_init_icq,
4636 .elevator_exit_icq_fn = cfq_exit_icq,
4637 .elevator_set_req_fn = cfq_set_request,
4638 .elevator_put_req_fn = cfq_put_request,
4639 .elevator_may_queue_fn = cfq_may_queue,
4640 .elevator_init_fn = cfq_init_queue,
4641 .elevator_exit_fn = cfq_exit_queue,
4642 .elevator_registered_fn = cfq_registered_queue,
4643 },
4644 .icq_size = sizeof(struct cfq_io_cq),
4645 .icq_align = __alignof__(struct cfq_io_cq),
4646 .elevator_attrs = cfq_attrs,
4647 .elevator_name = "cfq",
4648 .elevator_owner = THIS_MODULE,
4649 };
4650
4651 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4652 static struct blkcg_policy blkcg_policy_cfq = {
4653 .cpd_size = sizeof(struct cfq_group_data),
4654 .cftypes = cfq_blkcg_files,
4655
4656 .cpd_init_fn = cfq_cpd_init,
4657 .pd_alloc_fn = cfq_pd_alloc,
4658 .pd_init_fn = cfq_pd_init,
4659 .pd_offline_fn = cfq_pd_offline,
4660 .pd_free_fn = cfq_pd_free,
4661 .pd_reset_stats_fn = cfq_pd_reset_stats,
4662 };
4663 #endif
4664
4665 static int __init cfq_init(void)
4666 {
4667 int ret;
4668
4669 /*
4670 * could be 0 on HZ < 1000 setups
4671 */
4672 if (!cfq_slice_async)
4673 cfq_slice_async = 1;
4674 if (!cfq_slice_idle)
4675 cfq_slice_idle = 1;
4676
4677 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4678 if (!cfq_group_idle)
4679 cfq_group_idle = 1;
4680
4681 ret = blkcg_policy_register(&blkcg_policy_cfq);
4682 if (ret)
4683 return ret;
4684 #else
4685 cfq_group_idle = 0;
4686 #endif
4687
4688 ret = -ENOMEM;
4689 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4690 if (!cfq_pool)
4691 goto err_pol_unreg;
4692
4693 ret = elv_register(&iosched_cfq);
4694 if (ret)
4695 goto err_free_pool;
4696
4697 return 0;
4698
4699 err_free_pool:
4700 kmem_cache_destroy(cfq_pool);
4701 err_pol_unreg:
4702 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4703 blkcg_policy_unregister(&blkcg_policy_cfq);
4704 #endif
4705 return ret;
4706 }
4707
4708 static void __exit cfq_exit(void)
4709 {
4710 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4711 blkcg_policy_unregister(&blkcg_policy_cfq);
4712 #endif
4713 elv_unregister(&iosched_cfq);
4714 kmem_cache_destroy(cfq_pool);
4715 }
4716
4717 module_init(cfq_init);
4718 module_exit(cfq_exit);
4719
4720 MODULE_AUTHOR("Jens Axboe");
4721 MODULE_LICENSE("GPL");
4722 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");