]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/cfq-iosched.c
block, cfq: move cfqd->icq_list to request_queue and add request->elv.icq
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk.h"
18 #include "cfq.h"
19
20 /*
21 * tunables
22 */
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const int cfq_slice_sync = HZ / 10;
31 static int cfq_slice_async = HZ / 25;
32 static const int cfq_slice_async_rq = 2;
33 static int cfq_slice_idle = HZ / 125;
34 static int cfq_group_idle = HZ / 125;
35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
37
38 /*
39 * offset from end of service tree
40 */
41 #define CFQ_IDLE_DELAY (HZ / 5)
42
43 /*
44 * below this threshold, we consider thinktime immediate
45 */
46 #define CFQ_MIN_TT (2)
47
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
51
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56
57 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
60
61 static struct kmem_cache *cfq_pool;
62 static struct kmem_cache *cfq_icq_pool;
63
64 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
65 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
66 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67
68 #define sample_valid(samples) ((samples) > 80)
69 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
70
71 struct cfq_ttime {
72 unsigned long last_end_request;
73
74 unsigned long ttime_total;
75 unsigned long ttime_samples;
76 unsigned long ttime_mean;
77 };
78
79 /*
80 * Most of our rbtree usage is for sorting with min extraction, so
81 * if we cache the leftmost node we don't have to walk down the tree
82 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
83 * move this into the elevator for the rq sorting as well.
84 */
85 struct cfq_rb_root {
86 struct rb_root rb;
87 struct rb_node *left;
88 unsigned count;
89 unsigned total_weight;
90 u64 min_vdisktime;
91 struct cfq_ttime ttime;
92 };
93 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
94 .ttime = {.last_end_request = jiffies,},}
95
96 /*
97 * Per process-grouping structure
98 */
99 struct cfq_queue {
100 /* reference count */
101 int ref;
102 /* various state flags, see below */
103 unsigned int flags;
104 /* parent cfq_data */
105 struct cfq_data *cfqd;
106 /* service_tree member */
107 struct rb_node rb_node;
108 /* service_tree key */
109 unsigned long rb_key;
110 /* prio tree member */
111 struct rb_node p_node;
112 /* prio tree root we belong to, if any */
113 struct rb_root *p_root;
114 /* sorted list of pending requests */
115 struct rb_root sort_list;
116 /* if fifo isn't expired, next request to serve */
117 struct request *next_rq;
118 /* requests queued in sort_list */
119 int queued[2];
120 /* currently allocated requests */
121 int allocated[2];
122 /* fifo list of requests in sort_list */
123 struct list_head fifo;
124
125 /* time when queue got scheduled in to dispatch first request. */
126 unsigned long dispatch_start;
127 unsigned int allocated_slice;
128 unsigned int slice_dispatch;
129 /* time when first request from queue completed and slice started. */
130 unsigned long slice_start;
131 unsigned long slice_end;
132 long slice_resid;
133
134 /* pending priority requests */
135 int prio_pending;
136 /* number of requests that are on the dispatch list or inside driver */
137 int dispatched;
138
139 /* io prio of this group */
140 unsigned short ioprio, org_ioprio;
141 unsigned short ioprio_class;
142
143 pid_t pid;
144
145 u32 seek_history;
146 sector_t last_request_pos;
147
148 struct cfq_rb_root *service_tree;
149 struct cfq_queue *new_cfqq;
150 struct cfq_group *cfqg;
151 /* Number of sectors dispatched from queue in single dispatch round */
152 unsigned long nr_sectors;
153 };
154
155 /*
156 * First index in the service_trees.
157 * IDLE is handled separately, so it has negative index
158 */
159 enum wl_prio_t {
160 BE_WORKLOAD = 0,
161 RT_WORKLOAD = 1,
162 IDLE_WORKLOAD = 2,
163 CFQ_PRIO_NR,
164 };
165
166 /*
167 * Second index in the service_trees.
168 */
169 enum wl_type_t {
170 ASYNC_WORKLOAD = 0,
171 SYNC_NOIDLE_WORKLOAD = 1,
172 SYNC_WORKLOAD = 2
173 };
174
175 /* This is per cgroup per device grouping structure */
176 struct cfq_group {
177 /* group service_tree member */
178 struct rb_node rb_node;
179
180 /* group service_tree key */
181 u64 vdisktime;
182 unsigned int weight;
183 unsigned int new_weight;
184 bool needs_update;
185
186 /* number of cfqq currently on this group */
187 int nr_cfqq;
188
189 /*
190 * Per group busy queues average. Useful for workload slice calc. We
191 * create the array for each prio class but at run time it is used
192 * only for RT and BE class and slot for IDLE class remains unused.
193 * This is primarily done to avoid confusion and a gcc warning.
194 */
195 unsigned int busy_queues_avg[CFQ_PRIO_NR];
196 /*
197 * rr lists of queues with requests. We maintain service trees for
198 * RT and BE classes. These trees are subdivided in subclasses
199 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
200 * class there is no subclassification and all the cfq queues go on
201 * a single tree service_tree_idle.
202 * Counts are embedded in the cfq_rb_root
203 */
204 struct cfq_rb_root service_trees[2][3];
205 struct cfq_rb_root service_tree_idle;
206
207 unsigned long saved_workload_slice;
208 enum wl_type_t saved_workload;
209 enum wl_prio_t saved_serving_prio;
210 struct blkio_group blkg;
211 #ifdef CONFIG_CFQ_GROUP_IOSCHED
212 struct hlist_node cfqd_node;
213 int ref;
214 #endif
215 /* number of requests that are on the dispatch list or inside driver */
216 int dispatched;
217 struct cfq_ttime ttime;
218 };
219
220 struct cfq_io_cq {
221 struct io_cq icq; /* must be the first member */
222 struct cfq_queue *cfqq[2];
223 struct cfq_ttime ttime;
224 };
225
226 /*
227 * Per block device queue structure
228 */
229 struct cfq_data {
230 struct request_queue *queue;
231 /* Root service tree for cfq_groups */
232 struct cfq_rb_root grp_service_tree;
233 struct cfq_group root_group;
234
235 /*
236 * The priority currently being served
237 */
238 enum wl_prio_t serving_prio;
239 enum wl_type_t serving_type;
240 unsigned long workload_expires;
241 struct cfq_group *serving_group;
242
243 /*
244 * Each priority tree is sorted by next_request position. These
245 * trees are used when determining if two or more queues are
246 * interleaving requests (see cfq_close_cooperator).
247 */
248 struct rb_root prio_trees[CFQ_PRIO_LISTS];
249
250 unsigned int busy_queues;
251 unsigned int busy_sync_queues;
252
253 int rq_in_driver;
254 int rq_in_flight[2];
255
256 /*
257 * queue-depth detection
258 */
259 int rq_queued;
260 int hw_tag;
261 /*
262 * hw_tag can be
263 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
264 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
265 * 0 => no NCQ
266 */
267 int hw_tag_est_depth;
268 unsigned int hw_tag_samples;
269
270 /*
271 * idle window management
272 */
273 struct timer_list idle_slice_timer;
274 struct work_struct unplug_work;
275
276 struct cfq_queue *active_queue;
277 struct cfq_io_cq *active_cic;
278
279 /*
280 * async queue for each priority case
281 */
282 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
283 struct cfq_queue *async_idle_cfqq;
284
285 sector_t last_position;
286
287 /*
288 * tunables, see top of file
289 */
290 unsigned int cfq_quantum;
291 unsigned int cfq_fifo_expire[2];
292 unsigned int cfq_back_penalty;
293 unsigned int cfq_back_max;
294 unsigned int cfq_slice[2];
295 unsigned int cfq_slice_async_rq;
296 unsigned int cfq_slice_idle;
297 unsigned int cfq_group_idle;
298 unsigned int cfq_latency;
299
300 /*
301 * Fallback dummy cfqq for extreme OOM conditions
302 */
303 struct cfq_queue oom_cfqq;
304
305 unsigned long last_delayed_sync;
306
307 /* List of cfq groups being managed on this device*/
308 struct hlist_head cfqg_list;
309
310 /* Number of groups which are on blkcg->blkg_list */
311 unsigned int nr_blkcg_linked_grps;
312 };
313
314 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
315
316 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
317 enum wl_prio_t prio,
318 enum wl_type_t type)
319 {
320 if (!cfqg)
321 return NULL;
322
323 if (prio == IDLE_WORKLOAD)
324 return &cfqg->service_tree_idle;
325
326 return &cfqg->service_trees[prio][type];
327 }
328
329 enum cfqq_state_flags {
330 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
331 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
332 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
333 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
334 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
335 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
336 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
337 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
338 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
339 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
340 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
341 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
342 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
343 };
344
345 #define CFQ_CFQQ_FNS(name) \
346 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
347 { \
348 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
349 } \
350 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
351 { \
352 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
353 } \
354 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
355 { \
356 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
357 }
358
359 CFQ_CFQQ_FNS(on_rr);
360 CFQ_CFQQ_FNS(wait_request);
361 CFQ_CFQQ_FNS(must_dispatch);
362 CFQ_CFQQ_FNS(must_alloc_slice);
363 CFQ_CFQQ_FNS(fifo_expire);
364 CFQ_CFQQ_FNS(idle_window);
365 CFQ_CFQQ_FNS(prio_changed);
366 CFQ_CFQQ_FNS(slice_new);
367 CFQ_CFQQ_FNS(sync);
368 CFQ_CFQQ_FNS(coop);
369 CFQ_CFQQ_FNS(split_coop);
370 CFQ_CFQQ_FNS(deep);
371 CFQ_CFQQ_FNS(wait_busy);
372 #undef CFQ_CFQQ_FNS
373
374 #ifdef CONFIG_CFQ_GROUP_IOSCHED
375 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
376 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
377 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
378 blkg_path(&(cfqq)->cfqg->blkg), ##args)
379
380 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
381 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
382 blkg_path(&(cfqg)->blkg), ##args) \
383
384 #else
385 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
386 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
387 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
388 #endif
389 #define cfq_log(cfqd, fmt, args...) \
390 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
391
392 /* Traverses through cfq group service trees */
393 #define for_each_cfqg_st(cfqg, i, j, st) \
394 for (i = 0; i <= IDLE_WORKLOAD; i++) \
395 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
396 : &cfqg->service_tree_idle; \
397 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
398 (i == IDLE_WORKLOAD && j == 0); \
399 j++, st = i < IDLE_WORKLOAD ? \
400 &cfqg->service_trees[i][j]: NULL) \
401
402 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
403 struct cfq_ttime *ttime, bool group_idle)
404 {
405 unsigned long slice;
406 if (!sample_valid(ttime->ttime_samples))
407 return false;
408 if (group_idle)
409 slice = cfqd->cfq_group_idle;
410 else
411 slice = cfqd->cfq_slice_idle;
412 return ttime->ttime_mean > slice;
413 }
414
415 static inline bool iops_mode(struct cfq_data *cfqd)
416 {
417 /*
418 * If we are not idling on queues and it is a NCQ drive, parallel
419 * execution of requests is on and measuring time is not possible
420 * in most of the cases until and unless we drive shallower queue
421 * depths and that becomes a performance bottleneck. In such cases
422 * switch to start providing fairness in terms of number of IOs.
423 */
424 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
425 return true;
426 else
427 return false;
428 }
429
430 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
431 {
432 if (cfq_class_idle(cfqq))
433 return IDLE_WORKLOAD;
434 if (cfq_class_rt(cfqq))
435 return RT_WORKLOAD;
436 return BE_WORKLOAD;
437 }
438
439
440 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
441 {
442 if (!cfq_cfqq_sync(cfqq))
443 return ASYNC_WORKLOAD;
444 if (!cfq_cfqq_idle_window(cfqq))
445 return SYNC_NOIDLE_WORKLOAD;
446 return SYNC_WORKLOAD;
447 }
448
449 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
450 struct cfq_data *cfqd,
451 struct cfq_group *cfqg)
452 {
453 if (wl == IDLE_WORKLOAD)
454 return cfqg->service_tree_idle.count;
455
456 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
457 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
458 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
459 }
460
461 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
462 struct cfq_group *cfqg)
463 {
464 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
465 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
466 }
467
468 static void cfq_dispatch_insert(struct request_queue *, struct request *);
469 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
470 struct io_context *, gfp_t);
471 static struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *, struct io_context *);
472
473 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
474 {
475 /* cic->icq is the first member, %NULL will convert to %NULL */
476 return container_of(icq, struct cfq_io_cq, icq);
477 }
478
479 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
480 {
481 return cic->cfqq[is_sync];
482 }
483
484 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
485 bool is_sync)
486 {
487 cic->cfqq[is_sync] = cfqq;
488 }
489
490 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
491 {
492 return cic->icq.q->elevator->elevator_data;
493 }
494
495 /*
496 * We regard a request as SYNC, if it's either a read or has the SYNC bit
497 * set (in which case it could also be direct WRITE).
498 */
499 static inline bool cfq_bio_sync(struct bio *bio)
500 {
501 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
502 }
503
504 /*
505 * scheduler run of queue, if there are requests pending and no one in the
506 * driver that will restart queueing
507 */
508 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
509 {
510 if (cfqd->busy_queues) {
511 cfq_log(cfqd, "schedule dispatch");
512 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
513 }
514 }
515
516 /*
517 * Scale schedule slice based on io priority. Use the sync time slice only
518 * if a queue is marked sync and has sync io queued. A sync queue with async
519 * io only, should not get full sync slice length.
520 */
521 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
522 unsigned short prio)
523 {
524 const int base_slice = cfqd->cfq_slice[sync];
525
526 WARN_ON(prio >= IOPRIO_BE_NR);
527
528 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
529 }
530
531 static inline int
532 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
533 {
534 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
535 }
536
537 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
538 {
539 u64 d = delta << CFQ_SERVICE_SHIFT;
540
541 d = d * BLKIO_WEIGHT_DEFAULT;
542 do_div(d, cfqg->weight);
543 return d;
544 }
545
546 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
547 {
548 s64 delta = (s64)(vdisktime - min_vdisktime);
549 if (delta > 0)
550 min_vdisktime = vdisktime;
551
552 return min_vdisktime;
553 }
554
555 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
556 {
557 s64 delta = (s64)(vdisktime - min_vdisktime);
558 if (delta < 0)
559 min_vdisktime = vdisktime;
560
561 return min_vdisktime;
562 }
563
564 static void update_min_vdisktime(struct cfq_rb_root *st)
565 {
566 struct cfq_group *cfqg;
567
568 if (st->left) {
569 cfqg = rb_entry_cfqg(st->left);
570 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
571 cfqg->vdisktime);
572 }
573 }
574
575 /*
576 * get averaged number of queues of RT/BE priority.
577 * average is updated, with a formula that gives more weight to higher numbers,
578 * to quickly follows sudden increases and decrease slowly
579 */
580
581 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
582 struct cfq_group *cfqg, bool rt)
583 {
584 unsigned min_q, max_q;
585 unsigned mult = cfq_hist_divisor - 1;
586 unsigned round = cfq_hist_divisor / 2;
587 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
588
589 min_q = min(cfqg->busy_queues_avg[rt], busy);
590 max_q = max(cfqg->busy_queues_avg[rt], busy);
591 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
592 cfq_hist_divisor;
593 return cfqg->busy_queues_avg[rt];
594 }
595
596 static inline unsigned
597 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
598 {
599 struct cfq_rb_root *st = &cfqd->grp_service_tree;
600
601 return cfq_target_latency * cfqg->weight / st->total_weight;
602 }
603
604 static inline unsigned
605 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
606 {
607 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
608 if (cfqd->cfq_latency) {
609 /*
610 * interested queues (we consider only the ones with the same
611 * priority class in the cfq group)
612 */
613 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
614 cfq_class_rt(cfqq));
615 unsigned sync_slice = cfqd->cfq_slice[1];
616 unsigned expect_latency = sync_slice * iq;
617 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
618
619 if (expect_latency > group_slice) {
620 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
621 /* scale low_slice according to IO priority
622 * and sync vs async */
623 unsigned low_slice =
624 min(slice, base_low_slice * slice / sync_slice);
625 /* the adapted slice value is scaled to fit all iqs
626 * into the target latency */
627 slice = max(slice * group_slice / expect_latency,
628 low_slice);
629 }
630 }
631 return slice;
632 }
633
634 static inline void
635 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
636 {
637 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
638
639 cfqq->slice_start = jiffies;
640 cfqq->slice_end = jiffies + slice;
641 cfqq->allocated_slice = slice;
642 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
643 }
644
645 /*
646 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
647 * isn't valid until the first request from the dispatch is activated
648 * and the slice time set.
649 */
650 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
651 {
652 if (cfq_cfqq_slice_new(cfqq))
653 return false;
654 if (time_before(jiffies, cfqq->slice_end))
655 return false;
656
657 return true;
658 }
659
660 /*
661 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
662 * We choose the request that is closest to the head right now. Distance
663 * behind the head is penalized and only allowed to a certain extent.
664 */
665 static struct request *
666 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
667 {
668 sector_t s1, s2, d1 = 0, d2 = 0;
669 unsigned long back_max;
670 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
671 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
672 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
673
674 if (rq1 == NULL || rq1 == rq2)
675 return rq2;
676 if (rq2 == NULL)
677 return rq1;
678
679 if (rq_is_sync(rq1) != rq_is_sync(rq2))
680 return rq_is_sync(rq1) ? rq1 : rq2;
681
682 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
683 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
684
685 s1 = blk_rq_pos(rq1);
686 s2 = blk_rq_pos(rq2);
687
688 /*
689 * by definition, 1KiB is 2 sectors
690 */
691 back_max = cfqd->cfq_back_max * 2;
692
693 /*
694 * Strict one way elevator _except_ in the case where we allow
695 * short backward seeks which are biased as twice the cost of a
696 * similar forward seek.
697 */
698 if (s1 >= last)
699 d1 = s1 - last;
700 else if (s1 + back_max >= last)
701 d1 = (last - s1) * cfqd->cfq_back_penalty;
702 else
703 wrap |= CFQ_RQ1_WRAP;
704
705 if (s2 >= last)
706 d2 = s2 - last;
707 else if (s2 + back_max >= last)
708 d2 = (last - s2) * cfqd->cfq_back_penalty;
709 else
710 wrap |= CFQ_RQ2_WRAP;
711
712 /* Found required data */
713
714 /*
715 * By doing switch() on the bit mask "wrap" we avoid having to
716 * check two variables for all permutations: --> faster!
717 */
718 switch (wrap) {
719 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
720 if (d1 < d2)
721 return rq1;
722 else if (d2 < d1)
723 return rq2;
724 else {
725 if (s1 >= s2)
726 return rq1;
727 else
728 return rq2;
729 }
730
731 case CFQ_RQ2_WRAP:
732 return rq1;
733 case CFQ_RQ1_WRAP:
734 return rq2;
735 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
736 default:
737 /*
738 * Since both rqs are wrapped,
739 * start with the one that's further behind head
740 * (--> only *one* back seek required),
741 * since back seek takes more time than forward.
742 */
743 if (s1 <= s2)
744 return rq1;
745 else
746 return rq2;
747 }
748 }
749
750 /*
751 * The below is leftmost cache rbtree addon
752 */
753 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
754 {
755 /* Service tree is empty */
756 if (!root->count)
757 return NULL;
758
759 if (!root->left)
760 root->left = rb_first(&root->rb);
761
762 if (root->left)
763 return rb_entry(root->left, struct cfq_queue, rb_node);
764
765 return NULL;
766 }
767
768 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
769 {
770 if (!root->left)
771 root->left = rb_first(&root->rb);
772
773 if (root->left)
774 return rb_entry_cfqg(root->left);
775
776 return NULL;
777 }
778
779 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
780 {
781 rb_erase(n, root);
782 RB_CLEAR_NODE(n);
783 }
784
785 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
786 {
787 if (root->left == n)
788 root->left = NULL;
789 rb_erase_init(n, &root->rb);
790 --root->count;
791 }
792
793 /*
794 * would be nice to take fifo expire time into account as well
795 */
796 static struct request *
797 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
798 struct request *last)
799 {
800 struct rb_node *rbnext = rb_next(&last->rb_node);
801 struct rb_node *rbprev = rb_prev(&last->rb_node);
802 struct request *next = NULL, *prev = NULL;
803
804 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
805
806 if (rbprev)
807 prev = rb_entry_rq(rbprev);
808
809 if (rbnext)
810 next = rb_entry_rq(rbnext);
811 else {
812 rbnext = rb_first(&cfqq->sort_list);
813 if (rbnext && rbnext != &last->rb_node)
814 next = rb_entry_rq(rbnext);
815 }
816
817 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
818 }
819
820 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
821 struct cfq_queue *cfqq)
822 {
823 /*
824 * just an approximation, should be ok.
825 */
826 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
827 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
828 }
829
830 static inline s64
831 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
832 {
833 return cfqg->vdisktime - st->min_vdisktime;
834 }
835
836 static void
837 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
838 {
839 struct rb_node **node = &st->rb.rb_node;
840 struct rb_node *parent = NULL;
841 struct cfq_group *__cfqg;
842 s64 key = cfqg_key(st, cfqg);
843 int left = 1;
844
845 while (*node != NULL) {
846 parent = *node;
847 __cfqg = rb_entry_cfqg(parent);
848
849 if (key < cfqg_key(st, __cfqg))
850 node = &parent->rb_left;
851 else {
852 node = &parent->rb_right;
853 left = 0;
854 }
855 }
856
857 if (left)
858 st->left = &cfqg->rb_node;
859
860 rb_link_node(&cfqg->rb_node, parent, node);
861 rb_insert_color(&cfqg->rb_node, &st->rb);
862 }
863
864 static void
865 cfq_update_group_weight(struct cfq_group *cfqg)
866 {
867 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
868 if (cfqg->needs_update) {
869 cfqg->weight = cfqg->new_weight;
870 cfqg->needs_update = false;
871 }
872 }
873
874 static void
875 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
876 {
877 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
878
879 cfq_update_group_weight(cfqg);
880 __cfq_group_service_tree_add(st, cfqg);
881 st->total_weight += cfqg->weight;
882 }
883
884 static void
885 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
886 {
887 struct cfq_rb_root *st = &cfqd->grp_service_tree;
888 struct cfq_group *__cfqg;
889 struct rb_node *n;
890
891 cfqg->nr_cfqq++;
892 if (!RB_EMPTY_NODE(&cfqg->rb_node))
893 return;
894
895 /*
896 * Currently put the group at the end. Later implement something
897 * so that groups get lesser vtime based on their weights, so that
898 * if group does not loose all if it was not continuously backlogged.
899 */
900 n = rb_last(&st->rb);
901 if (n) {
902 __cfqg = rb_entry_cfqg(n);
903 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
904 } else
905 cfqg->vdisktime = st->min_vdisktime;
906 cfq_group_service_tree_add(st, cfqg);
907 }
908
909 static void
910 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
911 {
912 st->total_weight -= cfqg->weight;
913 if (!RB_EMPTY_NODE(&cfqg->rb_node))
914 cfq_rb_erase(&cfqg->rb_node, st);
915 }
916
917 static void
918 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
919 {
920 struct cfq_rb_root *st = &cfqd->grp_service_tree;
921
922 BUG_ON(cfqg->nr_cfqq < 1);
923 cfqg->nr_cfqq--;
924
925 /* If there are other cfq queues under this group, don't delete it */
926 if (cfqg->nr_cfqq)
927 return;
928
929 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
930 cfq_group_service_tree_del(st, cfqg);
931 cfqg->saved_workload_slice = 0;
932 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
933 }
934
935 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
936 unsigned int *unaccounted_time)
937 {
938 unsigned int slice_used;
939
940 /*
941 * Queue got expired before even a single request completed or
942 * got expired immediately after first request completion.
943 */
944 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
945 /*
946 * Also charge the seek time incurred to the group, otherwise
947 * if there are mutiple queues in the group, each can dispatch
948 * a single request on seeky media and cause lots of seek time
949 * and group will never know it.
950 */
951 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
952 1);
953 } else {
954 slice_used = jiffies - cfqq->slice_start;
955 if (slice_used > cfqq->allocated_slice) {
956 *unaccounted_time = slice_used - cfqq->allocated_slice;
957 slice_used = cfqq->allocated_slice;
958 }
959 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
960 *unaccounted_time += cfqq->slice_start -
961 cfqq->dispatch_start;
962 }
963
964 return slice_used;
965 }
966
967 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
968 struct cfq_queue *cfqq)
969 {
970 struct cfq_rb_root *st = &cfqd->grp_service_tree;
971 unsigned int used_sl, charge, unaccounted_sl = 0;
972 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
973 - cfqg->service_tree_idle.count;
974
975 BUG_ON(nr_sync < 0);
976 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
977
978 if (iops_mode(cfqd))
979 charge = cfqq->slice_dispatch;
980 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
981 charge = cfqq->allocated_slice;
982
983 /* Can't update vdisktime while group is on service tree */
984 cfq_group_service_tree_del(st, cfqg);
985 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
986 /* If a new weight was requested, update now, off tree */
987 cfq_group_service_tree_add(st, cfqg);
988
989 /* This group is being expired. Save the context */
990 if (time_after(cfqd->workload_expires, jiffies)) {
991 cfqg->saved_workload_slice = cfqd->workload_expires
992 - jiffies;
993 cfqg->saved_workload = cfqd->serving_type;
994 cfqg->saved_serving_prio = cfqd->serving_prio;
995 } else
996 cfqg->saved_workload_slice = 0;
997
998 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
999 st->min_vdisktime);
1000 cfq_log_cfqq(cfqq->cfqd, cfqq,
1001 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1002 used_sl, cfqq->slice_dispatch, charge,
1003 iops_mode(cfqd), cfqq->nr_sectors);
1004 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
1005 unaccounted_sl);
1006 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1007 }
1008
1009 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1010 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1011 {
1012 if (blkg)
1013 return container_of(blkg, struct cfq_group, blkg);
1014 return NULL;
1015 }
1016
1017 static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1018 unsigned int weight)
1019 {
1020 struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1021 cfqg->new_weight = weight;
1022 cfqg->needs_update = true;
1023 }
1024
1025 static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1026 struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
1027 {
1028 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1029 unsigned int major, minor;
1030
1031 /*
1032 * Add group onto cgroup list. It might happen that bdi->dev is
1033 * not initialized yet. Initialize this new group without major
1034 * and minor info and this info will be filled in once a new thread
1035 * comes for IO.
1036 */
1037 if (bdi->dev) {
1038 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1039 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1040 (void *)cfqd, MKDEV(major, minor));
1041 } else
1042 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1043 (void *)cfqd, 0);
1044
1045 cfqd->nr_blkcg_linked_grps++;
1046 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1047
1048 /* Add group on cfqd list */
1049 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1050 }
1051
1052 /*
1053 * Should be called from sleepable context. No request queue lock as per
1054 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1055 * from sleepable context.
1056 */
1057 static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1058 {
1059 struct cfq_group *cfqg = NULL;
1060 int i, j, ret;
1061 struct cfq_rb_root *st;
1062
1063 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1064 if (!cfqg)
1065 return NULL;
1066
1067 for_each_cfqg_st(cfqg, i, j, st)
1068 *st = CFQ_RB_ROOT;
1069 RB_CLEAR_NODE(&cfqg->rb_node);
1070
1071 cfqg->ttime.last_end_request = jiffies;
1072
1073 /*
1074 * Take the initial reference that will be released on destroy
1075 * This can be thought of a joint reference by cgroup and
1076 * elevator which will be dropped by either elevator exit
1077 * or cgroup deletion path depending on who is exiting first.
1078 */
1079 cfqg->ref = 1;
1080
1081 ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1082 if (ret) {
1083 kfree(cfqg);
1084 return NULL;
1085 }
1086
1087 return cfqg;
1088 }
1089
1090 static struct cfq_group *
1091 cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1092 {
1093 struct cfq_group *cfqg = NULL;
1094 void *key = cfqd;
1095 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1096 unsigned int major, minor;
1097
1098 /*
1099 * This is the common case when there are no blkio cgroups.
1100 * Avoid lookup in this case
1101 */
1102 if (blkcg == &blkio_root_cgroup)
1103 cfqg = &cfqd->root_group;
1104 else
1105 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1106
1107 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1108 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1109 cfqg->blkg.dev = MKDEV(major, minor);
1110 }
1111
1112 return cfqg;
1113 }
1114
1115 /*
1116 * Search for the cfq group current task belongs to. request_queue lock must
1117 * be held.
1118 */
1119 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1120 {
1121 struct blkio_cgroup *blkcg;
1122 struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1123 struct request_queue *q = cfqd->queue;
1124
1125 rcu_read_lock();
1126 blkcg = task_blkio_cgroup(current);
1127 cfqg = cfq_find_cfqg(cfqd, blkcg);
1128 if (cfqg) {
1129 rcu_read_unlock();
1130 return cfqg;
1131 }
1132
1133 /*
1134 * Need to allocate a group. Allocation of group also needs allocation
1135 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1136 * we need to drop rcu lock and queue_lock before we call alloc.
1137 *
1138 * Not taking any queue reference here and assuming that queue is
1139 * around by the time we return. CFQ queue allocation code does
1140 * the same. It might be racy though.
1141 */
1142
1143 rcu_read_unlock();
1144 spin_unlock_irq(q->queue_lock);
1145
1146 cfqg = cfq_alloc_cfqg(cfqd);
1147
1148 spin_lock_irq(q->queue_lock);
1149
1150 rcu_read_lock();
1151 blkcg = task_blkio_cgroup(current);
1152
1153 /*
1154 * If some other thread already allocated the group while we were
1155 * not holding queue lock, free up the group
1156 */
1157 __cfqg = cfq_find_cfqg(cfqd, blkcg);
1158
1159 if (__cfqg) {
1160 kfree(cfqg);
1161 rcu_read_unlock();
1162 return __cfqg;
1163 }
1164
1165 if (!cfqg)
1166 cfqg = &cfqd->root_group;
1167
1168 cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
1169 rcu_read_unlock();
1170 return cfqg;
1171 }
1172
1173 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1174 {
1175 cfqg->ref++;
1176 return cfqg;
1177 }
1178
1179 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1180 {
1181 /* Currently, all async queues are mapped to root group */
1182 if (!cfq_cfqq_sync(cfqq))
1183 cfqg = &cfqq->cfqd->root_group;
1184
1185 cfqq->cfqg = cfqg;
1186 /* cfqq reference on cfqg */
1187 cfqq->cfqg->ref++;
1188 }
1189
1190 static void cfq_put_cfqg(struct cfq_group *cfqg)
1191 {
1192 struct cfq_rb_root *st;
1193 int i, j;
1194
1195 BUG_ON(cfqg->ref <= 0);
1196 cfqg->ref--;
1197 if (cfqg->ref)
1198 return;
1199 for_each_cfqg_st(cfqg, i, j, st)
1200 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1201 free_percpu(cfqg->blkg.stats_cpu);
1202 kfree(cfqg);
1203 }
1204
1205 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1206 {
1207 /* Something wrong if we are trying to remove same group twice */
1208 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1209
1210 hlist_del_init(&cfqg->cfqd_node);
1211
1212 BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
1213 cfqd->nr_blkcg_linked_grps--;
1214
1215 /*
1216 * Put the reference taken at the time of creation so that when all
1217 * queues are gone, group can be destroyed.
1218 */
1219 cfq_put_cfqg(cfqg);
1220 }
1221
1222 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1223 {
1224 struct hlist_node *pos, *n;
1225 struct cfq_group *cfqg;
1226
1227 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1228 /*
1229 * If cgroup removal path got to blk_group first and removed
1230 * it from cgroup list, then it will take care of destroying
1231 * cfqg also.
1232 */
1233 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1234 cfq_destroy_cfqg(cfqd, cfqg);
1235 }
1236 }
1237
1238 /*
1239 * Blk cgroup controller notification saying that blkio_group object is being
1240 * delinked as associated cgroup object is going away. That also means that
1241 * no new IO will come in this group. So get rid of this group as soon as
1242 * any pending IO in the group is finished.
1243 *
1244 * This function is called under rcu_read_lock(). key is the rcu protected
1245 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1246 * read lock.
1247 *
1248 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1249 * it should not be NULL as even if elevator was exiting, cgroup deltion
1250 * path got to it first.
1251 */
1252 static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1253 {
1254 unsigned long flags;
1255 struct cfq_data *cfqd = key;
1256
1257 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1258 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1259 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1260 }
1261
1262 #else /* GROUP_IOSCHED */
1263 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1264 {
1265 return &cfqd->root_group;
1266 }
1267
1268 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1269 {
1270 return cfqg;
1271 }
1272
1273 static inline void
1274 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1275 cfqq->cfqg = cfqg;
1276 }
1277
1278 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1279 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1280
1281 #endif /* GROUP_IOSCHED */
1282
1283 /*
1284 * The cfqd->service_trees holds all pending cfq_queue's that have
1285 * requests waiting to be processed. It is sorted in the order that
1286 * we will service the queues.
1287 */
1288 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1289 bool add_front)
1290 {
1291 struct rb_node **p, *parent;
1292 struct cfq_queue *__cfqq;
1293 unsigned long rb_key;
1294 struct cfq_rb_root *service_tree;
1295 int left;
1296 int new_cfqq = 1;
1297
1298 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1299 cfqq_type(cfqq));
1300 if (cfq_class_idle(cfqq)) {
1301 rb_key = CFQ_IDLE_DELAY;
1302 parent = rb_last(&service_tree->rb);
1303 if (parent && parent != &cfqq->rb_node) {
1304 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1305 rb_key += __cfqq->rb_key;
1306 } else
1307 rb_key += jiffies;
1308 } else if (!add_front) {
1309 /*
1310 * Get our rb key offset. Subtract any residual slice
1311 * value carried from last service. A negative resid
1312 * count indicates slice overrun, and this should position
1313 * the next service time further away in the tree.
1314 */
1315 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1316 rb_key -= cfqq->slice_resid;
1317 cfqq->slice_resid = 0;
1318 } else {
1319 rb_key = -HZ;
1320 __cfqq = cfq_rb_first(service_tree);
1321 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1322 }
1323
1324 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1325 new_cfqq = 0;
1326 /*
1327 * same position, nothing more to do
1328 */
1329 if (rb_key == cfqq->rb_key &&
1330 cfqq->service_tree == service_tree)
1331 return;
1332
1333 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1334 cfqq->service_tree = NULL;
1335 }
1336
1337 left = 1;
1338 parent = NULL;
1339 cfqq->service_tree = service_tree;
1340 p = &service_tree->rb.rb_node;
1341 while (*p) {
1342 struct rb_node **n;
1343
1344 parent = *p;
1345 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1346
1347 /*
1348 * sort by key, that represents service time.
1349 */
1350 if (time_before(rb_key, __cfqq->rb_key))
1351 n = &(*p)->rb_left;
1352 else {
1353 n = &(*p)->rb_right;
1354 left = 0;
1355 }
1356
1357 p = n;
1358 }
1359
1360 if (left)
1361 service_tree->left = &cfqq->rb_node;
1362
1363 cfqq->rb_key = rb_key;
1364 rb_link_node(&cfqq->rb_node, parent, p);
1365 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1366 service_tree->count++;
1367 if (add_front || !new_cfqq)
1368 return;
1369 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1370 }
1371
1372 static struct cfq_queue *
1373 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1374 sector_t sector, struct rb_node **ret_parent,
1375 struct rb_node ***rb_link)
1376 {
1377 struct rb_node **p, *parent;
1378 struct cfq_queue *cfqq = NULL;
1379
1380 parent = NULL;
1381 p = &root->rb_node;
1382 while (*p) {
1383 struct rb_node **n;
1384
1385 parent = *p;
1386 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1387
1388 /*
1389 * Sort strictly based on sector. Smallest to the left,
1390 * largest to the right.
1391 */
1392 if (sector > blk_rq_pos(cfqq->next_rq))
1393 n = &(*p)->rb_right;
1394 else if (sector < blk_rq_pos(cfqq->next_rq))
1395 n = &(*p)->rb_left;
1396 else
1397 break;
1398 p = n;
1399 cfqq = NULL;
1400 }
1401
1402 *ret_parent = parent;
1403 if (rb_link)
1404 *rb_link = p;
1405 return cfqq;
1406 }
1407
1408 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1409 {
1410 struct rb_node **p, *parent;
1411 struct cfq_queue *__cfqq;
1412
1413 if (cfqq->p_root) {
1414 rb_erase(&cfqq->p_node, cfqq->p_root);
1415 cfqq->p_root = NULL;
1416 }
1417
1418 if (cfq_class_idle(cfqq))
1419 return;
1420 if (!cfqq->next_rq)
1421 return;
1422
1423 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1424 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1425 blk_rq_pos(cfqq->next_rq), &parent, &p);
1426 if (!__cfqq) {
1427 rb_link_node(&cfqq->p_node, parent, p);
1428 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1429 } else
1430 cfqq->p_root = NULL;
1431 }
1432
1433 /*
1434 * Update cfqq's position in the service tree.
1435 */
1436 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1437 {
1438 /*
1439 * Resorting requires the cfqq to be on the RR list already.
1440 */
1441 if (cfq_cfqq_on_rr(cfqq)) {
1442 cfq_service_tree_add(cfqd, cfqq, 0);
1443 cfq_prio_tree_add(cfqd, cfqq);
1444 }
1445 }
1446
1447 /*
1448 * add to busy list of queues for service, trying to be fair in ordering
1449 * the pending list according to last request service
1450 */
1451 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1452 {
1453 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1454 BUG_ON(cfq_cfqq_on_rr(cfqq));
1455 cfq_mark_cfqq_on_rr(cfqq);
1456 cfqd->busy_queues++;
1457 if (cfq_cfqq_sync(cfqq))
1458 cfqd->busy_sync_queues++;
1459
1460 cfq_resort_rr_list(cfqd, cfqq);
1461 }
1462
1463 /*
1464 * Called when the cfqq no longer has requests pending, remove it from
1465 * the service tree.
1466 */
1467 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1468 {
1469 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1470 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1471 cfq_clear_cfqq_on_rr(cfqq);
1472
1473 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1474 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1475 cfqq->service_tree = NULL;
1476 }
1477 if (cfqq->p_root) {
1478 rb_erase(&cfqq->p_node, cfqq->p_root);
1479 cfqq->p_root = NULL;
1480 }
1481
1482 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1483 BUG_ON(!cfqd->busy_queues);
1484 cfqd->busy_queues--;
1485 if (cfq_cfqq_sync(cfqq))
1486 cfqd->busy_sync_queues--;
1487 }
1488
1489 /*
1490 * rb tree support functions
1491 */
1492 static void cfq_del_rq_rb(struct request *rq)
1493 {
1494 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1495 const int sync = rq_is_sync(rq);
1496
1497 BUG_ON(!cfqq->queued[sync]);
1498 cfqq->queued[sync]--;
1499
1500 elv_rb_del(&cfqq->sort_list, rq);
1501
1502 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1503 /*
1504 * Queue will be deleted from service tree when we actually
1505 * expire it later. Right now just remove it from prio tree
1506 * as it is empty.
1507 */
1508 if (cfqq->p_root) {
1509 rb_erase(&cfqq->p_node, cfqq->p_root);
1510 cfqq->p_root = NULL;
1511 }
1512 }
1513 }
1514
1515 static void cfq_add_rq_rb(struct request *rq)
1516 {
1517 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1518 struct cfq_data *cfqd = cfqq->cfqd;
1519 struct request *prev;
1520
1521 cfqq->queued[rq_is_sync(rq)]++;
1522
1523 elv_rb_add(&cfqq->sort_list, rq);
1524
1525 if (!cfq_cfqq_on_rr(cfqq))
1526 cfq_add_cfqq_rr(cfqd, cfqq);
1527
1528 /*
1529 * check if this request is a better next-serve candidate
1530 */
1531 prev = cfqq->next_rq;
1532 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1533
1534 /*
1535 * adjust priority tree position, if ->next_rq changes
1536 */
1537 if (prev != cfqq->next_rq)
1538 cfq_prio_tree_add(cfqd, cfqq);
1539
1540 BUG_ON(!cfqq->next_rq);
1541 }
1542
1543 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1544 {
1545 elv_rb_del(&cfqq->sort_list, rq);
1546 cfqq->queued[rq_is_sync(rq)]--;
1547 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1548 rq_data_dir(rq), rq_is_sync(rq));
1549 cfq_add_rq_rb(rq);
1550 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1551 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1552 rq_is_sync(rq));
1553 }
1554
1555 static struct request *
1556 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1557 {
1558 struct task_struct *tsk = current;
1559 struct cfq_io_cq *cic;
1560 struct cfq_queue *cfqq;
1561
1562 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1563 if (!cic)
1564 return NULL;
1565
1566 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1567 if (cfqq) {
1568 sector_t sector = bio->bi_sector + bio_sectors(bio);
1569
1570 return elv_rb_find(&cfqq->sort_list, sector);
1571 }
1572
1573 return NULL;
1574 }
1575
1576 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1577 {
1578 struct cfq_data *cfqd = q->elevator->elevator_data;
1579
1580 cfqd->rq_in_driver++;
1581 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1582 cfqd->rq_in_driver);
1583
1584 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1585 }
1586
1587 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1588 {
1589 struct cfq_data *cfqd = q->elevator->elevator_data;
1590
1591 WARN_ON(!cfqd->rq_in_driver);
1592 cfqd->rq_in_driver--;
1593 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1594 cfqd->rq_in_driver);
1595 }
1596
1597 static void cfq_remove_request(struct request *rq)
1598 {
1599 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1600
1601 if (cfqq->next_rq == rq)
1602 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1603
1604 list_del_init(&rq->queuelist);
1605 cfq_del_rq_rb(rq);
1606
1607 cfqq->cfqd->rq_queued--;
1608 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1609 rq_data_dir(rq), rq_is_sync(rq));
1610 if (rq->cmd_flags & REQ_PRIO) {
1611 WARN_ON(!cfqq->prio_pending);
1612 cfqq->prio_pending--;
1613 }
1614 }
1615
1616 static int cfq_merge(struct request_queue *q, struct request **req,
1617 struct bio *bio)
1618 {
1619 struct cfq_data *cfqd = q->elevator->elevator_data;
1620 struct request *__rq;
1621
1622 __rq = cfq_find_rq_fmerge(cfqd, bio);
1623 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1624 *req = __rq;
1625 return ELEVATOR_FRONT_MERGE;
1626 }
1627
1628 return ELEVATOR_NO_MERGE;
1629 }
1630
1631 static void cfq_merged_request(struct request_queue *q, struct request *req,
1632 int type)
1633 {
1634 if (type == ELEVATOR_FRONT_MERGE) {
1635 struct cfq_queue *cfqq = RQ_CFQQ(req);
1636
1637 cfq_reposition_rq_rb(cfqq, req);
1638 }
1639 }
1640
1641 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1642 struct bio *bio)
1643 {
1644 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1645 bio_data_dir(bio), cfq_bio_sync(bio));
1646 }
1647
1648 static void
1649 cfq_merged_requests(struct request_queue *q, struct request *rq,
1650 struct request *next)
1651 {
1652 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1653 /*
1654 * reposition in fifo if next is older than rq
1655 */
1656 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1657 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1658 list_move(&rq->queuelist, &next->queuelist);
1659 rq_set_fifo_time(rq, rq_fifo_time(next));
1660 }
1661
1662 if (cfqq->next_rq == next)
1663 cfqq->next_rq = rq;
1664 cfq_remove_request(next);
1665 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1666 rq_data_dir(next), rq_is_sync(next));
1667 }
1668
1669 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1670 struct bio *bio)
1671 {
1672 struct cfq_data *cfqd = q->elevator->elevator_data;
1673 struct cfq_io_cq *cic;
1674 struct cfq_queue *cfqq;
1675
1676 /*
1677 * Disallow merge of a sync bio into an async request.
1678 */
1679 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1680 return false;
1681
1682 /*
1683 * Lookup the cfqq that this bio will be queued with and allow
1684 * merge only if rq is queued there. This function can be called
1685 * from plug merge without queue_lock. In such cases, ioc of @rq
1686 * and %current are guaranteed to be equal. Avoid lookup which
1687 * requires queue_lock by using @rq's cic.
1688 */
1689 if (current->io_context == RQ_CIC(rq)->icq.ioc) {
1690 cic = RQ_CIC(rq);
1691 } else {
1692 cic = cfq_cic_lookup(cfqd, current->io_context);
1693 if (!cic)
1694 return false;
1695 }
1696
1697 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1698 return cfqq == RQ_CFQQ(rq);
1699 }
1700
1701 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1702 {
1703 del_timer(&cfqd->idle_slice_timer);
1704 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1705 }
1706
1707 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1708 struct cfq_queue *cfqq)
1709 {
1710 if (cfqq) {
1711 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1712 cfqd->serving_prio, cfqd->serving_type);
1713 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1714 cfqq->slice_start = 0;
1715 cfqq->dispatch_start = jiffies;
1716 cfqq->allocated_slice = 0;
1717 cfqq->slice_end = 0;
1718 cfqq->slice_dispatch = 0;
1719 cfqq->nr_sectors = 0;
1720
1721 cfq_clear_cfqq_wait_request(cfqq);
1722 cfq_clear_cfqq_must_dispatch(cfqq);
1723 cfq_clear_cfqq_must_alloc_slice(cfqq);
1724 cfq_clear_cfqq_fifo_expire(cfqq);
1725 cfq_mark_cfqq_slice_new(cfqq);
1726
1727 cfq_del_timer(cfqd, cfqq);
1728 }
1729
1730 cfqd->active_queue = cfqq;
1731 }
1732
1733 /*
1734 * current cfqq expired its slice (or was too idle), select new one
1735 */
1736 static void
1737 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1738 bool timed_out)
1739 {
1740 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1741
1742 if (cfq_cfqq_wait_request(cfqq))
1743 cfq_del_timer(cfqd, cfqq);
1744
1745 cfq_clear_cfqq_wait_request(cfqq);
1746 cfq_clear_cfqq_wait_busy(cfqq);
1747
1748 /*
1749 * If this cfqq is shared between multiple processes, check to
1750 * make sure that those processes are still issuing I/Os within
1751 * the mean seek distance. If not, it may be time to break the
1752 * queues apart again.
1753 */
1754 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1755 cfq_mark_cfqq_split_coop(cfqq);
1756
1757 /*
1758 * store what was left of this slice, if the queue idled/timed out
1759 */
1760 if (timed_out) {
1761 if (cfq_cfqq_slice_new(cfqq))
1762 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1763 else
1764 cfqq->slice_resid = cfqq->slice_end - jiffies;
1765 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1766 }
1767
1768 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1769
1770 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1771 cfq_del_cfqq_rr(cfqd, cfqq);
1772
1773 cfq_resort_rr_list(cfqd, cfqq);
1774
1775 if (cfqq == cfqd->active_queue)
1776 cfqd->active_queue = NULL;
1777
1778 if (cfqd->active_cic) {
1779 put_io_context(cfqd->active_cic->icq.ioc, cfqd->queue);
1780 cfqd->active_cic = NULL;
1781 }
1782 }
1783
1784 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1785 {
1786 struct cfq_queue *cfqq = cfqd->active_queue;
1787
1788 if (cfqq)
1789 __cfq_slice_expired(cfqd, cfqq, timed_out);
1790 }
1791
1792 /*
1793 * Get next queue for service. Unless we have a queue preemption,
1794 * we'll simply select the first cfqq in the service tree.
1795 */
1796 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1797 {
1798 struct cfq_rb_root *service_tree =
1799 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1800 cfqd->serving_type);
1801
1802 if (!cfqd->rq_queued)
1803 return NULL;
1804
1805 /* There is nothing to dispatch */
1806 if (!service_tree)
1807 return NULL;
1808 if (RB_EMPTY_ROOT(&service_tree->rb))
1809 return NULL;
1810 return cfq_rb_first(service_tree);
1811 }
1812
1813 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1814 {
1815 struct cfq_group *cfqg;
1816 struct cfq_queue *cfqq;
1817 int i, j;
1818 struct cfq_rb_root *st;
1819
1820 if (!cfqd->rq_queued)
1821 return NULL;
1822
1823 cfqg = cfq_get_next_cfqg(cfqd);
1824 if (!cfqg)
1825 return NULL;
1826
1827 for_each_cfqg_st(cfqg, i, j, st)
1828 if ((cfqq = cfq_rb_first(st)) != NULL)
1829 return cfqq;
1830 return NULL;
1831 }
1832
1833 /*
1834 * Get and set a new active queue for service.
1835 */
1836 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1837 struct cfq_queue *cfqq)
1838 {
1839 if (!cfqq)
1840 cfqq = cfq_get_next_queue(cfqd);
1841
1842 __cfq_set_active_queue(cfqd, cfqq);
1843 return cfqq;
1844 }
1845
1846 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1847 struct request *rq)
1848 {
1849 if (blk_rq_pos(rq) >= cfqd->last_position)
1850 return blk_rq_pos(rq) - cfqd->last_position;
1851 else
1852 return cfqd->last_position - blk_rq_pos(rq);
1853 }
1854
1855 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1856 struct request *rq)
1857 {
1858 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1859 }
1860
1861 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1862 struct cfq_queue *cur_cfqq)
1863 {
1864 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1865 struct rb_node *parent, *node;
1866 struct cfq_queue *__cfqq;
1867 sector_t sector = cfqd->last_position;
1868
1869 if (RB_EMPTY_ROOT(root))
1870 return NULL;
1871
1872 /*
1873 * First, if we find a request starting at the end of the last
1874 * request, choose it.
1875 */
1876 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1877 if (__cfqq)
1878 return __cfqq;
1879
1880 /*
1881 * If the exact sector wasn't found, the parent of the NULL leaf
1882 * will contain the closest sector.
1883 */
1884 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1885 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1886 return __cfqq;
1887
1888 if (blk_rq_pos(__cfqq->next_rq) < sector)
1889 node = rb_next(&__cfqq->p_node);
1890 else
1891 node = rb_prev(&__cfqq->p_node);
1892 if (!node)
1893 return NULL;
1894
1895 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1896 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1897 return __cfqq;
1898
1899 return NULL;
1900 }
1901
1902 /*
1903 * cfqd - obvious
1904 * cur_cfqq - passed in so that we don't decide that the current queue is
1905 * closely cooperating with itself.
1906 *
1907 * So, basically we're assuming that that cur_cfqq has dispatched at least
1908 * one request, and that cfqd->last_position reflects a position on the disk
1909 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1910 * assumption.
1911 */
1912 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1913 struct cfq_queue *cur_cfqq)
1914 {
1915 struct cfq_queue *cfqq;
1916
1917 if (cfq_class_idle(cur_cfqq))
1918 return NULL;
1919 if (!cfq_cfqq_sync(cur_cfqq))
1920 return NULL;
1921 if (CFQQ_SEEKY(cur_cfqq))
1922 return NULL;
1923
1924 /*
1925 * Don't search priority tree if it's the only queue in the group.
1926 */
1927 if (cur_cfqq->cfqg->nr_cfqq == 1)
1928 return NULL;
1929
1930 /*
1931 * We should notice if some of the queues are cooperating, eg
1932 * working closely on the same area of the disk. In that case,
1933 * we can group them together and don't waste time idling.
1934 */
1935 cfqq = cfqq_close(cfqd, cur_cfqq);
1936 if (!cfqq)
1937 return NULL;
1938
1939 /* If new queue belongs to different cfq_group, don't choose it */
1940 if (cur_cfqq->cfqg != cfqq->cfqg)
1941 return NULL;
1942
1943 /*
1944 * It only makes sense to merge sync queues.
1945 */
1946 if (!cfq_cfqq_sync(cfqq))
1947 return NULL;
1948 if (CFQQ_SEEKY(cfqq))
1949 return NULL;
1950
1951 /*
1952 * Do not merge queues of different priority classes
1953 */
1954 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1955 return NULL;
1956
1957 return cfqq;
1958 }
1959
1960 /*
1961 * Determine whether we should enforce idle window for this queue.
1962 */
1963
1964 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1965 {
1966 enum wl_prio_t prio = cfqq_prio(cfqq);
1967 struct cfq_rb_root *service_tree = cfqq->service_tree;
1968
1969 BUG_ON(!service_tree);
1970 BUG_ON(!service_tree->count);
1971
1972 if (!cfqd->cfq_slice_idle)
1973 return false;
1974
1975 /* We never do for idle class queues. */
1976 if (prio == IDLE_WORKLOAD)
1977 return false;
1978
1979 /* We do for queues that were marked with idle window flag. */
1980 if (cfq_cfqq_idle_window(cfqq) &&
1981 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1982 return true;
1983
1984 /*
1985 * Otherwise, we do only if they are the last ones
1986 * in their service tree.
1987 */
1988 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
1989 !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
1990 return true;
1991 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1992 service_tree->count);
1993 return false;
1994 }
1995
1996 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1997 {
1998 struct cfq_queue *cfqq = cfqd->active_queue;
1999 struct cfq_io_cq *cic;
2000 unsigned long sl, group_idle = 0;
2001
2002 /*
2003 * SSD device without seek penalty, disable idling. But only do so
2004 * for devices that support queuing, otherwise we still have a problem
2005 * with sync vs async workloads.
2006 */
2007 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2008 return;
2009
2010 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2011 WARN_ON(cfq_cfqq_slice_new(cfqq));
2012
2013 /*
2014 * idle is disabled, either manually or by past process history
2015 */
2016 if (!cfq_should_idle(cfqd, cfqq)) {
2017 /* no queue idling. Check for group idling */
2018 if (cfqd->cfq_group_idle)
2019 group_idle = cfqd->cfq_group_idle;
2020 else
2021 return;
2022 }
2023
2024 /*
2025 * still active requests from this queue, don't idle
2026 */
2027 if (cfqq->dispatched)
2028 return;
2029
2030 /*
2031 * task has exited, don't wait
2032 */
2033 cic = cfqd->active_cic;
2034 if (!cic || !atomic_read(&cic->icq.ioc->nr_tasks))
2035 return;
2036
2037 /*
2038 * If our average think time is larger than the remaining time
2039 * slice, then don't idle. This avoids overrunning the allotted
2040 * time slice.
2041 */
2042 if (sample_valid(cic->ttime.ttime_samples) &&
2043 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2044 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2045 cic->ttime.ttime_mean);
2046 return;
2047 }
2048
2049 /* There are other queues in the group, don't do group idle */
2050 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2051 return;
2052
2053 cfq_mark_cfqq_wait_request(cfqq);
2054
2055 if (group_idle)
2056 sl = cfqd->cfq_group_idle;
2057 else
2058 sl = cfqd->cfq_slice_idle;
2059
2060 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2061 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
2062 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2063 group_idle ? 1 : 0);
2064 }
2065
2066 /*
2067 * Move request from internal lists to the request queue dispatch list.
2068 */
2069 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2070 {
2071 struct cfq_data *cfqd = q->elevator->elevator_data;
2072 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2073
2074 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2075
2076 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2077 cfq_remove_request(rq);
2078 cfqq->dispatched++;
2079 (RQ_CFQG(rq))->dispatched++;
2080 elv_dispatch_sort(q, rq);
2081
2082 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2083 cfqq->nr_sectors += blk_rq_sectors(rq);
2084 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
2085 rq_data_dir(rq), rq_is_sync(rq));
2086 }
2087
2088 /*
2089 * return expired entry, or NULL to just start from scratch in rbtree
2090 */
2091 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2092 {
2093 struct request *rq = NULL;
2094
2095 if (cfq_cfqq_fifo_expire(cfqq))
2096 return NULL;
2097
2098 cfq_mark_cfqq_fifo_expire(cfqq);
2099
2100 if (list_empty(&cfqq->fifo))
2101 return NULL;
2102
2103 rq = rq_entry_fifo(cfqq->fifo.next);
2104 if (time_before(jiffies, rq_fifo_time(rq)))
2105 rq = NULL;
2106
2107 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2108 return rq;
2109 }
2110
2111 static inline int
2112 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2113 {
2114 const int base_rq = cfqd->cfq_slice_async_rq;
2115
2116 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2117
2118 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2119 }
2120
2121 /*
2122 * Must be called with the queue_lock held.
2123 */
2124 static int cfqq_process_refs(struct cfq_queue *cfqq)
2125 {
2126 int process_refs, io_refs;
2127
2128 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2129 process_refs = cfqq->ref - io_refs;
2130 BUG_ON(process_refs < 0);
2131 return process_refs;
2132 }
2133
2134 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2135 {
2136 int process_refs, new_process_refs;
2137 struct cfq_queue *__cfqq;
2138
2139 /*
2140 * If there are no process references on the new_cfqq, then it is
2141 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2142 * chain may have dropped their last reference (not just their
2143 * last process reference).
2144 */
2145 if (!cfqq_process_refs(new_cfqq))
2146 return;
2147
2148 /* Avoid a circular list and skip interim queue merges */
2149 while ((__cfqq = new_cfqq->new_cfqq)) {
2150 if (__cfqq == cfqq)
2151 return;
2152 new_cfqq = __cfqq;
2153 }
2154
2155 process_refs = cfqq_process_refs(cfqq);
2156 new_process_refs = cfqq_process_refs(new_cfqq);
2157 /*
2158 * If the process for the cfqq has gone away, there is no
2159 * sense in merging the queues.
2160 */
2161 if (process_refs == 0 || new_process_refs == 0)
2162 return;
2163
2164 /*
2165 * Merge in the direction of the lesser amount of work.
2166 */
2167 if (new_process_refs >= process_refs) {
2168 cfqq->new_cfqq = new_cfqq;
2169 new_cfqq->ref += process_refs;
2170 } else {
2171 new_cfqq->new_cfqq = cfqq;
2172 cfqq->ref += new_process_refs;
2173 }
2174 }
2175
2176 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2177 struct cfq_group *cfqg, enum wl_prio_t prio)
2178 {
2179 struct cfq_queue *queue;
2180 int i;
2181 bool key_valid = false;
2182 unsigned long lowest_key = 0;
2183 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2184
2185 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2186 /* select the one with lowest rb_key */
2187 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2188 if (queue &&
2189 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2190 lowest_key = queue->rb_key;
2191 cur_best = i;
2192 key_valid = true;
2193 }
2194 }
2195
2196 return cur_best;
2197 }
2198
2199 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2200 {
2201 unsigned slice;
2202 unsigned count;
2203 struct cfq_rb_root *st;
2204 unsigned group_slice;
2205 enum wl_prio_t original_prio = cfqd->serving_prio;
2206
2207 /* Choose next priority. RT > BE > IDLE */
2208 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2209 cfqd->serving_prio = RT_WORKLOAD;
2210 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2211 cfqd->serving_prio = BE_WORKLOAD;
2212 else {
2213 cfqd->serving_prio = IDLE_WORKLOAD;
2214 cfqd->workload_expires = jiffies + 1;
2215 return;
2216 }
2217
2218 if (original_prio != cfqd->serving_prio)
2219 goto new_workload;
2220
2221 /*
2222 * For RT and BE, we have to choose also the type
2223 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2224 * expiration time
2225 */
2226 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2227 count = st->count;
2228
2229 /*
2230 * check workload expiration, and that we still have other queues ready
2231 */
2232 if (count && !time_after(jiffies, cfqd->workload_expires))
2233 return;
2234
2235 new_workload:
2236 /* otherwise select new workload type */
2237 cfqd->serving_type =
2238 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2239 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2240 count = st->count;
2241
2242 /*
2243 * the workload slice is computed as a fraction of target latency
2244 * proportional to the number of queues in that workload, over
2245 * all the queues in the same priority class
2246 */
2247 group_slice = cfq_group_slice(cfqd, cfqg);
2248
2249 slice = group_slice * count /
2250 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2251 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2252
2253 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2254 unsigned int tmp;
2255
2256 /*
2257 * Async queues are currently system wide. Just taking
2258 * proportion of queues with-in same group will lead to higher
2259 * async ratio system wide as generally root group is going
2260 * to have higher weight. A more accurate thing would be to
2261 * calculate system wide asnc/sync ratio.
2262 */
2263 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2264 tmp = tmp/cfqd->busy_queues;
2265 slice = min_t(unsigned, slice, tmp);
2266
2267 /* async workload slice is scaled down according to
2268 * the sync/async slice ratio. */
2269 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2270 } else
2271 /* sync workload slice is at least 2 * cfq_slice_idle */
2272 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2273
2274 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2275 cfq_log(cfqd, "workload slice:%d", slice);
2276 cfqd->workload_expires = jiffies + slice;
2277 }
2278
2279 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2280 {
2281 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2282 struct cfq_group *cfqg;
2283
2284 if (RB_EMPTY_ROOT(&st->rb))
2285 return NULL;
2286 cfqg = cfq_rb_first_group(st);
2287 update_min_vdisktime(st);
2288 return cfqg;
2289 }
2290
2291 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2292 {
2293 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2294
2295 cfqd->serving_group = cfqg;
2296
2297 /* Restore the workload type data */
2298 if (cfqg->saved_workload_slice) {
2299 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2300 cfqd->serving_type = cfqg->saved_workload;
2301 cfqd->serving_prio = cfqg->saved_serving_prio;
2302 } else
2303 cfqd->workload_expires = jiffies - 1;
2304
2305 choose_service_tree(cfqd, cfqg);
2306 }
2307
2308 /*
2309 * Select a queue for service. If we have a current active queue,
2310 * check whether to continue servicing it, or retrieve and set a new one.
2311 */
2312 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2313 {
2314 struct cfq_queue *cfqq, *new_cfqq = NULL;
2315
2316 cfqq = cfqd->active_queue;
2317 if (!cfqq)
2318 goto new_queue;
2319
2320 if (!cfqd->rq_queued)
2321 return NULL;
2322
2323 /*
2324 * We were waiting for group to get backlogged. Expire the queue
2325 */
2326 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2327 goto expire;
2328
2329 /*
2330 * The active queue has run out of time, expire it and select new.
2331 */
2332 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2333 /*
2334 * If slice had not expired at the completion of last request
2335 * we might not have turned on wait_busy flag. Don't expire
2336 * the queue yet. Allow the group to get backlogged.
2337 *
2338 * The very fact that we have used the slice, that means we
2339 * have been idling all along on this queue and it should be
2340 * ok to wait for this request to complete.
2341 */
2342 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2343 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2344 cfqq = NULL;
2345 goto keep_queue;
2346 } else
2347 goto check_group_idle;
2348 }
2349
2350 /*
2351 * The active queue has requests and isn't expired, allow it to
2352 * dispatch.
2353 */
2354 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2355 goto keep_queue;
2356
2357 /*
2358 * If another queue has a request waiting within our mean seek
2359 * distance, let it run. The expire code will check for close
2360 * cooperators and put the close queue at the front of the service
2361 * tree. If possible, merge the expiring queue with the new cfqq.
2362 */
2363 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2364 if (new_cfqq) {
2365 if (!cfqq->new_cfqq)
2366 cfq_setup_merge(cfqq, new_cfqq);
2367 goto expire;
2368 }
2369
2370 /*
2371 * No requests pending. If the active queue still has requests in
2372 * flight or is idling for a new request, allow either of these
2373 * conditions to happen (or time out) before selecting a new queue.
2374 */
2375 if (timer_pending(&cfqd->idle_slice_timer)) {
2376 cfqq = NULL;
2377 goto keep_queue;
2378 }
2379
2380 /*
2381 * This is a deep seek queue, but the device is much faster than
2382 * the queue can deliver, don't idle
2383 **/
2384 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2385 (cfq_cfqq_slice_new(cfqq) ||
2386 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2387 cfq_clear_cfqq_deep(cfqq);
2388 cfq_clear_cfqq_idle_window(cfqq);
2389 }
2390
2391 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2392 cfqq = NULL;
2393 goto keep_queue;
2394 }
2395
2396 /*
2397 * If group idle is enabled and there are requests dispatched from
2398 * this group, wait for requests to complete.
2399 */
2400 check_group_idle:
2401 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2402 cfqq->cfqg->dispatched &&
2403 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2404 cfqq = NULL;
2405 goto keep_queue;
2406 }
2407
2408 expire:
2409 cfq_slice_expired(cfqd, 0);
2410 new_queue:
2411 /*
2412 * Current queue expired. Check if we have to switch to a new
2413 * service tree
2414 */
2415 if (!new_cfqq)
2416 cfq_choose_cfqg(cfqd);
2417
2418 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2419 keep_queue:
2420 return cfqq;
2421 }
2422
2423 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2424 {
2425 int dispatched = 0;
2426
2427 while (cfqq->next_rq) {
2428 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2429 dispatched++;
2430 }
2431
2432 BUG_ON(!list_empty(&cfqq->fifo));
2433
2434 /* By default cfqq is not expired if it is empty. Do it explicitly */
2435 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2436 return dispatched;
2437 }
2438
2439 /*
2440 * Drain our current requests. Used for barriers and when switching
2441 * io schedulers on-the-fly.
2442 */
2443 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2444 {
2445 struct cfq_queue *cfqq;
2446 int dispatched = 0;
2447
2448 /* Expire the timeslice of the current active queue first */
2449 cfq_slice_expired(cfqd, 0);
2450 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2451 __cfq_set_active_queue(cfqd, cfqq);
2452 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2453 }
2454
2455 BUG_ON(cfqd->busy_queues);
2456
2457 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2458 return dispatched;
2459 }
2460
2461 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2462 struct cfq_queue *cfqq)
2463 {
2464 /* the queue hasn't finished any request, can't estimate */
2465 if (cfq_cfqq_slice_new(cfqq))
2466 return true;
2467 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2468 cfqq->slice_end))
2469 return true;
2470
2471 return false;
2472 }
2473
2474 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2475 {
2476 unsigned int max_dispatch;
2477
2478 /*
2479 * Drain async requests before we start sync IO
2480 */
2481 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2482 return false;
2483
2484 /*
2485 * If this is an async queue and we have sync IO in flight, let it wait
2486 */
2487 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2488 return false;
2489
2490 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2491 if (cfq_class_idle(cfqq))
2492 max_dispatch = 1;
2493
2494 /*
2495 * Does this cfqq already have too much IO in flight?
2496 */
2497 if (cfqq->dispatched >= max_dispatch) {
2498 bool promote_sync = false;
2499 /*
2500 * idle queue must always only have a single IO in flight
2501 */
2502 if (cfq_class_idle(cfqq))
2503 return false;
2504
2505 /*
2506 * If there is only one sync queue
2507 * we can ignore async queue here and give the sync
2508 * queue no dispatch limit. The reason is a sync queue can
2509 * preempt async queue, limiting the sync queue doesn't make
2510 * sense. This is useful for aiostress test.
2511 */
2512 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2513 promote_sync = true;
2514
2515 /*
2516 * We have other queues, don't allow more IO from this one
2517 */
2518 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2519 !promote_sync)
2520 return false;
2521
2522 /*
2523 * Sole queue user, no limit
2524 */
2525 if (cfqd->busy_queues == 1 || promote_sync)
2526 max_dispatch = -1;
2527 else
2528 /*
2529 * Normally we start throttling cfqq when cfq_quantum/2
2530 * requests have been dispatched. But we can drive
2531 * deeper queue depths at the beginning of slice
2532 * subjected to upper limit of cfq_quantum.
2533 * */
2534 max_dispatch = cfqd->cfq_quantum;
2535 }
2536
2537 /*
2538 * Async queues must wait a bit before being allowed dispatch.
2539 * We also ramp up the dispatch depth gradually for async IO,
2540 * based on the last sync IO we serviced
2541 */
2542 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2543 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2544 unsigned int depth;
2545
2546 depth = last_sync / cfqd->cfq_slice[1];
2547 if (!depth && !cfqq->dispatched)
2548 depth = 1;
2549 if (depth < max_dispatch)
2550 max_dispatch = depth;
2551 }
2552
2553 /*
2554 * If we're below the current max, allow a dispatch
2555 */
2556 return cfqq->dispatched < max_dispatch;
2557 }
2558
2559 /*
2560 * Dispatch a request from cfqq, moving them to the request queue
2561 * dispatch list.
2562 */
2563 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2564 {
2565 struct request *rq;
2566
2567 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2568
2569 if (!cfq_may_dispatch(cfqd, cfqq))
2570 return false;
2571
2572 /*
2573 * follow expired path, else get first next available
2574 */
2575 rq = cfq_check_fifo(cfqq);
2576 if (!rq)
2577 rq = cfqq->next_rq;
2578
2579 /*
2580 * insert request into driver dispatch list
2581 */
2582 cfq_dispatch_insert(cfqd->queue, rq);
2583
2584 if (!cfqd->active_cic) {
2585 struct cfq_io_cq *cic = RQ_CIC(rq);
2586
2587 atomic_long_inc(&cic->icq.ioc->refcount);
2588 cfqd->active_cic = cic;
2589 }
2590
2591 return true;
2592 }
2593
2594 /*
2595 * Find the cfqq that we need to service and move a request from that to the
2596 * dispatch list
2597 */
2598 static int cfq_dispatch_requests(struct request_queue *q, int force)
2599 {
2600 struct cfq_data *cfqd = q->elevator->elevator_data;
2601 struct cfq_queue *cfqq;
2602
2603 if (!cfqd->busy_queues)
2604 return 0;
2605
2606 if (unlikely(force))
2607 return cfq_forced_dispatch(cfqd);
2608
2609 cfqq = cfq_select_queue(cfqd);
2610 if (!cfqq)
2611 return 0;
2612
2613 /*
2614 * Dispatch a request from this cfqq, if it is allowed
2615 */
2616 if (!cfq_dispatch_request(cfqd, cfqq))
2617 return 0;
2618
2619 cfqq->slice_dispatch++;
2620 cfq_clear_cfqq_must_dispatch(cfqq);
2621
2622 /*
2623 * expire an async queue immediately if it has used up its slice. idle
2624 * queue always expire after 1 dispatch round.
2625 */
2626 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2627 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2628 cfq_class_idle(cfqq))) {
2629 cfqq->slice_end = jiffies + 1;
2630 cfq_slice_expired(cfqd, 0);
2631 }
2632
2633 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2634 return 1;
2635 }
2636
2637 /*
2638 * task holds one reference to the queue, dropped when task exits. each rq
2639 * in-flight on this queue also holds a reference, dropped when rq is freed.
2640 *
2641 * Each cfq queue took a reference on the parent group. Drop it now.
2642 * queue lock must be held here.
2643 */
2644 static void cfq_put_queue(struct cfq_queue *cfqq)
2645 {
2646 struct cfq_data *cfqd = cfqq->cfqd;
2647 struct cfq_group *cfqg;
2648
2649 BUG_ON(cfqq->ref <= 0);
2650
2651 cfqq->ref--;
2652 if (cfqq->ref)
2653 return;
2654
2655 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2656 BUG_ON(rb_first(&cfqq->sort_list));
2657 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2658 cfqg = cfqq->cfqg;
2659
2660 if (unlikely(cfqd->active_queue == cfqq)) {
2661 __cfq_slice_expired(cfqd, cfqq, 0);
2662 cfq_schedule_dispatch(cfqd);
2663 }
2664
2665 BUG_ON(cfq_cfqq_on_rr(cfqq));
2666 kmem_cache_free(cfq_pool, cfqq);
2667 cfq_put_cfqg(cfqg);
2668 }
2669
2670 static void cfq_icq_free_rcu(struct rcu_head *head)
2671 {
2672 kmem_cache_free(cfq_icq_pool,
2673 icq_to_cic(container_of(head, struct io_cq, rcu_head)));
2674 }
2675
2676 static void cfq_icq_free(struct io_cq *icq)
2677 {
2678 call_rcu(&icq->rcu_head, cfq_icq_free_rcu);
2679 }
2680
2681 static void cfq_release_icq(struct io_cq *icq)
2682 {
2683 struct io_context *ioc = icq->ioc;
2684
2685 radix_tree_delete(&ioc->icq_tree, icq->q->id);
2686 hlist_del(&icq->ioc_node);
2687 cfq_icq_free(icq);
2688 }
2689
2690 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2691 {
2692 struct cfq_queue *__cfqq, *next;
2693
2694 /*
2695 * If this queue was scheduled to merge with another queue, be
2696 * sure to drop the reference taken on that queue (and others in
2697 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2698 */
2699 __cfqq = cfqq->new_cfqq;
2700 while (__cfqq) {
2701 if (__cfqq == cfqq) {
2702 WARN(1, "cfqq->new_cfqq loop detected\n");
2703 break;
2704 }
2705 next = __cfqq->new_cfqq;
2706 cfq_put_queue(__cfqq);
2707 __cfqq = next;
2708 }
2709 }
2710
2711 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2712 {
2713 if (unlikely(cfqq == cfqd->active_queue)) {
2714 __cfq_slice_expired(cfqd, cfqq, 0);
2715 cfq_schedule_dispatch(cfqd);
2716 }
2717
2718 cfq_put_cooperator(cfqq);
2719
2720 cfq_put_queue(cfqq);
2721 }
2722
2723 static void cfq_exit_icq(struct io_cq *icq)
2724 {
2725 struct cfq_io_cq *cic = icq_to_cic(icq);
2726 struct cfq_data *cfqd = cic_to_cfqd(cic);
2727 struct io_context *ioc = icq->ioc;
2728
2729 list_del_init(&icq->q_node);
2730
2731 /*
2732 * Both setting lookup hint to and clearing it from @icq are done
2733 * under queue_lock. If it's not pointing to @icq now, it never
2734 * will. Hint assignment itself can race safely.
2735 */
2736 if (rcu_dereference_raw(ioc->icq_hint) == icq)
2737 rcu_assign_pointer(ioc->icq_hint, NULL);
2738
2739 if (cic->cfqq[BLK_RW_ASYNC]) {
2740 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2741 cic->cfqq[BLK_RW_ASYNC] = NULL;
2742 }
2743
2744 if (cic->cfqq[BLK_RW_SYNC]) {
2745 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2746 cic->cfqq[BLK_RW_SYNC] = NULL;
2747 }
2748 }
2749
2750 static struct cfq_io_cq *cfq_alloc_cic(struct cfq_data *cfqd, gfp_t gfp_mask)
2751 {
2752 struct cfq_io_cq *cic;
2753
2754 cic = kmem_cache_alloc_node(cfq_icq_pool, gfp_mask | __GFP_ZERO,
2755 cfqd->queue->node);
2756 if (cic) {
2757 cic->ttime.last_end_request = jiffies;
2758 INIT_LIST_HEAD(&cic->icq.q_node);
2759 INIT_HLIST_NODE(&cic->icq.ioc_node);
2760 cic->icq.exit = cfq_exit_icq;
2761 cic->icq.release = cfq_release_icq;
2762 }
2763
2764 return cic;
2765 }
2766
2767 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2768 {
2769 struct task_struct *tsk = current;
2770 int ioprio_class;
2771
2772 if (!cfq_cfqq_prio_changed(cfqq))
2773 return;
2774
2775 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2776 switch (ioprio_class) {
2777 default:
2778 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2779 case IOPRIO_CLASS_NONE:
2780 /*
2781 * no prio set, inherit CPU scheduling settings
2782 */
2783 cfqq->ioprio = task_nice_ioprio(tsk);
2784 cfqq->ioprio_class = task_nice_ioclass(tsk);
2785 break;
2786 case IOPRIO_CLASS_RT:
2787 cfqq->ioprio = task_ioprio(ioc);
2788 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2789 break;
2790 case IOPRIO_CLASS_BE:
2791 cfqq->ioprio = task_ioprio(ioc);
2792 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2793 break;
2794 case IOPRIO_CLASS_IDLE:
2795 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2796 cfqq->ioprio = 7;
2797 cfq_clear_cfqq_idle_window(cfqq);
2798 break;
2799 }
2800
2801 /*
2802 * keep track of original prio settings in case we have to temporarily
2803 * elevate the priority of this queue
2804 */
2805 cfqq->org_ioprio = cfqq->ioprio;
2806 cfq_clear_cfqq_prio_changed(cfqq);
2807 }
2808
2809 static void changed_ioprio(struct cfq_io_cq *cic)
2810 {
2811 struct cfq_data *cfqd = cic_to_cfqd(cic);
2812 struct cfq_queue *cfqq;
2813
2814 if (unlikely(!cfqd))
2815 return;
2816
2817 cfqq = cic->cfqq[BLK_RW_ASYNC];
2818 if (cfqq) {
2819 struct cfq_queue *new_cfqq;
2820 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->icq.ioc,
2821 GFP_ATOMIC);
2822 if (new_cfqq) {
2823 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2824 cfq_put_queue(cfqq);
2825 }
2826 }
2827
2828 cfqq = cic->cfqq[BLK_RW_SYNC];
2829 if (cfqq)
2830 cfq_mark_cfqq_prio_changed(cfqq);
2831 }
2832
2833 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2834 pid_t pid, bool is_sync)
2835 {
2836 RB_CLEAR_NODE(&cfqq->rb_node);
2837 RB_CLEAR_NODE(&cfqq->p_node);
2838 INIT_LIST_HEAD(&cfqq->fifo);
2839
2840 cfqq->ref = 0;
2841 cfqq->cfqd = cfqd;
2842
2843 cfq_mark_cfqq_prio_changed(cfqq);
2844
2845 if (is_sync) {
2846 if (!cfq_class_idle(cfqq))
2847 cfq_mark_cfqq_idle_window(cfqq);
2848 cfq_mark_cfqq_sync(cfqq);
2849 }
2850 cfqq->pid = pid;
2851 }
2852
2853 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2854 static void changed_cgroup(struct cfq_io_cq *cic)
2855 {
2856 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2857 struct cfq_data *cfqd = cic_to_cfqd(cic);
2858 struct request_queue *q;
2859
2860 if (unlikely(!cfqd))
2861 return;
2862
2863 q = cfqd->queue;
2864
2865 if (sync_cfqq) {
2866 /*
2867 * Drop reference to sync queue. A new sync queue will be
2868 * assigned in new group upon arrival of a fresh request.
2869 */
2870 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2871 cic_set_cfqq(cic, NULL, 1);
2872 cfq_put_queue(sync_cfqq);
2873 }
2874 }
2875 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2876
2877 static struct cfq_queue *
2878 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2879 struct io_context *ioc, gfp_t gfp_mask)
2880 {
2881 struct cfq_queue *cfqq, *new_cfqq = NULL;
2882 struct cfq_io_cq *cic;
2883 struct cfq_group *cfqg;
2884
2885 retry:
2886 cfqg = cfq_get_cfqg(cfqd);
2887 cic = cfq_cic_lookup(cfqd, ioc);
2888 /* cic always exists here */
2889 cfqq = cic_to_cfqq(cic, is_sync);
2890
2891 /*
2892 * Always try a new alloc if we fell back to the OOM cfqq
2893 * originally, since it should just be a temporary situation.
2894 */
2895 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2896 cfqq = NULL;
2897 if (new_cfqq) {
2898 cfqq = new_cfqq;
2899 new_cfqq = NULL;
2900 } else if (gfp_mask & __GFP_WAIT) {
2901 spin_unlock_irq(cfqd->queue->queue_lock);
2902 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2903 gfp_mask | __GFP_ZERO,
2904 cfqd->queue->node);
2905 spin_lock_irq(cfqd->queue->queue_lock);
2906 if (new_cfqq)
2907 goto retry;
2908 } else {
2909 cfqq = kmem_cache_alloc_node(cfq_pool,
2910 gfp_mask | __GFP_ZERO,
2911 cfqd->queue->node);
2912 }
2913
2914 if (cfqq) {
2915 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2916 cfq_init_prio_data(cfqq, ioc);
2917 cfq_link_cfqq_cfqg(cfqq, cfqg);
2918 cfq_log_cfqq(cfqd, cfqq, "alloced");
2919 } else
2920 cfqq = &cfqd->oom_cfqq;
2921 }
2922
2923 if (new_cfqq)
2924 kmem_cache_free(cfq_pool, new_cfqq);
2925
2926 return cfqq;
2927 }
2928
2929 static struct cfq_queue **
2930 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2931 {
2932 switch (ioprio_class) {
2933 case IOPRIO_CLASS_RT:
2934 return &cfqd->async_cfqq[0][ioprio];
2935 case IOPRIO_CLASS_BE:
2936 return &cfqd->async_cfqq[1][ioprio];
2937 case IOPRIO_CLASS_IDLE:
2938 return &cfqd->async_idle_cfqq;
2939 default:
2940 BUG();
2941 }
2942 }
2943
2944 static struct cfq_queue *
2945 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2946 gfp_t gfp_mask)
2947 {
2948 const int ioprio = task_ioprio(ioc);
2949 const int ioprio_class = task_ioprio_class(ioc);
2950 struct cfq_queue **async_cfqq = NULL;
2951 struct cfq_queue *cfqq = NULL;
2952
2953 if (!is_sync) {
2954 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2955 cfqq = *async_cfqq;
2956 }
2957
2958 if (!cfqq)
2959 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2960
2961 /*
2962 * pin the queue now that it's allocated, scheduler exit will prune it
2963 */
2964 if (!is_sync && !(*async_cfqq)) {
2965 cfqq->ref++;
2966 *async_cfqq = cfqq;
2967 }
2968
2969 cfqq->ref++;
2970 return cfqq;
2971 }
2972
2973 /**
2974 * cfq_cic_lookup - lookup cfq_io_cq
2975 * @cfqd: the associated cfq_data
2976 * @ioc: the associated io_context
2977 *
2978 * Look up cfq_io_cq associated with @cfqd - @ioc pair. Must be called
2979 * with queue_lock held.
2980 */
2981 static struct cfq_io_cq *
2982 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2983 {
2984 struct request_queue *q = cfqd->queue;
2985 struct io_cq *icq;
2986
2987 lockdep_assert_held(cfqd->queue->queue_lock);
2988 if (unlikely(!ioc))
2989 return NULL;
2990
2991 /*
2992 * icq's are indexed from @ioc using radix tree and hint pointer,
2993 * both of which are protected with RCU. All removals are done
2994 * holding both q and ioc locks, and we're holding q lock - if we
2995 * find a icq which points to us, it's guaranteed to be valid.
2996 */
2997 rcu_read_lock();
2998 icq = rcu_dereference(ioc->icq_hint);
2999 if (icq && icq->q == q)
3000 goto out;
3001
3002 icq = radix_tree_lookup(&ioc->icq_tree, cfqd->queue->id);
3003 if (icq && icq->q == q)
3004 rcu_assign_pointer(ioc->icq_hint, icq); /* allowed to race */
3005 else
3006 icq = NULL;
3007 out:
3008 rcu_read_unlock();
3009 return icq_to_cic(icq);
3010 }
3011
3012 /**
3013 * cfq_create_cic - create and link a cfq_io_cq
3014 * @cfqd: cfqd of interest
3015 * @gfp_mask: allocation mask
3016 *
3017 * Make sure cfq_io_cq linking %current->io_context and @cfqd exists. If
3018 * ioc and/or cic doesn't exist, they will be created using @gfp_mask.
3019 */
3020 static int cfq_create_cic(struct cfq_data *cfqd, gfp_t gfp_mask)
3021 {
3022 struct request_queue *q = cfqd->queue;
3023 struct io_cq *icq = NULL;
3024 struct cfq_io_cq *cic;
3025 struct io_context *ioc;
3026 int ret = -ENOMEM;
3027
3028 might_sleep_if(gfp_mask & __GFP_WAIT);
3029
3030 /* allocate stuff */
3031 ioc = create_io_context(current, gfp_mask, q->node);
3032 if (!ioc)
3033 goto out;
3034
3035 cic = cfq_alloc_cic(cfqd, gfp_mask);
3036 if (!cic)
3037 goto out;
3038 icq = &cic->icq;
3039
3040 ret = radix_tree_preload(gfp_mask);
3041 if (ret)
3042 goto out;
3043
3044 icq->ioc = ioc;
3045 icq->q = cfqd->queue;
3046
3047 /* lock both q and ioc and try to link @icq */
3048 spin_lock_irq(q->queue_lock);
3049 spin_lock(&ioc->lock);
3050
3051 ret = radix_tree_insert(&ioc->icq_tree, q->id, icq);
3052 if (likely(!ret)) {
3053 hlist_add_head(&icq->ioc_node, &ioc->icq_list);
3054 list_add(&icq->q_node, &q->icq_list);
3055 icq = NULL;
3056 } else if (ret == -EEXIST) {
3057 /* someone else already did it */
3058 ret = 0;
3059 }
3060
3061 spin_unlock(&ioc->lock);
3062 spin_unlock_irq(q->queue_lock);
3063
3064 radix_tree_preload_end();
3065 out:
3066 if (ret)
3067 printk(KERN_ERR "cfq: icq link failed!\n");
3068 if (icq)
3069 cfq_icq_free(icq);
3070 return ret;
3071 }
3072
3073 /**
3074 * cfq_get_cic - acquire cfq_io_cq and bump refcnt on io_context
3075 * @cfqd: cfqd to setup cic for
3076 * @gfp_mask: allocation mask
3077 *
3078 * Return cfq_io_cq associating @cfqd and %current->io_context and
3079 * bump refcnt on io_context. If ioc or cic doesn't exist, they're created
3080 * using @gfp_mask.
3081 *
3082 * Must be called under queue_lock which may be released and re-acquired.
3083 * This function also may sleep depending on @gfp_mask.
3084 */
3085 static struct cfq_io_cq *cfq_get_cic(struct cfq_data *cfqd, gfp_t gfp_mask)
3086 {
3087 struct request_queue *q = cfqd->queue;
3088 struct cfq_io_cq *cic = NULL;
3089 struct io_context *ioc;
3090 int err;
3091
3092 lockdep_assert_held(q->queue_lock);
3093
3094 while (true) {
3095 /* fast path */
3096 ioc = current->io_context;
3097 if (likely(ioc)) {
3098 cic = cfq_cic_lookup(cfqd, ioc);
3099 if (likely(cic))
3100 break;
3101 }
3102
3103 /* slow path - unlock, create missing ones and retry */
3104 spin_unlock_irq(q->queue_lock);
3105 err = cfq_create_cic(cfqd, gfp_mask);
3106 spin_lock_irq(q->queue_lock);
3107 if (err)
3108 return NULL;
3109 }
3110
3111 /* bump @ioc's refcnt and handle changed notifications */
3112 get_io_context(ioc);
3113
3114 if (unlikely(cic->icq.changed)) {
3115 if (test_and_clear_bit(ICQ_IOPRIO_CHANGED, &cic->icq.changed))
3116 changed_ioprio(cic);
3117 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3118 if (test_and_clear_bit(ICQ_CGROUP_CHANGED, &cic->icq.changed))
3119 changed_cgroup(cic);
3120 #endif
3121 }
3122
3123 return cic;
3124 }
3125
3126 static void
3127 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3128 {
3129 unsigned long elapsed = jiffies - ttime->last_end_request;
3130 elapsed = min(elapsed, 2UL * slice_idle);
3131
3132 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3133 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3134 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3135 }
3136
3137 static void
3138 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3139 struct cfq_io_cq *cic)
3140 {
3141 if (cfq_cfqq_sync(cfqq)) {
3142 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3143 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3144 cfqd->cfq_slice_idle);
3145 }
3146 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3147 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3148 #endif
3149 }
3150
3151 static void
3152 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3153 struct request *rq)
3154 {
3155 sector_t sdist = 0;
3156 sector_t n_sec = blk_rq_sectors(rq);
3157 if (cfqq->last_request_pos) {
3158 if (cfqq->last_request_pos < blk_rq_pos(rq))
3159 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3160 else
3161 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3162 }
3163
3164 cfqq->seek_history <<= 1;
3165 if (blk_queue_nonrot(cfqd->queue))
3166 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3167 else
3168 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3169 }
3170
3171 /*
3172 * Disable idle window if the process thinks too long or seeks so much that
3173 * it doesn't matter
3174 */
3175 static void
3176 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3177 struct cfq_io_cq *cic)
3178 {
3179 int old_idle, enable_idle;
3180
3181 /*
3182 * Don't idle for async or idle io prio class
3183 */
3184 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3185 return;
3186
3187 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3188
3189 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3190 cfq_mark_cfqq_deep(cfqq);
3191
3192 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3193 enable_idle = 0;
3194 else if (!atomic_read(&cic->icq.ioc->nr_tasks) ||
3195 !cfqd->cfq_slice_idle ||
3196 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3197 enable_idle = 0;
3198 else if (sample_valid(cic->ttime.ttime_samples)) {
3199 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3200 enable_idle = 0;
3201 else
3202 enable_idle = 1;
3203 }
3204
3205 if (old_idle != enable_idle) {
3206 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3207 if (enable_idle)
3208 cfq_mark_cfqq_idle_window(cfqq);
3209 else
3210 cfq_clear_cfqq_idle_window(cfqq);
3211 }
3212 }
3213
3214 /*
3215 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3216 * no or if we aren't sure, a 1 will cause a preempt.
3217 */
3218 static bool
3219 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3220 struct request *rq)
3221 {
3222 struct cfq_queue *cfqq;
3223
3224 cfqq = cfqd->active_queue;
3225 if (!cfqq)
3226 return false;
3227
3228 if (cfq_class_idle(new_cfqq))
3229 return false;
3230
3231 if (cfq_class_idle(cfqq))
3232 return true;
3233
3234 /*
3235 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3236 */
3237 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3238 return false;
3239
3240 /*
3241 * if the new request is sync, but the currently running queue is
3242 * not, let the sync request have priority.
3243 */
3244 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3245 return true;
3246
3247 if (new_cfqq->cfqg != cfqq->cfqg)
3248 return false;
3249
3250 if (cfq_slice_used(cfqq))
3251 return true;
3252
3253 /* Allow preemption only if we are idling on sync-noidle tree */
3254 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3255 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3256 new_cfqq->service_tree->count == 2 &&
3257 RB_EMPTY_ROOT(&cfqq->sort_list))
3258 return true;
3259
3260 /*
3261 * So both queues are sync. Let the new request get disk time if
3262 * it's a metadata request and the current queue is doing regular IO.
3263 */
3264 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3265 return true;
3266
3267 /*
3268 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3269 */
3270 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3271 return true;
3272
3273 /* An idle queue should not be idle now for some reason */
3274 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3275 return true;
3276
3277 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3278 return false;
3279
3280 /*
3281 * if this request is as-good as one we would expect from the
3282 * current cfqq, let it preempt
3283 */
3284 if (cfq_rq_close(cfqd, cfqq, rq))
3285 return true;
3286
3287 return false;
3288 }
3289
3290 /*
3291 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3292 * let it have half of its nominal slice.
3293 */
3294 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3295 {
3296 struct cfq_queue *old_cfqq = cfqd->active_queue;
3297
3298 cfq_log_cfqq(cfqd, cfqq, "preempt");
3299 cfq_slice_expired(cfqd, 1);
3300
3301 /*
3302 * workload type is changed, don't save slice, otherwise preempt
3303 * doesn't happen
3304 */
3305 if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3306 cfqq->cfqg->saved_workload_slice = 0;
3307
3308 /*
3309 * Put the new queue at the front of the of the current list,
3310 * so we know that it will be selected next.
3311 */
3312 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3313
3314 cfq_service_tree_add(cfqd, cfqq, 1);
3315
3316 cfqq->slice_end = 0;
3317 cfq_mark_cfqq_slice_new(cfqq);
3318 }
3319
3320 /*
3321 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3322 * something we should do about it
3323 */
3324 static void
3325 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3326 struct request *rq)
3327 {
3328 struct cfq_io_cq *cic = RQ_CIC(rq);
3329
3330 cfqd->rq_queued++;
3331 if (rq->cmd_flags & REQ_PRIO)
3332 cfqq->prio_pending++;
3333
3334 cfq_update_io_thinktime(cfqd, cfqq, cic);
3335 cfq_update_io_seektime(cfqd, cfqq, rq);
3336 cfq_update_idle_window(cfqd, cfqq, cic);
3337
3338 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3339
3340 if (cfqq == cfqd->active_queue) {
3341 /*
3342 * Remember that we saw a request from this process, but
3343 * don't start queuing just yet. Otherwise we risk seeing lots
3344 * of tiny requests, because we disrupt the normal plugging
3345 * and merging. If the request is already larger than a single
3346 * page, let it rip immediately. For that case we assume that
3347 * merging is already done. Ditto for a busy system that
3348 * has other work pending, don't risk delaying until the
3349 * idle timer unplug to continue working.
3350 */
3351 if (cfq_cfqq_wait_request(cfqq)) {
3352 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3353 cfqd->busy_queues > 1) {
3354 cfq_del_timer(cfqd, cfqq);
3355 cfq_clear_cfqq_wait_request(cfqq);
3356 __blk_run_queue(cfqd->queue);
3357 } else {
3358 cfq_blkiocg_update_idle_time_stats(
3359 &cfqq->cfqg->blkg);
3360 cfq_mark_cfqq_must_dispatch(cfqq);
3361 }
3362 }
3363 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3364 /*
3365 * not the active queue - expire current slice if it is
3366 * idle and has expired it's mean thinktime or this new queue
3367 * has some old slice time left and is of higher priority or
3368 * this new queue is RT and the current one is BE
3369 */
3370 cfq_preempt_queue(cfqd, cfqq);
3371 __blk_run_queue(cfqd->queue);
3372 }
3373 }
3374
3375 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3376 {
3377 struct cfq_data *cfqd = q->elevator->elevator_data;
3378 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3379
3380 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3381 cfq_init_prio_data(cfqq, RQ_CIC(rq)->icq.ioc);
3382
3383 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3384 list_add_tail(&rq->queuelist, &cfqq->fifo);
3385 cfq_add_rq_rb(rq);
3386 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3387 &cfqd->serving_group->blkg, rq_data_dir(rq),
3388 rq_is_sync(rq));
3389 cfq_rq_enqueued(cfqd, cfqq, rq);
3390 }
3391
3392 /*
3393 * Update hw_tag based on peak queue depth over 50 samples under
3394 * sufficient load.
3395 */
3396 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3397 {
3398 struct cfq_queue *cfqq = cfqd->active_queue;
3399
3400 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3401 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3402
3403 if (cfqd->hw_tag == 1)
3404 return;
3405
3406 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3407 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3408 return;
3409
3410 /*
3411 * If active queue hasn't enough requests and can idle, cfq might not
3412 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3413 * case
3414 */
3415 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3416 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3417 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3418 return;
3419
3420 if (cfqd->hw_tag_samples++ < 50)
3421 return;
3422
3423 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3424 cfqd->hw_tag = 1;
3425 else
3426 cfqd->hw_tag = 0;
3427 }
3428
3429 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3430 {
3431 struct cfq_io_cq *cic = cfqd->active_cic;
3432
3433 /* If the queue already has requests, don't wait */
3434 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3435 return false;
3436
3437 /* If there are other queues in the group, don't wait */
3438 if (cfqq->cfqg->nr_cfqq > 1)
3439 return false;
3440
3441 /* the only queue in the group, but think time is big */
3442 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3443 return false;
3444
3445 if (cfq_slice_used(cfqq))
3446 return true;
3447
3448 /* if slice left is less than think time, wait busy */
3449 if (cic && sample_valid(cic->ttime.ttime_samples)
3450 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3451 return true;
3452
3453 /*
3454 * If think times is less than a jiffy than ttime_mean=0 and above
3455 * will not be true. It might happen that slice has not expired yet
3456 * but will expire soon (4-5 ns) during select_queue(). To cover the
3457 * case where think time is less than a jiffy, mark the queue wait
3458 * busy if only 1 jiffy is left in the slice.
3459 */
3460 if (cfqq->slice_end - jiffies == 1)
3461 return true;
3462
3463 return false;
3464 }
3465
3466 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3467 {
3468 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3469 struct cfq_data *cfqd = cfqq->cfqd;
3470 const int sync = rq_is_sync(rq);
3471 unsigned long now;
3472
3473 now = jiffies;
3474 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3475 !!(rq->cmd_flags & REQ_NOIDLE));
3476
3477 cfq_update_hw_tag(cfqd);
3478
3479 WARN_ON(!cfqd->rq_in_driver);
3480 WARN_ON(!cfqq->dispatched);
3481 cfqd->rq_in_driver--;
3482 cfqq->dispatched--;
3483 (RQ_CFQG(rq))->dispatched--;
3484 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3485 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3486 rq_data_dir(rq), rq_is_sync(rq));
3487
3488 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3489
3490 if (sync) {
3491 struct cfq_rb_root *service_tree;
3492
3493 RQ_CIC(rq)->ttime.last_end_request = now;
3494
3495 if (cfq_cfqq_on_rr(cfqq))
3496 service_tree = cfqq->service_tree;
3497 else
3498 service_tree = service_tree_for(cfqq->cfqg,
3499 cfqq_prio(cfqq), cfqq_type(cfqq));
3500 service_tree->ttime.last_end_request = now;
3501 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3502 cfqd->last_delayed_sync = now;
3503 }
3504
3505 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3506 cfqq->cfqg->ttime.last_end_request = now;
3507 #endif
3508
3509 /*
3510 * If this is the active queue, check if it needs to be expired,
3511 * or if we want to idle in case it has no pending requests.
3512 */
3513 if (cfqd->active_queue == cfqq) {
3514 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3515
3516 if (cfq_cfqq_slice_new(cfqq)) {
3517 cfq_set_prio_slice(cfqd, cfqq);
3518 cfq_clear_cfqq_slice_new(cfqq);
3519 }
3520
3521 /*
3522 * Should we wait for next request to come in before we expire
3523 * the queue.
3524 */
3525 if (cfq_should_wait_busy(cfqd, cfqq)) {
3526 unsigned long extend_sl = cfqd->cfq_slice_idle;
3527 if (!cfqd->cfq_slice_idle)
3528 extend_sl = cfqd->cfq_group_idle;
3529 cfqq->slice_end = jiffies + extend_sl;
3530 cfq_mark_cfqq_wait_busy(cfqq);
3531 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3532 }
3533
3534 /*
3535 * Idling is not enabled on:
3536 * - expired queues
3537 * - idle-priority queues
3538 * - async queues
3539 * - queues with still some requests queued
3540 * - when there is a close cooperator
3541 */
3542 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3543 cfq_slice_expired(cfqd, 1);
3544 else if (sync && cfqq_empty &&
3545 !cfq_close_cooperator(cfqd, cfqq)) {
3546 cfq_arm_slice_timer(cfqd);
3547 }
3548 }
3549
3550 if (!cfqd->rq_in_driver)
3551 cfq_schedule_dispatch(cfqd);
3552 }
3553
3554 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3555 {
3556 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3557 cfq_mark_cfqq_must_alloc_slice(cfqq);
3558 return ELV_MQUEUE_MUST;
3559 }
3560
3561 return ELV_MQUEUE_MAY;
3562 }
3563
3564 static int cfq_may_queue(struct request_queue *q, int rw)
3565 {
3566 struct cfq_data *cfqd = q->elevator->elevator_data;
3567 struct task_struct *tsk = current;
3568 struct cfq_io_cq *cic;
3569 struct cfq_queue *cfqq;
3570
3571 /*
3572 * don't force setup of a queue from here, as a call to may_queue
3573 * does not necessarily imply that a request actually will be queued.
3574 * so just lookup a possibly existing queue, or return 'may queue'
3575 * if that fails
3576 */
3577 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3578 if (!cic)
3579 return ELV_MQUEUE_MAY;
3580
3581 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3582 if (cfqq) {
3583 cfq_init_prio_data(cfqq, cic->icq.ioc);
3584
3585 return __cfq_may_queue(cfqq);
3586 }
3587
3588 return ELV_MQUEUE_MAY;
3589 }
3590
3591 /*
3592 * queue lock held here
3593 */
3594 static void cfq_put_request(struct request *rq)
3595 {
3596 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3597
3598 if (cfqq) {
3599 const int rw = rq_data_dir(rq);
3600
3601 BUG_ON(!cfqq->allocated[rw]);
3602 cfqq->allocated[rw]--;
3603
3604 put_io_context(RQ_CIC(rq)->icq.ioc, cfqq->cfqd->queue);
3605
3606 /* Put down rq reference on cfqg */
3607 cfq_put_cfqg(RQ_CFQG(rq));
3608 rq->elv.priv[0] = NULL;
3609 rq->elv.priv[1] = NULL;
3610
3611 cfq_put_queue(cfqq);
3612 }
3613 }
3614
3615 static struct cfq_queue *
3616 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
3617 struct cfq_queue *cfqq)
3618 {
3619 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3620 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3621 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3622 cfq_put_queue(cfqq);
3623 return cic_to_cfqq(cic, 1);
3624 }
3625
3626 /*
3627 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3628 * was the last process referring to said cfqq.
3629 */
3630 static struct cfq_queue *
3631 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
3632 {
3633 if (cfqq_process_refs(cfqq) == 1) {
3634 cfqq->pid = current->pid;
3635 cfq_clear_cfqq_coop(cfqq);
3636 cfq_clear_cfqq_split_coop(cfqq);
3637 return cfqq;
3638 }
3639
3640 cic_set_cfqq(cic, NULL, 1);
3641
3642 cfq_put_cooperator(cfqq);
3643
3644 cfq_put_queue(cfqq);
3645 return NULL;
3646 }
3647 /*
3648 * Allocate cfq data structures associated with this request.
3649 */
3650 static int
3651 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3652 {
3653 struct cfq_data *cfqd = q->elevator->elevator_data;
3654 struct cfq_io_cq *cic;
3655 const int rw = rq_data_dir(rq);
3656 const bool is_sync = rq_is_sync(rq);
3657 struct cfq_queue *cfqq;
3658
3659 might_sleep_if(gfp_mask & __GFP_WAIT);
3660
3661 spin_lock_irq(q->queue_lock);
3662 cic = cfq_get_cic(cfqd, gfp_mask);
3663 if (!cic)
3664 goto queue_fail;
3665
3666 new_queue:
3667 cfqq = cic_to_cfqq(cic, is_sync);
3668 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3669 cfqq = cfq_get_queue(cfqd, is_sync, cic->icq.ioc, gfp_mask);
3670 cic_set_cfqq(cic, cfqq, is_sync);
3671 } else {
3672 /*
3673 * If the queue was seeky for too long, break it apart.
3674 */
3675 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3676 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3677 cfqq = split_cfqq(cic, cfqq);
3678 if (!cfqq)
3679 goto new_queue;
3680 }
3681
3682 /*
3683 * Check to see if this queue is scheduled to merge with
3684 * another, closely cooperating queue. The merging of
3685 * queues happens here as it must be done in process context.
3686 * The reference on new_cfqq was taken in merge_cfqqs.
3687 */
3688 if (cfqq->new_cfqq)
3689 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3690 }
3691
3692 cfqq->allocated[rw]++;
3693
3694 cfqq->ref++;
3695 rq->elv.icq = &cic->icq;
3696 rq->elv.priv[0] = cfqq;
3697 rq->elv.priv[1] = cfq_ref_get_cfqg(cfqq->cfqg);
3698 spin_unlock_irq(q->queue_lock);
3699 return 0;
3700
3701 queue_fail:
3702 cfq_schedule_dispatch(cfqd);
3703 spin_unlock_irq(q->queue_lock);
3704 cfq_log(cfqd, "set_request fail");
3705 return 1;
3706 }
3707
3708 static void cfq_kick_queue(struct work_struct *work)
3709 {
3710 struct cfq_data *cfqd =
3711 container_of(work, struct cfq_data, unplug_work);
3712 struct request_queue *q = cfqd->queue;
3713
3714 spin_lock_irq(q->queue_lock);
3715 __blk_run_queue(cfqd->queue);
3716 spin_unlock_irq(q->queue_lock);
3717 }
3718
3719 /*
3720 * Timer running if the active_queue is currently idling inside its time slice
3721 */
3722 static void cfq_idle_slice_timer(unsigned long data)
3723 {
3724 struct cfq_data *cfqd = (struct cfq_data *) data;
3725 struct cfq_queue *cfqq;
3726 unsigned long flags;
3727 int timed_out = 1;
3728
3729 cfq_log(cfqd, "idle timer fired");
3730
3731 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3732
3733 cfqq = cfqd->active_queue;
3734 if (cfqq) {
3735 timed_out = 0;
3736
3737 /*
3738 * We saw a request before the queue expired, let it through
3739 */
3740 if (cfq_cfqq_must_dispatch(cfqq))
3741 goto out_kick;
3742
3743 /*
3744 * expired
3745 */
3746 if (cfq_slice_used(cfqq))
3747 goto expire;
3748
3749 /*
3750 * only expire and reinvoke request handler, if there are
3751 * other queues with pending requests
3752 */
3753 if (!cfqd->busy_queues)
3754 goto out_cont;
3755
3756 /*
3757 * not expired and it has a request pending, let it dispatch
3758 */
3759 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3760 goto out_kick;
3761
3762 /*
3763 * Queue depth flag is reset only when the idle didn't succeed
3764 */
3765 cfq_clear_cfqq_deep(cfqq);
3766 }
3767 expire:
3768 cfq_slice_expired(cfqd, timed_out);
3769 out_kick:
3770 cfq_schedule_dispatch(cfqd);
3771 out_cont:
3772 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3773 }
3774
3775 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3776 {
3777 del_timer_sync(&cfqd->idle_slice_timer);
3778 cancel_work_sync(&cfqd->unplug_work);
3779 }
3780
3781 static void cfq_put_async_queues(struct cfq_data *cfqd)
3782 {
3783 int i;
3784
3785 for (i = 0; i < IOPRIO_BE_NR; i++) {
3786 if (cfqd->async_cfqq[0][i])
3787 cfq_put_queue(cfqd->async_cfqq[0][i]);
3788 if (cfqd->async_cfqq[1][i])
3789 cfq_put_queue(cfqd->async_cfqq[1][i]);
3790 }
3791
3792 if (cfqd->async_idle_cfqq)
3793 cfq_put_queue(cfqd->async_idle_cfqq);
3794 }
3795
3796 static void cfq_exit_queue(struct elevator_queue *e)
3797 {
3798 struct cfq_data *cfqd = e->elevator_data;
3799 struct request_queue *q = cfqd->queue;
3800 bool wait = false;
3801
3802 cfq_shutdown_timer_wq(cfqd);
3803
3804 spin_lock_irq(q->queue_lock);
3805
3806 if (cfqd->active_queue)
3807 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3808
3809 while (!list_empty(&q->icq_list)) {
3810 struct io_cq *icq = list_entry(q->icq_list.next,
3811 struct io_cq, q_node);
3812 struct io_context *ioc = icq->ioc;
3813
3814 spin_lock(&ioc->lock);
3815 cfq_exit_icq(icq);
3816 cfq_release_icq(icq);
3817 spin_unlock(&ioc->lock);
3818 }
3819
3820 cfq_put_async_queues(cfqd);
3821 cfq_release_cfq_groups(cfqd);
3822
3823 /*
3824 * If there are groups which we could not unlink from blkcg list,
3825 * wait for a rcu period for them to be freed.
3826 */
3827 if (cfqd->nr_blkcg_linked_grps)
3828 wait = true;
3829
3830 spin_unlock_irq(q->queue_lock);
3831
3832 cfq_shutdown_timer_wq(cfqd);
3833
3834 /*
3835 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3836 * Do this wait only if there are other unlinked groups out
3837 * there. This can happen if cgroup deletion path claimed the
3838 * responsibility of cleaning up a group before queue cleanup code
3839 * get to the group.
3840 *
3841 * Do not call synchronize_rcu() unconditionally as there are drivers
3842 * which create/delete request queue hundreds of times during scan/boot
3843 * and synchronize_rcu() can take significant time and slow down boot.
3844 */
3845 if (wait)
3846 synchronize_rcu();
3847
3848 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3849 /* Free up per cpu stats for root group */
3850 free_percpu(cfqd->root_group.blkg.stats_cpu);
3851 #endif
3852 kfree(cfqd);
3853 }
3854
3855 static void *cfq_init_queue(struct request_queue *q)
3856 {
3857 struct cfq_data *cfqd;
3858 int i, j;
3859 struct cfq_group *cfqg;
3860 struct cfq_rb_root *st;
3861
3862 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3863 if (!cfqd)
3864 return NULL;
3865
3866 /* Init root service tree */
3867 cfqd->grp_service_tree = CFQ_RB_ROOT;
3868
3869 /* Init root group */
3870 cfqg = &cfqd->root_group;
3871 for_each_cfqg_st(cfqg, i, j, st)
3872 *st = CFQ_RB_ROOT;
3873 RB_CLEAR_NODE(&cfqg->rb_node);
3874
3875 /* Give preference to root group over other groups */
3876 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3877
3878 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3879 /*
3880 * Set root group reference to 2. One reference will be dropped when
3881 * all groups on cfqd->cfqg_list are being deleted during queue exit.
3882 * Other reference will remain there as we don't want to delete this
3883 * group as it is statically allocated and gets destroyed when
3884 * throtl_data goes away.
3885 */
3886 cfqg->ref = 2;
3887
3888 if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
3889 kfree(cfqg);
3890 kfree(cfqd);
3891 return NULL;
3892 }
3893
3894 rcu_read_lock();
3895
3896 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3897 (void *)cfqd, 0);
3898 rcu_read_unlock();
3899 cfqd->nr_blkcg_linked_grps++;
3900
3901 /* Add group on cfqd->cfqg_list */
3902 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
3903 #endif
3904 /*
3905 * Not strictly needed (since RB_ROOT just clears the node and we
3906 * zeroed cfqd on alloc), but better be safe in case someone decides
3907 * to add magic to the rb code
3908 */
3909 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3910 cfqd->prio_trees[i] = RB_ROOT;
3911
3912 /*
3913 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3914 * Grab a permanent reference to it, so that the normal code flow
3915 * will not attempt to free it.
3916 */
3917 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3918 cfqd->oom_cfqq.ref++;
3919 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3920
3921 cfqd->queue = q;
3922
3923 init_timer(&cfqd->idle_slice_timer);
3924 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3925 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3926
3927 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3928
3929 cfqd->cfq_quantum = cfq_quantum;
3930 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3931 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3932 cfqd->cfq_back_max = cfq_back_max;
3933 cfqd->cfq_back_penalty = cfq_back_penalty;
3934 cfqd->cfq_slice[0] = cfq_slice_async;
3935 cfqd->cfq_slice[1] = cfq_slice_sync;
3936 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3937 cfqd->cfq_slice_idle = cfq_slice_idle;
3938 cfqd->cfq_group_idle = cfq_group_idle;
3939 cfqd->cfq_latency = 1;
3940 cfqd->hw_tag = -1;
3941 /*
3942 * we optimistically start assuming sync ops weren't delayed in last
3943 * second, in order to have larger depth for async operations.
3944 */
3945 cfqd->last_delayed_sync = jiffies - HZ;
3946 return cfqd;
3947 }
3948
3949 static void cfq_slab_kill(void)
3950 {
3951 /*
3952 * Caller already ensured that pending RCU callbacks are completed,
3953 * so we should have no busy allocations at this point.
3954 */
3955 if (cfq_pool)
3956 kmem_cache_destroy(cfq_pool);
3957 if (cfq_icq_pool)
3958 kmem_cache_destroy(cfq_icq_pool);
3959 }
3960
3961 static int __init cfq_slab_setup(void)
3962 {
3963 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3964 if (!cfq_pool)
3965 goto fail;
3966
3967 cfq_icq_pool = KMEM_CACHE(cfq_io_cq, 0);
3968 if (!cfq_icq_pool)
3969 goto fail;
3970
3971 return 0;
3972 fail:
3973 cfq_slab_kill();
3974 return -ENOMEM;
3975 }
3976
3977 /*
3978 * sysfs parts below -->
3979 */
3980 static ssize_t
3981 cfq_var_show(unsigned int var, char *page)
3982 {
3983 return sprintf(page, "%d\n", var);
3984 }
3985
3986 static ssize_t
3987 cfq_var_store(unsigned int *var, const char *page, size_t count)
3988 {
3989 char *p = (char *) page;
3990
3991 *var = simple_strtoul(p, &p, 10);
3992 return count;
3993 }
3994
3995 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3996 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3997 { \
3998 struct cfq_data *cfqd = e->elevator_data; \
3999 unsigned int __data = __VAR; \
4000 if (__CONV) \
4001 __data = jiffies_to_msecs(__data); \
4002 return cfq_var_show(__data, (page)); \
4003 }
4004 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4005 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4006 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4007 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4008 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4009 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4010 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4011 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4012 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4013 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4014 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4015 #undef SHOW_FUNCTION
4016
4017 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4018 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4019 { \
4020 struct cfq_data *cfqd = e->elevator_data; \
4021 unsigned int __data; \
4022 int ret = cfq_var_store(&__data, (page), count); \
4023 if (__data < (MIN)) \
4024 __data = (MIN); \
4025 else if (__data > (MAX)) \
4026 __data = (MAX); \
4027 if (__CONV) \
4028 *(__PTR) = msecs_to_jiffies(__data); \
4029 else \
4030 *(__PTR) = __data; \
4031 return ret; \
4032 }
4033 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4034 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4035 UINT_MAX, 1);
4036 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4037 UINT_MAX, 1);
4038 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4039 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4040 UINT_MAX, 0);
4041 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4042 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4043 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4044 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4045 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4046 UINT_MAX, 0);
4047 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4048 #undef STORE_FUNCTION
4049
4050 #define CFQ_ATTR(name) \
4051 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4052
4053 static struct elv_fs_entry cfq_attrs[] = {
4054 CFQ_ATTR(quantum),
4055 CFQ_ATTR(fifo_expire_sync),
4056 CFQ_ATTR(fifo_expire_async),
4057 CFQ_ATTR(back_seek_max),
4058 CFQ_ATTR(back_seek_penalty),
4059 CFQ_ATTR(slice_sync),
4060 CFQ_ATTR(slice_async),
4061 CFQ_ATTR(slice_async_rq),
4062 CFQ_ATTR(slice_idle),
4063 CFQ_ATTR(group_idle),
4064 CFQ_ATTR(low_latency),
4065 __ATTR_NULL
4066 };
4067
4068 static struct elevator_type iosched_cfq = {
4069 .ops = {
4070 .elevator_merge_fn = cfq_merge,
4071 .elevator_merged_fn = cfq_merged_request,
4072 .elevator_merge_req_fn = cfq_merged_requests,
4073 .elevator_allow_merge_fn = cfq_allow_merge,
4074 .elevator_bio_merged_fn = cfq_bio_merged,
4075 .elevator_dispatch_fn = cfq_dispatch_requests,
4076 .elevator_add_req_fn = cfq_insert_request,
4077 .elevator_activate_req_fn = cfq_activate_request,
4078 .elevator_deactivate_req_fn = cfq_deactivate_request,
4079 .elevator_completed_req_fn = cfq_completed_request,
4080 .elevator_former_req_fn = elv_rb_former_request,
4081 .elevator_latter_req_fn = elv_rb_latter_request,
4082 .elevator_set_req_fn = cfq_set_request,
4083 .elevator_put_req_fn = cfq_put_request,
4084 .elevator_may_queue_fn = cfq_may_queue,
4085 .elevator_init_fn = cfq_init_queue,
4086 .elevator_exit_fn = cfq_exit_queue,
4087 },
4088 .elevator_attrs = cfq_attrs,
4089 .elevator_name = "cfq",
4090 .elevator_owner = THIS_MODULE,
4091 };
4092
4093 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4094 static struct blkio_policy_type blkio_policy_cfq = {
4095 .ops = {
4096 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4097 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4098 },
4099 .plid = BLKIO_POLICY_PROP,
4100 };
4101 #else
4102 static struct blkio_policy_type blkio_policy_cfq;
4103 #endif
4104
4105 static int __init cfq_init(void)
4106 {
4107 /*
4108 * could be 0 on HZ < 1000 setups
4109 */
4110 if (!cfq_slice_async)
4111 cfq_slice_async = 1;
4112 if (!cfq_slice_idle)
4113 cfq_slice_idle = 1;
4114
4115 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4116 if (!cfq_group_idle)
4117 cfq_group_idle = 1;
4118 #else
4119 cfq_group_idle = 0;
4120 #endif
4121 if (cfq_slab_setup())
4122 return -ENOMEM;
4123
4124 elv_register(&iosched_cfq);
4125 blkio_policy_register(&blkio_policy_cfq);
4126
4127 return 0;
4128 }
4129
4130 static void __exit cfq_exit(void)
4131 {
4132 blkio_policy_unregister(&blkio_policy_cfq);
4133 elv_unregister(&iosched_cfq);
4134 rcu_barrier(); /* make sure all cic RCU frees are complete */
4135 cfq_slab_kill();
4136 }
4137
4138 module_init(cfq_init);
4139 module_exit(cfq_exit);
4140
4141 MODULE_AUTHOR("Jens Axboe");
4142 MODULE_LICENSE("GPL");
4143 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");