]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - block/cfq-iosched.c
blkcg: drop unnecessary RCU locking
[mirror_ubuntu-zesty-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk.h"
18 #include "cfq.h"
19
20 static struct blkio_policy_type blkio_policy_cfq;
21
22 /*
23 * tunables
24 */
25 /* max queue in one round of service */
26 static const int cfq_quantum = 8;
27 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
28 /* maximum backwards seek, in KiB */
29 static const int cfq_back_max = 16 * 1024;
30 /* penalty of a backwards seek */
31 static const int cfq_back_penalty = 2;
32 static const int cfq_slice_sync = HZ / 10;
33 static int cfq_slice_async = HZ / 25;
34 static const int cfq_slice_async_rq = 2;
35 static int cfq_slice_idle = HZ / 125;
36 static int cfq_group_idle = HZ / 125;
37 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
38 static const int cfq_hist_divisor = 4;
39
40 /*
41 * offset from end of service tree
42 */
43 #define CFQ_IDLE_DELAY (HZ / 5)
44
45 /*
46 * below this threshold, we consider thinktime immediate
47 */
48 #define CFQ_MIN_TT (2)
49
50 #define CFQ_SLICE_SCALE (5)
51 #define CFQ_HW_QUEUE_MIN (5)
52 #define CFQ_SERVICE_SHIFT 12
53
54 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
55 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
56 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
57 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
58
59 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
60 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
61 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
62
63 static struct kmem_cache *cfq_pool;
64
65 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
66 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
67 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
68
69 #define sample_valid(samples) ((samples) > 80)
70 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
71
72 struct cfq_ttime {
73 unsigned long last_end_request;
74
75 unsigned long ttime_total;
76 unsigned long ttime_samples;
77 unsigned long ttime_mean;
78 };
79
80 /*
81 * Most of our rbtree usage is for sorting with min extraction, so
82 * if we cache the leftmost node we don't have to walk down the tree
83 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
84 * move this into the elevator for the rq sorting as well.
85 */
86 struct cfq_rb_root {
87 struct rb_root rb;
88 struct rb_node *left;
89 unsigned count;
90 unsigned total_weight;
91 u64 min_vdisktime;
92 struct cfq_ttime ttime;
93 };
94 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
95 .ttime = {.last_end_request = jiffies,},}
96
97 /*
98 * Per process-grouping structure
99 */
100 struct cfq_queue {
101 /* reference count */
102 int ref;
103 /* various state flags, see below */
104 unsigned int flags;
105 /* parent cfq_data */
106 struct cfq_data *cfqd;
107 /* service_tree member */
108 struct rb_node rb_node;
109 /* service_tree key */
110 unsigned long rb_key;
111 /* prio tree member */
112 struct rb_node p_node;
113 /* prio tree root we belong to, if any */
114 struct rb_root *p_root;
115 /* sorted list of pending requests */
116 struct rb_root sort_list;
117 /* if fifo isn't expired, next request to serve */
118 struct request *next_rq;
119 /* requests queued in sort_list */
120 int queued[2];
121 /* currently allocated requests */
122 int allocated[2];
123 /* fifo list of requests in sort_list */
124 struct list_head fifo;
125
126 /* time when queue got scheduled in to dispatch first request. */
127 unsigned long dispatch_start;
128 unsigned int allocated_slice;
129 unsigned int slice_dispatch;
130 /* time when first request from queue completed and slice started. */
131 unsigned long slice_start;
132 unsigned long slice_end;
133 long slice_resid;
134
135 /* pending priority requests */
136 int prio_pending;
137 /* number of requests that are on the dispatch list or inside driver */
138 int dispatched;
139
140 /* io prio of this group */
141 unsigned short ioprio, org_ioprio;
142 unsigned short ioprio_class;
143
144 pid_t pid;
145
146 u32 seek_history;
147 sector_t last_request_pos;
148
149 struct cfq_rb_root *service_tree;
150 struct cfq_queue *new_cfqq;
151 struct cfq_group *cfqg;
152 /* Number of sectors dispatched from queue in single dispatch round */
153 unsigned long nr_sectors;
154 };
155
156 /*
157 * First index in the service_trees.
158 * IDLE is handled separately, so it has negative index
159 */
160 enum wl_prio_t {
161 BE_WORKLOAD = 0,
162 RT_WORKLOAD = 1,
163 IDLE_WORKLOAD = 2,
164 CFQ_PRIO_NR,
165 };
166
167 /*
168 * Second index in the service_trees.
169 */
170 enum wl_type_t {
171 ASYNC_WORKLOAD = 0,
172 SYNC_NOIDLE_WORKLOAD = 1,
173 SYNC_WORKLOAD = 2
174 };
175
176 /* This is per cgroup per device grouping structure */
177 struct cfq_group {
178 /* group service_tree member */
179 struct rb_node rb_node;
180
181 /* group service_tree key */
182 u64 vdisktime;
183 unsigned int weight;
184 unsigned int new_weight;
185 bool needs_update;
186
187 /* number of cfqq currently on this group */
188 int nr_cfqq;
189
190 /*
191 * Per group busy queues average. Useful for workload slice calc. We
192 * create the array for each prio class but at run time it is used
193 * only for RT and BE class and slot for IDLE class remains unused.
194 * This is primarily done to avoid confusion and a gcc warning.
195 */
196 unsigned int busy_queues_avg[CFQ_PRIO_NR];
197 /*
198 * rr lists of queues with requests. We maintain service trees for
199 * RT and BE classes. These trees are subdivided in subclasses
200 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
201 * class there is no subclassification and all the cfq queues go on
202 * a single tree service_tree_idle.
203 * Counts are embedded in the cfq_rb_root
204 */
205 struct cfq_rb_root service_trees[2][3];
206 struct cfq_rb_root service_tree_idle;
207
208 unsigned long saved_workload_slice;
209 enum wl_type_t saved_workload;
210 enum wl_prio_t saved_serving_prio;
211
212 /* number of requests that are on the dispatch list or inside driver */
213 int dispatched;
214 struct cfq_ttime ttime;
215 };
216
217 struct cfq_io_cq {
218 struct io_cq icq; /* must be the first member */
219 struct cfq_queue *cfqq[2];
220 struct cfq_ttime ttime;
221 };
222
223 /*
224 * Per block device queue structure
225 */
226 struct cfq_data {
227 struct request_queue *queue;
228 /* Root service tree for cfq_groups */
229 struct cfq_rb_root grp_service_tree;
230 struct cfq_group *root_group;
231
232 /*
233 * The priority currently being served
234 */
235 enum wl_prio_t serving_prio;
236 enum wl_type_t serving_type;
237 unsigned long workload_expires;
238 struct cfq_group *serving_group;
239
240 /*
241 * Each priority tree is sorted by next_request position. These
242 * trees are used when determining if two or more queues are
243 * interleaving requests (see cfq_close_cooperator).
244 */
245 struct rb_root prio_trees[CFQ_PRIO_LISTS];
246
247 unsigned int busy_queues;
248 unsigned int busy_sync_queues;
249
250 int rq_in_driver;
251 int rq_in_flight[2];
252
253 /*
254 * queue-depth detection
255 */
256 int rq_queued;
257 int hw_tag;
258 /*
259 * hw_tag can be
260 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
261 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
262 * 0 => no NCQ
263 */
264 int hw_tag_est_depth;
265 unsigned int hw_tag_samples;
266
267 /*
268 * idle window management
269 */
270 struct timer_list idle_slice_timer;
271 struct work_struct unplug_work;
272
273 struct cfq_queue *active_queue;
274 struct cfq_io_cq *active_cic;
275
276 /*
277 * async queue for each priority case
278 */
279 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
280 struct cfq_queue *async_idle_cfqq;
281
282 sector_t last_position;
283
284 /*
285 * tunables, see top of file
286 */
287 unsigned int cfq_quantum;
288 unsigned int cfq_fifo_expire[2];
289 unsigned int cfq_back_penalty;
290 unsigned int cfq_back_max;
291 unsigned int cfq_slice[2];
292 unsigned int cfq_slice_async_rq;
293 unsigned int cfq_slice_idle;
294 unsigned int cfq_group_idle;
295 unsigned int cfq_latency;
296
297 /*
298 * Fallback dummy cfqq for extreme OOM conditions
299 */
300 struct cfq_queue oom_cfqq;
301
302 unsigned long last_delayed_sync;
303 };
304
305 static inline struct cfq_group *blkg_to_cfqg(struct blkio_group *blkg)
306 {
307 return blkg_to_pdata(blkg, &blkio_policy_cfq);
308 }
309
310 static inline struct blkio_group *cfqg_to_blkg(struct cfq_group *cfqg)
311 {
312 return pdata_to_blkg(cfqg, &blkio_policy_cfq);
313 }
314
315 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
316
317 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
318 enum wl_prio_t prio,
319 enum wl_type_t type)
320 {
321 if (!cfqg)
322 return NULL;
323
324 if (prio == IDLE_WORKLOAD)
325 return &cfqg->service_tree_idle;
326
327 return &cfqg->service_trees[prio][type];
328 }
329
330 enum cfqq_state_flags {
331 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
332 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
333 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
334 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
335 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
336 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
337 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
338 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
339 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
340 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
341 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
342 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
343 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
344 };
345
346 #define CFQ_CFQQ_FNS(name) \
347 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
348 { \
349 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
350 } \
351 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
352 { \
353 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
354 } \
355 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
356 { \
357 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
358 }
359
360 CFQ_CFQQ_FNS(on_rr);
361 CFQ_CFQQ_FNS(wait_request);
362 CFQ_CFQQ_FNS(must_dispatch);
363 CFQ_CFQQ_FNS(must_alloc_slice);
364 CFQ_CFQQ_FNS(fifo_expire);
365 CFQ_CFQQ_FNS(idle_window);
366 CFQ_CFQQ_FNS(prio_changed);
367 CFQ_CFQQ_FNS(slice_new);
368 CFQ_CFQQ_FNS(sync);
369 CFQ_CFQQ_FNS(coop);
370 CFQ_CFQQ_FNS(split_coop);
371 CFQ_CFQQ_FNS(deep);
372 CFQ_CFQQ_FNS(wait_busy);
373 #undef CFQ_CFQQ_FNS
374
375 #ifdef CONFIG_CFQ_GROUP_IOSCHED
376 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
377 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
378 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
379 blkg_path(cfqg_to_blkg((cfqq)->cfqg)), ##args)
380
381 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
382 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
383 blkg_path(cfqg_to_blkg((cfqg))), ##args) \
384
385 #else
386 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
387 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
388 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
389 #endif
390 #define cfq_log(cfqd, fmt, args...) \
391 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
392
393 /* Traverses through cfq group service trees */
394 #define for_each_cfqg_st(cfqg, i, j, st) \
395 for (i = 0; i <= IDLE_WORKLOAD; i++) \
396 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
397 : &cfqg->service_tree_idle; \
398 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
399 (i == IDLE_WORKLOAD && j == 0); \
400 j++, st = i < IDLE_WORKLOAD ? \
401 &cfqg->service_trees[i][j]: NULL) \
402
403 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
404 struct cfq_ttime *ttime, bool group_idle)
405 {
406 unsigned long slice;
407 if (!sample_valid(ttime->ttime_samples))
408 return false;
409 if (group_idle)
410 slice = cfqd->cfq_group_idle;
411 else
412 slice = cfqd->cfq_slice_idle;
413 return ttime->ttime_mean > slice;
414 }
415
416 static inline bool iops_mode(struct cfq_data *cfqd)
417 {
418 /*
419 * If we are not idling on queues and it is a NCQ drive, parallel
420 * execution of requests is on and measuring time is not possible
421 * in most of the cases until and unless we drive shallower queue
422 * depths and that becomes a performance bottleneck. In such cases
423 * switch to start providing fairness in terms of number of IOs.
424 */
425 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
426 return true;
427 else
428 return false;
429 }
430
431 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
432 {
433 if (cfq_class_idle(cfqq))
434 return IDLE_WORKLOAD;
435 if (cfq_class_rt(cfqq))
436 return RT_WORKLOAD;
437 return BE_WORKLOAD;
438 }
439
440
441 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
442 {
443 if (!cfq_cfqq_sync(cfqq))
444 return ASYNC_WORKLOAD;
445 if (!cfq_cfqq_idle_window(cfqq))
446 return SYNC_NOIDLE_WORKLOAD;
447 return SYNC_WORKLOAD;
448 }
449
450 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
451 struct cfq_data *cfqd,
452 struct cfq_group *cfqg)
453 {
454 if (wl == IDLE_WORKLOAD)
455 return cfqg->service_tree_idle.count;
456
457 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
458 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
459 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
460 }
461
462 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
463 struct cfq_group *cfqg)
464 {
465 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
466 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
467 }
468
469 static void cfq_dispatch_insert(struct request_queue *, struct request *);
470 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
471 struct io_context *, gfp_t);
472
473 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
474 {
475 /* cic->icq is the first member, %NULL will convert to %NULL */
476 return container_of(icq, struct cfq_io_cq, icq);
477 }
478
479 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
480 struct io_context *ioc)
481 {
482 if (ioc)
483 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
484 return NULL;
485 }
486
487 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
488 {
489 return cic->cfqq[is_sync];
490 }
491
492 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
493 bool is_sync)
494 {
495 cic->cfqq[is_sync] = cfqq;
496 }
497
498 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
499 {
500 return cic->icq.q->elevator->elevator_data;
501 }
502
503 /*
504 * We regard a request as SYNC, if it's either a read or has the SYNC bit
505 * set (in which case it could also be direct WRITE).
506 */
507 static inline bool cfq_bio_sync(struct bio *bio)
508 {
509 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
510 }
511
512 /*
513 * scheduler run of queue, if there are requests pending and no one in the
514 * driver that will restart queueing
515 */
516 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
517 {
518 if (cfqd->busy_queues) {
519 cfq_log(cfqd, "schedule dispatch");
520 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
521 }
522 }
523
524 /*
525 * Scale schedule slice based on io priority. Use the sync time slice only
526 * if a queue is marked sync and has sync io queued. A sync queue with async
527 * io only, should not get full sync slice length.
528 */
529 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
530 unsigned short prio)
531 {
532 const int base_slice = cfqd->cfq_slice[sync];
533
534 WARN_ON(prio >= IOPRIO_BE_NR);
535
536 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
537 }
538
539 static inline int
540 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
541 {
542 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
543 }
544
545 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
546 {
547 u64 d = delta << CFQ_SERVICE_SHIFT;
548
549 d = d * BLKIO_WEIGHT_DEFAULT;
550 do_div(d, cfqg->weight);
551 return d;
552 }
553
554 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
555 {
556 s64 delta = (s64)(vdisktime - min_vdisktime);
557 if (delta > 0)
558 min_vdisktime = vdisktime;
559
560 return min_vdisktime;
561 }
562
563 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
564 {
565 s64 delta = (s64)(vdisktime - min_vdisktime);
566 if (delta < 0)
567 min_vdisktime = vdisktime;
568
569 return min_vdisktime;
570 }
571
572 static void update_min_vdisktime(struct cfq_rb_root *st)
573 {
574 struct cfq_group *cfqg;
575
576 if (st->left) {
577 cfqg = rb_entry_cfqg(st->left);
578 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
579 cfqg->vdisktime);
580 }
581 }
582
583 /*
584 * get averaged number of queues of RT/BE priority.
585 * average is updated, with a formula that gives more weight to higher numbers,
586 * to quickly follows sudden increases and decrease slowly
587 */
588
589 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
590 struct cfq_group *cfqg, bool rt)
591 {
592 unsigned min_q, max_q;
593 unsigned mult = cfq_hist_divisor - 1;
594 unsigned round = cfq_hist_divisor / 2;
595 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
596
597 min_q = min(cfqg->busy_queues_avg[rt], busy);
598 max_q = max(cfqg->busy_queues_avg[rt], busy);
599 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
600 cfq_hist_divisor;
601 return cfqg->busy_queues_avg[rt];
602 }
603
604 static inline unsigned
605 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
606 {
607 struct cfq_rb_root *st = &cfqd->grp_service_tree;
608
609 return cfq_target_latency * cfqg->weight / st->total_weight;
610 }
611
612 static inline unsigned
613 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
614 {
615 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
616 if (cfqd->cfq_latency) {
617 /*
618 * interested queues (we consider only the ones with the same
619 * priority class in the cfq group)
620 */
621 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
622 cfq_class_rt(cfqq));
623 unsigned sync_slice = cfqd->cfq_slice[1];
624 unsigned expect_latency = sync_slice * iq;
625 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
626
627 if (expect_latency > group_slice) {
628 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
629 /* scale low_slice according to IO priority
630 * and sync vs async */
631 unsigned low_slice =
632 min(slice, base_low_slice * slice / sync_slice);
633 /* the adapted slice value is scaled to fit all iqs
634 * into the target latency */
635 slice = max(slice * group_slice / expect_latency,
636 low_slice);
637 }
638 }
639 return slice;
640 }
641
642 static inline void
643 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
644 {
645 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
646
647 cfqq->slice_start = jiffies;
648 cfqq->slice_end = jiffies + slice;
649 cfqq->allocated_slice = slice;
650 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
651 }
652
653 /*
654 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
655 * isn't valid until the first request from the dispatch is activated
656 * and the slice time set.
657 */
658 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
659 {
660 if (cfq_cfqq_slice_new(cfqq))
661 return false;
662 if (time_before(jiffies, cfqq->slice_end))
663 return false;
664
665 return true;
666 }
667
668 /*
669 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
670 * We choose the request that is closest to the head right now. Distance
671 * behind the head is penalized and only allowed to a certain extent.
672 */
673 static struct request *
674 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
675 {
676 sector_t s1, s2, d1 = 0, d2 = 0;
677 unsigned long back_max;
678 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
679 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
680 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
681
682 if (rq1 == NULL || rq1 == rq2)
683 return rq2;
684 if (rq2 == NULL)
685 return rq1;
686
687 if (rq_is_sync(rq1) != rq_is_sync(rq2))
688 return rq_is_sync(rq1) ? rq1 : rq2;
689
690 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
691 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
692
693 s1 = blk_rq_pos(rq1);
694 s2 = blk_rq_pos(rq2);
695
696 /*
697 * by definition, 1KiB is 2 sectors
698 */
699 back_max = cfqd->cfq_back_max * 2;
700
701 /*
702 * Strict one way elevator _except_ in the case where we allow
703 * short backward seeks which are biased as twice the cost of a
704 * similar forward seek.
705 */
706 if (s1 >= last)
707 d1 = s1 - last;
708 else if (s1 + back_max >= last)
709 d1 = (last - s1) * cfqd->cfq_back_penalty;
710 else
711 wrap |= CFQ_RQ1_WRAP;
712
713 if (s2 >= last)
714 d2 = s2 - last;
715 else if (s2 + back_max >= last)
716 d2 = (last - s2) * cfqd->cfq_back_penalty;
717 else
718 wrap |= CFQ_RQ2_WRAP;
719
720 /* Found required data */
721
722 /*
723 * By doing switch() on the bit mask "wrap" we avoid having to
724 * check two variables for all permutations: --> faster!
725 */
726 switch (wrap) {
727 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
728 if (d1 < d2)
729 return rq1;
730 else if (d2 < d1)
731 return rq2;
732 else {
733 if (s1 >= s2)
734 return rq1;
735 else
736 return rq2;
737 }
738
739 case CFQ_RQ2_WRAP:
740 return rq1;
741 case CFQ_RQ1_WRAP:
742 return rq2;
743 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
744 default:
745 /*
746 * Since both rqs are wrapped,
747 * start with the one that's further behind head
748 * (--> only *one* back seek required),
749 * since back seek takes more time than forward.
750 */
751 if (s1 <= s2)
752 return rq1;
753 else
754 return rq2;
755 }
756 }
757
758 /*
759 * The below is leftmost cache rbtree addon
760 */
761 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
762 {
763 /* Service tree is empty */
764 if (!root->count)
765 return NULL;
766
767 if (!root->left)
768 root->left = rb_first(&root->rb);
769
770 if (root->left)
771 return rb_entry(root->left, struct cfq_queue, rb_node);
772
773 return NULL;
774 }
775
776 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
777 {
778 if (!root->left)
779 root->left = rb_first(&root->rb);
780
781 if (root->left)
782 return rb_entry_cfqg(root->left);
783
784 return NULL;
785 }
786
787 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
788 {
789 rb_erase(n, root);
790 RB_CLEAR_NODE(n);
791 }
792
793 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
794 {
795 if (root->left == n)
796 root->left = NULL;
797 rb_erase_init(n, &root->rb);
798 --root->count;
799 }
800
801 /*
802 * would be nice to take fifo expire time into account as well
803 */
804 static struct request *
805 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
806 struct request *last)
807 {
808 struct rb_node *rbnext = rb_next(&last->rb_node);
809 struct rb_node *rbprev = rb_prev(&last->rb_node);
810 struct request *next = NULL, *prev = NULL;
811
812 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
813
814 if (rbprev)
815 prev = rb_entry_rq(rbprev);
816
817 if (rbnext)
818 next = rb_entry_rq(rbnext);
819 else {
820 rbnext = rb_first(&cfqq->sort_list);
821 if (rbnext && rbnext != &last->rb_node)
822 next = rb_entry_rq(rbnext);
823 }
824
825 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
826 }
827
828 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
829 struct cfq_queue *cfqq)
830 {
831 /*
832 * just an approximation, should be ok.
833 */
834 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
835 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
836 }
837
838 static inline s64
839 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
840 {
841 return cfqg->vdisktime - st->min_vdisktime;
842 }
843
844 static void
845 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
846 {
847 struct rb_node **node = &st->rb.rb_node;
848 struct rb_node *parent = NULL;
849 struct cfq_group *__cfqg;
850 s64 key = cfqg_key(st, cfqg);
851 int left = 1;
852
853 while (*node != NULL) {
854 parent = *node;
855 __cfqg = rb_entry_cfqg(parent);
856
857 if (key < cfqg_key(st, __cfqg))
858 node = &parent->rb_left;
859 else {
860 node = &parent->rb_right;
861 left = 0;
862 }
863 }
864
865 if (left)
866 st->left = &cfqg->rb_node;
867
868 rb_link_node(&cfqg->rb_node, parent, node);
869 rb_insert_color(&cfqg->rb_node, &st->rb);
870 }
871
872 static void
873 cfq_update_group_weight(struct cfq_group *cfqg)
874 {
875 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
876 if (cfqg->needs_update) {
877 cfqg->weight = cfqg->new_weight;
878 cfqg->needs_update = false;
879 }
880 }
881
882 static void
883 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
884 {
885 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
886
887 cfq_update_group_weight(cfqg);
888 __cfq_group_service_tree_add(st, cfqg);
889 st->total_weight += cfqg->weight;
890 }
891
892 static void
893 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
894 {
895 struct cfq_rb_root *st = &cfqd->grp_service_tree;
896 struct cfq_group *__cfqg;
897 struct rb_node *n;
898
899 cfqg->nr_cfqq++;
900 if (!RB_EMPTY_NODE(&cfqg->rb_node))
901 return;
902
903 /*
904 * Currently put the group at the end. Later implement something
905 * so that groups get lesser vtime based on their weights, so that
906 * if group does not loose all if it was not continuously backlogged.
907 */
908 n = rb_last(&st->rb);
909 if (n) {
910 __cfqg = rb_entry_cfqg(n);
911 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
912 } else
913 cfqg->vdisktime = st->min_vdisktime;
914 cfq_group_service_tree_add(st, cfqg);
915 }
916
917 static void
918 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
919 {
920 st->total_weight -= cfqg->weight;
921 if (!RB_EMPTY_NODE(&cfqg->rb_node))
922 cfq_rb_erase(&cfqg->rb_node, st);
923 }
924
925 static void
926 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
927 {
928 struct cfq_rb_root *st = &cfqd->grp_service_tree;
929
930 BUG_ON(cfqg->nr_cfqq < 1);
931 cfqg->nr_cfqq--;
932
933 /* If there are other cfq queues under this group, don't delete it */
934 if (cfqg->nr_cfqq)
935 return;
936
937 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
938 cfq_group_service_tree_del(st, cfqg);
939 cfqg->saved_workload_slice = 0;
940 cfq_blkiocg_update_dequeue_stats(cfqg_to_blkg(cfqg),
941 &blkio_policy_cfq, 1);
942 }
943
944 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
945 unsigned int *unaccounted_time)
946 {
947 unsigned int slice_used;
948
949 /*
950 * Queue got expired before even a single request completed or
951 * got expired immediately after first request completion.
952 */
953 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
954 /*
955 * Also charge the seek time incurred to the group, otherwise
956 * if there are mutiple queues in the group, each can dispatch
957 * a single request on seeky media and cause lots of seek time
958 * and group will never know it.
959 */
960 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
961 1);
962 } else {
963 slice_used = jiffies - cfqq->slice_start;
964 if (slice_used > cfqq->allocated_slice) {
965 *unaccounted_time = slice_used - cfqq->allocated_slice;
966 slice_used = cfqq->allocated_slice;
967 }
968 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
969 *unaccounted_time += cfqq->slice_start -
970 cfqq->dispatch_start;
971 }
972
973 return slice_used;
974 }
975
976 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
977 struct cfq_queue *cfqq)
978 {
979 struct cfq_rb_root *st = &cfqd->grp_service_tree;
980 unsigned int used_sl, charge, unaccounted_sl = 0;
981 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
982 - cfqg->service_tree_idle.count;
983
984 BUG_ON(nr_sync < 0);
985 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
986
987 if (iops_mode(cfqd))
988 charge = cfqq->slice_dispatch;
989 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
990 charge = cfqq->allocated_slice;
991
992 /* Can't update vdisktime while group is on service tree */
993 cfq_group_service_tree_del(st, cfqg);
994 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
995 /* If a new weight was requested, update now, off tree */
996 cfq_group_service_tree_add(st, cfqg);
997
998 /* This group is being expired. Save the context */
999 if (time_after(cfqd->workload_expires, jiffies)) {
1000 cfqg->saved_workload_slice = cfqd->workload_expires
1001 - jiffies;
1002 cfqg->saved_workload = cfqd->serving_type;
1003 cfqg->saved_serving_prio = cfqd->serving_prio;
1004 } else
1005 cfqg->saved_workload_slice = 0;
1006
1007 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1008 st->min_vdisktime);
1009 cfq_log_cfqq(cfqq->cfqd, cfqq,
1010 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1011 used_sl, cfqq->slice_dispatch, charge,
1012 iops_mode(cfqd), cfqq->nr_sectors);
1013 cfq_blkiocg_update_timeslice_used(cfqg_to_blkg(cfqg), &blkio_policy_cfq,
1014 used_sl, unaccounted_sl);
1015 cfq_blkiocg_set_start_empty_time(cfqg_to_blkg(cfqg), &blkio_policy_cfq);
1016 }
1017
1018 /**
1019 * cfq_init_cfqg_base - initialize base part of a cfq_group
1020 * @cfqg: cfq_group to initialize
1021 *
1022 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1023 * is enabled or not.
1024 */
1025 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1026 {
1027 struct cfq_rb_root *st;
1028 int i, j;
1029
1030 for_each_cfqg_st(cfqg, i, j, st)
1031 *st = CFQ_RB_ROOT;
1032 RB_CLEAR_NODE(&cfqg->rb_node);
1033
1034 cfqg->ttime.last_end_request = jiffies;
1035 }
1036
1037 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1038 static void cfq_update_blkio_group_weight(struct request_queue *q,
1039 struct blkio_group *blkg,
1040 unsigned int weight)
1041 {
1042 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1043
1044 cfqg->new_weight = weight;
1045 cfqg->needs_update = true;
1046 }
1047
1048 static void cfq_init_blkio_group(struct blkio_group *blkg)
1049 {
1050 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1051
1052 cfq_init_cfqg_base(cfqg);
1053 cfqg->weight = blkg->blkcg->weight;
1054 }
1055
1056 /*
1057 * Search for the cfq group current task belongs to. request_queue lock must
1058 * be held.
1059 */
1060 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1061 struct blkio_cgroup *blkcg)
1062 {
1063 struct request_queue *q = cfqd->queue;
1064 struct cfq_group *cfqg = NULL;
1065
1066 /* avoid lookup for the common case where there's no blkio cgroup */
1067 if (blkcg == &blkio_root_cgroup) {
1068 cfqg = cfqd->root_group;
1069 } else {
1070 struct blkio_group *blkg;
1071
1072 blkg = blkg_lookup_create(blkcg, q, BLKIO_POLICY_PROP, false);
1073 if (!IS_ERR(blkg))
1074 cfqg = blkg_to_cfqg(blkg);
1075 }
1076
1077 return cfqg;
1078 }
1079
1080 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1081 {
1082 /* Currently, all async queues are mapped to root group */
1083 if (!cfq_cfqq_sync(cfqq))
1084 cfqg = cfqq->cfqd->root_group;
1085
1086 cfqq->cfqg = cfqg;
1087 /* cfqq reference on cfqg */
1088 blkg_get(cfqg_to_blkg(cfqg));
1089 }
1090
1091 #else /* GROUP_IOSCHED */
1092 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1093 struct blkio_cgroup *blkcg)
1094 {
1095 return cfqd->root_group;
1096 }
1097
1098 static inline void
1099 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1100 cfqq->cfqg = cfqg;
1101 }
1102
1103 #endif /* GROUP_IOSCHED */
1104
1105 /*
1106 * The cfqd->service_trees holds all pending cfq_queue's that have
1107 * requests waiting to be processed. It is sorted in the order that
1108 * we will service the queues.
1109 */
1110 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1111 bool add_front)
1112 {
1113 struct rb_node **p, *parent;
1114 struct cfq_queue *__cfqq;
1115 unsigned long rb_key;
1116 struct cfq_rb_root *service_tree;
1117 int left;
1118 int new_cfqq = 1;
1119
1120 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1121 cfqq_type(cfqq));
1122 if (cfq_class_idle(cfqq)) {
1123 rb_key = CFQ_IDLE_DELAY;
1124 parent = rb_last(&service_tree->rb);
1125 if (parent && parent != &cfqq->rb_node) {
1126 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1127 rb_key += __cfqq->rb_key;
1128 } else
1129 rb_key += jiffies;
1130 } else if (!add_front) {
1131 /*
1132 * Get our rb key offset. Subtract any residual slice
1133 * value carried from last service. A negative resid
1134 * count indicates slice overrun, and this should position
1135 * the next service time further away in the tree.
1136 */
1137 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1138 rb_key -= cfqq->slice_resid;
1139 cfqq->slice_resid = 0;
1140 } else {
1141 rb_key = -HZ;
1142 __cfqq = cfq_rb_first(service_tree);
1143 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1144 }
1145
1146 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1147 new_cfqq = 0;
1148 /*
1149 * same position, nothing more to do
1150 */
1151 if (rb_key == cfqq->rb_key &&
1152 cfqq->service_tree == service_tree)
1153 return;
1154
1155 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1156 cfqq->service_tree = NULL;
1157 }
1158
1159 left = 1;
1160 parent = NULL;
1161 cfqq->service_tree = service_tree;
1162 p = &service_tree->rb.rb_node;
1163 while (*p) {
1164 struct rb_node **n;
1165
1166 parent = *p;
1167 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1168
1169 /*
1170 * sort by key, that represents service time.
1171 */
1172 if (time_before(rb_key, __cfqq->rb_key))
1173 n = &(*p)->rb_left;
1174 else {
1175 n = &(*p)->rb_right;
1176 left = 0;
1177 }
1178
1179 p = n;
1180 }
1181
1182 if (left)
1183 service_tree->left = &cfqq->rb_node;
1184
1185 cfqq->rb_key = rb_key;
1186 rb_link_node(&cfqq->rb_node, parent, p);
1187 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1188 service_tree->count++;
1189 if (add_front || !new_cfqq)
1190 return;
1191 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1192 }
1193
1194 static struct cfq_queue *
1195 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1196 sector_t sector, struct rb_node **ret_parent,
1197 struct rb_node ***rb_link)
1198 {
1199 struct rb_node **p, *parent;
1200 struct cfq_queue *cfqq = NULL;
1201
1202 parent = NULL;
1203 p = &root->rb_node;
1204 while (*p) {
1205 struct rb_node **n;
1206
1207 parent = *p;
1208 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1209
1210 /*
1211 * Sort strictly based on sector. Smallest to the left,
1212 * largest to the right.
1213 */
1214 if (sector > blk_rq_pos(cfqq->next_rq))
1215 n = &(*p)->rb_right;
1216 else if (sector < blk_rq_pos(cfqq->next_rq))
1217 n = &(*p)->rb_left;
1218 else
1219 break;
1220 p = n;
1221 cfqq = NULL;
1222 }
1223
1224 *ret_parent = parent;
1225 if (rb_link)
1226 *rb_link = p;
1227 return cfqq;
1228 }
1229
1230 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1231 {
1232 struct rb_node **p, *parent;
1233 struct cfq_queue *__cfqq;
1234
1235 if (cfqq->p_root) {
1236 rb_erase(&cfqq->p_node, cfqq->p_root);
1237 cfqq->p_root = NULL;
1238 }
1239
1240 if (cfq_class_idle(cfqq))
1241 return;
1242 if (!cfqq->next_rq)
1243 return;
1244
1245 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1246 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1247 blk_rq_pos(cfqq->next_rq), &parent, &p);
1248 if (!__cfqq) {
1249 rb_link_node(&cfqq->p_node, parent, p);
1250 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1251 } else
1252 cfqq->p_root = NULL;
1253 }
1254
1255 /*
1256 * Update cfqq's position in the service tree.
1257 */
1258 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1259 {
1260 /*
1261 * Resorting requires the cfqq to be on the RR list already.
1262 */
1263 if (cfq_cfqq_on_rr(cfqq)) {
1264 cfq_service_tree_add(cfqd, cfqq, 0);
1265 cfq_prio_tree_add(cfqd, cfqq);
1266 }
1267 }
1268
1269 /*
1270 * add to busy list of queues for service, trying to be fair in ordering
1271 * the pending list according to last request service
1272 */
1273 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1274 {
1275 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1276 BUG_ON(cfq_cfqq_on_rr(cfqq));
1277 cfq_mark_cfqq_on_rr(cfqq);
1278 cfqd->busy_queues++;
1279 if (cfq_cfqq_sync(cfqq))
1280 cfqd->busy_sync_queues++;
1281
1282 cfq_resort_rr_list(cfqd, cfqq);
1283 }
1284
1285 /*
1286 * Called when the cfqq no longer has requests pending, remove it from
1287 * the service tree.
1288 */
1289 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1290 {
1291 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1292 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1293 cfq_clear_cfqq_on_rr(cfqq);
1294
1295 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1296 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1297 cfqq->service_tree = NULL;
1298 }
1299 if (cfqq->p_root) {
1300 rb_erase(&cfqq->p_node, cfqq->p_root);
1301 cfqq->p_root = NULL;
1302 }
1303
1304 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1305 BUG_ON(!cfqd->busy_queues);
1306 cfqd->busy_queues--;
1307 if (cfq_cfqq_sync(cfqq))
1308 cfqd->busy_sync_queues--;
1309 }
1310
1311 /*
1312 * rb tree support functions
1313 */
1314 static void cfq_del_rq_rb(struct request *rq)
1315 {
1316 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1317 const int sync = rq_is_sync(rq);
1318
1319 BUG_ON(!cfqq->queued[sync]);
1320 cfqq->queued[sync]--;
1321
1322 elv_rb_del(&cfqq->sort_list, rq);
1323
1324 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1325 /*
1326 * Queue will be deleted from service tree when we actually
1327 * expire it later. Right now just remove it from prio tree
1328 * as it is empty.
1329 */
1330 if (cfqq->p_root) {
1331 rb_erase(&cfqq->p_node, cfqq->p_root);
1332 cfqq->p_root = NULL;
1333 }
1334 }
1335 }
1336
1337 static void cfq_add_rq_rb(struct request *rq)
1338 {
1339 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1340 struct cfq_data *cfqd = cfqq->cfqd;
1341 struct request *prev;
1342
1343 cfqq->queued[rq_is_sync(rq)]++;
1344
1345 elv_rb_add(&cfqq->sort_list, rq);
1346
1347 if (!cfq_cfqq_on_rr(cfqq))
1348 cfq_add_cfqq_rr(cfqd, cfqq);
1349
1350 /*
1351 * check if this request is a better next-serve candidate
1352 */
1353 prev = cfqq->next_rq;
1354 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1355
1356 /*
1357 * adjust priority tree position, if ->next_rq changes
1358 */
1359 if (prev != cfqq->next_rq)
1360 cfq_prio_tree_add(cfqd, cfqq);
1361
1362 BUG_ON(!cfqq->next_rq);
1363 }
1364
1365 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1366 {
1367 elv_rb_del(&cfqq->sort_list, rq);
1368 cfqq->queued[rq_is_sync(rq)]--;
1369 cfq_blkiocg_update_io_remove_stats(cfqg_to_blkg(RQ_CFQG(rq)),
1370 &blkio_policy_cfq, rq_data_dir(rq),
1371 rq_is_sync(rq));
1372 cfq_add_rq_rb(rq);
1373 cfq_blkiocg_update_io_add_stats(cfqg_to_blkg(RQ_CFQG(rq)),
1374 &blkio_policy_cfq,
1375 cfqg_to_blkg(cfqq->cfqd->serving_group),
1376 rq_data_dir(rq), rq_is_sync(rq));
1377 }
1378
1379 static struct request *
1380 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1381 {
1382 struct task_struct *tsk = current;
1383 struct cfq_io_cq *cic;
1384 struct cfq_queue *cfqq;
1385
1386 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1387 if (!cic)
1388 return NULL;
1389
1390 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1391 if (cfqq) {
1392 sector_t sector = bio->bi_sector + bio_sectors(bio);
1393
1394 return elv_rb_find(&cfqq->sort_list, sector);
1395 }
1396
1397 return NULL;
1398 }
1399
1400 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1401 {
1402 struct cfq_data *cfqd = q->elevator->elevator_data;
1403
1404 cfqd->rq_in_driver++;
1405 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1406 cfqd->rq_in_driver);
1407
1408 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1409 }
1410
1411 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1412 {
1413 struct cfq_data *cfqd = q->elevator->elevator_data;
1414
1415 WARN_ON(!cfqd->rq_in_driver);
1416 cfqd->rq_in_driver--;
1417 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1418 cfqd->rq_in_driver);
1419 }
1420
1421 static void cfq_remove_request(struct request *rq)
1422 {
1423 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1424
1425 if (cfqq->next_rq == rq)
1426 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1427
1428 list_del_init(&rq->queuelist);
1429 cfq_del_rq_rb(rq);
1430
1431 cfqq->cfqd->rq_queued--;
1432 cfq_blkiocg_update_io_remove_stats(cfqg_to_blkg(RQ_CFQG(rq)),
1433 &blkio_policy_cfq, rq_data_dir(rq),
1434 rq_is_sync(rq));
1435 if (rq->cmd_flags & REQ_PRIO) {
1436 WARN_ON(!cfqq->prio_pending);
1437 cfqq->prio_pending--;
1438 }
1439 }
1440
1441 static int cfq_merge(struct request_queue *q, struct request **req,
1442 struct bio *bio)
1443 {
1444 struct cfq_data *cfqd = q->elevator->elevator_data;
1445 struct request *__rq;
1446
1447 __rq = cfq_find_rq_fmerge(cfqd, bio);
1448 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1449 *req = __rq;
1450 return ELEVATOR_FRONT_MERGE;
1451 }
1452
1453 return ELEVATOR_NO_MERGE;
1454 }
1455
1456 static void cfq_merged_request(struct request_queue *q, struct request *req,
1457 int type)
1458 {
1459 if (type == ELEVATOR_FRONT_MERGE) {
1460 struct cfq_queue *cfqq = RQ_CFQQ(req);
1461
1462 cfq_reposition_rq_rb(cfqq, req);
1463 }
1464 }
1465
1466 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1467 struct bio *bio)
1468 {
1469 cfq_blkiocg_update_io_merged_stats(cfqg_to_blkg(RQ_CFQG(req)),
1470 &blkio_policy_cfq, bio_data_dir(bio),
1471 cfq_bio_sync(bio));
1472 }
1473
1474 static void
1475 cfq_merged_requests(struct request_queue *q, struct request *rq,
1476 struct request *next)
1477 {
1478 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1479 struct cfq_data *cfqd = q->elevator->elevator_data;
1480
1481 /*
1482 * reposition in fifo if next is older than rq
1483 */
1484 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1485 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1486 list_move(&rq->queuelist, &next->queuelist);
1487 rq_set_fifo_time(rq, rq_fifo_time(next));
1488 }
1489
1490 if (cfqq->next_rq == next)
1491 cfqq->next_rq = rq;
1492 cfq_remove_request(next);
1493 cfq_blkiocg_update_io_merged_stats(cfqg_to_blkg(RQ_CFQG(rq)),
1494 &blkio_policy_cfq, rq_data_dir(next),
1495 rq_is_sync(next));
1496
1497 cfqq = RQ_CFQQ(next);
1498 /*
1499 * all requests of this queue are merged to other queues, delete it
1500 * from the service tree. If it's the active_queue,
1501 * cfq_dispatch_requests() will choose to expire it or do idle
1502 */
1503 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
1504 cfqq != cfqd->active_queue)
1505 cfq_del_cfqq_rr(cfqd, cfqq);
1506 }
1507
1508 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1509 struct bio *bio)
1510 {
1511 struct cfq_data *cfqd = q->elevator->elevator_data;
1512 struct cfq_io_cq *cic;
1513 struct cfq_queue *cfqq;
1514
1515 /*
1516 * Disallow merge of a sync bio into an async request.
1517 */
1518 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1519 return false;
1520
1521 /*
1522 * Lookup the cfqq that this bio will be queued with and allow
1523 * merge only if rq is queued there.
1524 */
1525 cic = cfq_cic_lookup(cfqd, current->io_context);
1526 if (!cic)
1527 return false;
1528
1529 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1530 return cfqq == RQ_CFQQ(rq);
1531 }
1532
1533 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1534 {
1535 del_timer(&cfqd->idle_slice_timer);
1536 cfq_blkiocg_update_idle_time_stats(cfqg_to_blkg(cfqq->cfqg),
1537 &blkio_policy_cfq);
1538 }
1539
1540 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1541 struct cfq_queue *cfqq)
1542 {
1543 if (cfqq) {
1544 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1545 cfqd->serving_prio, cfqd->serving_type);
1546 cfq_blkiocg_update_avg_queue_size_stats(cfqg_to_blkg(cfqq->cfqg),
1547 &blkio_policy_cfq);
1548 cfqq->slice_start = 0;
1549 cfqq->dispatch_start = jiffies;
1550 cfqq->allocated_slice = 0;
1551 cfqq->slice_end = 0;
1552 cfqq->slice_dispatch = 0;
1553 cfqq->nr_sectors = 0;
1554
1555 cfq_clear_cfqq_wait_request(cfqq);
1556 cfq_clear_cfqq_must_dispatch(cfqq);
1557 cfq_clear_cfqq_must_alloc_slice(cfqq);
1558 cfq_clear_cfqq_fifo_expire(cfqq);
1559 cfq_mark_cfqq_slice_new(cfqq);
1560
1561 cfq_del_timer(cfqd, cfqq);
1562 }
1563
1564 cfqd->active_queue = cfqq;
1565 }
1566
1567 /*
1568 * current cfqq expired its slice (or was too idle), select new one
1569 */
1570 static void
1571 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1572 bool timed_out)
1573 {
1574 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1575
1576 if (cfq_cfqq_wait_request(cfqq))
1577 cfq_del_timer(cfqd, cfqq);
1578
1579 cfq_clear_cfqq_wait_request(cfqq);
1580 cfq_clear_cfqq_wait_busy(cfqq);
1581
1582 /*
1583 * If this cfqq is shared between multiple processes, check to
1584 * make sure that those processes are still issuing I/Os within
1585 * the mean seek distance. If not, it may be time to break the
1586 * queues apart again.
1587 */
1588 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1589 cfq_mark_cfqq_split_coop(cfqq);
1590
1591 /*
1592 * store what was left of this slice, if the queue idled/timed out
1593 */
1594 if (timed_out) {
1595 if (cfq_cfqq_slice_new(cfqq))
1596 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1597 else
1598 cfqq->slice_resid = cfqq->slice_end - jiffies;
1599 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1600 }
1601
1602 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1603
1604 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1605 cfq_del_cfqq_rr(cfqd, cfqq);
1606
1607 cfq_resort_rr_list(cfqd, cfqq);
1608
1609 if (cfqq == cfqd->active_queue)
1610 cfqd->active_queue = NULL;
1611
1612 if (cfqd->active_cic) {
1613 put_io_context(cfqd->active_cic->icq.ioc);
1614 cfqd->active_cic = NULL;
1615 }
1616 }
1617
1618 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1619 {
1620 struct cfq_queue *cfqq = cfqd->active_queue;
1621
1622 if (cfqq)
1623 __cfq_slice_expired(cfqd, cfqq, timed_out);
1624 }
1625
1626 /*
1627 * Get next queue for service. Unless we have a queue preemption,
1628 * we'll simply select the first cfqq in the service tree.
1629 */
1630 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1631 {
1632 struct cfq_rb_root *service_tree =
1633 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1634 cfqd->serving_type);
1635
1636 if (!cfqd->rq_queued)
1637 return NULL;
1638
1639 /* There is nothing to dispatch */
1640 if (!service_tree)
1641 return NULL;
1642 if (RB_EMPTY_ROOT(&service_tree->rb))
1643 return NULL;
1644 return cfq_rb_first(service_tree);
1645 }
1646
1647 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1648 {
1649 struct cfq_group *cfqg;
1650 struct cfq_queue *cfqq;
1651 int i, j;
1652 struct cfq_rb_root *st;
1653
1654 if (!cfqd->rq_queued)
1655 return NULL;
1656
1657 cfqg = cfq_get_next_cfqg(cfqd);
1658 if (!cfqg)
1659 return NULL;
1660
1661 for_each_cfqg_st(cfqg, i, j, st)
1662 if ((cfqq = cfq_rb_first(st)) != NULL)
1663 return cfqq;
1664 return NULL;
1665 }
1666
1667 /*
1668 * Get and set a new active queue for service.
1669 */
1670 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1671 struct cfq_queue *cfqq)
1672 {
1673 if (!cfqq)
1674 cfqq = cfq_get_next_queue(cfqd);
1675
1676 __cfq_set_active_queue(cfqd, cfqq);
1677 return cfqq;
1678 }
1679
1680 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1681 struct request *rq)
1682 {
1683 if (blk_rq_pos(rq) >= cfqd->last_position)
1684 return blk_rq_pos(rq) - cfqd->last_position;
1685 else
1686 return cfqd->last_position - blk_rq_pos(rq);
1687 }
1688
1689 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1690 struct request *rq)
1691 {
1692 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1693 }
1694
1695 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1696 struct cfq_queue *cur_cfqq)
1697 {
1698 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1699 struct rb_node *parent, *node;
1700 struct cfq_queue *__cfqq;
1701 sector_t sector = cfqd->last_position;
1702
1703 if (RB_EMPTY_ROOT(root))
1704 return NULL;
1705
1706 /*
1707 * First, if we find a request starting at the end of the last
1708 * request, choose it.
1709 */
1710 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1711 if (__cfqq)
1712 return __cfqq;
1713
1714 /*
1715 * If the exact sector wasn't found, the parent of the NULL leaf
1716 * will contain the closest sector.
1717 */
1718 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1719 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1720 return __cfqq;
1721
1722 if (blk_rq_pos(__cfqq->next_rq) < sector)
1723 node = rb_next(&__cfqq->p_node);
1724 else
1725 node = rb_prev(&__cfqq->p_node);
1726 if (!node)
1727 return NULL;
1728
1729 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1730 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1731 return __cfqq;
1732
1733 return NULL;
1734 }
1735
1736 /*
1737 * cfqd - obvious
1738 * cur_cfqq - passed in so that we don't decide that the current queue is
1739 * closely cooperating with itself.
1740 *
1741 * So, basically we're assuming that that cur_cfqq has dispatched at least
1742 * one request, and that cfqd->last_position reflects a position on the disk
1743 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1744 * assumption.
1745 */
1746 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1747 struct cfq_queue *cur_cfqq)
1748 {
1749 struct cfq_queue *cfqq;
1750
1751 if (cfq_class_idle(cur_cfqq))
1752 return NULL;
1753 if (!cfq_cfqq_sync(cur_cfqq))
1754 return NULL;
1755 if (CFQQ_SEEKY(cur_cfqq))
1756 return NULL;
1757
1758 /*
1759 * Don't search priority tree if it's the only queue in the group.
1760 */
1761 if (cur_cfqq->cfqg->nr_cfqq == 1)
1762 return NULL;
1763
1764 /*
1765 * We should notice if some of the queues are cooperating, eg
1766 * working closely on the same area of the disk. In that case,
1767 * we can group them together and don't waste time idling.
1768 */
1769 cfqq = cfqq_close(cfqd, cur_cfqq);
1770 if (!cfqq)
1771 return NULL;
1772
1773 /* If new queue belongs to different cfq_group, don't choose it */
1774 if (cur_cfqq->cfqg != cfqq->cfqg)
1775 return NULL;
1776
1777 /*
1778 * It only makes sense to merge sync queues.
1779 */
1780 if (!cfq_cfqq_sync(cfqq))
1781 return NULL;
1782 if (CFQQ_SEEKY(cfqq))
1783 return NULL;
1784
1785 /*
1786 * Do not merge queues of different priority classes
1787 */
1788 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1789 return NULL;
1790
1791 return cfqq;
1792 }
1793
1794 /*
1795 * Determine whether we should enforce idle window for this queue.
1796 */
1797
1798 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1799 {
1800 enum wl_prio_t prio = cfqq_prio(cfqq);
1801 struct cfq_rb_root *service_tree = cfqq->service_tree;
1802
1803 BUG_ON(!service_tree);
1804 BUG_ON(!service_tree->count);
1805
1806 if (!cfqd->cfq_slice_idle)
1807 return false;
1808
1809 /* We never do for idle class queues. */
1810 if (prio == IDLE_WORKLOAD)
1811 return false;
1812
1813 /* We do for queues that were marked with idle window flag. */
1814 if (cfq_cfqq_idle_window(cfqq) &&
1815 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1816 return true;
1817
1818 /*
1819 * Otherwise, we do only if they are the last ones
1820 * in their service tree.
1821 */
1822 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
1823 !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
1824 return true;
1825 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1826 service_tree->count);
1827 return false;
1828 }
1829
1830 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1831 {
1832 struct cfq_queue *cfqq = cfqd->active_queue;
1833 struct cfq_io_cq *cic;
1834 unsigned long sl, group_idle = 0;
1835
1836 /*
1837 * SSD device without seek penalty, disable idling. But only do so
1838 * for devices that support queuing, otherwise we still have a problem
1839 * with sync vs async workloads.
1840 */
1841 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1842 return;
1843
1844 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1845 WARN_ON(cfq_cfqq_slice_new(cfqq));
1846
1847 /*
1848 * idle is disabled, either manually or by past process history
1849 */
1850 if (!cfq_should_idle(cfqd, cfqq)) {
1851 /* no queue idling. Check for group idling */
1852 if (cfqd->cfq_group_idle)
1853 group_idle = cfqd->cfq_group_idle;
1854 else
1855 return;
1856 }
1857
1858 /*
1859 * still active requests from this queue, don't idle
1860 */
1861 if (cfqq->dispatched)
1862 return;
1863
1864 /*
1865 * task has exited, don't wait
1866 */
1867 cic = cfqd->active_cic;
1868 if (!cic || !atomic_read(&cic->icq.ioc->nr_tasks))
1869 return;
1870
1871 /*
1872 * If our average think time is larger than the remaining time
1873 * slice, then don't idle. This avoids overrunning the allotted
1874 * time slice.
1875 */
1876 if (sample_valid(cic->ttime.ttime_samples) &&
1877 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
1878 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
1879 cic->ttime.ttime_mean);
1880 return;
1881 }
1882
1883 /* There are other queues in the group, don't do group idle */
1884 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
1885 return;
1886
1887 cfq_mark_cfqq_wait_request(cfqq);
1888
1889 if (group_idle)
1890 sl = cfqd->cfq_group_idle;
1891 else
1892 sl = cfqd->cfq_slice_idle;
1893
1894 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1895 cfq_blkiocg_update_set_idle_time_stats(cfqg_to_blkg(cfqq->cfqg),
1896 &blkio_policy_cfq);
1897 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
1898 group_idle ? 1 : 0);
1899 }
1900
1901 /*
1902 * Move request from internal lists to the request queue dispatch list.
1903 */
1904 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1905 {
1906 struct cfq_data *cfqd = q->elevator->elevator_data;
1907 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1908
1909 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1910
1911 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1912 cfq_remove_request(rq);
1913 cfqq->dispatched++;
1914 (RQ_CFQG(rq))->dispatched++;
1915 elv_dispatch_sort(q, rq);
1916
1917 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1918 cfqq->nr_sectors += blk_rq_sectors(rq);
1919 cfq_blkiocg_update_dispatch_stats(cfqg_to_blkg(cfqq->cfqg),
1920 &blkio_policy_cfq, blk_rq_bytes(rq),
1921 rq_data_dir(rq), rq_is_sync(rq));
1922 }
1923
1924 /*
1925 * return expired entry, or NULL to just start from scratch in rbtree
1926 */
1927 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1928 {
1929 struct request *rq = NULL;
1930
1931 if (cfq_cfqq_fifo_expire(cfqq))
1932 return NULL;
1933
1934 cfq_mark_cfqq_fifo_expire(cfqq);
1935
1936 if (list_empty(&cfqq->fifo))
1937 return NULL;
1938
1939 rq = rq_entry_fifo(cfqq->fifo.next);
1940 if (time_before(jiffies, rq_fifo_time(rq)))
1941 rq = NULL;
1942
1943 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1944 return rq;
1945 }
1946
1947 static inline int
1948 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1949 {
1950 const int base_rq = cfqd->cfq_slice_async_rq;
1951
1952 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1953
1954 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
1955 }
1956
1957 /*
1958 * Must be called with the queue_lock held.
1959 */
1960 static int cfqq_process_refs(struct cfq_queue *cfqq)
1961 {
1962 int process_refs, io_refs;
1963
1964 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1965 process_refs = cfqq->ref - io_refs;
1966 BUG_ON(process_refs < 0);
1967 return process_refs;
1968 }
1969
1970 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1971 {
1972 int process_refs, new_process_refs;
1973 struct cfq_queue *__cfqq;
1974
1975 /*
1976 * If there are no process references on the new_cfqq, then it is
1977 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
1978 * chain may have dropped their last reference (not just their
1979 * last process reference).
1980 */
1981 if (!cfqq_process_refs(new_cfqq))
1982 return;
1983
1984 /* Avoid a circular list and skip interim queue merges */
1985 while ((__cfqq = new_cfqq->new_cfqq)) {
1986 if (__cfqq == cfqq)
1987 return;
1988 new_cfqq = __cfqq;
1989 }
1990
1991 process_refs = cfqq_process_refs(cfqq);
1992 new_process_refs = cfqq_process_refs(new_cfqq);
1993 /*
1994 * If the process for the cfqq has gone away, there is no
1995 * sense in merging the queues.
1996 */
1997 if (process_refs == 0 || new_process_refs == 0)
1998 return;
1999
2000 /*
2001 * Merge in the direction of the lesser amount of work.
2002 */
2003 if (new_process_refs >= process_refs) {
2004 cfqq->new_cfqq = new_cfqq;
2005 new_cfqq->ref += process_refs;
2006 } else {
2007 new_cfqq->new_cfqq = cfqq;
2008 cfqq->ref += new_process_refs;
2009 }
2010 }
2011
2012 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2013 struct cfq_group *cfqg, enum wl_prio_t prio)
2014 {
2015 struct cfq_queue *queue;
2016 int i;
2017 bool key_valid = false;
2018 unsigned long lowest_key = 0;
2019 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2020
2021 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2022 /* select the one with lowest rb_key */
2023 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2024 if (queue &&
2025 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2026 lowest_key = queue->rb_key;
2027 cur_best = i;
2028 key_valid = true;
2029 }
2030 }
2031
2032 return cur_best;
2033 }
2034
2035 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2036 {
2037 unsigned slice;
2038 unsigned count;
2039 struct cfq_rb_root *st;
2040 unsigned group_slice;
2041 enum wl_prio_t original_prio = cfqd->serving_prio;
2042
2043 /* Choose next priority. RT > BE > IDLE */
2044 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2045 cfqd->serving_prio = RT_WORKLOAD;
2046 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2047 cfqd->serving_prio = BE_WORKLOAD;
2048 else {
2049 cfqd->serving_prio = IDLE_WORKLOAD;
2050 cfqd->workload_expires = jiffies + 1;
2051 return;
2052 }
2053
2054 if (original_prio != cfqd->serving_prio)
2055 goto new_workload;
2056
2057 /*
2058 * For RT and BE, we have to choose also the type
2059 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2060 * expiration time
2061 */
2062 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2063 count = st->count;
2064
2065 /*
2066 * check workload expiration, and that we still have other queues ready
2067 */
2068 if (count && !time_after(jiffies, cfqd->workload_expires))
2069 return;
2070
2071 new_workload:
2072 /* otherwise select new workload type */
2073 cfqd->serving_type =
2074 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2075 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2076 count = st->count;
2077
2078 /*
2079 * the workload slice is computed as a fraction of target latency
2080 * proportional to the number of queues in that workload, over
2081 * all the queues in the same priority class
2082 */
2083 group_slice = cfq_group_slice(cfqd, cfqg);
2084
2085 slice = group_slice * count /
2086 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2087 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2088
2089 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2090 unsigned int tmp;
2091
2092 /*
2093 * Async queues are currently system wide. Just taking
2094 * proportion of queues with-in same group will lead to higher
2095 * async ratio system wide as generally root group is going
2096 * to have higher weight. A more accurate thing would be to
2097 * calculate system wide asnc/sync ratio.
2098 */
2099 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2100 tmp = tmp/cfqd->busy_queues;
2101 slice = min_t(unsigned, slice, tmp);
2102
2103 /* async workload slice is scaled down according to
2104 * the sync/async slice ratio. */
2105 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2106 } else
2107 /* sync workload slice is at least 2 * cfq_slice_idle */
2108 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2109
2110 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2111 cfq_log(cfqd, "workload slice:%d", slice);
2112 cfqd->workload_expires = jiffies + slice;
2113 }
2114
2115 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2116 {
2117 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2118 struct cfq_group *cfqg;
2119
2120 if (RB_EMPTY_ROOT(&st->rb))
2121 return NULL;
2122 cfqg = cfq_rb_first_group(st);
2123 update_min_vdisktime(st);
2124 return cfqg;
2125 }
2126
2127 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2128 {
2129 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2130
2131 cfqd->serving_group = cfqg;
2132
2133 /* Restore the workload type data */
2134 if (cfqg->saved_workload_slice) {
2135 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2136 cfqd->serving_type = cfqg->saved_workload;
2137 cfqd->serving_prio = cfqg->saved_serving_prio;
2138 } else
2139 cfqd->workload_expires = jiffies - 1;
2140
2141 choose_service_tree(cfqd, cfqg);
2142 }
2143
2144 /*
2145 * Select a queue for service. If we have a current active queue,
2146 * check whether to continue servicing it, or retrieve and set a new one.
2147 */
2148 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2149 {
2150 struct cfq_queue *cfqq, *new_cfqq = NULL;
2151
2152 cfqq = cfqd->active_queue;
2153 if (!cfqq)
2154 goto new_queue;
2155
2156 if (!cfqd->rq_queued)
2157 return NULL;
2158
2159 /*
2160 * We were waiting for group to get backlogged. Expire the queue
2161 */
2162 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2163 goto expire;
2164
2165 /*
2166 * The active queue has run out of time, expire it and select new.
2167 */
2168 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2169 /*
2170 * If slice had not expired at the completion of last request
2171 * we might not have turned on wait_busy flag. Don't expire
2172 * the queue yet. Allow the group to get backlogged.
2173 *
2174 * The very fact that we have used the slice, that means we
2175 * have been idling all along on this queue and it should be
2176 * ok to wait for this request to complete.
2177 */
2178 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2179 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2180 cfqq = NULL;
2181 goto keep_queue;
2182 } else
2183 goto check_group_idle;
2184 }
2185
2186 /*
2187 * The active queue has requests and isn't expired, allow it to
2188 * dispatch.
2189 */
2190 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2191 goto keep_queue;
2192
2193 /*
2194 * If another queue has a request waiting within our mean seek
2195 * distance, let it run. The expire code will check for close
2196 * cooperators and put the close queue at the front of the service
2197 * tree. If possible, merge the expiring queue with the new cfqq.
2198 */
2199 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2200 if (new_cfqq) {
2201 if (!cfqq->new_cfqq)
2202 cfq_setup_merge(cfqq, new_cfqq);
2203 goto expire;
2204 }
2205
2206 /*
2207 * No requests pending. If the active queue still has requests in
2208 * flight or is idling for a new request, allow either of these
2209 * conditions to happen (or time out) before selecting a new queue.
2210 */
2211 if (timer_pending(&cfqd->idle_slice_timer)) {
2212 cfqq = NULL;
2213 goto keep_queue;
2214 }
2215
2216 /*
2217 * This is a deep seek queue, but the device is much faster than
2218 * the queue can deliver, don't idle
2219 **/
2220 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2221 (cfq_cfqq_slice_new(cfqq) ||
2222 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2223 cfq_clear_cfqq_deep(cfqq);
2224 cfq_clear_cfqq_idle_window(cfqq);
2225 }
2226
2227 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2228 cfqq = NULL;
2229 goto keep_queue;
2230 }
2231
2232 /*
2233 * If group idle is enabled and there are requests dispatched from
2234 * this group, wait for requests to complete.
2235 */
2236 check_group_idle:
2237 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2238 cfqq->cfqg->dispatched &&
2239 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2240 cfqq = NULL;
2241 goto keep_queue;
2242 }
2243
2244 expire:
2245 cfq_slice_expired(cfqd, 0);
2246 new_queue:
2247 /*
2248 * Current queue expired. Check if we have to switch to a new
2249 * service tree
2250 */
2251 if (!new_cfqq)
2252 cfq_choose_cfqg(cfqd);
2253
2254 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2255 keep_queue:
2256 return cfqq;
2257 }
2258
2259 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2260 {
2261 int dispatched = 0;
2262
2263 while (cfqq->next_rq) {
2264 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2265 dispatched++;
2266 }
2267
2268 BUG_ON(!list_empty(&cfqq->fifo));
2269
2270 /* By default cfqq is not expired if it is empty. Do it explicitly */
2271 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2272 return dispatched;
2273 }
2274
2275 /*
2276 * Drain our current requests. Used for barriers and when switching
2277 * io schedulers on-the-fly.
2278 */
2279 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2280 {
2281 struct cfq_queue *cfqq;
2282 int dispatched = 0;
2283
2284 /* Expire the timeslice of the current active queue first */
2285 cfq_slice_expired(cfqd, 0);
2286 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2287 __cfq_set_active_queue(cfqd, cfqq);
2288 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2289 }
2290
2291 BUG_ON(cfqd->busy_queues);
2292
2293 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2294 return dispatched;
2295 }
2296
2297 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2298 struct cfq_queue *cfqq)
2299 {
2300 /* the queue hasn't finished any request, can't estimate */
2301 if (cfq_cfqq_slice_new(cfqq))
2302 return true;
2303 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2304 cfqq->slice_end))
2305 return true;
2306
2307 return false;
2308 }
2309
2310 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2311 {
2312 unsigned int max_dispatch;
2313
2314 /*
2315 * Drain async requests before we start sync IO
2316 */
2317 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2318 return false;
2319
2320 /*
2321 * If this is an async queue and we have sync IO in flight, let it wait
2322 */
2323 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2324 return false;
2325
2326 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2327 if (cfq_class_idle(cfqq))
2328 max_dispatch = 1;
2329
2330 /*
2331 * Does this cfqq already have too much IO in flight?
2332 */
2333 if (cfqq->dispatched >= max_dispatch) {
2334 bool promote_sync = false;
2335 /*
2336 * idle queue must always only have a single IO in flight
2337 */
2338 if (cfq_class_idle(cfqq))
2339 return false;
2340
2341 /*
2342 * If there is only one sync queue
2343 * we can ignore async queue here and give the sync
2344 * queue no dispatch limit. The reason is a sync queue can
2345 * preempt async queue, limiting the sync queue doesn't make
2346 * sense. This is useful for aiostress test.
2347 */
2348 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2349 promote_sync = true;
2350
2351 /*
2352 * We have other queues, don't allow more IO from this one
2353 */
2354 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2355 !promote_sync)
2356 return false;
2357
2358 /*
2359 * Sole queue user, no limit
2360 */
2361 if (cfqd->busy_queues == 1 || promote_sync)
2362 max_dispatch = -1;
2363 else
2364 /*
2365 * Normally we start throttling cfqq when cfq_quantum/2
2366 * requests have been dispatched. But we can drive
2367 * deeper queue depths at the beginning of slice
2368 * subjected to upper limit of cfq_quantum.
2369 * */
2370 max_dispatch = cfqd->cfq_quantum;
2371 }
2372
2373 /*
2374 * Async queues must wait a bit before being allowed dispatch.
2375 * We also ramp up the dispatch depth gradually for async IO,
2376 * based on the last sync IO we serviced
2377 */
2378 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2379 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2380 unsigned int depth;
2381
2382 depth = last_sync / cfqd->cfq_slice[1];
2383 if (!depth && !cfqq->dispatched)
2384 depth = 1;
2385 if (depth < max_dispatch)
2386 max_dispatch = depth;
2387 }
2388
2389 /*
2390 * If we're below the current max, allow a dispatch
2391 */
2392 return cfqq->dispatched < max_dispatch;
2393 }
2394
2395 /*
2396 * Dispatch a request from cfqq, moving them to the request queue
2397 * dispatch list.
2398 */
2399 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2400 {
2401 struct request *rq;
2402
2403 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2404
2405 if (!cfq_may_dispatch(cfqd, cfqq))
2406 return false;
2407
2408 /*
2409 * follow expired path, else get first next available
2410 */
2411 rq = cfq_check_fifo(cfqq);
2412 if (!rq)
2413 rq = cfqq->next_rq;
2414
2415 /*
2416 * insert request into driver dispatch list
2417 */
2418 cfq_dispatch_insert(cfqd->queue, rq);
2419
2420 if (!cfqd->active_cic) {
2421 struct cfq_io_cq *cic = RQ_CIC(rq);
2422
2423 atomic_long_inc(&cic->icq.ioc->refcount);
2424 cfqd->active_cic = cic;
2425 }
2426
2427 return true;
2428 }
2429
2430 /*
2431 * Find the cfqq that we need to service and move a request from that to the
2432 * dispatch list
2433 */
2434 static int cfq_dispatch_requests(struct request_queue *q, int force)
2435 {
2436 struct cfq_data *cfqd = q->elevator->elevator_data;
2437 struct cfq_queue *cfqq;
2438
2439 if (!cfqd->busy_queues)
2440 return 0;
2441
2442 if (unlikely(force))
2443 return cfq_forced_dispatch(cfqd);
2444
2445 cfqq = cfq_select_queue(cfqd);
2446 if (!cfqq)
2447 return 0;
2448
2449 /*
2450 * Dispatch a request from this cfqq, if it is allowed
2451 */
2452 if (!cfq_dispatch_request(cfqd, cfqq))
2453 return 0;
2454
2455 cfqq->slice_dispatch++;
2456 cfq_clear_cfqq_must_dispatch(cfqq);
2457
2458 /*
2459 * expire an async queue immediately if it has used up its slice. idle
2460 * queue always expire after 1 dispatch round.
2461 */
2462 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2463 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2464 cfq_class_idle(cfqq))) {
2465 cfqq->slice_end = jiffies + 1;
2466 cfq_slice_expired(cfqd, 0);
2467 }
2468
2469 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2470 return 1;
2471 }
2472
2473 /*
2474 * task holds one reference to the queue, dropped when task exits. each rq
2475 * in-flight on this queue also holds a reference, dropped when rq is freed.
2476 *
2477 * Each cfq queue took a reference on the parent group. Drop it now.
2478 * queue lock must be held here.
2479 */
2480 static void cfq_put_queue(struct cfq_queue *cfqq)
2481 {
2482 struct cfq_data *cfqd = cfqq->cfqd;
2483 struct cfq_group *cfqg;
2484
2485 BUG_ON(cfqq->ref <= 0);
2486
2487 cfqq->ref--;
2488 if (cfqq->ref)
2489 return;
2490
2491 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2492 BUG_ON(rb_first(&cfqq->sort_list));
2493 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2494 cfqg = cfqq->cfqg;
2495
2496 if (unlikely(cfqd->active_queue == cfqq)) {
2497 __cfq_slice_expired(cfqd, cfqq, 0);
2498 cfq_schedule_dispatch(cfqd);
2499 }
2500
2501 BUG_ON(cfq_cfqq_on_rr(cfqq));
2502 kmem_cache_free(cfq_pool, cfqq);
2503 blkg_put(cfqg_to_blkg(cfqg));
2504 }
2505
2506 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2507 {
2508 struct cfq_queue *__cfqq, *next;
2509
2510 /*
2511 * If this queue was scheduled to merge with another queue, be
2512 * sure to drop the reference taken on that queue (and others in
2513 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2514 */
2515 __cfqq = cfqq->new_cfqq;
2516 while (__cfqq) {
2517 if (__cfqq == cfqq) {
2518 WARN(1, "cfqq->new_cfqq loop detected\n");
2519 break;
2520 }
2521 next = __cfqq->new_cfqq;
2522 cfq_put_queue(__cfqq);
2523 __cfqq = next;
2524 }
2525 }
2526
2527 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2528 {
2529 if (unlikely(cfqq == cfqd->active_queue)) {
2530 __cfq_slice_expired(cfqd, cfqq, 0);
2531 cfq_schedule_dispatch(cfqd);
2532 }
2533
2534 cfq_put_cooperator(cfqq);
2535
2536 cfq_put_queue(cfqq);
2537 }
2538
2539 static void cfq_init_icq(struct io_cq *icq)
2540 {
2541 struct cfq_io_cq *cic = icq_to_cic(icq);
2542
2543 cic->ttime.last_end_request = jiffies;
2544 }
2545
2546 static void cfq_exit_icq(struct io_cq *icq)
2547 {
2548 struct cfq_io_cq *cic = icq_to_cic(icq);
2549 struct cfq_data *cfqd = cic_to_cfqd(cic);
2550
2551 if (cic->cfqq[BLK_RW_ASYNC]) {
2552 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2553 cic->cfqq[BLK_RW_ASYNC] = NULL;
2554 }
2555
2556 if (cic->cfqq[BLK_RW_SYNC]) {
2557 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2558 cic->cfqq[BLK_RW_SYNC] = NULL;
2559 }
2560 }
2561
2562 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2563 {
2564 struct task_struct *tsk = current;
2565 int ioprio_class;
2566
2567 if (!cfq_cfqq_prio_changed(cfqq))
2568 return;
2569
2570 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2571 switch (ioprio_class) {
2572 default:
2573 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2574 case IOPRIO_CLASS_NONE:
2575 /*
2576 * no prio set, inherit CPU scheduling settings
2577 */
2578 cfqq->ioprio = task_nice_ioprio(tsk);
2579 cfqq->ioprio_class = task_nice_ioclass(tsk);
2580 break;
2581 case IOPRIO_CLASS_RT:
2582 cfqq->ioprio = task_ioprio(ioc);
2583 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2584 break;
2585 case IOPRIO_CLASS_BE:
2586 cfqq->ioprio = task_ioprio(ioc);
2587 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2588 break;
2589 case IOPRIO_CLASS_IDLE:
2590 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2591 cfqq->ioprio = 7;
2592 cfq_clear_cfqq_idle_window(cfqq);
2593 break;
2594 }
2595
2596 /*
2597 * keep track of original prio settings in case we have to temporarily
2598 * elevate the priority of this queue
2599 */
2600 cfqq->org_ioprio = cfqq->ioprio;
2601 cfq_clear_cfqq_prio_changed(cfqq);
2602 }
2603
2604 static void changed_ioprio(struct cfq_io_cq *cic)
2605 {
2606 struct cfq_data *cfqd = cic_to_cfqd(cic);
2607 struct cfq_queue *cfqq;
2608
2609 if (unlikely(!cfqd))
2610 return;
2611
2612 cfqq = cic->cfqq[BLK_RW_ASYNC];
2613 if (cfqq) {
2614 struct cfq_queue *new_cfqq;
2615 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->icq.ioc,
2616 GFP_ATOMIC);
2617 if (new_cfqq) {
2618 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2619 cfq_put_queue(cfqq);
2620 }
2621 }
2622
2623 cfqq = cic->cfqq[BLK_RW_SYNC];
2624 if (cfqq)
2625 cfq_mark_cfqq_prio_changed(cfqq);
2626 }
2627
2628 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2629 pid_t pid, bool is_sync)
2630 {
2631 RB_CLEAR_NODE(&cfqq->rb_node);
2632 RB_CLEAR_NODE(&cfqq->p_node);
2633 INIT_LIST_HEAD(&cfqq->fifo);
2634
2635 cfqq->ref = 0;
2636 cfqq->cfqd = cfqd;
2637
2638 cfq_mark_cfqq_prio_changed(cfqq);
2639
2640 if (is_sync) {
2641 if (!cfq_class_idle(cfqq))
2642 cfq_mark_cfqq_idle_window(cfqq);
2643 cfq_mark_cfqq_sync(cfqq);
2644 }
2645 cfqq->pid = pid;
2646 }
2647
2648 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2649 static void changed_cgroup(struct cfq_io_cq *cic)
2650 {
2651 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2652 struct cfq_data *cfqd = cic_to_cfqd(cic);
2653 struct request_queue *q;
2654
2655 if (unlikely(!cfqd))
2656 return;
2657
2658 q = cfqd->queue;
2659
2660 if (sync_cfqq) {
2661 /*
2662 * Drop reference to sync queue. A new sync queue will be
2663 * assigned in new group upon arrival of a fresh request.
2664 */
2665 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2666 cic_set_cfqq(cic, NULL, 1);
2667 cfq_put_queue(sync_cfqq);
2668 }
2669 }
2670 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2671
2672 static struct cfq_queue *
2673 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2674 struct io_context *ioc, gfp_t gfp_mask)
2675 {
2676 struct blkio_cgroup *blkcg;
2677 struct cfq_queue *cfqq, *new_cfqq = NULL;
2678 struct cfq_io_cq *cic;
2679 struct cfq_group *cfqg;
2680
2681 retry:
2682 rcu_read_lock();
2683
2684 blkcg = task_blkio_cgroup(current);
2685
2686 cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
2687
2688 cic = cfq_cic_lookup(cfqd, ioc);
2689 /* cic always exists here */
2690 cfqq = cic_to_cfqq(cic, is_sync);
2691
2692 /*
2693 * Always try a new alloc if we fell back to the OOM cfqq
2694 * originally, since it should just be a temporary situation.
2695 */
2696 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2697 cfqq = NULL;
2698 if (new_cfqq) {
2699 cfqq = new_cfqq;
2700 new_cfqq = NULL;
2701 } else if (gfp_mask & __GFP_WAIT) {
2702 rcu_read_unlock();
2703 spin_unlock_irq(cfqd->queue->queue_lock);
2704 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2705 gfp_mask | __GFP_ZERO,
2706 cfqd->queue->node);
2707 spin_lock_irq(cfqd->queue->queue_lock);
2708 if (new_cfqq)
2709 goto retry;
2710 } else {
2711 cfqq = kmem_cache_alloc_node(cfq_pool,
2712 gfp_mask | __GFP_ZERO,
2713 cfqd->queue->node);
2714 }
2715
2716 if (cfqq) {
2717 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2718 cfq_init_prio_data(cfqq, ioc);
2719 cfq_link_cfqq_cfqg(cfqq, cfqg);
2720 cfq_log_cfqq(cfqd, cfqq, "alloced");
2721 } else
2722 cfqq = &cfqd->oom_cfqq;
2723 }
2724
2725 if (new_cfqq)
2726 kmem_cache_free(cfq_pool, new_cfqq);
2727
2728 rcu_read_unlock();
2729 return cfqq;
2730 }
2731
2732 static struct cfq_queue **
2733 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2734 {
2735 switch (ioprio_class) {
2736 case IOPRIO_CLASS_RT:
2737 return &cfqd->async_cfqq[0][ioprio];
2738 case IOPRIO_CLASS_BE:
2739 return &cfqd->async_cfqq[1][ioprio];
2740 case IOPRIO_CLASS_IDLE:
2741 return &cfqd->async_idle_cfqq;
2742 default:
2743 BUG();
2744 }
2745 }
2746
2747 static struct cfq_queue *
2748 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2749 gfp_t gfp_mask)
2750 {
2751 const int ioprio = task_ioprio(ioc);
2752 const int ioprio_class = task_ioprio_class(ioc);
2753 struct cfq_queue **async_cfqq = NULL;
2754 struct cfq_queue *cfqq = NULL;
2755
2756 if (!is_sync) {
2757 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2758 cfqq = *async_cfqq;
2759 }
2760
2761 if (!cfqq)
2762 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2763
2764 /*
2765 * pin the queue now that it's allocated, scheduler exit will prune it
2766 */
2767 if (!is_sync && !(*async_cfqq)) {
2768 cfqq->ref++;
2769 *async_cfqq = cfqq;
2770 }
2771
2772 cfqq->ref++;
2773 return cfqq;
2774 }
2775
2776 static void
2777 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
2778 {
2779 unsigned long elapsed = jiffies - ttime->last_end_request;
2780 elapsed = min(elapsed, 2UL * slice_idle);
2781
2782 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
2783 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
2784 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
2785 }
2786
2787 static void
2788 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2789 struct cfq_io_cq *cic)
2790 {
2791 if (cfq_cfqq_sync(cfqq)) {
2792 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
2793 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
2794 cfqd->cfq_slice_idle);
2795 }
2796 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2797 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
2798 #endif
2799 }
2800
2801 static void
2802 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2803 struct request *rq)
2804 {
2805 sector_t sdist = 0;
2806 sector_t n_sec = blk_rq_sectors(rq);
2807 if (cfqq->last_request_pos) {
2808 if (cfqq->last_request_pos < blk_rq_pos(rq))
2809 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2810 else
2811 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2812 }
2813
2814 cfqq->seek_history <<= 1;
2815 if (blk_queue_nonrot(cfqd->queue))
2816 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
2817 else
2818 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
2819 }
2820
2821 /*
2822 * Disable idle window if the process thinks too long or seeks so much that
2823 * it doesn't matter
2824 */
2825 static void
2826 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2827 struct cfq_io_cq *cic)
2828 {
2829 int old_idle, enable_idle;
2830
2831 /*
2832 * Don't idle for async or idle io prio class
2833 */
2834 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2835 return;
2836
2837 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2838
2839 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2840 cfq_mark_cfqq_deep(cfqq);
2841
2842 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
2843 enable_idle = 0;
2844 else if (!atomic_read(&cic->icq.ioc->nr_tasks) ||
2845 !cfqd->cfq_slice_idle ||
2846 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
2847 enable_idle = 0;
2848 else if (sample_valid(cic->ttime.ttime_samples)) {
2849 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
2850 enable_idle = 0;
2851 else
2852 enable_idle = 1;
2853 }
2854
2855 if (old_idle != enable_idle) {
2856 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2857 if (enable_idle)
2858 cfq_mark_cfqq_idle_window(cfqq);
2859 else
2860 cfq_clear_cfqq_idle_window(cfqq);
2861 }
2862 }
2863
2864 /*
2865 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2866 * no or if we aren't sure, a 1 will cause a preempt.
2867 */
2868 static bool
2869 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2870 struct request *rq)
2871 {
2872 struct cfq_queue *cfqq;
2873
2874 cfqq = cfqd->active_queue;
2875 if (!cfqq)
2876 return false;
2877
2878 if (cfq_class_idle(new_cfqq))
2879 return false;
2880
2881 if (cfq_class_idle(cfqq))
2882 return true;
2883
2884 /*
2885 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
2886 */
2887 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
2888 return false;
2889
2890 /*
2891 * if the new request is sync, but the currently running queue is
2892 * not, let the sync request have priority.
2893 */
2894 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2895 return true;
2896
2897 if (new_cfqq->cfqg != cfqq->cfqg)
2898 return false;
2899
2900 if (cfq_slice_used(cfqq))
2901 return true;
2902
2903 /* Allow preemption only if we are idling on sync-noidle tree */
2904 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
2905 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
2906 new_cfqq->service_tree->count == 2 &&
2907 RB_EMPTY_ROOT(&cfqq->sort_list))
2908 return true;
2909
2910 /*
2911 * So both queues are sync. Let the new request get disk time if
2912 * it's a metadata request and the current queue is doing regular IO.
2913 */
2914 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
2915 return true;
2916
2917 /*
2918 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2919 */
2920 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2921 return true;
2922
2923 /* An idle queue should not be idle now for some reason */
2924 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
2925 return true;
2926
2927 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2928 return false;
2929
2930 /*
2931 * if this request is as-good as one we would expect from the
2932 * current cfqq, let it preempt
2933 */
2934 if (cfq_rq_close(cfqd, cfqq, rq))
2935 return true;
2936
2937 return false;
2938 }
2939
2940 /*
2941 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2942 * let it have half of its nominal slice.
2943 */
2944 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2945 {
2946 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
2947
2948 cfq_log_cfqq(cfqd, cfqq, "preempt");
2949 cfq_slice_expired(cfqd, 1);
2950
2951 /*
2952 * workload type is changed, don't save slice, otherwise preempt
2953 * doesn't happen
2954 */
2955 if (old_type != cfqq_type(cfqq))
2956 cfqq->cfqg->saved_workload_slice = 0;
2957
2958 /*
2959 * Put the new queue at the front of the of the current list,
2960 * so we know that it will be selected next.
2961 */
2962 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2963
2964 cfq_service_tree_add(cfqd, cfqq, 1);
2965
2966 cfqq->slice_end = 0;
2967 cfq_mark_cfqq_slice_new(cfqq);
2968 }
2969
2970 /*
2971 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2972 * something we should do about it
2973 */
2974 static void
2975 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2976 struct request *rq)
2977 {
2978 struct cfq_io_cq *cic = RQ_CIC(rq);
2979
2980 cfqd->rq_queued++;
2981 if (rq->cmd_flags & REQ_PRIO)
2982 cfqq->prio_pending++;
2983
2984 cfq_update_io_thinktime(cfqd, cfqq, cic);
2985 cfq_update_io_seektime(cfqd, cfqq, rq);
2986 cfq_update_idle_window(cfqd, cfqq, cic);
2987
2988 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2989
2990 if (cfqq == cfqd->active_queue) {
2991 /*
2992 * Remember that we saw a request from this process, but
2993 * don't start queuing just yet. Otherwise we risk seeing lots
2994 * of tiny requests, because we disrupt the normal plugging
2995 * and merging. If the request is already larger than a single
2996 * page, let it rip immediately. For that case we assume that
2997 * merging is already done. Ditto for a busy system that
2998 * has other work pending, don't risk delaying until the
2999 * idle timer unplug to continue working.
3000 */
3001 if (cfq_cfqq_wait_request(cfqq)) {
3002 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3003 cfqd->busy_queues > 1) {
3004 cfq_del_timer(cfqd, cfqq);
3005 cfq_clear_cfqq_wait_request(cfqq);
3006 __blk_run_queue(cfqd->queue);
3007 } else {
3008 cfq_blkiocg_update_idle_time_stats(
3009 cfqg_to_blkg(cfqq->cfqg),
3010 &blkio_policy_cfq);
3011 cfq_mark_cfqq_must_dispatch(cfqq);
3012 }
3013 }
3014 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3015 /*
3016 * not the active queue - expire current slice if it is
3017 * idle and has expired it's mean thinktime or this new queue
3018 * has some old slice time left and is of higher priority or
3019 * this new queue is RT and the current one is BE
3020 */
3021 cfq_preempt_queue(cfqd, cfqq);
3022 __blk_run_queue(cfqd->queue);
3023 }
3024 }
3025
3026 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3027 {
3028 struct cfq_data *cfqd = q->elevator->elevator_data;
3029 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3030
3031 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3032 cfq_init_prio_data(cfqq, RQ_CIC(rq)->icq.ioc);
3033
3034 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3035 list_add_tail(&rq->queuelist, &cfqq->fifo);
3036 cfq_add_rq_rb(rq);
3037 cfq_blkiocg_update_io_add_stats(cfqg_to_blkg(RQ_CFQG(rq)),
3038 &blkio_policy_cfq,
3039 cfqg_to_blkg(cfqd->serving_group),
3040 rq_data_dir(rq), rq_is_sync(rq));
3041 cfq_rq_enqueued(cfqd, cfqq, rq);
3042 }
3043
3044 /*
3045 * Update hw_tag based on peak queue depth over 50 samples under
3046 * sufficient load.
3047 */
3048 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3049 {
3050 struct cfq_queue *cfqq = cfqd->active_queue;
3051
3052 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3053 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3054
3055 if (cfqd->hw_tag == 1)
3056 return;
3057
3058 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3059 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3060 return;
3061
3062 /*
3063 * If active queue hasn't enough requests and can idle, cfq might not
3064 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3065 * case
3066 */
3067 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3068 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3069 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3070 return;
3071
3072 if (cfqd->hw_tag_samples++ < 50)
3073 return;
3074
3075 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3076 cfqd->hw_tag = 1;
3077 else
3078 cfqd->hw_tag = 0;
3079 }
3080
3081 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3082 {
3083 struct cfq_io_cq *cic = cfqd->active_cic;
3084
3085 /* If the queue already has requests, don't wait */
3086 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3087 return false;
3088
3089 /* If there are other queues in the group, don't wait */
3090 if (cfqq->cfqg->nr_cfqq > 1)
3091 return false;
3092
3093 /* the only queue in the group, but think time is big */
3094 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3095 return false;
3096
3097 if (cfq_slice_used(cfqq))
3098 return true;
3099
3100 /* if slice left is less than think time, wait busy */
3101 if (cic && sample_valid(cic->ttime.ttime_samples)
3102 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3103 return true;
3104
3105 /*
3106 * If think times is less than a jiffy than ttime_mean=0 and above
3107 * will not be true. It might happen that slice has not expired yet
3108 * but will expire soon (4-5 ns) during select_queue(). To cover the
3109 * case where think time is less than a jiffy, mark the queue wait
3110 * busy if only 1 jiffy is left in the slice.
3111 */
3112 if (cfqq->slice_end - jiffies == 1)
3113 return true;
3114
3115 return false;
3116 }
3117
3118 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3119 {
3120 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3121 struct cfq_data *cfqd = cfqq->cfqd;
3122 const int sync = rq_is_sync(rq);
3123 unsigned long now;
3124
3125 now = jiffies;
3126 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3127 !!(rq->cmd_flags & REQ_NOIDLE));
3128
3129 cfq_update_hw_tag(cfqd);
3130
3131 WARN_ON(!cfqd->rq_in_driver);
3132 WARN_ON(!cfqq->dispatched);
3133 cfqd->rq_in_driver--;
3134 cfqq->dispatched--;
3135 (RQ_CFQG(rq))->dispatched--;
3136 cfq_blkiocg_update_completion_stats(cfqg_to_blkg(cfqq->cfqg),
3137 &blkio_policy_cfq, rq_start_time_ns(rq),
3138 rq_io_start_time_ns(rq), rq_data_dir(rq),
3139 rq_is_sync(rq));
3140
3141 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3142
3143 if (sync) {
3144 struct cfq_rb_root *service_tree;
3145
3146 RQ_CIC(rq)->ttime.last_end_request = now;
3147
3148 if (cfq_cfqq_on_rr(cfqq))
3149 service_tree = cfqq->service_tree;
3150 else
3151 service_tree = service_tree_for(cfqq->cfqg,
3152 cfqq_prio(cfqq), cfqq_type(cfqq));
3153 service_tree->ttime.last_end_request = now;
3154 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3155 cfqd->last_delayed_sync = now;
3156 }
3157
3158 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3159 cfqq->cfqg->ttime.last_end_request = now;
3160 #endif
3161
3162 /*
3163 * If this is the active queue, check if it needs to be expired,
3164 * or if we want to idle in case it has no pending requests.
3165 */
3166 if (cfqd->active_queue == cfqq) {
3167 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3168
3169 if (cfq_cfqq_slice_new(cfqq)) {
3170 cfq_set_prio_slice(cfqd, cfqq);
3171 cfq_clear_cfqq_slice_new(cfqq);
3172 }
3173
3174 /*
3175 * Should we wait for next request to come in before we expire
3176 * the queue.
3177 */
3178 if (cfq_should_wait_busy(cfqd, cfqq)) {
3179 unsigned long extend_sl = cfqd->cfq_slice_idle;
3180 if (!cfqd->cfq_slice_idle)
3181 extend_sl = cfqd->cfq_group_idle;
3182 cfqq->slice_end = jiffies + extend_sl;
3183 cfq_mark_cfqq_wait_busy(cfqq);
3184 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3185 }
3186
3187 /*
3188 * Idling is not enabled on:
3189 * - expired queues
3190 * - idle-priority queues
3191 * - async queues
3192 * - queues with still some requests queued
3193 * - when there is a close cooperator
3194 */
3195 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3196 cfq_slice_expired(cfqd, 1);
3197 else if (sync && cfqq_empty &&
3198 !cfq_close_cooperator(cfqd, cfqq)) {
3199 cfq_arm_slice_timer(cfqd);
3200 }
3201 }
3202
3203 if (!cfqd->rq_in_driver)
3204 cfq_schedule_dispatch(cfqd);
3205 }
3206
3207 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3208 {
3209 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3210 cfq_mark_cfqq_must_alloc_slice(cfqq);
3211 return ELV_MQUEUE_MUST;
3212 }
3213
3214 return ELV_MQUEUE_MAY;
3215 }
3216
3217 static int cfq_may_queue(struct request_queue *q, int rw)
3218 {
3219 struct cfq_data *cfqd = q->elevator->elevator_data;
3220 struct task_struct *tsk = current;
3221 struct cfq_io_cq *cic;
3222 struct cfq_queue *cfqq;
3223
3224 /*
3225 * don't force setup of a queue from here, as a call to may_queue
3226 * does not necessarily imply that a request actually will be queued.
3227 * so just lookup a possibly existing queue, or return 'may queue'
3228 * if that fails
3229 */
3230 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3231 if (!cic)
3232 return ELV_MQUEUE_MAY;
3233
3234 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3235 if (cfqq) {
3236 cfq_init_prio_data(cfqq, cic->icq.ioc);
3237
3238 return __cfq_may_queue(cfqq);
3239 }
3240
3241 return ELV_MQUEUE_MAY;
3242 }
3243
3244 /*
3245 * queue lock held here
3246 */
3247 static void cfq_put_request(struct request *rq)
3248 {
3249 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3250
3251 if (cfqq) {
3252 const int rw = rq_data_dir(rq);
3253
3254 BUG_ON(!cfqq->allocated[rw]);
3255 cfqq->allocated[rw]--;
3256
3257 /* Put down rq reference on cfqg */
3258 blkg_put(cfqg_to_blkg(RQ_CFQG(rq)));
3259 rq->elv.priv[0] = NULL;
3260 rq->elv.priv[1] = NULL;
3261
3262 cfq_put_queue(cfqq);
3263 }
3264 }
3265
3266 static struct cfq_queue *
3267 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
3268 struct cfq_queue *cfqq)
3269 {
3270 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3271 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3272 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3273 cfq_put_queue(cfqq);
3274 return cic_to_cfqq(cic, 1);
3275 }
3276
3277 /*
3278 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3279 * was the last process referring to said cfqq.
3280 */
3281 static struct cfq_queue *
3282 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
3283 {
3284 if (cfqq_process_refs(cfqq) == 1) {
3285 cfqq->pid = current->pid;
3286 cfq_clear_cfqq_coop(cfqq);
3287 cfq_clear_cfqq_split_coop(cfqq);
3288 return cfqq;
3289 }
3290
3291 cic_set_cfqq(cic, NULL, 1);
3292
3293 cfq_put_cooperator(cfqq);
3294
3295 cfq_put_queue(cfqq);
3296 return NULL;
3297 }
3298 /*
3299 * Allocate cfq data structures associated with this request.
3300 */
3301 static int
3302 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3303 {
3304 struct cfq_data *cfqd = q->elevator->elevator_data;
3305 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
3306 const int rw = rq_data_dir(rq);
3307 const bool is_sync = rq_is_sync(rq);
3308 struct cfq_queue *cfqq;
3309 unsigned int changed;
3310
3311 might_sleep_if(gfp_mask & __GFP_WAIT);
3312
3313 spin_lock_irq(q->queue_lock);
3314
3315 /* handle changed notifications */
3316 changed = icq_get_changed(&cic->icq);
3317 if (unlikely(changed & ICQ_IOPRIO_CHANGED))
3318 changed_ioprio(cic);
3319 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3320 if (unlikely(changed & ICQ_CGROUP_CHANGED))
3321 changed_cgroup(cic);
3322 #endif
3323
3324 new_queue:
3325 cfqq = cic_to_cfqq(cic, is_sync);
3326 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3327 cfqq = cfq_get_queue(cfqd, is_sync, cic->icq.ioc, gfp_mask);
3328 cic_set_cfqq(cic, cfqq, is_sync);
3329 } else {
3330 /*
3331 * If the queue was seeky for too long, break it apart.
3332 */
3333 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3334 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3335 cfqq = split_cfqq(cic, cfqq);
3336 if (!cfqq)
3337 goto new_queue;
3338 }
3339
3340 /*
3341 * Check to see if this queue is scheduled to merge with
3342 * another, closely cooperating queue. The merging of
3343 * queues happens here as it must be done in process context.
3344 * The reference on new_cfqq was taken in merge_cfqqs.
3345 */
3346 if (cfqq->new_cfqq)
3347 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3348 }
3349
3350 cfqq->allocated[rw]++;
3351
3352 cfqq->ref++;
3353 blkg_get(cfqg_to_blkg(cfqq->cfqg));
3354 rq->elv.priv[0] = cfqq;
3355 rq->elv.priv[1] = cfqq->cfqg;
3356 spin_unlock_irq(q->queue_lock);
3357 return 0;
3358 }
3359
3360 static void cfq_kick_queue(struct work_struct *work)
3361 {
3362 struct cfq_data *cfqd =
3363 container_of(work, struct cfq_data, unplug_work);
3364 struct request_queue *q = cfqd->queue;
3365
3366 spin_lock_irq(q->queue_lock);
3367 __blk_run_queue(cfqd->queue);
3368 spin_unlock_irq(q->queue_lock);
3369 }
3370
3371 /*
3372 * Timer running if the active_queue is currently idling inside its time slice
3373 */
3374 static void cfq_idle_slice_timer(unsigned long data)
3375 {
3376 struct cfq_data *cfqd = (struct cfq_data *) data;
3377 struct cfq_queue *cfqq;
3378 unsigned long flags;
3379 int timed_out = 1;
3380
3381 cfq_log(cfqd, "idle timer fired");
3382
3383 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3384
3385 cfqq = cfqd->active_queue;
3386 if (cfqq) {
3387 timed_out = 0;
3388
3389 /*
3390 * We saw a request before the queue expired, let it through
3391 */
3392 if (cfq_cfqq_must_dispatch(cfqq))
3393 goto out_kick;
3394
3395 /*
3396 * expired
3397 */
3398 if (cfq_slice_used(cfqq))
3399 goto expire;
3400
3401 /*
3402 * only expire and reinvoke request handler, if there are
3403 * other queues with pending requests
3404 */
3405 if (!cfqd->busy_queues)
3406 goto out_cont;
3407
3408 /*
3409 * not expired and it has a request pending, let it dispatch
3410 */
3411 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3412 goto out_kick;
3413
3414 /*
3415 * Queue depth flag is reset only when the idle didn't succeed
3416 */
3417 cfq_clear_cfqq_deep(cfqq);
3418 }
3419 expire:
3420 cfq_slice_expired(cfqd, timed_out);
3421 out_kick:
3422 cfq_schedule_dispatch(cfqd);
3423 out_cont:
3424 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3425 }
3426
3427 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3428 {
3429 del_timer_sync(&cfqd->idle_slice_timer);
3430 cancel_work_sync(&cfqd->unplug_work);
3431 }
3432
3433 static void cfq_put_async_queues(struct cfq_data *cfqd)
3434 {
3435 int i;
3436
3437 for (i = 0; i < IOPRIO_BE_NR; i++) {
3438 if (cfqd->async_cfqq[0][i])
3439 cfq_put_queue(cfqd->async_cfqq[0][i]);
3440 if (cfqd->async_cfqq[1][i])
3441 cfq_put_queue(cfqd->async_cfqq[1][i]);
3442 }
3443
3444 if (cfqd->async_idle_cfqq)
3445 cfq_put_queue(cfqd->async_idle_cfqq);
3446 }
3447
3448 static void cfq_exit_queue(struct elevator_queue *e)
3449 {
3450 struct cfq_data *cfqd = e->elevator_data;
3451 struct request_queue *q = cfqd->queue;
3452
3453 cfq_shutdown_timer_wq(cfqd);
3454
3455 spin_lock_irq(q->queue_lock);
3456
3457 if (cfqd->active_queue)
3458 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3459
3460 cfq_put_async_queues(cfqd);
3461
3462 spin_unlock_irq(q->queue_lock);
3463
3464 cfq_shutdown_timer_wq(cfqd);
3465
3466 #ifndef CONFIG_CFQ_GROUP_IOSCHED
3467 kfree(cfqd->root_group);
3468 #endif
3469 update_root_blkg_pd(q, BLKIO_POLICY_PROP);
3470 kfree(cfqd);
3471 }
3472
3473 static int cfq_init_queue(struct request_queue *q)
3474 {
3475 struct cfq_data *cfqd;
3476 struct blkio_group *blkg __maybe_unused;
3477 int i;
3478
3479 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3480 if (!cfqd)
3481 return -ENOMEM;
3482
3483 cfqd->queue = q;
3484 q->elevator->elevator_data = cfqd;
3485
3486 /* Init root service tree */
3487 cfqd->grp_service_tree = CFQ_RB_ROOT;
3488
3489 /* Init root group and prefer root group over other groups by default */
3490 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3491 rcu_read_lock();
3492 spin_lock_irq(q->queue_lock);
3493
3494 blkg = blkg_lookup_create(&blkio_root_cgroup, q, BLKIO_POLICY_PROP,
3495 true);
3496 if (!IS_ERR(blkg))
3497 cfqd->root_group = blkg_to_cfqg(blkg);
3498
3499 spin_unlock_irq(q->queue_lock);
3500 rcu_read_unlock();
3501 #else
3502 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
3503 GFP_KERNEL, cfqd->queue->node);
3504 if (cfqd->root_group)
3505 cfq_init_cfqg_base(cfqd->root_group);
3506 #endif
3507 if (!cfqd->root_group) {
3508 kfree(cfqd);
3509 return -ENOMEM;
3510 }
3511
3512 cfqd->root_group->weight = 2*BLKIO_WEIGHT_DEFAULT;
3513
3514 /*
3515 * Not strictly needed (since RB_ROOT just clears the node and we
3516 * zeroed cfqd on alloc), but better be safe in case someone decides
3517 * to add magic to the rb code
3518 */
3519 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3520 cfqd->prio_trees[i] = RB_ROOT;
3521
3522 /*
3523 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3524 * Grab a permanent reference to it, so that the normal code flow
3525 * will not attempt to free it. oom_cfqq is linked to root_group
3526 * but shouldn't hold a reference as it'll never be unlinked. Lose
3527 * the reference from linking right away.
3528 */
3529 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3530 cfqd->oom_cfqq.ref++;
3531
3532 spin_lock_irq(q->queue_lock);
3533 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
3534 blkg_put(cfqg_to_blkg(cfqd->root_group));
3535 spin_unlock_irq(q->queue_lock);
3536
3537 init_timer(&cfqd->idle_slice_timer);
3538 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3539 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3540
3541 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3542
3543 cfqd->cfq_quantum = cfq_quantum;
3544 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3545 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3546 cfqd->cfq_back_max = cfq_back_max;
3547 cfqd->cfq_back_penalty = cfq_back_penalty;
3548 cfqd->cfq_slice[0] = cfq_slice_async;
3549 cfqd->cfq_slice[1] = cfq_slice_sync;
3550 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3551 cfqd->cfq_slice_idle = cfq_slice_idle;
3552 cfqd->cfq_group_idle = cfq_group_idle;
3553 cfqd->cfq_latency = 1;
3554 cfqd->hw_tag = -1;
3555 /*
3556 * we optimistically start assuming sync ops weren't delayed in last
3557 * second, in order to have larger depth for async operations.
3558 */
3559 cfqd->last_delayed_sync = jiffies - HZ;
3560 return 0;
3561 }
3562
3563 /*
3564 * sysfs parts below -->
3565 */
3566 static ssize_t
3567 cfq_var_show(unsigned int var, char *page)
3568 {
3569 return sprintf(page, "%d\n", var);
3570 }
3571
3572 static ssize_t
3573 cfq_var_store(unsigned int *var, const char *page, size_t count)
3574 {
3575 char *p = (char *) page;
3576
3577 *var = simple_strtoul(p, &p, 10);
3578 return count;
3579 }
3580
3581 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3582 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3583 { \
3584 struct cfq_data *cfqd = e->elevator_data; \
3585 unsigned int __data = __VAR; \
3586 if (__CONV) \
3587 __data = jiffies_to_msecs(__data); \
3588 return cfq_var_show(__data, (page)); \
3589 }
3590 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3591 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3592 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3593 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3594 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3595 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3596 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
3597 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3598 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3599 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3600 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3601 #undef SHOW_FUNCTION
3602
3603 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3604 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3605 { \
3606 struct cfq_data *cfqd = e->elevator_data; \
3607 unsigned int __data; \
3608 int ret = cfq_var_store(&__data, (page), count); \
3609 if (__data < (MIN)) \
3610 __data = (MIN); \
3611 else if (__data > (MAX)) \
3612 __data = (MAX); \
3613 if (__CONV) \
3614 *(__PTR) = msecs_to_jiffies(__data); \
3615 else \
3616 *(__PTR) = __data; \
3617 return ret; \
3618 }
3619 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3620 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3621 UINT_MAX, 1);
3622 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3623 UINT_MAX, 1);
3624 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3625 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3626 UINT_MAX, 0);
3627 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3628 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
3629 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3630 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3631 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3632 UINT_MAX, 0);
3633 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3634 #undef STORE_FUNCTION
3635
3636 #define CFQ_ATTR(name) \
3637 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3638
3639 static struct elv_fs_entry cfq_attrs[] = {
3640 CFQ_ATTR(quantum),
3641 CFQ_ATTR(fifo_expire_sync),
3642 CFQ_ATTR(fifo_expire_async),
3643 CFQ_ATTR(back_seek_max),
3644 CFQ_ATTR(back_seek_penalty),
3645 CFQ_ATTR(slice_sync),
3646 CFQ_ATTR(slice_async),
3647 CFQ_ATTR(slice_async_rq),
3648 CFQ_ATTR(slice_idle),
3649 CFQ_ATTR(group_idle),
3650 CFQ_ATTR(low_latency),
3651 __ATTR_NULL
3652 };
3653
3654 static struct elevator_type iosched_cfq = {
3655 .ops = {
3656 .elevator_merge_fn = cfq_merge,
3657 .elevator_merged_fn = cfq_merged_request,
3658 .elevator_merge_req_fn = cfq_merged_requests,
3659 .elevator_allow_merge_fn = cfq_allow_merge,
3660 .elevator_bio_merged_fn = cfq_bio_merged,
3661 .elevator_dispatch_fn = cfq_dispatch_requests,
3662 .elevator_add_req_fn = cfq_insert_request,
3663 .elevator_activate_req_fn = cfq_activate_request,
3664 .elevator_deactivate_req_fn = cfq_deactivate_request,
3665 .elevator_completed_req_fn = cfq_completed_request,
3666 .elevator_former_req_fn = elv_rb_former_request,
3667 .elevator_latter_req_fn = elv_rb_latter_request,
3668 .elevator_init_icq_fn = cfq_init_icq,
3669 .elevator_exit_icq_fn = cfq_exit_icq,
3670 .elevator_set_req_fn = cfq_set_request,
3671 .elevator_put_req_fn = cfq_put_request,
3672 .elevator_may_queue_fn = cfq_may_queue,
3673 .elevator_init_fn = cfq_init_queue,
3674 .elevator_exit_fn = cfq_exit_queue,
3675 },
3676 .icq_size = sizeof(struct cfq_io_cq),
3677 .icq_align = __alignof__(struct cfq_io_cq),
3678 .elevator_attrs = cfq_attrs,
3679 .elevator_name = "cfq",
3680 .elevator_owner = THIS_MODULE,
3681 };
3682
3683 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3684 static struct blkio_policy_type blkio_policy_cfq = {
3685 .ops = {
3686 .blkio_init_group_fn = cfq_init_blkio_group,
3687 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3688 },
3689 .plid = BLKIO_POLICY_PROP,
3690 .pdata_size = sizeof(struct cfq_group),
3691 };
3692 #endif
3693
3694 static int __init cfq_init(void)
3695 {
3696 int ret;
3697
3698 /*
3699 * could be 0 on HZ < 1000 setups
3700 */
3701 if (!cfq_slice_async)
3702 cfq_slice_async = 1;
3703 if (!cfq_slice_idle)
3704 cfq_slice_idle = 1;
3705
3706 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3707 if (!cfq_group_idle)
3708 cfq_group_idle = 1;
3709 #else
3710 cfq_group_idle = 0;
3711 #endif
3712 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3713 if (!cfq_pool)
3714 return -ENOMEM;
3715
3716 ret = elv_register(&iosched_cfq);
3717 if (ret) {
3718 kmem_cache_destroy(cfq_pool);
3719 return ret;
3720 }
3721
3722 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3723 blkio_policy_register(&blkio_policy_cfq);
3724 #endif
3725 return 0;
3726 }
3727
3728 static void __exit cfq_exit(void)
3729 {
3730 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3731 blkio_policy_unregister(&blkio_policy_cfq);
3732 #endif
3733 elv_unregister(&iosched_cfq);
3734 kmem_cache_destroy(cfq_pool);
3735 }
3736
3737 module_init(cfq_init);
3738 module_exit(cfq_exit);
3739
3740 MODULE_AUTHOR("Jens Axboe");
3741 MODULE_LICENSE("GPL");
3742 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");