]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/cfq-iosched.c
cfq-iosched: document the cfqq flags
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/hash.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15
16 /*
17 * tunables
18 */
19 static const int cfq_quantum = 4; /* max queue in one round of service */
20 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
21 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
22 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
23
24 static const int cfq_slice_sync = HZ / 10;
25 static int cfq_slice_async = HZ / 25;
26 static const int cfq_slice_async_rq = 2;
27 static int cfq_slice_idle = HZ / 125;
28
29 #define CFQ_IDLE_GRACE (HZ / 10)
30 #define CFQ_SLICE_SCALE (5)
31
32 #define CFQ_KEY_ASYNC (0)
33
34 /*
35 * for the hash of cfqq inside the cfqd
36 */
37 #define CFQ_QHASH_SHIFT 6
38 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
39 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
40
41 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
42
43 #define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
44 #define RQ_CFQQ(rq) ((rq)->elevator_private2)
45
46 static struct kmem_cache *cfq_pool;
47 static struct kmem_cache *cfq_ioc_pool;
48
49 static DEFINE_PER_CPU(unsigned long, ioc_count);
50 static struct completion *ioc_gone;
51
52 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
53 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
54 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
55
56 #define ASYNC (0)
57 #define SYNC (1)
58
59 #define cfq_cfqq_dispatched(cfqq) \
60 ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
61
62 #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
63
64 #define cfq_cfqq_sync(cfqq) \
65 (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
66
67 #define sample_valid(samples) ((samples) > 80)
68
69 /*
70 * Per block device queue structure
71 */
72 struct cfq_data {
73 request_queue_t *queue;
74
75 /*
76 * rr list of queues with requests and the count of them
77 */
78 struct list_head rr_list[CFQ_PRIO_LISTS];
79 struct list_head busy_rr;
80 struct list_head cur_rr;
81 struct list_head idle_rr;
82 unsigned int busy_queues;
83
84 /*
85 * cfqq lookup hash
86 */
87 struct hlist_head *cfq_hash;
88
89 int rq_in_driver;
90 int hw_tag;
91
92 /*
93 * idle window management
94 */
95 struct timer_list idle_slice_timer;
96 struct work_struct unplug_work;
97
98 struct cfq_queue *active_queue;
99 struct cfq_io_context *active_cic;
100 int cur_prio, cur_end_prio;
101 unsigned int dispatch_slice;
102
103 struct timer_list idle_class_timer;
104
105 sector_t last_sector;
106 unsigned long last_end_request;
107
108 /*
109 * tunables, see top of file
110 */
111 unsigned int cfq_quantum;
112 unsigned int cfq_fifo_expire[2];
113 unsigned int cfq_back_penalty;
114 unsigned int cfq_back_max;
115 unsigned int cfq_slice[2];
116 unsigned int cfq_slice_async_rq;
117 unsigned int cfq_slice_idle;
118
119 struct list_head cic_list;
120 };
121
122 /*
123 * Per process-grouping structure
124 */
125 struct cfq_queue {
126 /* reference count */
127 atomic_t ref;
128 /* parent cfq_data */
129 struct cfq_data *cfqd;
130 /* cfqq lookup hash */
131 struct hlist_node cfq_hash;
132 /* hash key */
133 unsigned int key;
134 /* member of the rr/busy/cur/idle cfqd list */
135 struct list_head cfq_list;
136 /* sorted list of pending requests */
137 struct rb_root sort_list;
138 /* if fifo isn't expired, next request to serve */
139 struct request *next_rq;
140 /* requests queued in sort_list */
141 int queued[2];
142 /* currently allocated requests */
143 int allocated[2];
144 /* pending metadata requests */
145 int meta_pending;
146 /* fifo list of requests in sort_list */
147 struct list_head fifo;
148
149 unsigned long slice_start;
150 unsigned long slice_end;
151 unsigned long slice_left;
152
153 /* number of requests that are on the dispatch list */
154 int on_dispatch[2];
155
156 /* io prio of this group */
157 unsigned short ioprio, org_ioprio;
158 unsigned short ioprio_class, org_ioprio_class;
159
160 /* various state flags, see below */
161 unsigned int flags;
162 };
163
164 enum cfqq_state_flags {
165 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
166 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
167 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
168 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
169 CFQ_CFQQ_FLAG_must_dispatch, /* must dispatch, even if expired */
170 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
171 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
172 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
173 CFQ_CFQQ_FLAG_queue_new, /* queue never been serviced */
174 };
175
176 #define CFQ_CFQQ_FNS(name) \
177 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
178 { \
179 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
180 } \
181 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
182 { \
183 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
184 } \
185 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
186 { \
187 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
188 }
189
190 CFQ_CFQQ_FNS(on_rr);
191 CFQ_CFQQ_FNS(wait_request);
192 CFQ_CFQQ_FNS(must_alloc);
193 CFQ_CFQQ_FNS(must_alloc_slice);
194 CFQ_CFQQ_FNS(must_dispatch);
195 CFQ_CFQQ_FNS(fifo_expire);
196 CFQ_CFQQ_FNS(idle_window);
197 CFQ_CFQQ_FNS(prio_changed);
198 CFQ_CFQQ_FNS(queue_new);
199 #undef CFQ_CFQQ_FNS
200
201 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
202 static void cfq_dispatch_insert(request_queue_t *, struct request *);
203 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
204
205 /*
206 * scheduler run of queue, if there are requests pending and no one in the
207 * driver that will restart queueing
208 */
209 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
210 {
211 if (cfqd->busy_queues)
212 kblockd_schedule_work(&cfqd->unplug_work);
213 }
214
215 static int cfq_queue_empty(request_queue_t *q)
216 {
217 struct cfq_data *cfqd = q->elevator->elevator_data;
218
219 return !cfqd->busy_queues;
220 }
221
222 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw, int is_sync)
223 {
224 /*
225 * Use the per-process queue, for read requests and syncronous writes
226 */
227 if (!(rw & REQ_RW) || is_sync)
228 return task->pid;
229
230 return CFQ_KEY_ASYNC;
231 }
232
233 /*
234 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
235 * We choose the request that is closest to the head right now. Distance
236 * behind the head is penalized and only allowed to a certain extent.
237 */
238 static struct request *
239 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
240 {
241 sector_t last, s1, s2, d1 = 0, d2 = 0;
242 unsigned long back_max;
243 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
244 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
245 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
246
247 if (rq1 == NULL || rq1 == rq2)
248 return rq2;
249 if (rq2 == NULL)
250 return rq1;
251
252 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
253 return rq1;
254 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
255 return rq2;
256 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
257 return rq1;
258 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
259 return rq2;
260
261 s1 = rq1->sector;
262 s2 = rq2->sector;
263
264 last = cfqd->last_sector;
265
266 /*
267 * by definition, 1KiB is 2 sectors
268 */
269 back_max = cfqd->cfq_back_max * 2;
270
271 /*
272 * Strict one way elevator _except_ in the case where we allow
273 * short backward seeks which are biased as twice the cost of a
274 * similar forward seek.
275 */
276 if (s1 >= last)
277 d1 = s1 - last;
278 else if (s1 + back_max >= last)
279 d1 = (last - s1) * cfqd->cfq_back_penalty;
280 else
281 wrap |= CFQ_RQ1_WRAP;
282
283 if (s2 >= last)
284 d2 = s2 - last;
285 else if (s2 + back_max >= last)
286 d2 = (last - s2) * cfqd->cfq_back_penalty;
287 else
288 wrap |= CFQ_RQ2_WRAP;
289
290 /* Found required data */
291
292 /*
293 * By doing switch() on the bit mask "wrap" we avoid having to
294 * check two variables for all permutations: --> faster!
295 */
296 switch (wrap) {
297 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
298 if (d1 < d2)
299 return rq1;
300 else if (d2 < d1)
301 return rq2;
302 else {
303 if (s1 >= s2)
304 return rq1;
305 else
306 return rq2;
307 }
308
309 case CFQ_RQ2_WRAP:
310 return rq1;
311 case CFQ_RQ1_WRAP:
312 return rq2;
313 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
314 default:
315 /*
316 * Since both rqs are wrapped,
317 * start with the one that's further behind head
318 * (--> only *one* back seek required),
319 * since back seek takes more time than forward.
320 */
321 if (s1 <= s2)
322 return rq1;
323 else
324 return rq2;
325 }
326 }
327
328 /*
329 * would be nice to take fifo expire time into account as well
330 */
331 static struct request *
332 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
333 struct request *last)
334 {
335 struct rb_node *rbnext = rb_next(&last->rb_node);
336 struct rb_node *rbprev = rb_prev(&last->rb_node);
337 struct request *next = NULL, *prev = NULL;
338
339 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
340
341 if (rbprev)
342 prev = rb_entry_rq(rbprev);
343
344 if (rbnext)
345 next = rb_entry_rq(rbnext);
346 else {
347 rbnext = rb_first(&cfqq->sort_list);
348 if (rbnext && rbnext != &last->rb_node)
349 next = rb_entry_rq(rbnext);
350 }
351
352 return cfq_choose_req(cfqd, next, prev);
353 }
354
355 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
356 {
357 struct cfq_data *cfqd = cfqq->cfqd;
358 struct list_head *list;
359
360 /*
361 * Resorting requires the cfqq to be on the RR list already.
362 */
363 if (!cfq_cfqq_on_rr(cfqq))
364 return;
365
366 list_del(&cfqq->cfq_list);
367
368 if (cfq_class_rt(cfqq))
369 list = &cfqd->cur_rr;
370 else if (cfq_class_idle(cfqq))
371 list = &cfqd->idle_rr;
372 else {
373 /*
374 * if cfqq has requests in flight, don't allow it to be
375 * found in cfq_set_active_queue before it has finished them.
376 * this is done to increase fairness between a process that
377 * has lots of io pending vs one that only generates one
378 * sporadically or synchronously
379 */
380 if (cfq_cfqq_dispatched(cfqq))
381 list = &cfqd->busy_rr;
382 else
383 list = &cfqd->rr_list[cfqq->ioprio];
384 }
385
386 /*
387 * If this queue was preempted or is new (never been serviced), let
388 * it be added first for fairness but beind other new queues.
389 * Otherwise, just add to the back of the list.
390 */
391 if (preempted || cfq_cfqq_queue_new(cfqq)) {
392 struct list_head *n = list;
393 struct cfq_queue *__cfqq;
394
395 while (n->next != list) {
396 __cfqq = list_entry_cfqq(n->next);
397 if (!cfq_cfqq_queue_new(__cfqq))
398 break;
399
400 n = n->next;
401 }
402
403 list = n;
404 }
405
406 list_add_tail(&cfqq->cfq_list, list);
407 }
408
409 /*
410 * add to busy list of queues for service, trying to be fair in ordering
411 * the pending list according to last request service
412 */
413 static inline void
414 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
415 {
416 BUG_ON(cfq_cfqq_on_rr(cfqq));
417 cfq_mark_cfqq_on_rr(cfqq);
418 cfqd->busy_queues++;
419
420 cfq_resort_rr_list(cfqq, 0);
421 }
422
423 static inline void
424 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
425 {
426 BUG_ON(!cfq_cfqq_on_rr(cfqq));
427 cfq_clear_cfqq_on_rr(cfqq);
428 list_del_init(&cfqq->cfq_list);
429
430 BUG_ON(!cfqd->busy_queues);
431 cfqd->busy_queues--;
432 }
433
434 /*
435 * rb tree support functions
436 */
437 static inline void cfq_del_rq_rb(struct request *rq)
438 {
439 struct cfq_queue *cfqq = RQ_CFQQ(rq);
440 struct cfq_data *cfqd = cfqq->cfqd;
441 const int sync = rq_is_sync(rq);
442
443 BUG_ON(!cfqq->queued[sync]);
444 cfqq->queued[sync]--;
445
446 elv_rb_del(&cfqq->sort_list, rq);
447
448 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
449 cfq_del_cfqq_rr(cfqd, cfqq);
450 }
451
452 static void cfq_add_rq_rb(struct request *rq)
453 {
454 struct cfq_queue *cfqq = RQ_CFQQ(rq);
455 struct cfq_data *cfqd = cfqq->cfqd;
456 struct request *__alias;
457
458 cfqq->queued[rq_is_sync(rq)]++;
459
460 /*
461 * looks a little odd, but the first insert might return an alias.
462 * if that happens, put the alias on the dispatch list
463 */
464 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
465 cfq_dispatch_insert(cfqd->queue, __alias);
466
467 if (!cfq_cfqq_on_rr(cfqq))
468 cfq_add_cfqq_rr(cfqd, cfqq);
469 }
470
471 static inline void
472 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
473 {
474 elv_rb_del(&cfqq->sort_list, rq);
475 cfqq->queued[rq_is_sync(rq)]--;
476 cfq_add_rq_rb(rq);
477 }
478
479 static struct request *
480 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
481 {
482 struct task_struct *tsk = current;
483 pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio), bio_sync(bio));
484 struct cfq_queue *cfqq;
485
486 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
487 if (cfqq) {
488 sector_t sector = bio->bi_sector + bio_sectors(bio);
489
490 return elv_rb_find(&cfqq->sort_list, sector);
491 }
492
493 return NULL;
494 }
495
496 static void cfq_activate_request(request_queue_t *q, struct request *rq)
497 {
498 struct cfq_data *cfqd = q->elevator->elevator_data;
499
500 cfqd->rq_in_driver++;
501
502 /*
503 * If the depth is larger 1, it really could be queueing. But lets
504 * make the mark a little higher - idling could still be good for
505 * low queueing, and a low queueing number could also just indicate
506 * a SCSI mid layer like behaviour where limit+1 is often seen.
507 */
508 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
509 cfqd->hw_tag = 1;
510 }
511
512 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
513 {
514 struct cfq_data *cfqd = q->elevator->elevator_data;
515
516 WARN_ON(!cfqd->rq_in_driver);
517 cfqd->rq_in_driver--;
518 }
519
520 static void cfq_remove_request(struct request *rq)
521 {
522 struct cfq_queue *cfqq = RQ_CFQQ(rq);
523
524 if (cfqq->next_rq == rq)
525 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
526
527 list_del_init(&rq->queuelist);
528 cfq_del_rq_rb(rq);
529
530 if (rq_is_meta(rq)) {
531 WARN_ON(!cfqq->meta_pending);
532 cfqq->meta_pending--;
533 }
534 }
535
536 static int
537 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
538 {
539 struct cfq_data *cfqd = q->elevator->elevator_data;
540 struct request *__rq;
541
542 __rq = cfq_find_rq_fmerge(cfqd, bio);
543 if (__rq && elv_rq_merge_ok(__rq, bio)) {
544 *req = __rq;
545 return ELEVATOR_FRONT_MERGE;
546 }
547
548 return ELEVATOR_NO_MERGE;
549 }
550
551 static void cfq_merged_request(request_queue_t *q, struct request *req,
552 int type)
553 {
554 if (type == ELEVATOR_FRONT_MERGE) {
555 struct cfq_queue *cfqq = RQ_CFQQ(req);
556
557 cfq_reposition_rq_rb(cfqq, req);
558 }
559 }
560
561 static void
562 cfq_merged_requests(request_queue_t *q, struct request *rq,
563 struct request *next)
564 {
565 /*
566 * reposition in fifo if next is older than rq
567 */
568 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
569 time_before(next->start_time, rq->start_time))
570 list_move(&rq->queuelist, &next->queuelist);
571
572 cfq_remove_request(next);
573 }
574
575 static int cfq_allow_merge(request_queue_t *q, struct request *rq,
576 struct bio *bio)
577 {
578 struct cfq_data *cfqd = q->elevator->elevator_data;
579 const int rw = bio_data_dir(bio);
580 struct cfq_queue *cfqq;
581 pid_t key;
582
583 /*
584 * Disallow merge of a sync bio into an async request.
585 */
586 if ((bio_data_dir(bio) == READ || bio_sync(bio)) && !rq_is_sync(rq))
587 return 0;
588
589 /*
590 * Lookup the cfqq that this bio will be queued with. Allow
591 * merge only if rq is queued there.
592 */
593 key = cfq_queue_pid(current, rw, bio_sync(bio));
594 cfqq = cfq_find_cfq_hash(cfqd, key, current->ioprio);
595
596 if (cfqq == RQ_CFQQ(rq))
597 return 1;
598
599 return 0;
600 }
601
602 static inline void
603 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
604 {
605 if (cfqq) {
606 /*
607 * stop potential idle class queues waiting service
608 */
609 del_timer(&cfqd->idle_class_timer);
610
611 cfqq->slice_start = jiffies;
612 cfqq->slice_end = 0;
613 cfqq->slice_left = 0;
614 cfq_clear_cfqq_must_alloc_slice(cfqq);
615 cfq_clear_cfqq_fifo_expire(cfqq);
616 }
617
618 cfqd->active_queue = cfqq;
619 }
620
621 /*
622 * current cfqq expired its slice (or was too idle), select new one
623 */
624 static void
625 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
626 int preempted)
627 {
628 unsigned long now = jiffies;
629
630 if (cfq_cfqq_wait_request(cfqq))
631 del_timer(&cfqd->idle_slice_timer);
632
633 if (!preempted && !cfq_cfqq_dispatched(cfqq))
634 cfq_schedule_dispatch(cfqd);
635
636 cfq_clear_cfqq_must_dispatch(cfqq);
637 cfq_clear_cfqq_wait_request(cfqq);
638 cfq_clear_cfqq_queue_new(cfqq);
639
640 /*
641 * store what was left of this slice, if the queue idled out
642 * or was preempted
643 */
644 if (time_after(cfqq->slice_end, now))
645 cfqq->slice_left = cfqq->slice_end - now;
646 else
647 cfqq->slice_left = 0;
648
649 cfq_resort_rr_list(cfqq, preempted);
650
651 if (cfqq == cfqd->active_queue)
652 cfqd->active_queue = NULL;
653
654 if (cfqd->active_cic) {
655 put_io_context(cfqd->active_cic->ioc);
656 cfqd->active_cic = NULL;
657 }
658
659 cfqd->dispatch_slice = 0;
660 }
661
662 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
663 {
664 struct cfq_queue *cfqq = cfqd->active_queue;
665
666 if (cfqq)
667 __cfq_slice_expired(cfqd, cfqq, preempted);
668 }
669
670 /*
671 * 0
672 * 0,1
673 * 0,1,2
674 * 0,1,2,3
675 * 0,1,2,3,4
676 * 0,1,2,3,4,5
677 * 0,1,2,3,4,5,6
678 * 0,1,2,3,4,5,6,7
679 */
680 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
681 {
682 int prio, wrap;
683
684 prio = -1;
685 wrap = 0;
686 do {
687 int p;
688
689 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
690 if (!list_empty(&cfqd->rr_list[p])) {
691 prio = p;
692 break;
693 }
694 }
695
696 if (prio != -1)
697 break;
698 cfqd->cur_prio = 0;
699 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
700 cfqd->cur_end_prio = 0;
701 if (wrap)
702 break;
703 wrap = 1;
704 }
705 } while (1);
706
707 if (unlikely(prio == -1))
708 return -1;
709
710 BUG_ON(prio >= CFQ_PRIO_LISTS);
711
712 list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
713
714 cfqd->cur_prio = prio + 1;
715 if (cfqd->cur_prio > cfqd->cur_end_prio) {
716 cfqd->cur_end_prio = cfqd->cur_prio;
717 cfqd->cur_prio = 0;
718 }
719 if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
720 cfqd->cur_prio = 0;
721 cfqd->cur_end_prio = 0;
722 }
723
724 return prio;
725 }
726
727 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
728 {
729 struct cfq_queue *cfqq = NULL;
730
731 if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1) {
732 /*
733 * if current list is non-empty, grab first entry. if it is
734 * empty, get next prio level and grab first entry then if any
735 * are spliced
736 */
737 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
738 } else if (!list_empty(&cfqd->busy_rr)) {
739 /*
740 * If no new queues are available, check if the busy list has
741 * some before falling back to idle io.
742 */
743 cfqq = list_entry_cfqq(cfqd->busy_rr.next);
744 } else if (!list_empty(&cfqd->idle_rr)) {
745 /*
746 * if we have idle queues and no rt or be queues had pending
747 * requests, either allow immediate service if the grace period
748 * has passed or arm the idle grace timer
749 */
750 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
751
752 if (time_after_eq(jiffies, end))
753 cfqq = list_entry_cfqq(cfqd->idle_rr.next);
754 else
755 mod_timer(&cfqd->idle_class_timer, end);
756 }
757
758 __cfq_set_active_queue(cfqd, cfqq);
759 return cfqq;
760 }
761
762 #define CIC_SEEKY(cic) ((cic)->seek_mean > (128 * 1024))
763
764 static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
765
766 {
767 struct cfq_io_context *cic;
768 unsigned long sl;
769
770 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
771 WARN_ON(cfqq != cfqd->active_queue);
772
773 /*
774 * idle is disabled, either manually or by past process history
775 */
776 if (!cfqd->cfq_slice_idle)
777 return 0;
778 if (!cfq_cfqq_idle_window(cfqq))
779 return 0;
780 /*
781 * task has exited, don't wait
782 */
783 cic = cfqd->active_cic;
784 if (!cic || !cic->ioc->task)
785 return 0;
786
787 cfq_mark_cfqq_must_dispatch(cfqq);
788 cfq_mark_cfqq_wait_request(cfqq);
789
790 sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
791
792 /*
793 * we don't want to idle for seeks, but we do want to allow
794 * fair distribution of slice time for a process doing back-to-back
795 * seeks. so allow a little bit of time for him to submit a new rq
796 */
797 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
798 sl = min(sl, msecs_to_jiffies(2));
799
800 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
801 return 1;
802 }
803
804 static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
805 {
806 struct cfq_data *cfqd = q->elevator->elevator_data;
807 struct cfq_queue *cfqq = RQ_CFQQ(rq);
808
809 cfq_remove_request(rq);
810 cfqq->on_dispatch[rq_is_sync(rq)]++;
811 elv_dispatch_sort(q, rq);
812
813 rq = list_entry(q->queue_head.prev, struct request, queuelist);
814 cfqd->last_sector = rq->sector + rq->nr_sectors;
815 }
816
817 /*
818 * return expired entry, or NULL to just start from scratch in rbtree
819 */
820 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
821 {
822 struct cfq_data *cfqd = cfqq->cfqd;
823 struct request *rq;
824 int fifo;
825
826 if (cfq_cfqq_fifo_expire(cfqq))
827 return NULL;
828 if (list_empty(&cfqq->fifo))
829 return NULL;
830
831 fifo = cfq_cfqq_class_sync(cfqq);
832 rq = rq_entry_fifo(cfqq->fifo.next);
833
834 if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
835 cfq_mark_cfqq_fifo_expire(cfqq);
836 return rq;
837 }
838
839 return NULL;
840 }
841
842 /*
843 * Scale schedule slice based on io priority. Use the sync time slice only
844 * if a queue is marked sync and has sync io queued. A sync queue with async
845 * io only, should not get full sync slice length.
846 */
847 static inline int
848 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
849 {
850 const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
851
852 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
853
854 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
855 }
856
857 static inline void
858 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
859 {
860 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
861 }
862
863 static inline int
864 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
865 {
866 const int base_rq = cfqd->cfq_slice_async_rq;
867
868 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
869
870 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
871 }
872
873 /*
874 * get next queue for service
875 */
876 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
877 {
878 unsigned long now = jiffies;
879 struct cfq_queue *cfqq;
880
881 cfqq = cfqd->active_queue;
882 if (!cfqq)
883 goto new_queue;
884
885 /*
886 * slice has expired
887 */
888 if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
889 goto expire;
890
891 /*
892 * if queue has requests, dispatch one. if not, check if
893 * enough slice is left to wait for one
894 */
895 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
896 goto keep_queue;
897 else if (cfq_cfqq_dispatched(cfqq)) {
898 cfqq = NULL;
899 goto keep_queue;
900 } else if (cfq_cfqq_class_sync(cfqq)) {
901 if (cfq_arm_slice_timer(cfqd, cfqq))
902 return NULL;
903 }
904
905 expire:
906 cfq_slice_expired(cfqd, 0);
907 new_queue:
908 cfqq = cfq_set_active_queue(cfqd);
909 keep_queue:
910 return cfqq;
911 }
912
913 static int
914 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
915 int max_dispatch)
916 {
917 int dispatched = 0;
918
919 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
920
921 do {
922 struct request *rq;
923
924 /*
925 * follow expired path, else get first next available
926 */
927 if ((rq = cfq_check_fifo(cfqq)) == NULL)
928 rq = cfqq->next_rq;
929
930 /*
931 * finally, insert request into driver dispatch list
932 */
933 cfq_dispatch_insert(cfqd->queue, rq);
934
935 cfqd->dispatch_slice++;
936 dispatched++;
937
938 if (!cfqd->active_cic) {
939 atomic_inc(&RQ_CIC(rq)->ioc->refcount);
940 cfqd->active_cic = RQ_CIC(rq);
941 }
942
943 if (RB_EMPTY_ROOT(&cfqq->sort_list))
944 break;
945
946 } while (dispatched < max_dispatch);
947
948 /*
949 * if slice end isn't set yet, set it.
950 */
951 if (!cfqq->slice_end)
952 cfq_set_prio_slice(cfqd, cfqq);
953
954 /*
955 * expire an async queue immediately if it has used up its slice. idle
956 * queue always expire after 1 dispatch round.
957 */
958 if ((!cfq_cfqq_sync(cfqq) &&
959 cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
960 cfq_class_idle(cfqq) ||
961 !cfq_cfqq_idle_window(cfqq))
962 cfq_slice_expired(cfqd, 0);
963
964 return dispatched;
965 }
966
967 static int
968 cfq_forced_dispatch_cfqqs(struct list_head *list)
969 {
970 struct cfq_queue *cfqq, *next;
971 int dispatched;
972
973 dispatched = 0;
974 list_for_each_entry_safe(cfqq, next, list, cfq_list) {
975 while (cfqq->next_rq) {
976 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
977 dispatched++;
978 }
979 BUG_ON(!list_empty(&cfqq->fifo));
980 }
981
982 return dispatched;
983 }
984
985 static int
986 cfq_forced_dispatch(struct cfq_data *cfqd)
987 {
988 int i, dispatched = 0;
989
990 for (i = 0; i < CFQ_PRIO_LISTS; i++)
991 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
992
993 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
994 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
995 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
996
997 cfq_slice_expired(cfqd, 0);
998
999 BUG_ON(cfqd->busy_queues);
1000
1001 return dispatched;
1002 }
1003
1004 static int
1005 cfq_dispatch_requests(request_queue_t *q, int force)
1006 {
1007 struct cfq_data *cfqd = q->elevator->elevator_data;
1008 struct cfq_queue *cfqq, *prev_cfqq;
1009 int dispatched;
1010
1011 if (!cfqd->busy_queues)
1012 return 0;
1013
1014 if (unlikely(force))
1015 return cfq_forced_dispatch(cfqd);
1016
1017 dispatched = 0;
1018 prev_cfqq = NULL;
1019 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1020 int max_dispatch;
1021
1022 /*
1023 * Don't repeat dispatch from the previous queue.
1024 */
1025 if (prev_cfqq == cfqq)
1026 break;
1027
1028 cfq_clear_cfqq_must_dispatch(cfqq);
1029 cfq_clear_cfqq_wait_request(cfqq);
1030 del_timer(&cfqd->idle_slice_timer);
1031
1032 max_dispatch = cfqd->cfq_quantum;
1033 if (cfq_class_idle(cfqq))
1034 max_dispatch = 1;
1035
1036 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1037
1038 /*
1039 * If the dispatch cfqq has idling enabled and is still
1040 * the active queue, break out.
1041 */
1042 if (cfq_cfqq_idle_window(cfqq) && cfqd->active_queue)
1043 break;
1044
1045 prev_cfqq = cfqq;
1046 }
1047
1048 return dispatched;
1049 }
1050
1051 /*
1052 * task holds one reference to the queue, dropped when task exits. each rq
1053 * in-flight on this queue also holds a reference, dropped when rq is freed.
1054 *
1055 * queue lock must be held here.
1056 */
1057 static void cfq_put_queue(struct cfq_queue *cfqq)
1058 {
1059 struct cfq_data *cfqd = cfqq->cfqd;
1060
1061 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1062
1063 if (!atomic_dec_and_test(&cfqq->ref))
1064 return;
1065
1066 BUG_ON(rb_first(&cfqq->sort_list));
1067 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1068 BUG_ON(cfq_cfqq_on_rr(cfqq));
1069
1070 if (unlikely(cfqd->active_queue == cfqq))
1071 __cfq_slice_expired(cfqd, cfqq, 0);
1072
1073 /*
1074 * it's on the empty list and still hashed
1075 */
1076 list_del(&cfqq->cfq_list);
1077 hlist_del(&cfqq->cfq_hash);
1078 kmem_cache_free(cfq_pool, cfqq);
1079 }
1080
1081 static struct cfq_queue *
1082 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1083 const int hashval)
1084 {
1085 struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1086 struct hlist_node *entry;
1087 struct cfq_queue *__cfqq;
1088
1089 hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1090 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1091
1092 if (__cfqq->key == key && (__p == prio || !prio))
1093 return __cfqq;
1094 }
1095
1096 return NULL;
1097 }
1098
1099 static struct cfq_queue *
1100 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1101 {
1102 return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1103 }
1104
1105 static void cfq_free_io_context(struct io_context *ioc)
1106 {
1107 struct cfq_io_context *__cic;
1108 struct rb_node *n;
1109 int freed = 0;
1110
1111 while ((n = rb_first(&ioc->cic_root)) != NULL) {
1112 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1113 rb_erase(&__cic->rb_node, &ioc->cic_root);
1114 kmem_cache_free(cfq_ioc_pool, __cic);
1115 freed++;
1116 }
1117
1118 elv_ioc_count_mod(ioc_count, -freed);
1119
1120 if (ioc_gone && !elv_ioc_count_read(ioc_count))
1121 complete(ioc_gone);
1122 }
1123
1124 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1125 {
1126 if (unlikely(cfqq == cfqd->active_queue))
1127 __cfq_slice_expired(cfqd, cfqq, 0);
1128
1129 cfq_put_queue(cfqq);
1130 }
1131
1132 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1133 struct cfq_io_context *cic)
1134 {
1135 list_del_init(&cic->queue_list);
1136 smp_wmb();
1137 cic->key = NULL;
1138
1139 if (cic->cfqq[ASYNC]) {
1140 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1141 cic->cfqq[ASYNC] = NULL;
1142 }
1143
1144 if (cic->cfqq[SYNC]) {
1145 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1146 cic->cfqq[SYNC] = NULL;
1147 }
1148 }
1149
1150
1151 /*
1152 * Called with interrupts disabled
1153 */
1154 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1155 {
1156 struct cfq_data *cfqd = cic->key;
1157
1158 if (cfqd) {
1159 request_queue_t *q = cfqd->queue;
1160
1161 spin_lock_irq(q->queue_lock);
1162 __cfq_exit_single_io_context(cfqd, cic);
1163 spin_unlock_irq(q->queue_lock);
1164 }
1165 }
1166
1167 static void cfq_exit_io_context(struct io_context *ioc)
1168 {
1169 struct cfq_io_context *__cic;
1170 struct rb_node *n;
1171
1172 /*
1173 * put the reference this task is holding to the various queues
1174 */
1175
1176 n = rb_first(&ioc->cic_root);
1177 while (n != NULL) {
1178 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1179
1180 cfq_exit_single_io_context(__cic);
1181 n = rb_next(n);
1182 }
1183 }
1184
1185 static struct cfq_io_context *
1186 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1187 {
1188 struct cfq_io_context *cic;
1189
1190 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
1191 if (cic) {
1192 memset(cic, 0, sizeof(*cic));
1193 cic->last_end_request = jiffies;
1194 INIT_LIST_HEAD(&cic->queue_list);
1195 cic->dtor = cfq_free_io_context;
1196 cic->exit = cfq_exit_io_context;
1197 elv_ioc_count_inc(ioc_count);
1198 }
1199
1200 return cic;
1201 }
1202
1203 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1204 {
1205 struct task_struct *tsk = current;
1206 int ioprio_class;
1207
1208 if (!cfq_cfqq_prio_changed(cfqq))
1209 return;
1210
1211 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1212 switch (ioprio_class) {
1213 default:
1214 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1215 case IOPRIO_CLASS_NONE:
1216 /*
1217 * no prio set, place us in the middle of the BE classes
1218 */
1219 cfqq->ioprio = task_nice_ioprio(tsk);
1220 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1221 break;
1222 case IOPRIO_CLASS_RT:
1223 cfqq->ioprio = task_ioprio(tsk);
1224 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1225 break;
1226 case IOPRIO_CLASS_BE:
1227 cfqq->ioprio = task_ioprio(tsk);
1228 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1229 break;
1230 case IOPRIO_CLASS_IDLE:
1231 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1232 cfqq->ioprio = 7;
1233 cfq_clear_cfqq_idle_window(cfqq);
1234 break;
1235 }
1236
1237 /*
1238 * keep track of original prio settings in case we have to temporarily
1239 * elevate the priority of this queue
1240 */
1241 cfqq->org_ioprio = cfqq->ioprio;
1242 cfqq->org_ioprio_class = cfqq->ioprio_class;
1243
1244 cfq_resort_rr_list(cfqq, 0);
1245 cfq_clear_cfqq_prio_changed(cfqq);
1246 }
1247
1248 static inline void changed_ioprio(struct cfq_io_context *cic)
1249 {
1250 struct cfq_data *cfqd = cic->key;
1251 struct cfq_queue *cfqq;
1252 unsigned long flags;
1253
1254 if (unlikely(!cfqd))
1255 return;
1256
1257 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1258
1259 cfqq = cic->cfqq[ASYNC];
1260 if (cfqq) {
1261 struct cfq_queue *new_cfqq;
1262 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1263 GFP_ATOMIC);
1264 if (new_cfqq) {
1265 cic->cfqq[ASYNC] = new_cfqq;
1266 cfq_put_queue(cfqq);
1267 }
1268 }
1269
1270 cfqq = cic->cfqq[SYNC];
1271 if (cfqq)
1272 cfq_mark_cfqq_prio_changed(cfqq);
1273
1274 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1275 }
1276
1277 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1278 {
1279 struct cfq_io_context *cic;
1280 struct rb_node *n;
1281
1282 ioc->ioprio_changed = 0;
1283
1284 n = rb_first(&ioc->cic_root);
1285 while (n != NULL) {
1286 cic = rb_entry(n, struct cfq_io_context, rb_node);
1287
1288 changed_ioprio(cic);
1289 n = rb_next(n);
1290 }
1291 }
1292
1293 static struct cfq_queue *
1294 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1295 gfp_t gfp_mask)
1296 {
1297 const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1298 struct cfq_queue *cfqq, *new_cfqq = NULL;
1299 unsigned short ioprio;
1300
1301 retry:
1302 ioprio = tsk->ioprio;
1303 cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1304
1305 if (!cfqq) {
1306 if (new_cfqq) {
1307 cfqq = new_cfqq;
1308 new_cfqq = NULL;
1309 } else if (gfp_mask & __GFP_WAIT) {
1310 /*
1311 * Inform the allocator of the fact that we will
1312 * just repeat this allocation if it fails, to allow
1313 * the allocator to do whatever it needs to attempt to
1314 * free memory.
1315 */
1316 spin_unlock_irq(cfqd->queue->queue_lock);
1317 new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
1318 spin_lock_irq(cfqd->queue->queue_lock);
1319 goto retry;
1320 } else {
1321 cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
1322 if (!cfqq)
1323 goto out;
1324 }
1325
1326 memset(cfqq, 0, sizeof(*cfqq));
1327
1328 INIT_HLIST_NODE(&cfqq->cfq_hash);
1329 INIT_LIST_HEAD(&cfqq->cfq_list);
1330 INIT_LIST_HEAD(&cfqq->fifo);
1331
1332 cfqq->key = key;
1333 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1334 atomic_set(&cfqq->ref, 0);
1335 cfqq->cfqd = cfqd;
1336 /*
1337 * set ->slice_left to allow preemption for a new process
1338 */
1339 cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1340 cfq_mark_cfqq_idle_window(cfqq);
1341 cfq_mark_cfqq_prio_changed(cfqq);
1342 cfq_mark_cfqq_queue_new(cfqq);
1343 cfq_init_prio_data(cfqq);
1344 }
1345
1346 if (new_cfqq)
1347 kmem_cache_free(cfq_pool, new_cfqq);
1348
1349 atomic_inc(&cfqq->ref);
1350 out:
1351 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1352 return cfqq;
1353 }
1354
1355 static void
1356 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1357 {
1358 WARN_ON(!list_empty(&cic->queue_list));
1359 rb_erase(&cic->rb_node, &ioc->cic_root);
1360 kmem_cache_free(cfq_ioc_pool, cic);
1361 elv_ioc_count_dec(ioc_count);
1362 }
1363
1364 static struct cfq_io_context *
1365 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1366 {
1367 struct rb_node *n;
1368 struct cfq_io_context *cic;
1369 void *k, *key = cfqd;
1370
1371 restart:
1372 n = ioc->cic_root.rb_node;
1373 while (n) {
1374 cic = rb_entry(n, struct cfq_io_context, rb_node);
1375 /* ->key must be copied to avoid race with cfq_exit_queue() */
1376 k = cic->key;
1377 if (unlikely(!k)) {
1378 cfq_drop_dead_cic(ioc, cic);
1379 goto restart;
1380 }
1381
1382 if (key < k)
1383 n = n->rb_left;
1384 else if (key > k)
1385 n = n->rb_right;
1386 else
1387 return cic;
1388 }
1389
1390 return NULL;
1391 }
1392
1393 static inline void
1394 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1395 struct cfq_io_context *cic)
1396 {
1397 struct rb_node **p;
1398 struct rb_node *parent;
1399 struct cfq_io_context *__cic;
1400 unsigned long flags;
1401 void *k;
1402
1403 cic->ioc = ioc;
1404 cic->key = cfqd;
1405
1406 restart:
1407 parent = NULL;
1408 p = &ioc->cic_root.rb_node;
1409 while (*p) {
1410 parent = *p;
1411 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1412 /* ->key must be copied to avoid race with cfq_exit_queue() */
1413 k = __cic->key;
1414 if (unlikely(!k)) {
1415 cfq_drop_dead_cic(ioc, __cic);
1416 goto restart;
1417 }
1418
1419 if (cic->key < k)
1420 p = &(*p)->rb_left;
1421 else if (cic->key > k)
1422 p = &(*p)->rb_right;
1423 else
1424 BUG();
1425 }
1426
1427 rb_link_node(&cic->rb_node, parent, p);
1428 rb_insert_color(&cic->rb_node, &ioc->cic_root);
1429
1430 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1431 list_add(&cic->queue_list, &cfqd->cic_list);
1432 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1433 }
1434
1435 /*
1436 * Setup general io context and cfq io context. There can be several cfq
1437 * io contexts per general io context, if this process is doing io to more
1438 * than one device managed by cfq.
1439 */
1440 static struct cfq_io_context *
1441 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1442 {
1443 struct io_context *ioc = NULL;
1444 struct cfq_io_context *cic;
1445
1446 might_sleep_if(gfp_mask & __GFP_WAIT);
1447
1448 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1449 if (!ioc)
1450 return NULL;
1451
1452 cic = cfq_cic_rb_lookup(cfqd, ioc);
1453 if (cic)
1454 goto out;
1455
1456 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1457 if (cic == NULL)
1458 goto err;
1459
1460 cfq_cic_link(cfqd, ioc, cic);
1461 out:
1462 smp_read_barrier_depends();
1463 if (unlikely(ioc->ioprio_changed))
1464 cfq_ioc_set_ioprio(ioc);
1465
1466 return cic;
1467 err:
1468 put_io_context(ioc);
1469 return NULL;
1470 }
1471
1472 static void
1473 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1474 {
1475 unsigned long elapsed = jiffies - cic->last_end_request;
1476 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1477
1478 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1479 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1480 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1481 }
1482
1483 static void
1484 cfq_update_io_seektime(struct cfq_io_context *cic, struct request *rq)
1485 {
1486 sector_t sdist;
1487 u64 total;
1488
1489 if (cic->last_request_pos < rq->sector)
1490 sdist = rq->sector - cic->last_request_pos;
1491 else
1492 sdist = cic->last_request_pos - rq->sector;
1493
1494 /*
1495 * Don't allow the seek distance to get too large from the
1496 * odd fragment, pagein, etc
1497 */
1498 if (cic->seek_samples <= 60) /* second&third seek */
1499 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1500 else
1501 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1502
1503 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1504 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1505 total = cic->seek_total + (cic->seek_samples/2);
1506 do_div(total, cic->seek_samples);
1507 cic->seek_mean = (sector_t)total;
1508 }
1509
1510 /*
1511 * Disable idle window if the process thinks too long or seeks so much that
1512 * it doesn't matter
1513 */
1514 static void
1515 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1516 struct cfq_io_context *cic)
1517 {
1518 int enable_idle = cfq_cfqq_idle_window(cfqq);
1519
1520 if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1521 (cfqd->hw_tag && CIC_SEEKY(cic)))
1522 enable_idle = 0;
1523 else if (sample_valid(cic->ttime_samples)) {
1524 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1525 enable_idle = 0;
1526 else
1527 enable_idle = 1;
1528 }
1529
1530 if (enable_idle)
1531 cfq_mark_cfqq_idle_window(cfqq);
1532 else
1533 cfq_clear_cfqq_idle_window(cfqq);
1534 }
1535
1536
1537 /*
1538 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1539 * no or if we aren't sure, a 1 will cause a preempt.
1540 */
1541 static int
1542 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1543 struct request *rq)
1544 {
1545 struct cfq_queue *cfqq = cfqd->active_queue;
1546
1547 if (cfq_class_idle(new_cfqq))
1548 return 0;
1549
1550 if (!cfqq)
1551 return 0;
1552
1553 if (cfq_class_idle(cfqq))
1554 return 1;
1555 if (!cfq_cfqq_wait_request(new_cfqq))
1556 return 0;
1557 /*
1558 * if it doesn't have slice left, forget it
1559 */
1560 if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1561 return 0;
1562 /*
1563 * if the new request is sync, but the currently running queue is
1564 * not, let the sync request have priority.
1565 */
1566 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1567 return 1;
1568 /*
1569 * So both queues are sync. Let the new request get disk time if
1570 * it's a metadata request and the current queue is doing regular IO.
1571 */
1572 if (rq_is_meta(rq) && !cfqq->meta_pending)
1573 return 1;
1574
1575 return 0;
1576 }
1577
1578 /*
1579 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1580 * let it have half of its nominal slice.
1581 */
1582 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1583 {
1584 cfq_slice_expired(cfqd, 1);
1585
1586 if (!cfqq->slice_left)
1587 cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1588
1589 /*
1590 * Put the new queue at the front of the of the current list,
1591 * so we know that it will be selected next.
1592 */
1593 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1594 list_move(&cfqq->cfq_list, &cfqd->cur_rr);
1595
1596 cfqq->slice_end = cfqq->slice_left + jiffies;
1597 }
1598
1599 /*
1600 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1601 * something we should do about it
1602 */
1603 static void
1604 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1605 struct request *rq)
1606 {
1607 struct cfq_io_context *cic = RQ_CIC(rq);
1608
1609 if (rq_is_meta(rq))
1610 cfqq->meta_pending++;
1611
1612 /*
1613 * check if this request is a better next-serve candidate)) {
1614 */
1615 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
1616 BUG_ON(!cfqq->next_rq);
1617
1618 /*
1619 * we never wait for an async request and we don't allow preemption
1620 * of an async request. so just return early
1621 */
1622 if (!rq_is_sync(rq)) {
1623 /*
1624 * sync process issued an async request, if it's waiting
1625 * then expire it and kick rq handling.
1626 */
1627 if (cic == cfqd->active_cic &&
1628 del_timer(&cfqd->idle_slice_timer)) {
1629 cfq_slice_expired(cfqd, 0);
1630 blk_start_queueing(cfqd->queue);
1631 }
1632 return;
1633 }
1634
1635 cfq_update_io_thinktime(cfqd, cic);
1636 cfq_update_io_seektime(cic, rq);
1637 cfq_update_idle_window(cfqd, cfqq, cic);
1638
1639 cic->last_request_pos = rq->sector + rq->nr_sectors;
1640
1641 if (cfqq == cfqd->active_queue) {
1642 /*
1643 * if we are waiting for a request for this queue, let it rip
1644 * immediately and flag that we must not expire this queue
1645 * just now
1646 */
1647 if (cfq_cfqq_wait_request(cfqq)) {
1648 cfq_mark_cfqq_must_dispatch(cfqq);
1649 del_timer(&cfqd->idle_slice_timer);
1650 blk_start_queueing(cfqd->queue);
1651 }
1652 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1653 /*
1654 * not the active queue - expire current slice if it is
1655 * idle and has expired it's mean thinktime or this new queue
1656 * has some old slice time left and is of higher priority
1657 */
1658 cfq_preempt_queue(cfqd, cfqq);
1659 cfq_mark_cfqq_must_dispatch(cfqq);
1660 blk_start_queueing(cfqd->queue);
1661 }
1662 }
1663
1664 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1665 {
1666 struct cfq_data *cfqd = q->elevator->elevator_data;
1667 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1668
1669 cfq_init_prio_data(cfqq);
1670
1671 cfq_add_rq_rb(rq);
1672
1673 list_add_tail(&rq->queuelist, &cfqq->fifo);
1674
1675 cfq_rq_enqueued(cfqd, cfqq, rq);
1676 }
1677
1678 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1679 {
1680 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1681 struct cfq_data *cfqd = cfqq->cfqd;
1682 const int sync = rq_is_sync(rq);
1683 unsigned long now;
1684
1685 now = jiffies;
1686
1687 WARN_ON(!cfqd->rq_in_driver);
1688 WARN_ON(!cfqq->on_dispatch[sync]);
1689 cfqd->rq_in_driver--;
1690 cfqq->on_dispatch[sync]--;
1691
1692 if (!cfq_class_idle(cfqq))
1693 cfqd->last_end_request = now;
1694
1695 cfq_resort_rr_list(cfqq, 0);
1696
1697 if (sync)
1698 RQ_CIC(rq)->last_end_request = now;
1699
1700 /*
1701 * If this is the active queue, check if it needs to be expired,
1702 * or if we want to idle in case it has no pending requests.
1703 */
1704 if (cfqd->active_queue == cfqq) {
1705 if (time_after(now, cfqq->slice_end))
1706 cfq_slice_expired(cfqd, 0);
1707 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1708 if (!cfq_arm_slice_timer(cfqd, cfqq))
1709 cfq_schedule_dispatch(cfqd);
1710 }
1711 }
1712 }
1713
1714 /*
1715 * we temporarily boost lower priority queues if they are holding fs exclusive
1716 * resources. they are boosted to normal prio (CLASS_BE/4)
1717 */
1718 static void cfq_prio_boost(struct cfq_queue *cfqq)
1719 {
1720 const int ioprio_class = cfqq->ioprio_class;
1721 const int ioprio = cfqq->ioprio;
1722
1723 if (has_fs_excl()) {
1724 /*
1725 * boost idle prio on transactions that would lock out other
1726 * users of the filesystem
1727 */
1728 if (cfq_class_idle(cfqq))
1729 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1730 if (cfqq->ioprio > IOPRIO_NORM)
1731 cfqq->ioprio = IOPRIO_NORM;
1732 } else {
1733 /*
1734 * check if we need to unboost the queue
1735 */
1736 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1737 cfqq->ioprio_class = cfqq->org_ioprio_class;
1738 if (cfqq->ioprio != cfqq->org_ioprio)
1739 cfqq->ioprio = cfqq->org_ioprio;
1740 }
1741
1742 /*
1743 * refile between round-robin lists if we moved the priority class
1744 */
1745 if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio))
1746 cfq_resort_rr_list(cfqq, 0);
1747 }
1748
1749 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1750 {
1751 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1752 !cfq_cfqq_must_alloc_slice(cfqq)) {
1753 cfq_mark_cfqq_must_alloc_slice(cfqq);
1754 return ELV_MQUEUE_MUST;
1755 }
1756
1757 return ELV_MQUEUE_MAY;
1758 }
1759
1760 static int cfq_may_queue(request_queue_t *q, int rw)
1761 {
1762 struct cfq_data *cfqd = q->elevator->elevator_data;
1763 struct task_struct *tsk = current;
1764 struct cfq_queue *cfqq;
1765 unsigned int key;
1766
1767 key = cfq_queue_pid(tsk, rw, rw & REQ_RW_SYNC);
1768
1769 /*
1770 * don't force setup of a queue from here, as a call to may_queue
1771 * does not necessarily imply that a request actually will be queued.
1772 * so just lookup a possibly existing queue, or return 'may queue'
1773 * if that fails
1774 */
1775 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
1776 if (cfqq) {
1777 cfq_init_prio_data(cfqq);
1778 cfq_prio_boost(cfqq);
1779
1780 return __cfq_may_queue(cfqq);
1781 }
1782
1783 return ELV_MQUEUE_MAY;
1784 }
1785
1786 /*
1787 * queue lock held here
1788 */
1789 static void cfq_put_request(struct request *rq)
1790 {
1791 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1792
1793 if (cfqq) {
1794 const int rw = rq_data_dir(rq);
1795
1796 BUG_ON(!cfqq->allocated[rw]);
1797 cfqq->allocated[rw]--;
1798
1799 put_io_context(RQ_CIC(rq)->ioc);
1800
1801 rq->elevator_private = NULL;
1802 rq->elevator_private2 = NULL;
1803
1804 cfq_put_queue(cfqq);
1805 }
1806 }
1807
1808 /*
1809 * Allocate cfq data structures associated with this request.
1810 */
1811 static int
1812 cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1813 {
1814 struct cfq_data *cfqd = q->elevator->elevator_data;
1815 struct task_struct *tsk = current;
1816 struct cfq_io_context *cic;
1817 const int rw = rq_data_dir(rq);
1818 const int is_sync = rq_is_sync(rq);
1819 pid_t key = cfq_queue_pid(tsk, rw, is_sync);
1820 struct cfq_queue *cfqq;
1821 unsigned long flags;
1822
1823 might_sleep_if(gfp_mask & __GFP_WAIT);
1824
1825 cic = cfq_get_io_context(cfqd, gfp_mask);
1826
1827 spin_lock_irqsave(q->queue_lock, flags);
1828
1829 if (!cic)
1830 goto queue_fail;
1831
1832 if (!cic->cfqq[is_sync]) {
1833 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
1834 if (!cfqq)
1835 goto queue_fail;
1836
1837 cic->cfqq[is_sync] = cfqq;
1838 } else
1839 cfqq = cic->cfqq[is_sync];
1840
1841 cfqq->allocated[rw]++;
1842 cfq_clear_cfqq_must_alloc(cfqq);
1843 atomic_inc(&cfqq->ref);
1844
1845 spin_unlock_irqrestore(q->queue_lock, flags);
1846
1847 rq->elevator_private = cic;
1848 rq->elevator_private2 = cfqq;
1849 return 0;
1850
1851 queue_fail:
1852 if (cic)
1853 put_io_context(cic->ioc);
1854
1855 cfq_schedule_dispatch(cfqd);
1856 spin_unlock_irqrestore(q->queue_lock, flags);
1857 return 1;
1858 }
1859
1860 static void cfq_kick_queue(struct work_struct *work)
1861 {
1862 struct cfq_data *cfqd =
1863 container_of(work, struct cfq_data, unplug_work);
1864 request_queue_t *q = cfqd->queue;
1865 unsigned long flags;
1866
1867 spin_lock_irqsave(q->queue_lock, flags);
1868 blk_start_queueing(q);
1869 spin_unlock_irqrestore(q->queue_lock, flags);
1870 }
1871
1872 /*
1873 * Timer running if the active_queue is currently idling inside its time slice
1874 */
1875 static void cfq_idle_slice_timer(unsigned long data)
1876 {
1877 struct cfq_data *cfqd = (struct cfq_data *) data;
1878 struct cfq_queue *cfqq;
1879 unsigned long flags;
1880
1881 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1882
1883 if ((cfqq = cfqd->active_queue) != NULL) {
1884 unsigned long now = jiffies;
1885
1886 /*
1887 * expired
1888 */
1889 if (time_after(now, cfqq->slice_end))
1890 goto expire;
1891
1892 /*
1893 * only expire and reinvoke request handler, if there are
1894 * other queues with pending requests
1895 */
1896 if (!cfqd->busy_queues)
1897 goto out_cont;
1898
1899 /*
1900 * not expired and it has a request pending, let it dispatch
1901 */
1902 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
1903 cfq_mark_cfqq_must_dispatch(cfqq);
1904 goto out_kick;
1905 }
1906 }
1907 expire:
1908 cfq_slice_expired(cfqd, 0);
1909 out_kick:
1910 cfq_schedule_dispatch(cfqd);
1911 out_cont:
1912 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1913 }
1914
1915 /*
1916 * Timer running if an idle class queue is waiting for service
1917 */
1918 static void cfq_idle_class_timer(unsigned long data)
1919 {
1920 struct cfq_data *cfqd = (struct cfq_data *) data;
1921 unsigned long flags, end;
1922
1923 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1924
1925 /*
1926 * race with a non-idle queue, reset timer
1927 */
1928 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
1929 if (!time_after_eq(jiffies, end))
1930 mod_timer(&cfqd->idle_class_timer, end);
1931 else
1932 cfq_schedule_dispatch(cfqd);
1933
1934 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1935 }
1936
1937 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
1938 {
1939 del_timer_sync(&cfqd->idle_slice_timer);
1940 del_timer_sync(&cfqd->idle_class_timer);
1941 blk_sync_queue(cfqd->queue);
1942 }
1943
1944 static void cfq_exit_queue(elevator_t *e)
1945 {
1946 struct cfq_data *cfqd = e->elevator_data;
1947 request_queue_t *q = cfqd->queue;
1948
1949 cfq_shutdown_timer_wq(cfqd);
1950
1951 spin_lock_irq(q->queue_lock);
1952
1953 if (cfqd->active_queue)
1954 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
1955
1956 while (!list_empty(&cfqd->cic_list)) {
1957 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
1958 struct cfq_io_context,
1959 queue_list);
1960
1961 __cfq_exit_single_io_context(cfqd, cic);
1962 }
1963
1964 spin_unlock_irq(q->queue_lock);
1965
1966 cfq_shutdown_timer_wq(cfqd);
1967
1968 kfree(cfqd->cfq_hash);
1969 kfree(cfqd);
1970 }
1971
1972 static void *cfq_init_queue(request_queue_t *q)
1973 {
1974 struct cfq_data *cfqd;
1975 int i;
1976
1977 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
1978 if (!cfqd)
1979 return NULL;
1980
1981 memset(cfqd, 0, sizeof(*cfqd));
1982
1983 for (i = 0; i < CFQ_PRIO_LISTS; i++)
1984 INIT_LIST_HEAD(&cfqd->rr_list[i]);
1985
1986 INIT_LIST_HEAD(&cfqd->busy_rr);
1987 INIT_LIST_HEAD(&cfqd->cur_rr);
1988 INIT_LIST_HEAD(&cfqd->idle_rr);
1989 INIT_LIST_HEAD(&cfqd->cic_list);
1990
1991 cfqd->cfq_hash = kmalloc_node(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL, q->node);
1992 if (!cfqd->cfq_hash)
1993 goto out_free;
1994
1995 for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
1996 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
1997
1998 cfqd->queue = q;
1999
2000 init_timer(&cfqd->idle_slice_timer);
2001 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2002 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2003
2004 init_timer(&cfqd->idle_class_timer);
2005 cfqd->idle_class_timer.function = cfq_idle_class_timer;
2006 cfqd->idle_class_timer.data = (unsigned long) cfqd;
2007
2008 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2009
2010 cfqd->cfq_quantum = cfq_quantum;
2011 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2012 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2013 cfqd->cfq_back_max = cfq_back_max;
2014 cfqd->cfq_back_penalty = cfq_back_penalty;
2015 cfqd->cfq_slice[0] = cfq_slice_async;
2016 cfqd->cfq_slice[1] = cfq_slice_sync;
2017 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2018 cfqd->cfq_slice_idle = cfq_slice_idle;
2019
2020 return cfqd;
2021 out_free:
2022 kfree(cfqd);
2023 return NULL;
2024 }
2025
2026 static void cfq_slab_kill(void)
2027 {
2028 if (cfq_pool)
2029 kmem_cache_destroy(cfq_pool);
2030 if (cfq_ioc_pool)
2031 kmem_cache_destroy(cfq_ioc_pool);
2032 }
2033
2034 static int __init cfq_slab_setup(void)
2035 {
2036 cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2037 NULL, NULL);
2038 if (!cfq_pool)
2039 goto fail;
2040
2041 cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2042 sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2043 if (!cfq_ioc_pool)
2044 goto fail;
2045
2046 return 0;
2047 fail:
2048 cfq_slab_kill();
2049 return -ENOMEM;
2050 }
2051
2052 /*
2053 * sysfs parts below -->
2054 */
2055
2056 static ssize_t
2057 cfq_var_show(unsigned int var, char *page)
2058 {
2059 return sprintf(page, "%d\n", var);
2060 }
2061
2062 static ssize_t
2063 cfq_var_store(unsigned int *var, const char *page, size_t count)
2064 {
2065 char *p = (char *) page;
2066
2067 *var = simple_strtoul(p, &p, 10);
2068 return count;
2069 }
2070
2071 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2072 static ssize_t __FUNC(elevator_t *e, char *page) \
2073 { \
2074 struct cfq_data *cfqd = e->elevator_data; \
2075 unsigned int __data = __VAR; \
2076 if (__CONV) \
2077 __data = jiffies_to_msecs(__data); \
2078 return cfq_var_show(__data, (page)); \
2079 }
2080 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2081 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2082 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2083 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2084 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2085 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2086 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2087 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2088 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2089 #undef SHOW_FUNCTION
2090
2091 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2092 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2093 { \
2094 struct cfq_data *cfqd = e->elevator_data; \
2095 unsigned int __data; \
2096 int ret = cfq_var_store(&__data, (page), count); \
2097 if (__data < (MIN)) \
2098 __data = (MIN); \
2099 else if (__data > (MAX)) \
2100 __data = (MAX); \
2101 if (__CONV) \
2102 *(__PTR) = msecs_to_jiffies(__data); \
2103 else \
2104 *(__PTR) = __data; \
2105 return ret; \
2106 }
2107 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2108 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2109 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2110 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2111 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2112 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2113 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2114 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2115 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2116 #undef STORE_FUNCTION
2117
2118 #define CFQ_ATTR(name) \
2119 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2120
2121 static struct elv_fs_entry cfq_attrs[] = {
2122 CFQ_ATTR(quantum),
2123 CFQ_ATTR(fifo_expire_sync),
2124 CFQ_ATTR(fifo_expire_async),
2125 CFQ_ATTR(back_seek_max),
2126 CFQ_ATTR(back_seek_penalty),
2127 CFQ_ATTR(slice_sync),
2128 CFQ_ATTR(slice_async),
2129 CFQ_ATTR(slice_async_rq),
2130 CFQ_ATTR(slice_idle),
2131 __ATTR_NULL
2132 };
2133
2134 static struct elevator_type iosched_cfq = {
2135 .ops = {
2136 .elevator_merge_fn = cfq_merge,
2137 .elevator_merged_fn = cfq_merged_request,
2138 .elevator_merge_req_fn = cfq_merged_requests,
2139 .elevator_allow_merge_fn = cfq_allow_merge,
2140 .elevator_dispatch_fn = cfq_dispatch_requests,
2141 .elevator_add_req_fn = cfq_insert_request,
2142 .elevator_activate_req_fn = cfq_activate_request,
2143 .elevator_deactivate_req_fn = cfq_deactivate_request,
2144 .elevator_queue_empty_fn = cfq_queue_empty,
2145 .elevator_completed_req_fn = cfq_completed_request,
2146 .elevator_former_req_fn = elv_rb_former_request,
2147 .elevator_latter_req_fn = elv_rb_latter_request,
2148 .elevator_set_req_fn = cfq_set_request,
2149 .elevator_put_req_fn = cfq_put_request,
2150 .elevator_may_queue_fn = cfq_may_queue,
2151 .elevator_init_fn = cfq_init_queue,
2152 .elevator_exit_fn = cfq_exit_queue,
2153 .trim = cfq_free_io_context,
2154 },
2155 .elevator_attrs = cfq_attrs,
2156 .elevator_name = "cfq",
2157 .elevator_owner = THIS_MODULE,
2158 };
2159
2160 static int __init cfq_init(void)
2161 {
2162 int ret;
2163
2164 /*
2165 * could be 0 on HZ < 1000 setups
2166 */
2167 if (!cfq_slice_async)
2168 cfq_slice_async = 1;
2169 if (!cfq_slice_idle)
2170 cfq_slice_idle = 1;
2171
2172 if (cfq_slab_setup())
2173 return -ENOMEM;
2174
2175 ret = elv_register(&iosched_cfq);
2176 if (ret)
2177 cfq_slab_kill();
2178
2179 return ret;
2180 }
2181
2182 static void __exit cfq_exit(void)
2183 {
2184 DECLARE_COMPLETION_ONSTACK(all_gone);
2185 elv_unregister(&iosched_cfq);
2186 ioc_gone = &all_gone;
2187 /* ioc_gone's update must be visible before reading ioc_count */
2188 smp_wmb();
2189 if (elv_ioc_count_read(ioc_count))
2190 wait_for_completion(ioc_gone);
2191 synchronize_rcu();
2192 cfq_slab_kill();
2193 }
2194
2195 module_init(cfq_init);
2196 module_exit(cfq_exit);
2197
2198 MODULE_AUTHOR("Jens Axboe");
2199 MODULE_LICENSE("GPL");
2200 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");