]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/cfq-iosched.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/vapier...
[mirror_ubuntu-artful-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
15
16 /*
17 * tunables
18 */
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
30
31 /*
32 * offset from end of service tree
33 */
34 #define CFQ_IDLE_DELAY (HZ / 5)
35
36 /*
37 * below this threshold, we consider thinktime immediate
38 */
39 #define CFQ_MIN_TT (2)
40
41 #define CFQ_SLICE_SCALE (5)
42 #define CFQ_HW_QUEUE_MIN (5)
43
44 #define RQ_CIC(rq) \
45 ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
47
48 static struct kmem_cache *cfq_pool;
49 static struct kmem_cache *cfq_ioc_pool;
50
51 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
52 static struct completion *ioc_gone;
53 static DEFINE_SPINLOCK(ioc_gone_lock);
54
55 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
59 #define sample_valid(samples) ((samples) > 80)
60
61 /*
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
66 */
67 struct cfq_rb_root {
68 struct rb_root rb;
69 struct rb_node *left;
70 };
71 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
72
73 /*
74 * Per process-grouping structure
75 */
76 struct cfq_queue {
77 /* reference count */
78 atomic_t ref;
79 /* various state flags, see below */
80 unsigned int flags;
81 /* parent cfq_data */
82 struct cfq_data *cfqd;
83 /* service_tree member */
84 struct rb_node rb_node;
85 /* service_tree key */
86 unsigned long rb_key;
87 /* prio tree member */
88 struct rb_node p_node;
89 /* prio tree root we belong to, if any */
90 struct rb_root *p_root;
91 /* sorted list of pending requests */
92 struct rb_root sort_list;
93 /* if fifo isn't expired, next request to serve */
94 struct request *next_rq;
95 /* requests queued in sort_list */
96 int queued[2];
97 /* currently allocated requests */
98 int allocated[2];
99 /* fifo list of requests in sort_list */
100 struct list_head fifo;
101
102 unsigned long slice_end;
103 long slice_resid;
104 unsigned int slice_dispatch;
105
106 /* pending metadata requests */
107 int meta_pending;
108 /* number of requests that are on the dispatch list or inside driver */
109 int dispatched;
110
111 /* io prio of this group */
112 unsigned short ioprio, org_ioprio;
113 unsigned short ioprio_class, org_ioprio_class;
114
115 pid_t pid;
116 };
117
118 /*
119 * Per block device queue structure
120 */
121 struct cfq_data {
122 struct request_queue *queue;
123
124 /*
125 * rr list of queues with requests and the count of them
126 */
127 struct cfq_rb_root service_tree;
128
129 /*
130 * Each priority tree is sorted by next_request position. These
131 * trees are used when determining if two or more queues are
132 * interleaving requests (see cfq_close_cooperator).
133 */
134 struct rb_root prio_trees[CFQ_PRIO_LISTS];
135
136 unsigned int busy_queues;
137
138 int rq_in_driver[2];
139 int sync_flight;
140
141 /*
142 * queue-depth detection
143 */
144 int rq_queued;
145 int hw_tag;
146 int hw_tag_samples;
147 int rq_in_driver_peak;
148
149 /*
150 * idle window management
151 */
152 struct timer_list idle_slice_timer;
153 struct delayed_work unplug_work;
154
155 struct cfq_queue *active_queue;
156 struct cfq_io_context *active_cic;
157
158 /*
159 * async queue for each priority case
160 */
161 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
162 struct cfq_queue *async_idle_cfqq;
163
164 sector_t last_position;
165
166 /*
167 * tunables, see top of file
168 */
169 unsigned int cfq_quantum;
170 unsigned int cfq_fifo_expire[2];
171 unsigned int cfq_back_penalty;
172 unsigned int cfq_back_max;
173 unsigned int cfq_slice[2];
174 unsigned int cfq_slice_async_rq;
175 unsigned int cfq_slice_idle;
176 unsigned int cfq_latency;
177
178 struct list_head cic_list;
179
180 /*
181 * Fallback dummy cfqq for extreme OOM conditions
182 */
183 struct cfq_queue oom_cfqq;
184
185 unsigned long last_end_sync_rq;
186 };
187
188 enum cfqq_state_flags {
189 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
190 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
191 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
192 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
193 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
194 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
195 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
196 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
197 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
198 CFQ_CFQQ_FLAG_coop, /* has done a coop jump of the queue */
199 };
200
201 #define CFQ_CFQQ_FNS(name) \
202 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
203 { \
204 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
205 } \
206 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
207 { \
208 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
209 } \
210 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
211 { \
212 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
213 }
214
215 CFQ_CFQQ_FNS(on_rr);
216 CFQ_CFQQ_FNS(wait_request);
217 CFQ_CFQQ_FNS(must_dispatch);
218 CFQ_CFQQ_FNS(must_alloc_slice);
219 CFQ_CFQQ_FNS(fifo_expire);
220 CFQ_CFQQ_FNS(idle_window);
221 CFQ_CFQQ_FNS(prio_changed);
222 CFQ_CFQQ_FNS(slice_new);
223 CFQ_CFQQ_FNS(sync);
224 CFQ_CFQQ_FNS(coop);
225 #undef CFQ_CFQQ_FNS
226
227 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
228 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
229 #define cfq_log(cfqd, fmt, args...) \
230 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
231
232 static void cfq_dispatch_insert(struct request_queue *, struct request *);
233 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
234 struct io_context *, gfp_t);
235 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
236 struct io_context *);
237
238 static inline int rq_in_driver(struct cfq_data *cfqd)
239 {
240 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
241 }
242
243 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
244 int is_sync)
245 {
246 return cic->cfqq[!!is_sync];
247 }
248
249 static inline void cic_set_cfqq(struct cfq_io_context *cic,
250 struct cfq_queue *cfqq, int is_sync)
251 {
252 cic->cfqq[!!is_sync] = cfqq;
253 }
254
255 /*
256 * We regard a request as SYNC, if it's either a read or has the SYNC bit
257 * set (in which case it could also be direct WRITE).
258 */
259 static inline int cfq_bio_sync(struct bio *bio)
260 {
261 if (bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO))
262 return 1;
263
264 return 0;
265 }
266
267 /*
268 * scheduler run of queue, if there are requests pending and no one in the
269 * driver that will restart queueing
270 */
271 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd,
272 unsigned long delay)
273 {
274 if (cfqd->busy_queues) {
275 cfq_log(cfqd, "schedule dispatch");
276 kblockd_schedule_delayed_work(cfqd->queue, &cfqd->unplug_work,
277 delay);
278 }
279 }
280
281 static int cfq_queue_empty(struct request_queue *q)
282 {
283 struct cfq_data *cfqd = q->elevator->elevator_data;
284
285 return !cfqd->busy_queues;
286 }
287
288 /*
289 * Scale schedule slice based on io priority. Use the sync time slice only
290 * if a queue is marked sync and has sync io queued. A sync queue with async
291 * io only, should not get full sync slice length.
292 */
293 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
294 unsigned short prio)
295 {
296 const int base_slice = cfqd->cfq_slice[sync];
297
298 WARN_ON(prio >= IOPRIO_BE_NR);
299
300 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
301 }
302
303 static inline int
304 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
305 {
306 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
307 }
308
309 static inline void
310 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
311 {
312 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
313 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
314 }
315
316 /*
317 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
318 * isn't valid until the first request from the dispatch is activated
319 * and the slice time set.
320 */
321 static inline int cfq_slice_used(struct cfq_queue *cfqq)
322 {
323 if (cfq_cfqq_slice_new(cfqq))
324 return 0;
325 if (time_before(jiffies, cfqq->slice_end))
326 return 0;
327
328 return 1;
329 }
330
331 /*
332 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
333 * We choose the request that is closest to the head right now. Distance
334 * behind the head is penalized and only allowed to a certain extent.
335 */
336 static struct request *
337 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
338 {
339 sector_t last, s1, s2, d1 = 0, d2 = 0;
340 unsigned long back_max;
341 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
342 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
343 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
344
345 if (rq1 == NULL || rq1 == rq2)
346 return rq2;
347 if (rq2 == NULL)
348 return rq1;
349
350 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
351 return rq1;
352 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
353 return rq2;
354 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
355 return rq1;
356 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
357 return rq2;
358
359 s1 = blk_rq_pos(rq1);
360 s2 = blk_rq_pos(rq2);
361
362 last = cfqd->last_position;
363
364 /*
365 * by definition, 1KiB is 2 sectors
366 */
367 back_max = cfqd->cfq_back_max * 2;
368
369 /*
370 * Strict one way elevator _except_ in the case where we allow
371 * short backward seeks which are biased as twice the cost of a
372 * similar forward seek.
373 */
374 if (s1 >= last)
375 d1 = s1 - last;
376 else if (s1 + back_max >= last)
377 d1 = (last - s1) * cfqd->cfq_back_penalty;
378 else
379 wrap |= CFQ_RQ1_WRAP;
380
381 if (s2 >= last)
382 d2 = s2 - last;
383 else if (s2 + back_max >= last)
384 d2 = (last - s2) * cfqd->cfq_back_penalty;
385 else
386 wrap |= CFQ_RQ2_WRAP;
387
388 /* Found required data */
389
390 /*
391 * By doing switch() on the bit mask "wrap" we avoid having to
392 * check two variables for all permutations: --> faster!
393 */
394 switch (wrap) {
395 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
396 if (d1 < d2)
397 return rq1;
398 else if (d2 < d1)
399 return rq2;
400 else {
401 if (s1 >= s2)
402 return rq1;
403 else
404 return rq2;
405 }
406
407 case CFQ_RQ2_WRAP:
408 return rq1;
409 case CFQ_RQ1_WRAP:
410 return rq2;
411 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
412 default:
413 /*
414 * Since both rqs are wrapped,
415 * start with the one that's further behind head
416 * (--> only *one* back seek required),
417 * since back seek takes more time than forward.
418 */
419 if (s1 <= s2)
420 return rq1;
421 else
422 return rq2;
423 }
424 }
425
426 /*
427 * The below is leftmost cache rbtree addon
428 */
429 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
430 {
431 if (!root->left)
432 root->left = rb_first(&root->rb);
433
434 if (root->left)
435 return rb_entry(root->left, struct cfq_queue, rb_node);
436
437 return NULL;
438 }
439
440 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
441 {
442 rb_erase(n, root);
443 RB_CLEAR_NODE(n);
444 }
445
446 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
447 {
448 if (root->left == n)
449 root->left = NULL;
450 rb_erase_init(n, &root->rb);
451 }
452
453 /*
454 * would be nice to take fifo expire time into account as well
455 */
456 static struct request *
457 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
458 struct request *last)
459 {
460 struct rb_node *rbnext = rb_next(&last->rb_node);
461 struct rb_node *rbprev = rb_prev(&last->rb_node);
462 struct request *next = NULL, *prev = NULL;
463
464 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
465
466 if (rbprev)
467 prev = rb_entry_rq(rbprev);
468
469 if (rbnext)
470 next = rb_entry_rq(rbnext);
471 else {
472 rbnext = rb_first(&cfqq->sort_list);
473 if (rbnext && rbnext != &last->rb_node)
474 next = rb_entry_rq(rbnext);
475 }
476
477 return cfq_choose_req(cfqd, next, prev);
478 }
479
480 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
481 struct cfq_queue *cfqq)
482 {
483 /*
484 * just an approximation, should be ok.
485 */
486 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
487 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
488 }
489
490 /*
491 * The cfqd->service_tree holds all pending cfq_queue's that have
492 * requests waiting to be processed. It is sorted in the order that
493 * we will service the queues.
494 */
495 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
496 int add_front)
497 {
498 struct rb_node **p, *parent;
499 struct cfq_queue *__cfqq;
500 unsigned long rb_key;
501 int left;
502
503 if (cfq_class_idle(cfqq)) {
504 rb_key = CFQ_IDLE_DELAY;
505 parent = rb_last(&cfqd->service_tree.rb);
506 if (parent && parent != &cfqq->rb_node) {
507 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
508 rb_key += __cfqq->rb_key;
509 } else
510 rb_key += jiffies;
511 } else if (!add_front) {
512 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
513 rb_key += cfqq->slice_resid;
514 cfqq->slice_resid = 0;
515 } else
516 rb_key = 0;
517
518 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
519 /*
520 * same position, nothing more to do
521 */
522 if (rb_key == cfqq->rb_key)
523 return;
524
525 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
526 }
527
528 left = 1;
529 parent = NULL;
530 p = &cfqd->service_tree.rb.rb_node;
531 while (*p) {
532 struct rb_node **n;
533
534 parent = *p;
535 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
536
537 /*
538 * sort RT queues first, we always want to give
539 * preference to them. IDLE queues goes to the back.
540 * after that, sort on the next service time.
541 */
542 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
543 n = &(*p)->rb_left;
544 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
545 n = &(*p)->rb_right;
546 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
547 n = &(*p)->rb_left;
548 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
549 n = &(*p)->rb_right;
550 else if (rb_key < __cfqq->rb_key)
551 n = &(*p)->rb_left;
552 else
553 n = &(*p)->rb_right;
554
555 if (n == &(*p)->rb_right)
556 left = 0;
557
558 p = n;
559 }
560
561 if (left)
562 cfqd->service_tree.left = &cfqq->rb_node;
563
564 cfqq->rb_key = rb_key;
565 rb_link_node(&cfqq->rb_node, parent, p);
566 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
567 }
568
569 static struct cfq_queue *
570 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
571 sector_t sector, struct rb_node **ret_parent,
572 struct rb_node ***rb_link)
573 {
574 struct rb_node **p, *parent;
575 struct cfq_queue *cfqq = NULL;
576
577 parent = NULL;
578 p = &root->rb_node;
579 while (*p) {
580 struct rb_node **n;
581
582 parent = *p;
583 cfqq = rb_entry(parent, struct cfq_queue, p_node);
584
585 /*
586 * Sort strictly based on sector. Smallest to the left,
587 * largest to the right.
588 */
589 if (sector > blk_rq_pos(cfqq->next_rq))
590 n = &(*p)->rb_right;
591 else if (sector < blk_rq_pos(cfqq->next_rq))
592 n = &(*p)->rb_left;
593 else
594 break;
595 p = n;
596 cfqq = NULL;
597 }
598
599 *ret_parent = parent;
600 if (rb_link)
601 *rb_link = p;
602 return cfqq;
603 }
604
605 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
606 {
607 struct rb_node **p, *parent;
608 struct cfq_queue *__cfqq;
609
610 if (cfqq->p_root) {
611 rb_erase(&cfqq->p_node, cfqq->p_root);
612 cfqq->p_root = NULL;
613 }
614
615 if (cfq_class_idle(cfqq))
616 return;
617 if (!cfqq->next_rq)
618 return;
619
620 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
621 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
622 blk_rq_pos(cfqq->next_rq), &parent, &p);
623 if (!__cfqq) {
624 rb_link_node(&cfqq->p_node, parent, p);
625 rb_insert_color(&cfqq->p_node, cfqq->p_root);
626 } else
627 cfqq->p_root = NULL;
628 }
629
630 /*
631 * Update cfqq's position in the service tree.
632 */
633 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
634 {
635 /*
636 * Resorting requires the cfqq to be on the RR list already.
637 */
638 if (cfq_cfqq_on_rr(cfqq)) {
639 cfq_service_tree_add(cfqd, cfqq, 0);
640 cfq_prio_tree_add(cfqd, cfqq);
641 }
642 }
643
644 /*
645 * add to busy list of queues for service, trying to be fair in ordering
646 * the pending list according to last request service
647 */
648 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
649 {
650 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
651 BUG_ON(cfq_cfqq_on_rr(cfqq));
652 cfq_mark_cfqq_on_rr(cfqq);
653 cfqd->busy_queues++;
654
655 cfq_resort_rr_list(cfqd, cfqq);
656 }
657
658 /*
659 * Called when the cfqq no longer has requests pending, remove it from
660 * the service tree.
661 */
662 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
663 {
664 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
665 BUG_ON(!cfq_cfqq_on_rr(cfqq));
666 cfq_clear_cfqq_on_rr(cfqq);
667
668 if (!RB_EMPTY_NODE(&cfqq->rb_node))
669 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
670 if (cfqq->p_root) {
671 rb_erase(&cfqq->p_node, cfqq->p_root);
672 cfqq->p_root = NULL;
673 }
674
675 BUG_ON(!cfqd->busy_queues);
676 cfqd->busy_queues--;
677 }
678
679 /*
680 * rb tree support functions
681 */
682 static void cfq_del_rq_rb(struct request *rq)
683 {
684 struct cfq_queue *cfqq = RQ_CFQQ(rq);
685 struct cfq_data *cfqd = cfqq->cfqd;
686 const int sync = rq_is_sync(rq);
687
688 BUG_ON(!cfqq->queued[sync]);
689 cfqq->queued[sync]--;
690
691 elv_rb_del(&cfqq->sort_list, rq);
692
693 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
694 cfq_del_cfqq_rr(cfqd, cfqq);
695 }
696
697 static void cfq_add_rq_rb(struct request *rq)
698 {
699 struct cfq_queue *cfqq = RQ_CFQQ(rq);
700 struct cfq_data *cfqd = cfqq->cfqd;
701 struct request *__alias, *prev;
702
703 cfqq->queued[rq_is_sync(rq)]++;
704
705 /*
706 * looks a little odd, but the first insert might return an alias.
707 * if that happens, put the alias on the dispatch list
708 */
709 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
710 cfq_dispatch_insert(cfqd->queue, __alias);
711
712 if (!cfq_cfqq_on_rr(cfqq))
713 cfq_add_cfqq_rr(cfqd, cfqq);
714
715 /*
716 * check if this request is a better next-serve candidate
717 */
718 prev = cfqq->next_rq;
719 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
720
721 /*
722 * adjust priority tree position, if ->next_rq changes
723 */
724 if (prev != cfqq->next_rq)
725 cfq_prio_tree_add(cfqd, cfqq);
726
727 BUG_ON(!cfqq->next_rq);
728 }
729
730 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
731 {
732 elv_rb_del(&cfqq->sort_list, rq);
733 cfqq->queued[rq_is_sync(rq)]--;
734 cfq_add_rq_rb(rq);
735 }
736
737 static struct request *
738 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
739 {
740 struct task_struct *tsk = current;
741 struct cfq_io_context *cic;
742 struct cfq_queue *cfqq;
743
744 cic = cfq_cic_lookup(cfqd, tsk->io_context);
745 if (!cic)
746 return NULL;
747
748 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
749 if (cfqq) {
750 sector_t sector = bio->bi_sector + bio_sectors(bio);
751
752 return elv_rb_find(&cfqq->sort_list, sector);
753 }
754
755 return NULL;
756 }
757
758 static void cfq_activate_request(struct request_queue *q, struct request *rq)
759 {
760 struct cfq_data *cfqd = q->elevator->elevator_data;
761
762 cfqd->rq_in_driver[rq_is_sync(rq)]++;
763 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
764 rq_in_driver(cfqd));
765
766 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
767 }
768
769 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
770 {
771 struct cfq_data *cfqd = q->elevator->elevator_data;
772 const int sync = rq_is_sync(rq);
773
774 WARN_ON(!cfqd->rq_in_driver[sync]);
775 cfqd->rq_in_driver[sync]--;
776 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
777 rq_in_driver(cfqd));
778 }
779
780 static void cfq_remove_request(struct request *rq)
781 {
782 struct cfq_queue *cfqq = RQ_CFQQ(rq);
783
784 if (cfqq->next_rq == rq)
785 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
786
787 list_del_init(&rq->queuelist);
788 cfq_del_rq_rb(rq);
789
790 cfqq->cfqd->rq_queued--;
791 if (rq_is_meta(rq)) {
792 WARN_ON(!cfqq->meta_pending);
793 cfqq->meta_pending--;
794 }
795 }
796
797 static int cfq_merge(struct request_queue *q, struct request **req,
798 struct bio *bio)
799 {
800 struct cfq_data *cfqd = q->elevator->elevator_data;
801 struct request *__rq;
802
803 __rq = cfq_find_rq_fmerge(cfqd, bio);
804 if (__rq && elv_rq_merge_ok(__rq, bio)) {
805 *req = __rq;
806 return ELEVATOR_FRONT_MERGE;
807 }
808
809 return ELEVATOR_NO_MERGE;
810 }
811
812 static void cfq_merged_request(struct request_queue *q, struct request *req,
813 int type)
814 {
815 if (type == ELEVATOR_FRONT_MERGE) {
816 struct cfq_queue *cfqq = RQ_CFQQ(req);
817
818 cfq_reposition_rq_rb(cfqq, req);
819 }
820 }
821
822 static void
823 cfq_merged_requests(struct request_queue *q, struct request *rq,
824 struct request *next)
825 {
826 /*
827 * reposition in fifo if next is older than rq
828 */
829 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
830 time_before(next->start_time, rq->start_time))
831 list_move(&rq->queuelist, &next->queuelist);
832
833 cfq_remove_request(next);
834 }
835
836 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
837 struct bio *bio)
838 {
839 struct cfq_data *cfqd = q->elevator->elevator_data;
840 struct cfq_io_context *cic;
841 struct cfq_queue *cfqq;
842
843 /*
844 * Disallow merge of a sync bio into an async request.
845 */
846 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
847 return 0;
848
849 /*
850 * Lookup the cfqq that this bio will be queued with. Allow
851 * merge only if rq is queued there.
852 */
853 cic = cfq_cic_lookup(cfqd, current->io_context);
854 if (!cic)
855 return 0;
856
857 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
858 if (cfqq == RQ_CFQQ(rq))
859 return 1;
860
861 return 0;
862 }
863
864 static void __cfq_set_active_queue(struct cfq_data *cfqd,
865 struct cfq_queue *cfqq)
866 {
867 if (cfqq) {
868 cfq_log_cfqq(cfqd, cfqq, "set_active");
869 cfqq->slice_end = 0;
870 cfqq->slice_dispatch = 0;
871
872 cfq_clear_cfqq_wait_request(cfqq);
873 cfq_clear_cfqq_must_dispatch(cfqq);
874 cfq_clear_cfqq_must_alloc_slice(cfqq);
875 cfq_clear_cfqq_fifo_expire(cfqq);
876 cfq_mark_cfqq_slice_new(cfqq);
877
878 del_timer(&cfqd->idle_slice_timer);
879 }
880
881 cfqd->active_queue = cfqq;
882 }
883
884 /*
885 * current cfqq expired its slice (or was too idle), select new one
886 */
887 static void
888 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
889 int timed_out)
890 {
891 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
892
893 if (cfq_cfqq_wait_request(cfqq))
894 del_timer(&cfqd->idle_slice_timer);
895
896 cfq_clear_cfqq_wait_request(cfqq);
897
898 /*
899 * store what was left of this slice, if the queue idled/timed out
900 */
901 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
902 cfqq->slice_resid = cfqq->slice_end - jiffies;
903 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
904 }
905
906 cfq_resort_rr_list(cfqd, cfqq);
907
908 if (cfqq == cfqd->active_queue)
909 cfqd->active_queue = NULL;
910
911 if (cfqd->active_cic) {
912 put_io_context(cfqd->active_cic->ioc);
913 cfqd->active_cic = NULL;
914 }
915 }
916
917 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
918 {
919 struct cfq_queue *cfqq = cfqd->active_queue;
920
921 if (cfqq)
922 __cfq_slice_expired(cfqd, cfqq, timed_out);
923 }
924
925 /*
926 * Get next queue for service. Unless we have a queue preemption,
927 * we'll simply select the first cfqq in the service tree.
928 */
929 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
930 {
931 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
932 return NULL;
933
934 return cfq_rb_first(&cfqd->service_tree);
935 }
936
937 /*
938 * Get and set a new active queue for service.
939 */
940 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
941 struct cfq_queue *cfqq)
942 {
943 if (!cfqq) {
944 cfqq = cfq_get_next_queue(cfqd);
945 if (cfqq)
946 cfq_clear_cfqq_coop(cfqq);
947 }
948
949 __cfq_set_active_queue(cfqd, cfqq);
950 return cfqq;
951 }
952
953 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
954 struct request *rq)
955 {
956 if (blk_rq_pos(rq) >= cfqd->last_position)
957 return blk_rq_pos(rq) - cfqd->last_position;
958 else
959 return cfqd->last_position - blk_rq_pos(rq);
960 }
961
962 #define CIC_SEEK_THR 8 * 1024
963 #define CIC_SEEKY(cic) ((cic)->seek_mean > CIC_SEEK_THR)
964
965 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
966 {
967 struct cfq_io_context *cic = cfqd->active_cic;
968 sector_t sdist = cic->seek_mean;
969
970 if (!sample_valid(cic->seek_samples))
971 sdist = CIC_SEEK_THR;
972
973 return cfq_dist_from_last(cfqd, rq) <= sdist;
974 }
975
976 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
977 struct cfq_queue *cur_cfqq)
978 {
979 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
980 struct rb_node *parent, *node;
981 struct cfq_queue *__cfqq;
982 sector_t sector = cfqd->last_position;
983
984 if (RB_EMPTY_ROOT(root))
985 return NULL;
986
987 /*
988 * First, if we find a request starting at the end of the last
989 * request, choose it.
990 */
991 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
992 if (__cfqq)
993 return __cfqq;
994
995 /*
996 * If the exact sector wasn't found, the parent of the NULL leaf
997 * will contain the closest sector.
998 */
999 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1000 if (cfq_rq_close(cfqd, __cfqq->next_rq))
1001 return __cfqq;
1002
1003 if (blk_rq_pos(__cfqq->next_rq) < sector)
1004 node = rb_next(&__cfqq->p_node);
1005 else
1006 node = rb_prev(&__cfqq->p_node);
1007 if (!node)
1008 return NULL;
1009
1010 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1011 if (cfq_rq_close(cfqd, __cfqq->next_rq))
1012 return __cfqq;
1013
1014 return NULL;
1015 }
1016
1017 /*
1018 * cfqd - obvious
1019 * cur_cfqq - passed in so that we don't decide that the current queue is
1020 * closely cooperating with itself.
1021 *
1022 * So, basically we're assuming that that cur_cfqq has dispatched at least
1023 * one request, and that cfqd->last_position reflects a position on the disk
1024 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1025 * assumption.
1026 */
1027 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1028 struct cfq_queue *cur_cfqq,
1029 int probe)
1030 {
1031 struct cfq_queue *cfqq;
1032
1033 /*
1034 * A valid cfq_io_context is necessary to compare requests against
1035 * the seek_mean of the current cfqq.
1036 */
1037 if (!cfqd->active_cic)
1038 return NULL;
1039
1040 /*
1041 * We should notice if some of the queues are cooperating, eg
1042 * working closely on the same area of the disk. In that case,
1043 * we can group them together and don't waste time idling.
1044 */
1045 cfqq = cfqq_close(cfqd, cur_cfqq);
1046 if (!cfqq)
1047 return NULL;
1048
1049 if (cfq_cfqq_coop(cfqq))
1050 return NULL;
1051
1052 if (!probe)
1053 cfq_mark_cfqq_coop(cfqq);
1054 return cfqq;
1055 }
1056
1057 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1058 {
1059 struct cfq_queue *cfqq = cfqd->active_queue;
1060 struct cfq_io_context *cic;
1061 unsigned long sl;
1062
1063 /*
1064 * SSD device without seek penalty, disable idling. But only do so
1065 * for devices that support queuing, otherwise we still have a problem
1066 * with sync vs async workloads.
1067 */
1068 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1069 return;
1070
1071 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1072 WARN_ON(cfq_cfqq_slice_new(cfqq));
1073
1074 /*
1075 * idle is disabled, either manually or by past process history
1076 */
1077 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1078 return;
1079
1080 /*
1081 * still requests with the driver, don't idle
1082 */
1083 if (rq_in_driver(cfqd))
1084 return;
1085
1086 /*
1087 * task has exited, don't wait
1088 */
1089 cic = cfqd->active_cic;
1090 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1091 return;
1092
1093 cfq_mark_cfqq_wait_request(cfqq);
1094
1095 /*
1096 * we don't want to idle for seeks, but we do want to allow
1097 * fair distribution of slice time for a process doing back-to-back
1098 * seeks. so allow a little bit of time for him to submit a new rq
1099 */
1100 sl = cfqd->cfq_slice_idle;
1101 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
1102 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1103
1104 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1105 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1106 }
1107
1108 /*
1109 * Move request from internal lists to the request queue dispatch list.
1110 */
1111 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1112 {
1113 struct cfq_data *cfqd = q->elevator->elevator_data;
1114 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1115
1116 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1117
1118 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1119 cfq_remove_request(rq);
1120 cfqq->dispatched++;
1121 elv_dispatch_sort(q, rq);
1122
1123 if (cfq_cfqq_sync(cfqq))
1124 cfqd->sync_flight++;
1125 }
1126
1127 /*
1128 * return expired entry, or NULL to just start from scratch in rbtree
1129 */
1130 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1131 {
1132 struct cfq_data *cfqd = cfqq->cfqd;
1133 struct request *rq;
1134 int fifo;
1135
1136 if (cfq_cfqq_fifo_expire(cfqq))
1137 return NULL;
1138
1139 cfq_mark_cfqq_fifo_expire(cfqq);
1140
1141 if (list_empty(&cfqq->fifo))
1142 return NULL;
1143
1144 fifo = cfq_cfqq_sync(cfqq);
1145 rq = rq_entry_fifo(cfqq->fifo.next);
1146
1147 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
1148 rq = NULL;
1149
1150 cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
1151 return rq;
1152 }
1153
1154 static inline int
1155 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1156 {
1157 const int base_rq = cfqd->cfq_slice_async_rq;
1158
1159 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1160
1161 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1162 }
1163
1164 /*
1165 * Select a queue for service. If we have a current active queue,
1166 * check whether to continue servicing it, or retrieve and set a new one.
1167 */
1168 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1169 {
1170 struct cfq_queue *cfqq, *new_cfqq = NULL;
1171
1172 cfqq = cfqd->active_queue;
1173 if (!cfqq)
1174 goto new_queue;
1175
1176 /*
1177 * The active queue has run out of time, expire it and select new.
1178 */
1179 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1180 goto expire;
1181
1182 /*
1183 * The active queue has requests and isn't expired, allow it to
1184 * dispatch.
1185 */
1186 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1187 goto keep_queue;
1188
1189 /*
1190 * If another queue has a request waiting within our mean seek
1191 * distance, let it run. The expire code will check for close
1192 * cooperators and put the close queue at the front of the service
1193 * tree.
1194 */
1195 new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1196 if (new_cfqq)
1197 goto expire;
1198
1199 /*
1200 * No requests pending. If the active queue still has requests in
1201 * flight or is idling for a new request, allow either of these
1202 * conditions to happen (or time out) before selecting a new queue.
1203 */
1204 if (timer_pending(&cfqd->idle_slice_timer) ||
1205 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1206 cfqq = NULL;
1207 goto keep_queue;
1208 }
1209
1210 expire:
1211 cfq_slice_expired(cfqd, 0);
1212 new_queue:
1213 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1214 keep_queue:
1215 return cfqq;
1216 }
1217
1218 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1219 {
1220 int dispatched = 0;
1221
1222 while (cfqq->next_rq) {
1223 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1224 dispatched++;
1225 }
1226
1227 BUG_ON(!list_empty(&cfqq->fifo));
1228 return dispatched;
1229 }
1230
1231 /*
1232 * Drain our current requests. Used for barriers and when switching
1233 * io schedulers on-the-fly.
1234 */
1235 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1236 {
1237 struct cfq_queue *cfqq;
1238 int dispatched = 0;
1239
1240 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1241 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1242
1243 cfq_slice_expired(cfqd, 0);
1244
1245 BUG_ON(cfqd->busy_queues);
1246
1247 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1248 return dispatched;
1249 }
1250
1251 /*
1252 * Dispatch a request from cfqq, moving them to the request queue
1253 * dispatch list.
1254 */
1255 static void cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1256 {
1257 struct request *rq;
1258
1259 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1260
1261 /*
1262 * follow expired path, else get first next available
1263 */
1264 rq = cfq_check_fifo(cfqq);
1265 if (!rq)
1266 rq = cfqq->next_rq;
1267
1268 /*
1269 * insert request into driver dispatch list
1270 */
1271 cfq_dispatch_insert(cfqd->queue, rq);
1272
1273 if (!cfqd->active_cic) {
1274 struct cfq_io_context *cic = RQ_CIC(rq);
1275
1276 atomic_long_inc(&cic->ioc->refcount);
1277 cfqd->active_cic = cic;
1278 }
1279 }
1280
1281 /*
1282 * Find the cfqq that we need to service and move a request from that to the
1283 * dispatch list
1284 */
1285 static int cfq_dispatch_requests(struct request_queue *q, int force)
1286 {
1287 struct cfq_data *cfqd = q->elevator->elevator_data;
1288 struct cfq_queue *cfqq;
1289 unsigned int max_dispatch;
1290
1291 if (!cfqd->busy_queues)
1292 return 0;
1293
1294 if (unlikely(force))
1295 return cfq_forced_dispatch(cfqd);
1296
1297 cfqq = cfq_select_queue(cfqd);
1298 if (!cfqq)
1299 return 0;
1300
1301 /*
1302 * Drain async requests before we start sync IO
1303 */
1304 if (cfq_cfqq_idle_window(cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1305 return 0;
1306
1307 /*
1308 * If this is an async queue and we have sync IO in flight, let it wait
1309 */
1310 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1311 return 0;
1312
1313 max_dispatch = cfqd->cfq_quantum;
1314 if (cfq_class_idle(cfqq))
1315 max_dispatch = 1;
1316
1317 /*
1318 * Does this cfqq already have too much IO in flight?
1319 */
1320 if (cfqq->dispatched >= max_dispatch) {
1321 /*
1322 * idle queue must always only have a single IO in flight
1323 */
1324 if (cfq_class_idle(cfqq))
1325 return 0;
1326
1327 /*
1328 * We have other queues, don't allow more IO from this one
1329 */
1330 if (cfqd->busy_queues > 1)
1331 return 0;
1332
1333 /*
1334 * Sole queue user, allow bigger slice
1335 */
1336 max_dispatch *= 4;
1337 }
1338
1339 /*
1340 * Async queues must wait a bit before being allowed dispatch.
1341 * We also ramp up the dispatch depth gradually for async IO,
1342 * based on the last sync IO we serviced
1343 */
1344 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1345 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1346 unsigned int depth;
1347
1348 depth = last_sync / cfqd->cfq_slice[1];
1349 if (!depth && !cfqq->dispatched)
1350 depth = 1;
1351 if (depth < max_dispatch)
1352 max_dispatch = depth;
1353 }
1354
1355 if (cfqq->dispatched >= max_dispatch)
1356 return 0;
1357
1358 /*
1359 * Dispatch a request from this cfqq
1360 */
1361 cfq_dispatch_request(cfqd, cfqq);
1362 cfqq->slice_dispatch++;
1363 cfq_clear_cfqq_must_dispatch(cfqq);
1364
1365 /*
1366 * expire an async queue immediately if it has used up its slice. idle
1367 * queue always expire after 1 dispatch round.
1368 */
1369 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1370 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1371 cfq_class_idle(cfqq))) {
1372 cfqq->slice_end = jiffies + 1;
1373 cfq_slice_expired(cfqd, 0);
1374 }
1375
1376 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1377 return 1;
1378 }
1379
1380 /*
1381 * task holds one reference to the queue, dropped when task exits. each rq
1382 * in-flight on this queue also holds a reference, dropped when rq is freed.
1383 *
1384 * queue lock must be held here.
1385 */
1386 static void cfq_put_queue(struct cfq_queue *cfqq)
1387 {
1388 struct cfq_data *cfqd = cfqq->cfqd;
1389
1390 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1391
1392 if (!atomic_dec_and_test(&cfqq->ref))
1393 return;
1394
1395 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1396 BUG_ON(rb_first(&cfqq->sort_list));
1397 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1398 BUG_ON(cfq_cfqq_on_rr(cfqq));
1399
1400 if (unlikely(cfqd->active_queue == cfqq)) {
1401 __cfq_slice_expired(cfqd, cfqq, 0);
1402 cfq_schedule_dispatch(cfqd, 0);
1403 }
1404
1405 kmem_cache_free(cfq_pool, cfqq);
1406 }
1407
1408 /*
1409 * Must always be called with the rcu_read_lock() held
1410 */
1411 static void
1412 __call_for_each_cic(struct io_context *ioc,
1413 void (*func)(struct io_context *, struct cfq_io_context *))
1414 {
1415 struct cfq_io_context *cic;
1416 struct hlist_node *n;
1417
1418 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1419 func(ioc, cic);
1420 }
1421
1422 /*
1423 * Call func for each cic attached to this ioc.
1424 */
1425 static void
1426 call_for_each_cic(struct io_context *ioc,
1427 void (*func)(struct io_context *, struct cfq_io_context *))
1428 {
1429 rcu_read_lock();
1430 __call_for_each_cic(ioc, func);
1431 rcu_read_unlock();
1432 }
1433
1434 static void cfq_cic_free_rcu(struct rcu_head *head)
1435 {
1436 struct cfq_io_context *cic;
1437
1438 cic = container_of(head, struct cfq_io_context, rcu_head);
1439
1440 kmem_cache_free(cfq_ioc_pool, cic);
1441 elv_ioc_count_dec(cfq_ioc_count);
1442
1443 if (ioc_gone) {
1444 /*
1445 * CFQ scheduler is exiting, grab exit lock and check
1446 * the pending io context count. If it hits zero,
1447 * complete ioc_gone and set it back to NULL
1448 */
1449 spin_lock(&ioc_gone_lock);
1450 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1451 complete(ioc_gone);
1452 ioc_gone = NULL;
1453 }
1454 spin_unlock(&ioc_gone_lock);
1455 }
1456 }
1457
1458 static void cfq_cic_free(struct cfq_io_context *cic)
1459 {
1460 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1461 }
1462
1463 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1464 {
1465 unsigned long flags;
1466
1467 BUG_ON(!cic->dead_key);
1468
1469 spin_lock_irqsave(&ioc->lock, flags);
1470 radix_tree_delete(&ioc->radix_root, cic->dead_key);
1471 hlist_del_rcu(&cic->cic_list);
1472 spin_unlock_irqrestore(&ioc->lock, flags);
1473
1474 cfq_cic_free(cic);
1475 }
1476
1477 /*
1478 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1479 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1480 * and ->trim() which is called with the task lock held
1481 */
1482 static void cfq_free_io_context(struct io_context *ioc)
1483 {
1484 /*
1485 * ioc->refcount is zero here, or we are called from elv_unregister(),
1486 * so no more cic's are allowed to be linked into this ioc. So it
1487 * should be ok to iterate over the known list, we will see all cic's
1488 * since no new ones are added.
1489 */
1490 __call_for_each_cic(ioc, cic_free_func);
1491 }
1492
1493 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1494 {
1495 if (unlikely(cfqq == cfqd->active_queue)) {
1496 __cfq_slice_expired(cfqd, cfqq, 0);
1497 cfq_schedule_dispatch(cfqd, 0);
1498 }
1499
1500 cfq_put_queue(cfqq);
1501 }
1502
1503 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1504 struct cfq_io_context *cic)
1505 {
1506 struct io_context *ioc = cic->ioc;
1507
1508 list_del_init(&cic->queue_list);
1509
1510 /*
1511 * Make sure key == NULL is seen for dead queues
1512 */
1513 smp_wmb();
1514 cic->dead_key = (unsigned long) cic->key;
1515 cic->key = NULL;
1516
1517 if (ioc->ioc_data == cic)
1518 rcu_assign_pointer(ioc->ioc_data, NULL);
1519
1520 if (cic->cfqq[BLK_RW_ASYNC]) {
1521 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1522 cic->cfqq[BLK_RW_ASYNC] = NULL;
1523 }
1524
1525 if (cic->cfqq[BLK_RW_SYNC]) {
1526 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1527 cic->cfqq[BLK_RW_SYNC] = NULL;
1528 }
1529 }
1530
1531 static void cfq_exit_single_io_context(struct io_context *ioc,
1532 struct cfq_io_context *cic)
1533 {
1534 struct cfq_data *cfqd = cic->key;
1535
1536 if (cfqd) {
1537 struct request_queue *q = cfqd->queue;
1538 unsigned long flags;
1539
1540 spin_lock_irqsave(q->queue_lock, flags);
1541
1542 /*
1543 * Ensure we get a fresh copy of the ->key to prevent
1544 * race between exiting task and queue
1545 */
1546 smp_read_barrier_depends();
1547 if (cic->key)
1548 __cfq_exit_single_io_context(cfqd, cic);
1549
1550 spin_unlock_irqrestore(q->queue_lock, flags);
1551 }
1552 }
1553
1554 /*
1555 * The process that ioc belongs to has exited, we need to clean up
1556 * and put the internal structures we have that belongs to that process.
1557 */
1558 static void cfq_exit_io_context(struct io_context *ioc)
1559 {
1560 call_for_each_cic(ioc, cfq_exit_single_io_context);
1561 }
1562
1563 static struct cfq_io_context *
1564 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1565 {
1566 struct cfq_io_context *cic;
1567
1568 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1569 cfqd->queue->node);
1570 if (cic) {
1571 cic->last_end_request = jiffies;
1572 INIT_LIST_HEAD(&cic->queue_list);
1573 INIT_HLIST_NODE(&cic->cic_list);
1574 cic->dtor = cfq_free_io_context;
1575 cic->exit = cfq_exit_io_context;
1576 elv_ioc_count_inc(cfq_ioc_count);
1577 }
1578
1579 return cic;
1580 }
1581
1582 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1583 {
1584 struct task_struct *tsk = current;
1585 int ioprio_class;
1586
1587 if (!cfq_cfqq_prio_changed(cfqq))
1588 return;
1589
1590 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1591 switch (ioprio_class) {
1592 default:
1593 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1594 case IOPRIO_CLASS_NONE:
1595 /*
1596 * no prio set, inherit CPU scheduling settings
1597 */
1598 cfqq->ioprio = task_nice_ioprio(tsk);
1599 cfqq->ioprio_class = task_nice_ioclass(tsk);
1600 break;
1601 case IOPRIO_CLASS_RT:
1602 cfqq->ioprio = task_ioprio(ioc);
1603 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1604 break;
1605 case IOPRIO_CLASS_BE:
1606 cfqq->ioprio = task_ioprio(ioc);
1607 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1608 break;
1609 case IOPRIO_CLASS_IDLE:
1610 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1611 cfqq->ioprio = 7;
1612 cfq_clear_cfqq_idle_window(cfqq);
1613 break;
1614 }
1615
1616 /*
1617 * keep track of original prio settings in case we have to temporarily
1618 * elevate the priority of this queue
1619 */
1620 cfqq->org_ioprio = cfqq->ioprio;
1621 cfqq->org_ioprio_class = cfqq->ioprio_class;
1622 cfq_clear_cfqq_prio_changed(cfqq);
1623 }
1624
1625 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1626 {
1627 struct cfq_data *cfqd = cic->key;
1628 struct cfq_queue *cfqq;
1629 unsigned long flags;
1630
1631 if (unlikely(!cfqd))
1632 return;
1633
1634 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1635
1636 cfqq = cic->cfqq[BLK_RW_ASYNC];
1637 if (cfqq) {
1638 struct cfq_queue *new_cfqq;
1639 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1640 GFP_ATOMIC);
1641 if (new_cfqq) {
1642 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
1643 cfq_put_queue(cfqq);
1644 }
1645 }
1646
1647 cfqq = cic->cfqq[BLK_RW_SYNC];
1648 if (cfqq)
1649 cfq_mark_cfqq_prio_changed(cfqq);
1650
1651 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1652 }
1653
1654 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1655 {
1656 call_for_each_cic(ioc, changed_ioprio);
1657 ioc->ioprio_changed = 0;
1658 }
1659
1660 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1661 pid_t pid, int is_sync)
1662 {
1663 RB_CLEAR_NODE(&cfqq->rb_node);
1664 RB_CLEAR_NODE(&cfqq->p_node);
1665 INIT_LIST_HEAD(&cfqq->fifo);
1666
1667 atomic_set(&cfqq->ref, 0);
1668 cfqq->cfqd = cfqd;
1669
1670 cfq_mark_cfqq_prio_changed(cfqq);
1671
1672 if (is_sync) {
1673 if (!cfq_class_idle(cfqq))
1674 cfq_mark_cfqq_idle_window(cfqq);
1675 cfq_mark_cfqq_sync(cfqq);
1676 }
1677 cfqq->pid = pid;
1678 }
1679
1680 static struct cfq_queue *
1681 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1682 struct io_context *ioc, gfp_t gfp_mask)
1683 {
1684 struct cfq_queue *cfqq, *new_cfqq = NULL;
1685 struct cfq_io_context *cic;
1686
1687 retry:
1688 cic = cfq_cic_lookup(cfqd, ioc);
1689 /* cic always exists here */
1690 cfqq = cic_to_cfqq(cic, is_sync);
1691
1692 /*
1693 * Always try a new alloc if we fell back to the OOM cfqq
1694 * originally, since it should just be a temporary situation.
1695 */
1696 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1697 cfqq = NULL;
1698 if (new_cfqq) {
1699 cfqq = new_cfqq;
1700 new_cfqq = NULL;
1701 } else if (gfp_mask & __GFP_WAIT) {
1702 spin_unlock_irq(cfqd->queue->queue_lock);
1703 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1704 gfp_mask | __GFP_ZERO,
1705 cfqd->queue->node);
1706 spin_lock_irq(cfqd->queue->queue_lock);
1707 if (new_cfqq)
1708 goto retry;
1709 } else {
1710 cfqq = kmem_cache_alloc_node(cfq_pool,
1711 gfp_mask | __GFP_ZERO,
1712 cfqd->queue->node);
1713 }
1714
1715 if (cfqq) {
1716 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1717 cfq_init_prio_data(cfqq, ioc);
1718 cfq_log_cfqq(cfqd, cfqq, "alloced");
1719 } else
1720 cfqq = &cfqd->oom_cfqq;
1721 }
1722
1723 if (new_cfqq)
1724 kmem_cache_free(cfq_pool, new_cfqq);
1725
1726 return cfqq;
1727 }
1728
1729 static struct cfq_queue **
1730 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1731 {
1732 switch (ioprio_class) {
1733 case IOPRIO_CLASS_RT:
1734 return &cfqd->async_cfqq[0][ioprio];
1735 case IOPRIO_CLASS_BE:
1736 return &cfqd->async_cfqq[1][ioprio];
1737 case IOPRIO_CLASS_IDLE:
1738 return &cfqd->async_idle_cfqq;
1739 default:
1740 BUG();
1741 }
1742 }
1743
1744 static struct cfq_queue *
1745 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1746 gfp_t gfp_mask)
1747 {
1748 const int ioprio = task_ioprio(ioc);
1749 const int ioprio_class = task_ioprio_class(ioc);
1750 struct cfq_queue **async_cfqq = NULL;
1751 struct cfq_queue *cfqq = NULL;
1752
1753 if (!is_sync) {
1754 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1755 cfqq = *async_cfqq;
1756 }
1757
1758 if (!cfqq)
1759 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1760
1761 /*
1762 * pin the queue now that it's allocated, scheduler exit will prune it
1763 */
1764 if (!is_sync && !(*async_cfqq)) {
1765 atomic_inc(&cfqq->ref);
1766 *async_cfqq = cfqq;
1767 }
1768
1769 atomic_inc(&cfqq->ref);
1770 return cfqq;
1771 }
1772
1773 /*
1774 * We drop cfq io contexts lazily, so we may find a dead one.
1775 */
1776 static void
1777 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1778 struct cfq_io_context *cic)
1779 {
1780 unsigned long flags;
1781
1782 WARN_ON(!list_empty(&cic->queue_list));
1783
1784 spin_lock_irqsave(&ioc->lock, flags);
1785
1786 BUG_ON(ioc->ioc_data == cic);
1787
1788 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1789 hlist_del_rcu(&cic->cic_list);
1790 spin_unlock_irqrestore(&ioc->lock, flags);
1791
1792 cfq_cic_free(cic);
1793 }
1794
1795 static struct cfq_io_context *
1796 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1797 {
1798 struct cfq_io_context *cic;
1799 unsigned long flags;
1800 void *k;
1801
1802 if (unlikely(!ioc))
1803 return NULL;
1804
1805 rcu_read_lock();
1806
1807 /*
1808 * we maintain a last-hit cache, to avoid browsing over the tree
1809 */
1810 cic = rcu_dereference(ioc->ioc_data);
1811 if (cic && cic->key == cfqd) {
1812 rcu_read_unlock();
1813 return cic;
1814 }
1815
1816 do {
1817 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1818 rcu_read_unlock();
1819 if (!cic)
1820 break;
1821 /* ->key must be copied to avoid race with cfq_exit_queue() */
1822 k = cic->key;
1823 if (unlikely(!k)) {
1824 cfq_drop_dead_cic(cfqd, ioc, cic);
1825 rcu_read_lock();
1826 continue;
1827 }
1828
1829 spin_lock_irqsave(&ioc->lock, flags);
1830 rcu_assign_pointer(ioc->ioc_data, cic);
1831 spin_unlock_irqrestore(&ioc->lock, flags);
1832 break;
1833 } while (1);
1834
1835 return cic;
1836 }
1837
1838 /*
1839 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1840 * the process specific cfq io context when entered from the block layer.
1841 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1842 */
1843 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1844 struct cfq_io_context *cic, gfp_t gfp_mask)
1845 {
1846 unsigned long flags;
1847 int ret;
1848
1849 ret = radix_tree_preload(gfp_mask);
1850 if (!ret) {
1851 cic->ioc = ioc;
1852 cic->key = cfqd;
1853
1854 spin_lock_irqsave(&ioc->lock, flags);
1855 ret = radix_tree_insert(&ioc->radix_root,
1856 (unsigned long) cfqd, cic);
1857 if (!ret)
1858 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1859 spin_unlock_irqrestore(&ioc->lock, flags);
1860
1861 radix_tree_preload_end();
1862
1863 if (!ret) {
1864 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1865 list_add(&cic->queue_list, &cfqd->cic_list);
1866 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1867 }
1868 }
1869
1870 if (ret)
1871 printk(KERN_ERR "cfq: cic link failed!\n");
1872
1873 return ret;
1874 }
1875
1876 /*
1877 * Setup general io context and cfq io context. There can be several cfq
1878 * io contexts per general io context, if this process is doing io to more
1879 * than one device managed by cfq.
1880 */
1881 static struct cfq_io_context *
1882 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1883 {
1884 struct io_context *ioc = NULL;
1885 struct cfq_io_context *cic;
1886
1887 might_sleep_if(gfp_mask & __GFP_WAIT);
1888
1889 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1890 if (!ioc)
1891 return NULL;
1892
1893 cic = cfq_cic_lookup(cfqd, ioc);
1894 if (cic)
1895 goto out;
1896
1897 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1898 if (cic == NULL)
1899 goto err;
1900
1901 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1902 goto err_free;
1903
1904 out:
1905 smp_read_barrier_depends();
1906 if (unlikely(ioc->ioprio_changed))
1907 cfq_ioc_set_ioprio(ioc);
1908
1909 return cic;
1910 err_free:
1911 cfq_cic_free(cic);
1912 err:
1913 put_io_context(ioc);
1914 return NULL;
1915 }
1916
1917 static void
1918 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1919 {
1920 unsigned long elapsed = jiffies - cic->last_end_request;
1921 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1922
1923 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1924 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1925 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1926 }
1927
1928 static void
1929 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1930 struct request *rq)
1931 {
1932 sector_t sdist;
1933 u64 total;
1934
1935 if (!cic->last_request_pos)
1936 sdist = 0;
1937 else if (cic->last_request_pos < blk_rq_pos(rq))
1938 sdist = blk_rq_pos(rq) - cic->last_request_pos;
1939 else
1940 sdist = cic->last_request_pos - blk_rq_pos(rq);
1941
1942 /*
1943 * Don't allow the seek distance to get too large from the
1944 * odd fragment, pagein, etc
1945 */
1946 if (cic->seek_samples <= 60) /* second&third seek */
1947 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1948 else
1949 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1950
1951 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1952 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1953 total = cic->seek_total + (cic->seek_samples/2);
1954 do_div(total, cic->seek_samples);
1955 cic->seek_mean = (sector_t)total;
1956 }
1957
1958 /*
1959 * Disable idle window if the process thinks too long or seeks so much that
1960 * it doesn't matter
1961 */
1962 static void
1963 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1964 struct cfq_io_context *cic)
1965 {
1966 int old_idle, enable_idle;
1967
1968 /*
1969 * Don't idle for async or idle io prio class
1970 */
1971 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1972 return;
1973
1974 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1975
1976 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1977 (!cfqd->cfq_latency && cfqd->hw_tag && CIC_SEEKY(cic)))
1978 enable_idle = 0;
1979 else if (sample_valid(cic->ttime_samples)) {
1980 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1981 enable_idle = 0;
1982 else
1983 enable_idle = 1;
1984 }
1985
1986 if (old_idle != enable_idle) {
1987 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1988 if (enable_idle)
1989 cfq_mark_cfqq_idle_window(cfqq);
1990 else
1991 cfq_clear_cfqq_idle_window(cfqq);
1992 }
1993 }
1994
1995 /*
1996 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1997 * no or if we aren't sure, a 1 will cause a preempt.
1998 */
1999 static int
2000 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2001 struct request *rq)
2002 {
2003 struct cfq_queue *cfqq;
2004
2005 cfqq = cfqd->active_queue;
2006 if (!cfqq)
2007 return 0;
2008
2009 if (cfq_slice_used(cfqq))
2010 return 1;
2011
2012 if (cfq_class_idle(new_cfqq))
2013 return 0;
2014
2015 if (cfq_class_idle(cfqq))
2016 return 1;
2017
2018 /*
2019 * if the new request is sync, but the currently running queue is
2020 * not, let the sync request have priority.
2021 */
2022 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2023 return 1;
2024
2025 /*
2026 * So both queues are sync. Let the new request get disk time if
2027 * it's a metadata request and the current queue is doing regular IO.
2028 */
2029 if (rq_is_meta(rq) && !cfqq->meta_pending)
2030 return 1;
2031
2032 /*
2033 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2034 */
2035 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2036 return 1;
2037
2038 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2039 return 0;
2040
2041 /*
2042 * if this request is as-good as one we would expect from the
2043 * current cfqq, let it preempt
2044 */
2045 if (cfq_rq_close(cfqd, rq))
2046 return 1;
2047
2048 return 0;
2049 }
2050
2051 /*
2052 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2053 * let it have half of its nominal slice.
2054 */
2055 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2056 {
2057 cfq_log_cfqq(cfqd, cfqq, "preempt");
2058 cfq_slice_expired(cfqd, 1);
2059
2060 /*
2061 * Put the new queue at the front of the of the current list,
2062 * so we know that it will be selected next.
2063 */
2064 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2065
2066 cfq_service_tree_add(cfqd, cfqq, 1);
2067
2068 cfqq->slice_end = 0;
2069 cfq_mark_cfqq_slice_new(cfqq);
2070 }
2071
2072 /*
2073 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2074 * something we should do about it
2075 */
2076 static void
2077 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2078 struct request *rq)
2079 {
2080 struct cfq_io_context *cic = RQ_CIC(rq);
2081
2082 cfqd->rq_queued++;
2083 if (rq_is_meta(rq))
2084 cfqq->meta_pending++;
2085
2086 cfq_update_io_thinktime(cfqd, cic);
2087 cfq_update_io_seektime(cfqd, cic, rq);
2088 cfq_update_idle_window(cfqd, cfqq, cic);
2089
2090 cic->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2091
2092 if (cfqq == cfqd->active_queue) {
2093 /*
2094 * Remember that we saw a request from this process, but
2095 * don't start queuing just yet. Otherwise we risk seeing lots
2096 * of tiny requests, because we disrupt the normal plugging
2097 * and merging. If the request is already larger than a single
2098 * page, let it rip immediately. For that case we assume that
2099 * merging is already done. Ditto for a busy system that
2100 * has other work pending, don't risk delaying until the
2101 * idle timer unplug to continue working.
2102 */
2103 if (cfq_cfqq_wait_request(cfqq)) {
2104 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2105 cfqd->busy_queues > 1) {
2106 del_timer(&cfqd->idle_slice_timer);
2107 __blk_run_queue(cfqd->queue);
2108 }
2109 cfq_mark_cfqq_must_dispatch(cfqq);
2110 }
2111 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2112 /*
2113 * not the active queue - expire current slice if it is
2114 * idle and has expired it's mean thinktime or this new queue
2115 * has some old slice time left and is of higher priority or
2116 * this new queue is RT and the current one is BE
2117 */
2118 cfq_preempt_queue(cfqd, cfqq);
2119 __blk_run_queue(cfqd->queue);
2120 }
2121 }
2122
2123 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2124 {
2125 struct cfq_data *cfqd = q->elevator->elevator_data;
2126 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2127
2128 cfq_log_cfqq(cfqd, cfqq, "insert_request");
2129 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2130
2131 cfq_add_rq_rb(rq);
2132
2133 list_add_tail(&rq->queuelist, &cfqq->fifo);
2134
2135 cfq_rq_enqueued(cfqd, cfqq, rq);
2136 }
2137
2138 /*
2139 * Update hw_tag based on peak queue depth over 50 samples under
2140 * sufficient load.
2141 */
2142 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2143 {
2144 if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2145 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
2146
2147 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2148 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2149 return;
2150
2151 if (cfqd->hw_tag_samples++ < 50)
2152 return;
2153
2154 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2155 cfqd->hw_tag = 1;
2156 else
2157 cfqd->hw_tag = 0;
2158
2159 cfqd->hw_tag_samples = 0;
2160 cfqd->rq_in_driver_peak = 0;
2161 }
2162
2163 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2164 {
2165 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2166 struct cfq_data *cfqd = cfqq->cfqd;
2167 const int sync = rq_is_sync(rq);
2168 unsigned long now;
2169
2170 now = jiffies;
2171 cfq_log_cfqq(cfqd, cfqq, "complete");
2172
2173 cfq_update_hw_tag(cfqd);
2174
2175 WARN_ON(!cfqd->rq_in_driver[sync]);
2176 WARN_ON(!cfqq->dispatched);
2177 cfqd->rq_in_driver[sync]--;
2178 cfqq->dispatched--;
2179
2180 if (cfq_cfqq_sync(cfqq))
2181 cfqd->sync_flight--;
2182
2183 if (sync) {
2184 RQ_CIC(rq)->last_end_request = now;
2185 cfqd->last_end_sync_rq = now;
2186 }
2187
2188 /*
2189 * If this is the active queue, check if it needs to be expired,
2190 * or if we want to idle in case it has no pending requests.
2191 */
2192 if (cfqd->active_queue == cfqq) {
2193 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2194
2195 if (cfq_cfqq_slice_new(cfqq)) {
2196 cfq_set_prio_slice(cfqd, cfqq);
2197 cfq_clear_cfqq_slice_new(cfqq);
2198 }
2199 /*
2200 * If there are no requests waiting in this queue, and
2201 * there are other queues ready to issue requests, AND
2202 * those other queues are issuing requests within our
2203 * mean seek distance, give them a chance to run instead
2204 * of idling.
2205 */
2206 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2207 cfq_slice_expired(cfqd, 1);
2208 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2209 sync && !rq_noidle(rq))
2210 cfq_arm_slice_timer(cfqd);
2211 }
2212
2213 if (!rq_in_driver(cfqd))
2214 cfq_schedule_dispatch(cfqd, 0);
2215 }
2216
2217 /*
2218 * we temporarily boost lower priority queues if they are holding fs exclusive
2219 * resources. they are boosted to normal prio (CLASS_BE/4)
2220 */
2221 static void cfq_prio_boost(struct cfq_queue *cfqq)
2222 {
2223 if (has_fs_excl()) {
2224 /*
2225 * boost idle prio on transactions that would lock out other
2226 * users of the filesystem
2227 */
2228 if (cfq_class_idle(cfqq))
2229 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2230 if (cfqq->ioprio > IOPRIO_NORM)
2231 cfqq->ioprio = IOPRIO_NORM;
2232 } else {
2233 /*
2234 * check if we need to unboost the queue
2235 */
2236 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2237 cfqq->ioprio_class = cfqq->org_ioprio_class;
2238 if (cfqq->ioprio != cfqq->org_ioprio)
2239 cfqq->ioprio = cfqq->org_ioprio;
2240 }
2241 }
2242
2243 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2244 {
2245 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
2246 cfq_mark_cfqq_must_alloc_slice(cfqq);
2247 return ELV_MQUEUE_MUST;
2248 }
2249
2250 return ELV_MQUEUE_MAY;
2251 }
2252
2253 static int cfq_may_queue(struct request_queue *q, int rw)
2254 {
2255 struct cfq_data *cfqd = q->elevator->elevator_data;
2256 struct task_struct *tsk = current;
2257 struct cfq_io_context *cic;
2258 struct cfq_queue *cfqq;
2259
2260 /*
2261 * don't force setup of a queue from here, as a call to may_queue
2262 * does not necessarily imply that a request actually will be queued.
2263 * so just lookup a possibly existing queue, or return 'may queue'
2264 * if that fails
2265 */
2266 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2267 if (!cic)
2268 return ELV_MQUEUE_MAY;
2269
2270 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2271 if (cfqq) {
2272 cfq_init_prio_data(cfqq, cic->ioc);
2273 cfq_prio_boost(cfqq);
2274
2275 return __cfq_may_queue(cfqq);
2276 }
2277
2278 return ELV_MQUEUE_MAY;
2279 }
2280
2281 /*
2282 * queue lock held here
2283 */
2284 static void cfq_put_request(struct request *rq)
2285 {
2286 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2287
2288 if (cfqq) {
2289 const int rw = rq_data_dir(rq);
2290
2291 BUG_ON(!cfqq->allocated[rw]);
2292 cfqq->allocated[rw]--;
2293
2294 put_io_context(RQ_CIC(rq)->ioc);
2295
2296 rq->elevator_private = NULL;
2297 rq->elevator_private2 = NULL;
2298
2299 cfq_put_queue(cfqq);
2300 }
2301 }
2302
2303 /*
2304 * Allocate cfq data structures associated with this request.
2305 */
2306 static int
2307 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2308 {
2309 struct cfq_data *cfqd = q->elevator->elevator_data;
2310 struct cfq_io_context *cic;
2311 const int rw = rq_data_dir(rq);
2312 const int is_sync = rq_is_sync(rq);
2313 struct cfq_queue *cfqq;
2314 unsigned long flags;
2315
2316 might_sleep_if(gfp_mask & __GFP_WAIT);
2317
2318 cic = cfq_get_io_context(cfqd, gfp_mask);
2319
2320 spin_lock_irqsave(q->queue_lock, flags);
2321
2322 if (!cic)
2323 goto queue_fail;
2324
2325 cfqq = cic_to_cfqq(cic, is_sync);
2326 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2327 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2328 cic_set_cfqq(cic, cfqq, is_sync);
2329 }
2330
2331 cfqq->allocated[rw]++;
2332 atomic_inc(&cfqq->ref);
2333
2334 spin_unlock_irqrestore(q->queue_lock, flags);
2335
2336 rq->elevator_private = cic;
2337 rq->elevator_private2 = cfqq;
2338 return 0;
2339
2340 queue_fail:
2341 if (cic)
2342 put_io_context(cic->ioc);
2343
2344 cfq_schedule_dispatch(cfqd, 0);
2345 spin_unlock_irqrestore(q->queue_lock, flags);
2346 cfq_log(cfqd, "set_request fail");
2347 return 1;
2348 }
2349
2350 static void cfq_kick_queue(struct work_struct *work)
2351 {
2352 struct cfq_data *cfqd =
2353 container_of(work, struct cfq_data, unplug_work.work);
2354 struct request_queue *q = cfqd->queue;
2355
2356 spin_lock_irq(q->queue_lock);
2357 __blk_run_queue(cfqd->queue);
2358 spin_unlock_irq(q->queue_lock);
2359 }
2360
2361 /*
2362 * Timer running if the active_queue is currently idling inside its time slice
2363 */
2364 static void cfq_idle_slice_timer(unsigned long data)
2365 {
2366 struct cfq_data *cfqd = (struct cfq_data *) data;
2367 struct cfq_queue *cfqq;
2368 unsigned long flags;
2369 int timed_out = 1;
2370
2371 cfq_log(cfqd, "idle timer fired");
2372
2373 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2374
2375 cfqq = cfqd->active_queue;
2376 if (cfqq) {
2377 timed_out = 0;
2378
2379 /*
2380 * We saw a request before the queue expired, let it through
2381 */
2382 if (cfq_cfqq_must_dispatch(cfqq))
2383 goto out_kick;
2384
2385 /*
2386 * expired
2387 */
2388 if (cfq_slice_used(cfqq))
2389 goto expire;
2390
2391 /*
2392 * only expire and reinvoke request handler, if there are
2393 * other queues with pending requests
2394 */
2395 if (!cfqd->busy_queues)
2396 goto out_cont;
2397
2398 /*
2399 * not expired and it has a request pending, let it dispatch
2400 */
2401 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2402 goto out_kick;
2403 }
2404 expire:
2405 cfq_slice_expired(cfqd, timed_out);
2406 out_kick:
2407 cfq_schedule_dispatch(cfqd, 0);
2408 out_cont:
2409 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2410 }
2411
2412 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2413 {
2414 del_timer_sync(&cfqd->idle_slice_timer);
2415 cancel_delayed_work_sync(&cfqd->unplug_work);
2416 }
2417
2418 static void cfq_put_async_queues(struct cfq_data *cfqd)
2419 {
2420 int i;
2421
2422 for (i = 0; i < IOPRIO_BE_NR; i++) {
2423 if (cfqd->async_cfqq[0][i])
2424 cfq_put_queue(cfqd->async_cfqq[0][i]);
2425 if (cfqd->async_cfqq[1][i])
2426 cfq_put_queue(cfqd->async_cfqq[1][i]);
2427 }
2428
2429 if (cfqd->async_idle_cfqq)
2430 cfq_put_queue(cfqd->async_idle_cfqq);
2431 }
2432
2433 static void cfq_exit_queue(struct elevator_queue *e)
2434 {
2435 struct cfq_data *cfqd = e->elevator_data;
2436 struct request_queue *q = cfqd->queue;
2437
2438 cfq_shutdown_timer_wq(cfqd);
2439
2440 spin_lock_irq(q->queue_lock);
2441
2442 if (cfqd->active_queue)
2443 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2444
2445 while (!list_empty(&cfqd->cic_list)) {
2446 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2447 struct cfq_io_context,
2448 queue_list);
2449
2450 __cfq_exit_single_io_context(cfqd, cic);
2451 }
2452
2453 cfq_put_async_queues(cfqd);
2454
2455 spin_unlock_irq(q->queue_lock);
2456
2457 cfq_shutdown_timer_wq(cfqd);
2458
2459 kfree(cfqd);
2460 }
2461
2462 static void *cfq_init_queue(struct request_queue *q)
2463 {
2464 struct cfq_data *cfqd;
2465 int i;
2466
2467 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2468 if (!cfqd)
2469 return NULL;
2470
2471 cfqd->service_tree = CFQ_RB_ROOT;
2472
2473 /*
2474 * Not strictly needed (since RB_ROOT just clears the node and we
2475 * zeroed cfqd on alloc), but better be safe in case someone decides
2476 * to add magic to the rb code
2477 */
2478 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2479 cfqd->prio_trees[i] = RB_ROOT;
2480
2481 /*
2482 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2483 * Grab a permanent reference to it, so that the normal code flow
2484 * will not attempt to free it.
2485 */
2486 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2487 atomic_inc(&cfqd->oom_cfqq.ref);
2488
2489 INIT_LIST_HEAD(&cfqd->cic_list);
2490
2491 cfqd->queue = q;
2492
2493 init_timer(&cfqd->idle_slice_timer);
2494 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2495 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2496
2497 INIT_DELAYED_WORK(&cfqd->unplug_work, cfq_kick_queue);
2498
2499 cfqd->cfq_quantum = cfq_quantum;
2500 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2501 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2502 cfqd->cfq_back_max = cfq_back_max;
2503 cfqd->cfq_back_penalty = cfq_back_penalty;
2504 cfqd->cfq_slice[0] = cfq_slice_async;
2505 cfqd->cfq_slice[1] = cfq_slice_sync;
2506 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2507 cfqd->cfq_slice_idle = cfq_slice_idle;
2508 cfqd->cfq_latency = 1;
2509 cfqd->hw_tag = 1;
2510 cfqd->last_end_sync_rq = jiffies;
2511 return cfqd;
2512 }
2513
2514 static void cfq_slab_kill(void)
2515 {
2516 /*
2517 * Caller already ensured that pending RCU callbacks are completed,
2518 * so we should have no busy allocations at this point.
2519 */
2520 if (cfq_pool)
2521 kmem_cache_destroy(cfq_pool);
2522 if (cfq_ioc_pool)
2523 kmem_cache_destroy(cfq_ioc_pool);
2524 }
2525
2526 static int __init cfq_slab_setup(void)
2527 {
2528 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2529 if (!cfq_pool)
2530 goto fail;
2531
2532 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2533 if (!cfq_ioc_pool)
2534 goto fail;
2535
2536 return 0;
2537 fail:
2538 cfq_slab_kill();
2539 return -ENOMEM;
2540 }
2541
2542 /*
2543 * sysfs parts below -->
2544 */
2545 static ssize_t
2546 cfq_var_show(unsigned int var, char *page)
2547 {
2548 return sprintf(page, "%d\n", var);
2549 }
2550
2551 static ssize_t
2552 cfq_var_store(unsigned int *var, const char *page, size_t count)
2553 {
2554 char *p = (char *) page;
2555
2556 *var = simple_strtoul(p, &p, 10);
2557 return count;
2558 }
2559
2560 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2561 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
2562 { \
2563 struct cfq_data *cfqd = e->elevator_data; \
2564 unsigned int __data = __VAR; \
2565 if (__CONV) \
2566 __data = jiffies_to_msecs(__data); \
2567 return cfq_var_show(__data, (page)); \
2568 }
2569 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2570 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2571 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2572 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2573 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2574 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2575 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2576 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2577 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2578 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
2579 #undef SHOW_FUNCTION
2580
2581 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2582 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2583 { \
2584 struct cfq_data *cfqd = e->elevator_data; \
2585 unsigned int __data; \
2586 int ret = cfq_var_store(&__data, (page), count); \
2587 if (__data < (MIN)) \
2588 __data = (MIN); \
2589 else if (__data > (MAX)) \
2590 __data = (MAX); \
2591 if (__CONV) \
2592 *(__PTR) = msecs_to_jiffies(__data); \
2593 else \
2594 *(__PTR) = __data; \
2595 return ret; \
2596 }
2597 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2598 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2599 UINT_MAX, 1);
2600 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2601 UINT_MAX, 1);
2602 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2603 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2604 UINT_MAX, 0);
2605 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2606 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2607 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2608 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2609 UINT_MAX, 0);
2610 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
2611 #undef STORE_FUNCTION
2612
2613 #define CFQ_ATTR(name) \
2614 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2615
2616 static struct elv_fs_entry cfq_attrs[] = {
2617 CFQ_ATTR(quantum),
2618 CFQ_ATTR(fifo_expire_sync),
2619 CFQ_ATTR(fifo_expire_async),
2620 CFQ_ATTR(back_seek_max),
2621 CFQ_ATTR(back_seek_penalty),
2622 CFQ_ATTR(slice_sync),
2623 CFQ_ATTR(slice_async),
2624 CFQ_ATTR(slice_async_rq),
2625 CFQ_ATTR(slice_idle),
2626 CFQ_ATTR(low_latency),
2627 __ATTR_NULL
2628 };
2629
2630 static struct elevator_type iosched_cfq = {
2631 .ops = {
2632 .elevator_merge_fn = cfq_merge,
2633 .elevator_merged_fn = cfq_merged_request,
2634 .elevator_merge_req_fn = cfq_merged_requests,
2635 .elevator_allow_merge_fn = cfq_allow_merge,
2636 .elevator_dispatch_fn = cfq_dispatch_requests,
2637 .elevator_add_req_fn = cfq_insert_request,
2638 .elevator_activate_req_fn = cfq_activate_request,
2639 .elevator_deactivate_req_fn = cfq_deactivate_request,
2640 .elevator_queue_empty_fn = cfq_queue_empty,
2641 .elevator_completed_req_fn = cfq_completed_request,
2642 .elevator_former_req_fn = elv_rb_former_request,
2643 .elevator_latter_req_fn = elv_rb_latter_request,
2644 .elevator_set_req_fn = cfq_set_request,
2645 .elevator_put_req_fn = cfq_put_request,
2646 .elevator_may_queue_fn = cfq_may_queue,
2647 .elevator_init_fn = cfq_init_queue,
2648 .elevator_exit_fn = cfq_exit_queue,
2649 .trim = cfq_free_io_context,
2650 },
2651 .elevator_attrs = cfq_attrs,
2652 .elevator_name = "cfq",
2653 .elevator_owner = THIS_MODULE,
2654 };
2655
2656 static int __init cfq_init(void)
2657 {
2658 /*
2659 * could be 0 on HZ < 1000 setups
2660 */
2661 if (!cfq_slice_async)
2662 cfq_slice_async = 1;
2663 if (!cfq_slice_idle)
2664 cfq_slice_idle = 1;
2665
2666 if (cfq_slab_setup())
2667 return -ENOMEM;
2668
2669 elv_register(&iosched_cfq);
2670
2671 return 0;
2672 }
2673
2674 static void __exit cfq_exit(void)
2675 {
2676 DECLARE_COMPLETION_ONSTACK(all_gone);
2677 elv_unregister(&iosched_cfq);
2678 ioc_gone = &all_gone;
2679 /* ioc_gone's update must be visible before reading ioc_count */
2680 smp_wmb();
2681
2682 /*
2683 * this also protects us from entering cfq_slab_kill() with
2684 * pending RCU callbacks
2685 */
2686 if (elv_ioc_count_read(cfq_ioc_count))
2687 wait_for_completion(&all_gone);
2688 cfq_slab_kill();
2689 }
2690
2691 module_init(cfq_init);
2692 module_exit(cfq_exit);
2693
2694 MODULE_AUTHOR("Jens Axboe");
2695 MODULE_LICENSE("GPL");
2696 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");