]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/cfq-iosched.c
bio: first step in sanitizing the bio->bi_rw flag testing
[mirror_ubuntu-jammy-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
15
16 /*
17 * tunables
18 */
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
30
31 /*
32 * offset from end of service tree
33 */
34 #define CFQ_IDLE_DELAY (HZ / 5)
35
36 /*
37 * below this threshold, we consider thinktime immediate
38 */
39 #define CFQ_MIN_TT (2)
40
41 #define CFQ_SLICE_SCALE (5)
42 #define CFQ_HW_QUEUE_MIN (5)
43
44 #define RQ_CIC(rq) \
45 ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
47
48 static struct kmem_cache *cfq_pool;
49 static struct kmem_cache *cfq_ioc_pool;
50
51 static DEFINE_PER_CPU(unsigned long, ioc_count);
52 static struct completion *ioc_gone;
53 static DEFINE_SPINLOCK(ioc_gone_lock);
54
55 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
59 #define sample_valid(samples) ((samples) > 80)
60
61 /*
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
66 */
67 struct cfq_rb_root {
68 struct rb_root rb;
69 struct rb_node *left;
70 };
71 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
72
73 /*
74 * Per process-grouping structure
75 */
76 struct cfq_queue {
77 /* reference count */
78 atomic_t ref;
79 /* various state flags, see below */
80 unsigned int flags;
81 /* parent cfq_data */
82 struct cfq_data *cfqd;
83 /* service_tree member */
84 struct rb_node rb_node;
85 /* service_tree key */
86 unsigned long rb_key;
87 /* prio tree member */
88 struct rb_node p_node;
89 /* prio tree root we belong to, if any */
90 struct rb_root *p_root;
91 /* sorted list of pending requests */
92 struct rb_root sort_list;
93 /* if fifo isn't expired, next request to serve */
94 struct request *next_rq;
95 /* requests queued in sort_list */
96 int queued[2];
97 /* currently allocated requests */
98 int allocated[2];
99 /* fifo list of requests in sort_list */
100 struct list_head fifo;
101
102 unsigned long slice_end;
103 long slice_resid;
104 unsigned int slice_dispatch;
105
106 /* pending metadata requests */
107 int meta_pending;
108 /* number of requests that are on the dispatch list or inside driver */
109 int dispatched;
110
111 /* io prio of this group */
112 unsigned short ioprio, org_ioprio;
113 unsigned short ioprio_class, org_ioprio_class;
114
115 pid_t pid;
116 };
117
118 /*
119 * Per block device queue structure
120 */
121 struct cfq_data {
122 struct request_queue *queue;
123
124 /*
125 * rr list of queues with requests and the count of them
126 */
127 struct cfq_rb_root service_tree;
128
129 /*
130 * Each priority tree is sorted by next_request position. These
131 * trees are used when determining if two or more queues are
132 * interleaving requests (see cfq_close_cooperator).
133 */
134 struct rb_root prio_trees[CFQ_PRIO_LISTS];
135
136 unsigned int busy_queues;
137
138 int rq_in_driver[2];
139 int sync_flight;
140
141 /*
142 * queue-depth detection
143 */
144 int rq_queued;
145 int hw_tag;
146 int hw_tag_samples;
147 int rq_in_driver_peak;
148
149 /*
150 * idle window management
151 */
152 struct timer_list idle_slice_timer;
153 struct work_struct unplug_work;
154
155 struct cfq_queue *active_queue;
156 struct cfq_io_context *active_cic;
157
158 /*
159 * async queue for each priority case
160 */
161 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
162 struct cfq_queue *async_idle_cfqq;
163
164 sector_t last_position;
165
166 /*
167 * tunables, see top of file
168 */
169 unsigned int cfq_quantum;
170 unsigned int cfq_fifo_expire[2];
171 unsigned int cfq_back_penalty;
172 unsigned int cfq_back_max;
173 unsigned int cfq_slice[2];
174 unsigned int cfq_slice_async_rq;
175 unsigned int cfq_slice_idle;
176
177 struct list_head cic_list;
178
179 /*
180 * Fallback dummy cfqq for extreme OOM conditions
181 */
182 struct cfq_queue oom_cfqq;
183 };
184
185 enum cfqq_state_flags {
186 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
187 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
188 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
189 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
190 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
191 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
192 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
193 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
194 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
195 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
196 CFQ_CFQQ_FLAG_coop, /* has done a coop jump of the queue */
197 };
198
199 #define CFQ_CFQQ_FNS(name) \
200 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
201 { \
202 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
203 } \
204 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
205 { \
206 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
207 } \
208 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
209 { \
210 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
211 }
212
213 CFQ_CFQQ_FNS(on_rr);
214 CFQ_CFQQ_FNS(wait_request);
215 CFQ_CFQQ_FNS(must_dispatch);
216 CFQ_CFQQ_FNS(must_alloc);
217 CFQ_CFQQ_FNS(must_alloc_slice);
218 CFQ_CFQQ_FNS(fifo_expire);
219 CFQ_CFQQ_FNS(idle_window);
220 CFQ_CFQQ_FNS(prio_changed);
221 CFQ_CFQQ_FNS(slice_new);
222 CFQ_CFQQ_FNS(sync);
223 CFQ_CFQQ_FNS(coop);
224 #undef CFQ_CFQQ_FNS
225
226 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
227 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
228 #define cfq_log(cfqd, fmt, args...) \
229 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
230
231 static void cfq_dispatch_insert(struct request_queue *, struct request *);
232 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
233 struct io_context *, gfp_t);
234 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
235 struct io_context *);
236
237 static inline int rq_in_driver(struct cfq_data *cfqd)
238 {
239 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
240 }
241
242 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
243 int is_sync)
244 {
245 return cic->cfqq[!!is_sync];
246 }
247
248 static inline void cic_set_cfqq(struct cfq_io_context *cic,
249 struct cfq_queue *cfqq, int is_sync)
250 {
251 cic->cfqq[!!is_sync] = cfqq;
252 }
253
254 /*
255 * We regard a request as SYNC, if it's either a read or has the SYNC bit
256 * set (in which case it could also be direct WRITE).
257 */
258 static inline int cfq_bio_sync(struct bio *bio)
259 {
260 if (bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO))
261 return 1;
262
263 return 0;
264 }
265
266 /*
267 * scheduler run of queue, if there are requests pending and no one in the
268 * driver that will restart queueing
269 */
270 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
271 {
272 if (cfqd->busy_queues) {
273 cfq_log(cfqd, "schedule dispatch");
274 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
275 }
276 }
277
278 static int cfq_queue_empty(struct request_queue *q)
279 {
280 struct cfq_data *cfqd = q->elevator->elevator_data;
281
282 return !cfqd->busy_queues;
283 }
284
285 /*
286 * Scale schedule slice based on io priority. Use the sync time slice only
287 * if a queue is marked sync and has sync io queued. A sync queue with async
288 * io only, should not get full sync slice length.
289 */
290 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
291 unsigned short prio)
292 {
293 const int base_slice = cfqd->cfq_slice[sync];
294
295 WARN_ON(prio >= IOPRIO_BE_NR);
296
297 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
298 }
299
300 static inline int
301 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
302 {
303 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
304 }
305
306 static inline void
307 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
308 {
309 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
310 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
311 }
312
313 /*
314 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
315 * isn't valid until the first request from the dispatch is activated
316 * and the slice time set.
317 */
318 static inline int cfq_slice_used(struct cfq_queue *cfqq)
319 {
320 if (cfq_cfqq_slice_new(cfqq))
321 return 0;
322 if (time_before(jiffies, cfqq->slice_end))
323 return 0;
324
325 return 1;
326 }
327
328 /*
329 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
330 * We choose the request that is closest to the head right now. Distance
331 * behind the head is penalized and only allowed to a certain extent.
332 */
333 static struct request *
334 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
335 {
336 sector_t last, s1, s2, d1 = 0, d2 = 0;
337 unsigned long back_max;
338 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
339 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
340 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
341
342 if (rq1 == NULL || rq1 == rq2)
343 return rq2;
344 if (rq2 == NULL)
345 return rq1;
346
347 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
348 return rq1;
349 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
350 return rq2;
351 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
352 return rq1;
353 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
354 return rq2;
355
356 s1 = blk_rq_pos(rq1);
357 s2 = blk_rq_pos(rq2);
358
359 last = cfqd->last_position;
360
361 /*
362 * by definition, 1KiB is 2 sectors
363 */
364 back_max = cfqd->cfq_back_max * 2;
365
366 /*
367 * Strict one way elevator _except_ in the case where we allow
368 * short backward seeks which are biased as twice the cost of a
369 * similar forward seek.
370 */
371 if (s1 >= last)
372 d1 = s1 - last;
373 else if (s1 + back_max >= last)
374 d1 = (last - s1) * cfqd->cfq_back_penalty;
375 else
376 wrap |= CFQ_RQ1_WRAP;
377
378 if (s2 >= last)
379 d2 = s2 - last;
380 else if (s2 + back_max >= last)
381 d2 = (last - s2) * cfqd->cfq_back_penalty;
382 else
383 wrap |= CFQ_RQ2_WRAP;
384
385 /* Found required data */
386
387 /*
388 * By doing switch() on the bit mask "wrap" we avoid having to
389 * check two variables for all permutations: --> faster!
390 */
391 switch (wrap) {
392 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
393 if (d1 < d2)
394 return rq1;
395 else if (d2 < d1)
396 return rq2;
397 else {
398 if (s1 >= s2)
399 return rq1;
400 else
401 return rq2;
402 }
403
404 case CFQ_RQ2_WRAP:
405 return rq1;
406 case CFQ_RQ1_WRAP:
407 return rq2;
408 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
409 default:
410 /*
411 * Since both rqs are wrapped,
412 * start with the one that's further behind head
413 * (--> only *one* back seek required),
414 * since back seek takes more time than forward.
415 */
416 if (s1 <= s2)
417 return rq1;
418 else
419 return rq2;
420 }
421 }
422
423 /*
424 * The below is leftmost cache rbtree addon
425 */
426 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
427 {
428 if (!root->left)
429 root->left = rb_first(&root->rb);
430
431 if (root->left)
432 return rb_entry(root->left, struct cfq_queue, rb_node);
433
434 return NULL;
435 }
436
437 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
438 {
439 rb_erase(n, root);
440 RB_CLEAR_NODE(n);
441 }
442
443 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
444 {
445 if (root->left == n)
446 root->left = NULL;
447 rb_erase_init(n, &root->rb);
448 }
449
450 /*
451 * would be nice to take fifo expire time into account as well
452 */
453 static struct request *
454 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
455 struct request *last)
456 {
457 struct rb_node *rbnext = rb_next(&last->rb_node);
458 struct rb_node *rbprev = rb_prev(&last->rb_node);
459 struct request *next = NULL, *prev = NULL;
460
461 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
462
463 if (rbprev)
464 prev = rb_entry_rq(rbprev);
465
466 if (rbnext)
467 next = rb_entry_rq(rbnext);
468 else {
469 rbnext = rb_first(&cfqq->sort_list);
470 if (rbnext && rbnext != &last->rb_node)
471 next = rb_entry_rq(rbnext);
472 }
473
474 return cfq_choose_req(cfqd, next, prev);
475 }
476
477 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
478 struct cfq_queue *cfqq)
479 {
480 /*
481 * just an approximation, should be ok.
482 */
483 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
484 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
485 }
486
487 /*
488 * The cfqd->service_tree holds all pending cfq_queue's that have
489 * requests waiting to be processed. It is sorted in the order that
490 * we will service the queues.
491 */
492 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
493 int add_front)
494 {
495 struct rb_node **p, *parent;
496 struct cfq_queue *__cfqq;
497 unsigned long rb_key;
498 int left;
499
500 if (cfq_class_idle(cfqq)) {
501 rb_key = CFQ_IDLE_DELAY;
502 parent = rb_last(&cfqd->service_tree.rb);
503 if (parent && parent != &cfqq->rb_node) {
504 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
505 rb_key += __cfqq->rb_key;
506 } else
507 rb_key += jiffies;
508 } else if (!add_front) {
509 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
510 rb_key += cfqq->slice_resid;
511 cfqq->slice_resid = 0;
512 } else
513 rb_key = 0;
514
515 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
516 /*
517 * same position, nothing more to do
518 */
519 if (rb_key == cfqq->rb_key)
520 return;
521
522 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
523 }
524
525 left = 1;
526 parent = NULL;
527 p = &cfqd->service_tree.rb.rb_node;
528 while (*p) {
529 struct rb_node **n;
530
531 parent = *p;
532 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
533
534 /*
535 * sort RT queues first, we always want to give
536 * preference to them. IDLE queues goes to the back.
537 * after that, sort on the next service time.
538 */
539 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
540 n = &(*p)->rb_left;
541 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
542 n = &(*p)->rb_right;
543 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
544 n = &(*p)->rb_left;
545 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
546 n = &(*p)->rb_right;
547 else if (rb_key < __cfqq->rb_key)
548 n = &(*p)->rb_left;
549 else
550 n = &(*p)->rb_right;
551
552 if (n == &(*p)->rb_right)
553 left = 0;
554
555 p = n;
556 }
557
558 if (left)
559 cfqd->service_tree.left = &cfqq->rb_node;
560
561 cfqq->rb_key = rb_key;
562 rb_link_node(&cfqq->rb_node, parent, p);
563 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
564 }
565
566 static struct cfq_queue *
567 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
568 sector_t sector, struct rb_node **ret_parent,
569 struct rb_node ***rb_link)
570 {
571 struct rb_node **p, *parent;
572 struct cfq_queue *cfqq = NULL;
573
574 parent = NULL;
575 p = &root->rb_node;
576 while (*p) {
577 struct rb_node **n;
578
579 parent = *p;
580 cfqq = rb_entry(parent, struct cfq_queue, p_node);
581
582 /*
583 * Sort strictly based on sector. Smallest to the left,
584 * largest to the right.
585 */
586 if (sector > blk_rq_pos(cfqq->next_rq))
587 n = &(*p)->rb_right;
588 else if (sector < blk_rq_pos(cfqq->next_rq))
589 n = &(*p)->rb_left;
590 else
591 break;
592 p = n;
593 cfqq = NULL;
594 }
595
596 *ret_parent = parent;
597 if (rb_link)
598 *rb_link = p;
599 return cfqq;
600 }
601
602 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
603 {
604 struct rb_node **p, *parent;
605 struct cfq_queue *__cfqq;
606
607 if (cfqq->p_root) {
608 rb_erase(&cfqq->p_node, cfqq->p_root);
609 cfqq->p_root = NULL;
610 }
611
612 if (cfq_class_idle(cfqq))
613 return;
614 if (!cfqq->next_rq)
615 return;
616
617 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
618 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
619 blk_rq_pos(cfqq->next_rq), &parent, &p);
620 if (!__cfqq) {
621 rb_link_node(&cfqq->p_node, parent, p);
622 rb_insert_color(&cfqq->p_node, cfqq->p_root);
623 } else
624 cfqq->p_root = NULL;
625 }
626
627 /*
628 * Update cfqq's position in the service tree.
629 */
630 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
631 {
632 /*
633 * Resorting requires the cfqq to be on the RR list already.
634 */
635 if (cfq_cfqq_on_rr(cfqq)) {
636 cfq_service_tree_add(cfqd, cfqq, 0);
637 cfq_prio_tree_add(cfqd, cfqq);
638 }
639 }
640
641 /*
642 * add to busy list of queues for service, trying to be fair in ordering
643 * the pending list according to last request service
644 */
645 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
646 {
647 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
648 BUG_ON(cfq_cfqq_on_rr(cfqq));
649 cfq_mark_cfqq_on_rr(cfqq);
650 cfqd->busy_queues++;
651
652 cfq_resort_rr_list(cfqd, cfqq);
653 }
654
655 /*
656 * Called when the cfqq no longer has requests pending, remove it from
657 * the service tree.
658 */
659 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
660 {
661 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
662 BUG_ON(!cfq_cfqq_on_rr(cfqq));
663 cfq_clear_cfqq_on_rr(cfqq);
664
665 if (!RB_EMPTY_NODE(&cfqq->rb_node))
666 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
667 if (cfqq->p_root) {
668 rb_erase(&cfqq->p_node, cfqq->p_root);
669 cfqq->p_root = NULL;
670 }
671
672 BUG_ON(!cfqd->busy_queues);
673 cfqd->busy_queues--;
674 }
675
676 /*
677 * rb tree support functions
678 */
679 static void cfq_del_rq_rb(struct request *rq)
680 {
681 struct cfq_queue *cfqq = RQ_CFQQ(rq);
682 struct cfq_data *cfqd = cfqq->cfqd;
683 const int sync = rq_is_sync(rq);
684
685 BUG_ON(!cfqq->queued[sync]);
686 cfqq->queued[sync]--;
687
688 elv_rb_del(&cfqq->sort_list, rq);
689
690 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
691 cfq_del_cfqq_rr(cfqd, cfqq);
692 }
693
694 static void cfq_add_rq_rb(struct request *rq)
695 {
696 struct cfq_queue *cfqq = RQ_CFQQ(rq);
697 struct cfq_data *cfqd = cfqq->cfqd;
698 struct request *__alias, *prev;
699
700 cfqq->queued[rq_is_sync(rq)]++;
701
702 /*
703 * looks a little odd, but the first insert might return an alias.
704 * if that happens, put the alias on the dispatch list
705 */
706 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
707 cfq_dispatch_insert(cfqd->queue, __alias);
708
709 if (!cfq_cfqq_on_rr(cfqq))
710 cfq_add_cfqq_rr(cfqd, cfqq);
711
712 /*
713 * check if this request is a better next-serve candidate
714 */
715 prev = cfqq->next_rq;
716 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
717
718 /*
719 * adjust priority tree position, if ->next_rq changes
720 */
721 if (prev != cfqq->next_rq)
722 cfq_prio_tree_add(cfqd, cfqq);
723
724 BUG_ON(!cfqq->next_rq);
725 }
726
727 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
728 {
729 elv_rb_del(&cfqq->sort_list, rq);
730 cfqq->queued[rq_is_sync(rq)]--;
731 cfq_add_rq_rb(rq);
732 }
733
734 static struct request *
735 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
736 {
737 struct task_struct *tsk = current;
738 struct cfq_io_context *cic;
739 struct cfq_queue *cfqq;
740
741 cic = cfq_cic_lookup(cfqd, tsk->io_context);
742 if (!cic)
743 return NULL;
744
745 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
746 if (cfqq) {
747 sector_t sector = bio->bi_sector + bio_sectors(bio);
748
749 return elv_rb_find(&cfqq->sort_list, sector);
750 }
751
752 return NULL;
753 }
754
755 static void cfq_activate_request(struct request_queue *q, struct request *rq)
756 {
757 struct cfq_data *cfqd = q->elevator->elevator_data;
758
759 cfqd->rq_in_driver[rq_is_sync(rq)]++;
760 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
761 rq_in_driver(cfqd));
762
763 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
764 }
765
766 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
767 {
768 struct cfq_data *cfqd = q->elevator->elevator_data;
769 const int sync = rq_is_sync(rq);
770
771 WARN_ON(!cfqd->rq_in_driver[sync]);
772 cfqd->rq_in_driver[sync]--;
773 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
774 rq_in_driver(cfqd));
775 }
776
777 static void cfq_remove_request(struct request *rq)
778 {
779 struct cfq_queue *cfqq = RQ_CFQQ(rq);
780
781 if (cfqq->next_rq == rq)
782 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
783
784 list_del_init(&rq->queuelist);
785 cfq_del_rq_rb(rq);
786
787 cfqq->cfqd->rq_queued--;
788 if (rq_is_meta(rq)) {
789 WARN_ON(!cfqq->meta_pending);
790 cfqq->meta_pending--;
791 }
792 }
793
794 static int cfq_merge(struct request_queue *q, struct request **req,
795 struct bio *bio)
796 {
797 struct cfq_data *cfqd = q->elevator->elevator_data;
798 struct request *__rq;
799
800 __rq = cfq_find_rq_fmerge(cfqd, bio);
801 if (__rq && elv_rq_merge_ok(__rq, bio)) {
802 *req = __rq;
803 return ELEVATOR_FRONT_MERGE;
804 }
805
806 return ELEVATOR_NO_MERGE;
807 }
808
809 static void cfq_merged_request(struct request_queue *q, struct request *req,
810 int type)
811 {
812 if (type == ELEVATOR_FRONT_MERGE) {
813 struct cfq_queue *cfqq = RQ_CFQQ(req);
814
815 cfq_reposition_rq_rb(cfqq, req);
816 }
817 }
818
819 static void
820 cfq_merged_requests(struct request_queue *q, struct request *rq,
821 struct request *next)
822 {
823 /*
824 * reposition in fifo if next is older than rq
825 */
826 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
827 time_before(next->start_time, rq->start_time))
828 list_move(&rq->queuelist, &next->queuelist);
829
830 cfq_remove_request(next);
831 }
832
833 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
834 struct bio *bio)
835 {
836 struct cfq_data *cfqd = q->elevator->elevator_data;
837 struct cfq_io_context *cic;
838 struct cfq_queue *cfqq;
839
840 /*
841 * Disallow merge of a sync bio into an async request.
842 */
843 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
844 return 0;
845
846 /*
847 * Lookup the cfqq that this bio will be queued with. Allow
848 * merge only if rq is queued there.
849 */
850 cic = cfq_cic_lookup(cfqd, current->io_context);
851 if (!cic)
852 return 0;
853
854 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
855 if (cfqq == RQ_CFQQ(rq))
856 return 1;
857
858 return 0;
859 }
860
861 static void __cfq_set_active_queue(struct cfq_data *cfqd,
862 struct cfq_queue *cfqq)
863 {
864 if (cfqq) {
865 cfq_log_cfqq(cfqd, cfqq, "set_active");
866 cfqq->slice_end = 0;
867 cfqq->slice_dispatch = 0;
868
869 cfq_clear_cfqq_wait_request(cfqq);
870 cfq_clear_cfqq_must_dispatch(cfqq);
871 cfq_clear_cfqq_must_alloc_slice(cfqq);
872 cfq_clear_cfqq_fifo_expire(cfqq);
873 cfq_mark_cfqq_slice_new(cfqq);
874
875 del_timer(&cfqd->idle_slice_timer);
876 }
877
878 cfqd->active_queue = cfqq;
879 }
880
881 /*
882 * current cfqq expired its slice (or was too idle), select new one
883 */
884 static void
885 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
886 int timed_out)
887 {
888 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
889
890 if (cfq_cfqq_wait_request(cfqq))
891 del_timer(&cfqd->idle_slice_timer);
892
893 cfq_clear_cfqq_wait_request(cfqq);
894
895 /*
896 * store what was left of this slice, if the queue idled/timed out
897 */
898 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
899 cfqq->slice_resid = cfqq->slice_end - jiffies;
900 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
901 }
902
903 cfq_resort_rr_list(cfqd, cfqq);
904
905 if (cfqq == cfqd->active_queue)
906 cfqd->active_queue = NULL;
907
908 if (cfqd->active_cic) {
909 put_io_context(cfqd->active_cic->ioc);
910 cfqd->active_cic = NULL;
911 }
912 }
913
914 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
915 {
916 struct cfq_queue *cfqq = cfqd->active_queue;
917
918 if (cfqq)
919 __cfq_slice_expired(cfqd, cfqq, timed_out);
920 }
921
922 /*
923 * Get next queue for service. Unless we have a queue preemption,
924 * we'll simply select the first cfqq in the service tree.
925 */
926 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
927 {
928 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
929 return NULL;
930
931 return cfq_rb_first(&cfqd->service_tree);
932 }
933
934 /*
935 * Get and set a new active queue for service.
936 */
937 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
938 struct cfq_queue *cfqq)
939 {
940 if (!cfqq) {
941 cfqq = cfq_get_next_queue(cfqd);
942 if (cfqq)
943 cfq_clear_cfqq_coop(cfqq);
944 }
945
946 __cfq_set_active_queue(cfqd, cfqq);
947 return cfqq;
948 }
949
950 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
951 struct request *rq)
952 {
953 if (blk_rq_pos(rq) >= cfqd->last_position)
954 return blk_rq_pos(rq) - cfqd->last_position;
955 else
956 return cfqd->last_position - blk_rq_pos(rq);
957 }
958
959 #define CIC_SEEK_THR 8 * 1024
960 #define CIC_SEEKY(cic) ((cic)->seek_mean > CIC_SEEK_THR)
961
962 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
963 {
964 struct cfq_io_context *cic = cfqd->active_cic;
965 sector_t sdist = cic->seek_mean;
966
967 if (!sample_valid(cic->seek_samples))
968 sdist = CIC_SEEK_THR;
969
970 return cfq_dist_from_last(cfqd, rq) <= sdist;
971 }
972
973 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
974 struct cfq_queue *cur_cfqq)
975 {
976 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
977 struct rb_node *parent, *node;
978 struct cfq_queue *__cfqq;
979 sector_t sector = cfqd->last_position;
980
981 if (RB_EMPTY_ROOT(root))
982 return NULL;
983
984 /*
985 * First, if we find a request starting at the end of the last
986 * request, choose it.
987 */
988 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
989 if (__cfqq)
990 return __cfqq;
991
992 /*
993 * If the exact sector wasn't found, the parent of the NULL leaf
994 * will contain the closest sector.
995 */
996 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
997 if (cfq_rq_close(cfqd, __cfqq->next_rq))
998 return __cfqq;
999
1000 if (blk_rq_pos(__cfqq->next_rq) < sector)
1001 node = rb_next(&__cfqq->p_node);
1002 else
1003 node = rb_prev(&__cfqq->p_node);
1004 if (!node)
1005 return NULL;
1006
1007 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1008 if (cfq_rq_close(cfqd, __cfqq->next_rq))
1009 return __cfqq;
1010
1011 return NULL;
1012 }
1013
1014 /*
1015 * cfqd - obvious
1016 * cur_cfqq - passed in so that we don't decide that the current queue is
1017 * closely cooperating with itself.
1018 *
1019 * So, basically we're assuming that that cur_cfqq has dispatched at least
1020 * one request, and that cfqd->last_position reflects a position on the disk
1021 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1022 * assumption.
1023 */
1024 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1025 struct cfq_queue *cur_cfqq,
1026 int probe)
1027 {
1028 struct cfq_queue *cfqq;
1029
1030 /*
1031 * A valid cfq_io_context is necessary to compare requests against
1032 * the seek_mean of the current cfqq.
1033 */
1034 if (!cfqd->active_cic)
1035 return NULL;
1036
1037 /*
1038 * We should notice if some of the queues are cooperating, eg
1039 * working closely on the same area of the disk. In that case,
1040 * we can group them together and don't waste time idling.
1041 */
1042 cfqq = cfqq_close(cfqd, cur_cfqq);
1043 if (!cfqq)
1044 return NULL;
1045
1046 if (cfq_cfqq_coop(cfqq))
1047 return NULL;
1048
1049 if (!probe)
1050 cfq_mark_cfqq_coop(cfqq);
1051 return cfqq;
1052 }
1053
1054 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1055 {
1056 struct cfq_queue *cfqq = cfqd->active_queue;
1057 struct cfq_io_context *cic;
1058 unsigned long sl;
1059
1060 /*
1061 * SSD device without seek penalty, disable idling. But only do so
1062 * for devices that support queuing, otherwise we still have a problem
1063 * with sync vs async workloads.
1064 */
1065 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1066 return;
1067
1068 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1069 WARN_ON(cfq_cfqq_slice_new(cfqq));
1070
1071 /*
1072 * idle is disabled, either manually or by past process history
1073 */
1074 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1075 return;
1076
1077 /*
1078 * still requests with the driver, don't idle
1079 */
1080 if (rq_in_driver(cfqd))
1081 return;
1082
1083 /*
1084 * task has exited, don't wait
1085 */
1086 cic = cfqd->active_cic;
1087 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1088 return;
1089
1090 cfq_mark_cfqq_wait_request(cfqq);
1091
1092 /*
1093 * we don't want to idle for seeks, but we do want to allow
1094 * fair distribution of slice time for a process doing back-to-back
1095 * seeks. so allow a little bit of time for him to submit a new rq
1096 */
1097 sl = cfqd->cfq_slice_idle;
1098 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
1099 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1100
1101 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1102 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1103 }
1104
1105 /*
1106 * Move request from internal lists to the request queue dispatch list.
1107 */
1108 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1109 {
1110 struct cfq_data *cfqd = q->elevator->elevator_data;
1111 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1112
1113 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1114
1115 cfq_remove_request(rq);
1116 cfqq->dispatched++;
1117 elv_dispatch_sort(q, rq);
1118
1119 if (cfq_cfqq_sync(cfqq))
1120 cfqd->sync_flight++;
1121 }
1122
1123 /*
1124 * return expired entry, or NULL to just start from scratch in rbtree
1125 */
1126 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1127 {
1128 struct cfq_data *cfqd = cfqq->cfqd;
1129 struct request *rq;
1130 int fifo;
1131
1132 if (cfq_cfqq_fifo_expire(cfqq))
1133 return NULL;
1134
1135 cfq_mark_cfqq_fifo_expire(cfqq);
1136
1137 if (list_empty(&cfqq->fifo))
1138 return NULL;
1139
1140 fifo = cfq_cfqq_sync(cfqq);
1141 rq = rq_entry_fifo(cfqq->fifo.next);
1142
1143 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
1144 rq = NULL;
1145
1146 cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
1147 return rq;
1148 }
1149
1150 static inline int
1151 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1152 {
1153 const int base_rq = cfqd->cfq_slice_async_rq;
1154
1155 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1156
1157 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1158 }
1159
1160 /*
1161 * Select a queue for service. If we have a current active queue,
1162 * check whether to continue servicing it, or retrieve and set a new one.
1163 */
1164 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1165 {
1166 struct cfq_queue *cfqq, *new_cfqq = NULL;
1167
1168 cfqq = cfqd->active_queue;
1169 if (!cfqq)
1170 goto new_queue;
1171
1172 /*
1173 * The active queue has run out of time, expire it and select new.
1174 */
1175 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1176 goto expire;
1177
1178 /*
1179 * The active queue has requests and isn't expired, allow it to
1180 * dispatch.
1181 */
1182 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1183 goto keep_queue;
1184
1185 /*
1186 * If another queue has a request waiting within our mean seek
1187 * distance, let it run. The expire code will check for close
1188 * cooperators and put the close queue at the front of the service
1189 * tree.
1190 */
1191 new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1192 if (new_cfqq)
1193 goto expire;
1194
1195 /*
1196 * No requests pending. If the active queue still has requests in
1197 * flight or is idling for a new request, allow either of these
1198 * conditions to happen (or time out) before selecting a new queue.
1199 */
1200 if (timer_pending(&cfqd->idle_slice_timer) ||
1201 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1202 cfqq = NULL;
1203 goto keep_queue;
1204 }
1205
1206 expire:
1207 cfq_slice_expired(cfqd, 0);
1208 new_queue:
1209 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1210 keep_queue:
1211 return cfqq;
1212 }
1213
1214 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1215 {
1216 int dispatched = 0;
1217
1218 while (cfqq->next_rq) {
1219 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1220 dispatched++;
1221 }
1222
1223 BUG_ON(!list_empty(&cfqq->fifo));
1224 return dispatched;
1225 }
1226
1227 /*
1228 * Drain our current requests. Used for barriers and when switching
1229 * io schedulers on-the-fly.
1230 */
1231 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1232 {
1233 struct cfq_queue *cfqq;
1234 int dispatched = 0;
1235
1236 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1237 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1238
1239 cfq_slice_expired(cfqd, 0);
1240
1241 BUG_ON(cfqd->busy_queues);
1242
1243 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1244 return dispatched;
1245 }
1246
1247 /*
1248 * Dispatch a request from cfqq, moving them to the request queue
1249 * dispatch list.
1250 */
1251 static void cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1252 {
1253 struct request *rq;
1254
1255 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1256
1257 /*
1258 * follow expired path, else get first next available
1259 */
1260 rq = cfq_check_fifo(cfqq);
1261 if (!rq)
1262 rq = cfqq->next_rq;
1263
1264 /*
1265 * insert request into driver dispatch list
1266 */
1267 cfq_dispatch_insert(cfqd->queue, rq);
1268
1269 if (!cfqd->active_cic) {
1270 struct cfq_io_context *cic = RQ_CIC(rq);
1271
1272 atomic_long_inc(&cic->ioc->refcount);
1273 cfqd->active_cic = cic;
1274 }
1275 }
1276
1277 /*
1278 * Find the cfqq that we need to service and move a request from that to the
1279 * dispatch list
1280 */
1281 static int cfq_dispatch_requests(struct request_queue *q, int force)
1282 {
1283 struct cfq_data *cfqd = q->elevator->elevator_data;
1284 struct cfq_queue *cfqq;
1285 unsigned int max_dispatch;
1286
1287 if (!cfqd->busy_queues)
1288 return 0;
1289
1290 if (unlikely(force))
1291 return cfq_forced_dispatch(cfqd);
1292
1293 cfqq = cfq_select_queue(cfqd);
1294 if (!cfqq)
1295 return 0;
1296
1297 /*
1298 * Drain async requests before we start sync IO
1299 */
1300 if (cfq_cfqq_idle_window(cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1301 return 0;
1302
1303 /*
1304 * If this is an async queue and we have sync IO in flight, let it wait
1305 */
1306 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1307 return 0;
1308
1309 max_dispatch = cfqd->cfq_quantum;
1310 if (cfq_class_idle(cfqq))
1311 max_dispatch = 1;
1312
1313 /*
1314 * Does this cfqq already have too much IO in flight?
1315 */
1316 if (cfqq->dispatched >= max_dispatch) {
1317 /*
1318 * idle queue must always only have a single IO in flight
1319 */
1320 if (cfq_class_idle(cfqq))
1321 return 0;
1322
1323 /*
1324 * We have other queues, don't allow more IO from this one
1325 */
1326 if (cfqd->busy_queues > 1)
1327 return 0;
1328
1329 /*
1330 * we are the only queue, allow up to 4 times of 'quantum'
1331 */
1332 if (cfqq->dispatched >= 4 * max_dispatch)
1333 return 0;
1334 }
1335
1336 /*
1337 * Dispatch a request from this cfqq
1338 */
1339 cfq_dispatch_request(cfqd, cfqq);
1340 cfqq->slice_dispatch++;
1341 cfq_clear_cfqq_must_dispatch(cfqq);
1342
1343 /*
1344 * expire an async queue immediately if it has used up its slice. idle
1345 * queue always expire after 1 dispatch round.
1346 */
1347 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1348 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1349 cfq_class_idle(cfqq))) {
1350 cfqq->slice_end = jiffies + 1;
1351 cfq_slice_expired(cfqd, 0);
1352 }
1353
1354 cfq_log(cfqd, "dispatched a request");
1355 return 1;
1356 }
1357
1358 /*
1359 * task holds one reference to the queue, dropped when task exits. each rq
1360 * in-flight on this queue also holds a reference, dropped when rq is freed.
1361 *
1362 * queue lock must be held here.
1363 */
1364 static void cfq_put_queue(struct cfq_queue *cfqq)
1365 {
1366 struct cfq_data *cfqd = cfqq->cfqd;
1367
1368 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1369
1370 if (!atomic_dec_and_test(&cfqq->ref))
1371 return;
1372
1373 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1374 BUG_ON(rb_first(&cfqq->sort_list));
1375 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1376 BUG_ON(cfq_cfqq_on_rr(cfqq));
1377
1378 if (unlikely(cfqd->active_queue == cfqq)) {
1379 __cfq_slice_expired(cfqd, cfqq, 0);
1380 cfq_schedule_dispatch(cfqd);
1381 }
1382
1383 kmem_cache_free(cfq_pool, cfqq);
1384 }
1385
1386 /*
1387 * Must always be called with the rcu_read_lock() held
1388 */
1389 static void
1390 __call_for_each_cic(struct io_context *ioc,
1391 void (*func)(struct io_context *, struct cfq_io_context *))
1392 {
1393 struct cfq_io_context *cic;
1394 struct hlist_node *n;
1395
1396 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1397 func(ioc, cic);
1398 }
1399
1400 /*
1401 * Call func for each cic attached to this ioc.
1402 */
1403 static void
1404 call_for_each_cic(struct io_context *ioc,
1405 void (*func)(struct io_context *, struct cfq_io_context *))
1406 {
1407 rcu_read_lock();
1408 __call_for_each_cic(ioc, func);
1409 rcu_read_unlock();
1410 }
1411
1412 static void cfq_cic_free_rcu(struct rcu_head *head)
1413 {
1414 struct cfq_io_context *cic;
1415
1416 cic = container_of(head, struct cfq_io_context, rcu_head);
1417
1418 kmem_cache_free(cfq_ioc_pool, cic);
1419 elv_ioc_count_dec(ioc_count);
1420
1421 if (ioc_gone) {
1422 /*
1423 * CFQ scheduler is exiting, grab exit lock and check
1424 * the pending io context count. If it hits zero,
1425 * complete ioc_gone and set it back to NULL
1426 */
1427 spin_lock(&ioc_gone_lock);
1428 if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1429 complete(ioc_gone);
1430 ioc_gone = NULL;
1431 }
1432 spin_unlock(&ioc_gone_lock);
1433 }
1434 }
1435
1436 static void cfq_cic_free(struct cfq_io_context *cic)
1437 {
1438 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1439 }
1440
1441 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1442 {
1443 unsigned long flags;
1444
1445 BUG_ON(!cic->dead_key);
1446
1447 spin_lock_irqsave(&ioc->lock, flags);
1448 radix_tree_delete(&ioc->radix_root, cic->dead_key);
1449 hlist_del_rcu(&cic->cic_list);
1450 spin_unlock_irqrestore(&ioc->lock, flags);
1451
1452 cfq_cic_free(cic);
1453 }
1454
1455 /*
1456 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1457 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1458 * and ->trim() which is called with the task lock held
1459 */
1460 static void cfq_free_io_context(struct io_context *ioc)
1461 {
1462 /*
1463 * ioc->refcount is zero here, or we are called from elv_unregister(),
1464 * so no more cic's are allowed to be linked into this ioc. So it
1465 * should be ok to iterate over the known list, we will see all cic's
1466 * since no new ones are added.
1467 */
1468 __call_for_each_cic(ioc, cic_free_func);
1469 }
1470
1471 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1472 {
1473 if (unlikely(cfqq == cfqd->active_queue)) {
1474 __cfq_slice_expired(cfqd, cfqq, 0);
1475 cfq_schedule_dispatch(cfqd);
1476 }
1477
1478 cfq_put_queue(cfqq);
1479 }
1480
1481 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1482 struct cfq_io_context *cic)
1483 {
1484 struct io_context *ioc = cic->ioc;
1485
1486 list_del_init(&cic->queue_list);
1487
1488 /*
1489 * Make sure key == NULL is seen for dead queues
1490 */
1491 smp_wmb();
1492 cic->dead_key = (unsigned long) cic->key;
1493 cic->key = NULL;
1494
1495 if (ioc->ioc_data == cic)
1496 rcu_assign_pointer(ioc->ioc_data, NULL);
1497
1498 if (cic->cfqq[BLK_RW_ASYNC]) {
1499 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1500 cic->cfqq[BLK_RW_ASYNC] = NULL;
1501 }
1502
1503 if (cic->cfqq[BLK_RW_SYNC]) {
1504 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1505 cic->cfqq[BLK_RW_SYNC] = NULL;
1506 }
1507 }
1508
1509 static void cfq_exit_single_io_context(struct io_context *ioc,
1510 struct cfq_io_context *cic)
1511 {
1512 struct cfq_data *cfqd = cic->key;
1513
1514 if (cfqd) {
1515 struct request_queue *q = cfqd->queue;
1516 unsigned long flags;
1517
1518 spin_lock_irqsave(q->queue_lock, flags);
1519
1520 /*
1521 * Ensure we get a fresh copy of the ->key to prevent
1522 * race between exiting task and queue
1523 */
1524 smp_read_barrier_depends();
1525 if (cic->key)
1526 __cfq_exit_single_io_context(cfqd, cic);
1527
1528 spin_unlock_irqrestore(q->queue_lock, flags);
1529 }
1530 }
1531
1532 /*
1533 * The process that ioc belongs to has exited, we need to clean up
1534 * and put the internal structures we have that belongs to that process.
1535 */
1536 static void cfq_exit_io_context(struct io_context *ioc)
1537 {
1538 call_for_each_cic(ioc, cfq_exit_single_io_context);
1539 }
1540
1541 static struct cfq_io_context *
1542 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1543 {
1544 struct cfq_io_context *cic;
1545
1546 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1547 cfqd->queue->node);
1548 if (cic) {
1549 cic->last_end_request = jiffies;
1550 INIT_LIST_HEAD(&cic->queue_list);
1551 INIT_HLIST_NODE(&cic->cic_list);
1552 cic->dtor = cfq_free_io_context;
1553 cic->exit = cfq_exit_io_context;
1554 elv_ioc_count_inc(ioc_count);
1555 }
1556
1557 return cic;
1558 }
1559
1560 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1561 {
1562 struct task_struct *tsk = current;
1563 int ioprio_class;
1564
1565 if (!cfq_cfqq_prio_changed(cfqq))
1566 return;
1567
1568 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1569 switch (ioprio_class) {
1570 default:
1571 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1572 case IOPRIO_CLASS_NONE:
1573 /*
1574 * no prio set, inherit CPU scheduling settings
1575 */
1576 cfqq->ioprio = task_nice_ioprio(tsk);
1577 cfqq->ioprio_class = task_nice_ioclass(tsk);
1578 break;
1579 case IOPRIO_CLASS_RT:
1580 cfqq->ioprio = task_ioprio(ioc);
1581 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1582 break;
1583 case IOPRIO_CLASS_BE:
1584 cfqq->ioprio = task_ioprio(ioc);
1585 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1586 break;
1587 case IOPRIO_CLASS_IDLE:
1588 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1589 cfqq->ioprio = 7;
1590 cfq_clear_cfqq_idle_window(cfqq);
1591 break;
1592 }
1593
1594 /*
1595 * keep track of original prio settings in case we have to temporarily
1596 * elevate the priority of this queue
1597 */
1598 cfqq->org_ioprio = cfqq->ioprio;
1599 cfqq->org_ioprio_class = cfqq->ioprio_class;
1600 cfq_clear_cfqq_prio_changed(cfqq);
1601 }
1602
1603 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1604 {
1605 struct cfq_data *cfqd = cic->key;
1606 struct cfq_queue *cfqq;
1607 unsigned long flags;
1608
1609 if (unlikely(!cfqd))
1610 return;
1611
1612 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1613
1614 cfqq = cic->cfqq[BLK_RW_ASYNC];
1615 if (cfqq) {
1616 struct cfq_queue *new_cfqq;
1617 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1618 GFP_ATOMIC);
1619 if (new_cfqq) {
1620 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
1621 cfq_put_queue(cfqq);
1622 }
1623 }
1624
1625 cfqq = cic->cfqq[BLK_RW_SYNC];
1626 if (cfqq)
1627 cfq_mark_cfqq_prio_changed(cfqq);
1628
1629 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1630 }
1631
1632 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1633 {
1634 call_for_each_cic(ioc, changed_ioprio);
1635 ioc->ioprio_changed = 0;
1636 }
1637
1638 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1639 pid_t pid, int is_sync)
1640 {
1641 RB_CLEAR_NODE(&cfqq->rb_node);
1642 RB_CLEAR_NODE(&cfqq->p_node);
1643 INIT_LIST_HEAD(&cfqq->fifo);
1644
1645 atomic_set(&cfqq->ref, 0);
1646 cfqq->cfqd = cfqd;
1647
1648 cfq_mark_cfqq_prio_changed(cfqq);
1649
1650 if (is_sync) {
1651 if (!cfq_class_idle(cfqq))
1652 cfq_mark_cfqq_idle_window(cfqq);
1653 cfq_mark_cfqq_sync(cfqq);
1654 }
1655 cfqq->pid = pid;
1656 }
1657
1658 static struct cfq_queue *
1659 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1660 struct io_context *ioc, gfp_t gfp_mask)
1661 {
1662 struct cfq_queue *cfqq, *new_cfqq = NULL;
1663 struct cfq_io_context *cic;
1664
1665 retry:
1666 cic = cfq_cic_lookup(cfqd, ioc);
1667 /* cic always exists here */
1668 cfqq = cic_to_cfqq(cic, is_sync);
1669
1670 /*
1671 * Always try a new alloc if we fell back to the OOM cfqq
1672 * originally, since it should just be a temporary situation.
1673 */
1674 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1675 cfqq = NULL;
1676 if (new_cfqq) {
1677 cfqq = new_cfqq;
1678 new_cfqq = NULL;
1679 } else if (gfp_mask & __GFP_WAIT) {
1680 spin_unlock_irq(cfqd->queue->queue_lock);
1681 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1682 gfp_mask | __GFP_ZERO,
1683 cfqd->queue->node);
1684 spin_lock_irq(cfqd->queue->queue_lock);
1685 if (new_cfqq)
1686 goto retry;
1687 } else {
1688 cfqq = kmem_cache_alloc_node(cfq_pool,
1689 gfp_mask | __GFP_ZERO,
1690 cfqd->queue->node);
1691 }
1692
1693 if (cfqq) {
1694 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1695 cfq_init_prio_data(cfqq, ioc);
1696 cfq_log_cfqq(cfqd, cfqq, "alloced");
1697 } else
1698 cfqq = &cfqd->oom_cfqq;
1699 }
1700
1701 if (new_cfqq)
1702 kmem_cache_free(cfq_pool, new_cfqq);
1703
1704 return cfqq;
1705 }
1706
1707 static struct cfq_queue **
1708 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1709 {
1710 switch (ioprio_class) {
1711 case IOPRIO_CLASS_RT:
1712 return &cfqd->async_cfqq[0][ioprio];
1713 case IOPRIO_CLASS_BE:
1714 return &cfqd->async_cfqq[1][ioprio];
1715 case IOPRIO_CLASS_IDLE:
1716 return &cfqd->async_idle_cfqq;
1717 default:
1718 BUG();
1719 }
1720 }
1721
1722 static struct cfq_queue *
1723 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1724 gfp_t gfp_mask)
1725 {
1726 const int ioprio = task_ioprio(ioc);
1727 const int ioprio_class = task_ioprio_class(ioc);
1728 struct cfq_queue **async_cfqq = NULL;
1729 struct cfq_queue *cfqq = NULL;
1730
1731 if (!is_sync) {
1732 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1733 cfqq = *async_cfqq;
1734 }
1735
1736 if (!cfqq)
1737 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1738
1739 /*
1740 * pin the queue now that it's allocated, scheduler exit will prune it
1741 */
1742 if (!is_sync && !(*async_cfqq)) {
1743 atomic_inc(&cfqq->ref);
1744 *async_cfqq = cfqq;
1745 }
1746
1747 atomic_inc(&cfqq->ref);
1748 return cfqq;
1749 }
1750
1751 /*
1752 * We drop cfq io contexts lazily, so we may find a dead one.
1753 */
1754 static void
1755 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1756 struct cfq_io_context *cic)
1757 {
1758 unsigned long flags;
1759
1760 WARN_ON(!list_empty(&cic->queue_list));
1761
1762 spin_lock_irqsave(&ioc->lock, flags);
1763
1764 BUG_ON(ioc->ioc_data == cic);
1765
1766 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1767 hlist_del_rcu(&cic->cic_list);
1768 spin_unlock_irqrestore(&ioc->lock, flags);
1769
1770 cfq_cic_free(cic);
1771 }
1772
1773 static struct cfq_io_context *
1774 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1775 {
1776 struct cfq_io_context *cic;
1777 unsigned long flags;
1778 void *k;
1779
1780 if (unlikely(!ioc))
1781 return NULL;
1782
1783 rcu_read_lock();
1784
1785 /*
1786 * we maintain a last-hit cache, to avoid browsing over the tree
1787 */
1788 cic = rcu_dereference(ioc->ioc_data);
1789 if (cic && cic->key == cfqd) {
1790 rcu_read_unlock();
1791 return cic;
1792 }
1793
1794 do {
1795 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1796 rcu_read_unlock();
1797 if (!cic)
1798 break;
1799 /* ->key must be copied to avoid race with cfq_exit_queue() */
1800 k = cic->key;
1801 if (unlikely(!k)) {
1802 cfq_drop_dead_cic(cfqd, ioc, cic);
1803 rcu_read_lock();
1804 continue;
1805 }
1806
1807 spin_lock_irqsave(&ioc->lock, flags);
1808 rcu_assign_pointer(ioc->ioc_data, cic);
1809 spin_unlock_irqrestore(&ioc->lock, flags);
1810 break;
1811 } while (1);
1812
1813 return cic;
1814 }
1815
1816 /*
1817 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1818 * the process specific cfq io context when entered from the block layer.
1819 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1820 */
1821 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1822 struct cfq_io_context *cic, gfp_t gfp_mask)
1823 {
1824 unsigned long flags;
1825 int ret;
1826
1827 ret = radix_tree_preload(gfp_mask);
1828 if (!ret) {
1829 cic->ioc = ioc;
1830 cic->key = cfqd;
1831
1832 spin_lock_irqsave(&ioc->lock, flags);
1833 ret = radix_tree_insert(&ioc->radix_root,
1834 (unsigned long) cfqd, cic);
1835 if (!ret)
1836 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1837 spin_unlock_irqrestore(&ioc->lock, flags);
1838
1839 radix_tree_preload_end();
1840
1841 if (!ret) {
1842 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1843 list_add(&cic->queue_list, &cfqd->cic_list);
1844 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1845 }
1846 }
1847
1848 if (ret)
1849 printk(KERN_ERR "cfq: cic link failed!\n");
1850
1851 return ret;
1852 }
1853
1854 /*
1855 * Setup general io context and cfq io context. There can be several cfq
1856 * io contexts per general io context, if this process is doing io to more
1857 * than one device managed by cfq.
1858 */
1859 static struct cfq_io_context *
1860 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1861 {
1862 struct io_context *ioc = NULL;
1863 struct cfq_io_context *cic;
1864
1865 might_sleep_if(gfp_mask & __GFP_WAIT);
1866
1867 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1868 if (!ioc)
1869 return NULL;
1870
1871 cic = cfq_cic_lookup(cfqd, ioc);
1872 if (cic)
1873 goto out;
1874
1875 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1876 if (cic == NULL)
1877 goto err;
1878
1879 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1880 goto err_free;
1881
1882 out:
1883 smp_read_barrier_depends();
1884 if (unlikely(ioc->ioprio_changed))
1885 cfq_ioc_set_ioprio(ioc);
1886
1887 return cic;
1888 err_free:
1889 cfq_cic_free(cic);
1890 err:
1891 put_io_context(ioc);
1892 return NULL;
1893 }
1894
1895 static void
1896 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1897 {
1898 unsigned long elapsed = jiffies - cic->last_end_request;
1899 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1900
1901 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1902 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1903 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1904 }
1905
1906 static void
1907 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1908 struct request *rq)
1909 {
1910 sector_t sdist;
1911 u64 total;
1912
1913 if (!cic->last_request_pos)
1914 sdist = 0;
1915 else if (cic->last_request_pos < blk_rq_pos(rq))
1916 sdist = blk_rq_pos(rq) - cic->last_request_pos;
1917 else
1918 sdist = cic->last_request_pos - blk_rq_pos(rq);
1919
1920 /*
1921 * Don't allow the seek distance to get too large from the
1922 * odd fragment, pagein, etc
1923 */
1924 if (cic->seek_samples <= 60) /* second&third seek */
1925 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1926 else
1927 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1928
1929 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1930 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1931 total = cic->seek_total + (cic->seek_samples/2);
1932 do_div(total, cic->seek_samples);
1933 cic->seek_mean = (sector_t)total;
1934 }
1935
1936 /*
1937 * Disable idle window if the process thinks too long or seeks so much that
1938 * it doesn't matter
1939 */
1940 static void
1941 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1942 struct cfq_io_context *cic)
1943 {
1944 int old_idle, enable_idle;
1945
1946 /*
1947 * Don't idle for async or idle io prio class
1948 */
1949 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1950 return;
1951
1952 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1953
1954 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1955 (cfqd->hw_tag && CIC_SEEKY(cic)))
1956 enable_idle = 0;
1957 else if (sample_valid(cic->ttime_samples)) {
1958 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1959 enable_idle = 0;
1960 else
1961 enable_idle = 1;
1962 }
1963
1964 if (old_idle != enable_idle) {
1965 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1966 if (enable_idle)
1967 cfq_mark_cfqq_idle_window(cfqq);
1968 else
1969 cfq_clear_cfqq_idle_window(cfqq);
1970 }
1971 }
1972
1973 /*
1974 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1975 * no or if we aren't sure, a 1 will cause a preempt.
1976 */
1977 static int
1978 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1979 struct request *rq)
1980 {
1981 struct cfq_queue *cfqq;
1982
1983 cfqq = cfqd->active_queue;
1984 if (!cfqq)
1985 return 0;
1986
1987 if (cfq_slice_used(cfqq))
1988 return 1;
1989
1990 if (cfq_class_idle(new_cfqq))
1991 return 0;
1992
1993 if (cfq_class_idle(cfqq))
1994 return 1;
1995
1996 /*
1997 * if the new request is sync, but the currently running queue is
1998 * not, let the sync request have priority.
1999 */
2000 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2001 return 1;
2002
2003 /*
2004 * So both queues are sync. Let the new request get disk time if
2005 * it's a metadata request and the current queue is doing regular IO.
2006 */
2007 if (rq_is_meta(rq) && !cfqq->meta_pending)
2008 return 1;
2009
2010 /*
2011 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2012 */
2013 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2014 return 1;
2015
2016 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2017 return 0;
2018
2019 /*
2020 * if this request is as-good as one we would expect from the
2021 * current cfqq, let it preempt
2022 */
2023 if (cfq_rq_close(cfqd, rq))
2024 return 1;
2025
2026 return 0;
2027 }
2028
2029 /*
2030 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2031 * let it have half of its nominal slice.
2032 */
2033 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2034 {
2035 cfq_log_cfqq(cfqd, cfqq, "preempt");
2036 cfq_slice_expired(cfqd, 1);
2037
2038 /*
2039 * Put the new queue at the front of the of the current list,
2040 * so we know that it will be selected next.
2041 */
2042 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2043
2044 cfq_service_tree_add(cfqd, cfqq, 1);
2045
2046 cfqq->slice_end = 0;
2047 cfq_mark_cfqq_slice_new(cfqq);
2048 }
2049
2050 /*
2051 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2052 * something we should do about it
2053 */
2054 static void
2055 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2056 struct request *rq)
2057 {
2058 struct cfq_io_context *cic = RQ_CIC(rq);
2059
2060 cfqd->rq_queued++;
2061 if (rq_is_meta(rq))
2062 cfqq->meta_pending++;
2063
2064 cfq_update_io_thinktime(cfqd, cic);
2065 cfq_update_io_seektime(cfqd, cic, rq);
2066 cfq_update_idle_window(cfqd, cfqq, cic);
2067
2068 cic->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2069
2070 if (cfqq == cfqd->active_queue) {
2071 /*
2072 * Remember that we saw a request from this process, but
2073 * don't start queuing just yet. Otherwise we risk seeing lots
2074 * of tiny requests, because we disrupt the normal plugging
2075 * and merging. If the request is already larger than a single
2076 * page, let it rip immediately. For that case we assume that
2077 * merging is already done. Ditto for a busy system that
2078 * has other work pending, don't risk delaying until the
2079 * idle timer unplug to continue working.
2080 */
2081 if (cfq_cfqq_wait_request(cfqq)) {
2082 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2083 cfqd->busy_queues > 1) {
2084 del_timer(&cfqd->idle_slice_timer);
2085 __blk_run_queue(cfqd->queue);
2086 }
2087 cfq_mark_cfqq_must_dispatch(cfqq);
2088 }
2089 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2090 /*
2091 * not the active queue - expire current slice if it is
2092 * idle and has expired it's mean thinktime or this new queue
2093 * has some old slice time left and is of higher priority or
2094 * this new queue is RT and the current one is BE
2095 */
2096 cfq_preempt_queue(cfqd, cfqq);
2097 __blk_run_queue(cfqd->queue);
2098 }
2099 }
2100
2101 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2102 {
2103 struct cfq_data *cfqd = q->elevator->elevator_data;
2104 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2105
2106 cfq_log_cfqq(cfqd, cfqq, "insert_request");
2107 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2108
2109 cfq_add_rq_rb(rq);
2110
2111 list_add_tail(&rq->queuelist, &cfqq->fifo);
2112
2113 cfq_rq_enqueued(cfqd, cfqq, rq);
2114 }
2115
2116 /*
2117 * Update hw_tag based on peak queue depth over 50 samples under
2118 * sufficient load.
2119 */
2120 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2121 {
2122 if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2123 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
2124
2125 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2126 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2127 return;
2128
2129 if (cfqd->hw_tag_samples++ < 50)
2130 return;
2131
2132 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2133 cfqd->hw_tag = 1;
2134 else
2135 cfqd->hw_tag = 0;
2136
2137 cfqd->hw_tag_samples = 0;
2138 cfqd->rq_in_driver_peak = 0;
2139 }
2140
2141 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2142 {
2143 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2144 struct cfq_data *cfqd = cfqq->cfqd;
2145 const int sync = rq_is_sync(rq);
2146 unsigned long now;
2147
2148 now = jiffies;
2149 cfq_log_cfqq(cfqd, cfqq, "complete");
2150
2151 cfq_update_hw_tag(cfqd);
2152
2153 WARN_ON(!cfqd->rq_in_driver[sync]);
2154 WARN_ON(!cfqq->dispatched);
2155 cfqd->rq_in_driver[sync]--;
2156 cfqq->dispatched--;
2157
2158 if (cfq_cfqq_sync(cfqq))
2159 cfqd->sync_flight--;
2160
2161 if (sync)
2162 RQ_CIC(rq)->last_end_request = now;
2163
2164 /*
2165 * If this is the active queue, check if it needs to be expired,
2166 * or if we want to idle in case it has no pending requests.
2167 */
2168 if (cfqd->active_queue == cfqq) {
2169 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2170
2171 if (cfq_cfqq_slice_new(cfqq)) {
2172 cfq_set_prio_slice(cfqd, cfqq);
2173 cfq_clear_cfqq_slice_new(cfqq);
2174 }
2175 /*
2176 * If there are no requests waiting in this queue, and
2177 * there are other queues ready to issue requests, AND
2178 * those other queues are issuing requests within our
2179 * mean seek distance, give them a chance to run instead
2180 * of idling.
2181 */
2182 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2183 cfq_slice_expired(cfqd, 1);
2184 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2185 sync && !rq_noidle(rq))
2186 cfq_arm_slice_timer(cfqd);
2187 }
2188
2189 if (!rq_in_driver(cfqd))
2190 cfq_schedule_dispatch(cfqd);
2191 }
2192
2193 /*
2194 * we temporarily boost lower priority queues if they are holding fs exclusive
2195 * resources. they are boosted to normal prio (CLASS_BE/4)
2196 */
2197 static void cfq_prio_boost(struct cfq_queue *cfqq)
2198 {
2199 if (has_fs_excl()) {
2200 /*
2201 * boost idle prio on transactions that would lock out other
2202 * users of the filesystem
2203 */
2204 if (cfq_class_idle(cfqq))
2205 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2206 if (cfqq->ioprio > IOPRIO_NORM)
2207 cfqq->ioprio = IOPRIO_NORM;
2208 } else {
2209 /*
2210 * check if we need to unboost the queue
2211 */
2212 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2213 cfqq->ioprio_class = cfqq->org_ioprio_class;
2214 if (cfqq->ioprio != cfqq->org_ioprio)
2215 cfqq->ioprio = cfqq->org_ioprio;
2216 }
2217 }
2218
2219 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2220 {
2221 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
2222 !cfq_cfqq_must_alloc_slice(cfqq)) {
2223 cfq_mark_cfqq_must_alloc_slice(cfqq);
2224 return ELV_MQUEUE_MUST;
2225 }
2226
2227 return ELV_MQUEUE_MAY;
2228 }
2229
2230 static int cfq_may_queue(struct request_queue *q, int rw)
2231 {
2232 struct cfq_data *cfqd = q->elevator->elevator_data;
2233 struct task_struct *tsk = current;
2234 struct cfq_io_context *cic;
2235 struct cfq_queue *cfqq;
2236
2237 /*
2238 * don't force setup of a queue from here, as a call to may_queue
2239 * does not necessarily imply that a request actually will be queued.
2240 * so just lookup a possibly existing queue, or return 'may queue'
2241 * if that fails
2242 */
2243 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2244 if (!cic)
2245 return ELV_MQUEUE_MAY;
2246
2247 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2248 if (cfqq) {
2249 cfq_init_prio_data(cfqq, cic->ioc);
2250 cfq_prio_boost(cfqq);
2251
2252 return __cfq_may_queue(cfqq);
2253 }
2254
2255 return ELV_MQUEUE_MAY;
2256 }
2257
2258 /*
2259 * queue lock held here
2260 */
2261 static void cfq_put_request(struct request *rq)
2262 {
2263 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2264
2265 if (cfqq) {
2266 const int rw = rq_data_dir(rq);
2267
2268 BUG_ON(!cfqq->allocated[rw]);
2269 cfqq->allocated[rw]--;
2270
2271 put_io_context(RQ_CIC(rq)->ioc);
2272
2273 rq->elevator_private = NULL;
2274 rq->elevator_private2 = NULL;
2275
2276 cfq_put_queue(cfqq);
2277 }
2278 }
2279
2280 /*
2281 * Allocate cfq data structures associated with this request.
2282 */
2283 static int
2284 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2285 {
2286 struct cfq_data *cfqd = q->elevator->elevator_data;
2287 struct cfq_io_context *cic;
2288 const int rw = rq_data_dir(rq);
2289 const int is_sync = rq_is_sync(rq);
2290 struct cfq_queue *cfqq;
2291 unsigned long flags;
2292
2293 might_sleep_if(gfp_mask & __GFP_WAIT);
2294
2295 cic = cfq_get_io_context(cfqd, gfp_mask);
2296
2297 spin_lock_irqsave(q->queue_lock, flags);
2298
2299 if (!cic)
2300 goto queue_fail;
2301
2302 cfqq = cic_to_cfqq(cic, is_sync);
2303 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2304 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2305 cic_set_cfqq(cic, cfqq, is_sync);
2306 }
2307
2308 cfqq->allocated[rw]++;
2309 cfq_clear_cfqq_must_alloc(cfqq);
2310 atomic_inc(&cfqq->ref);
2311
2312 spin_unlock_irqrestore(q->queue_lock, flags);
2313
2314 rq->elevator_private = cic;
2315 rq->elevator_private2 = cfqq;
2316 return 0;
2317
2318 queue_fail:
2319 if (cic)
2320 put_io_context(cic->ioc);
2321
2322 cfq_schedule_dispatch(cfqd);
2323 spin_unlock_irqrestore(q->queue_lock, flags);
2324 cfq_log(cfqd, "set_request fail");
2325 return 1;
2326 }
2327
2328 static void cfq_kick_queue(struct work_struct *work)
2329 {
2330 struct cfq_data *cfqd =
2331 container_of(work, struct cfq_data, unplug_work);
2332 struct request_queue *q = cfqd->queue;
2333
2334 spin_lock_irq(q->queue_lock);
2335 __blk_run_queue(cfqd->queue);
2336 spin_unlock_irq(q->queue_lock);
2337 }
2338
2339 /*
2340 * Timer running if the active_queue is currently idling inside its time slice
2341 */
2342 static void cfq_idle_slice_timer(unsigned long data)
2343 {
2344 struct cfq_data *cfqd = (struct cfq_data *) data;
2345 struct cfq_queue *cfqq;
2346 unsigned long flags;
2347 int timed_out = 1;
2348
2349 cfq_log(cfqd, "idle timer fired");
2350
2351 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2352
2353 cfqq = cfqd->active_queue;
2354 if (cfqq) {
2355 timed_out = 0;
2356
2357 /*
2358 * We saw a request before the queue expired, let it through
2359 */
2360 if (cfq_cfqq_must_dispatch(cfqq))
2361 goto out_kick;
2362
2363 /*
2364 * expired
2365 */
2366 if (cfq_slice_used(cfqq))
2367 goto expire;
2368
2369 /*
2370 * only expire and reinvoke request handler, if there are
2371 * other queues with pending requests
2372 */
2373 if (!cfqd->busy_queues)
2374 goto out_cont;
2375
2376 /*
2377 * not expired and it has a request pending, let it dispatch
2378 */
2379 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2380 goto out_kick;
2381 }
2382 expire:
2383 cfq_slice_expired(cfqd, timed_out);
2384 out_kick:
2385 cfq_schedule_dispatch(cfqd);
2386 out_cont:
2387 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2388 }
2389
2390 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2391 {
2392 del_timer_sync(&cfqd->idle_slice_timer);
2393 cancel_work_sync(&cfqd->unplug_work);
2394 }
2395
2396 static void cfq_put_async_queues(struct cfq_data *cfqd)
2397 {
2398 int i;
2399
2400 for (i = 0; i < IOPRIO_BE_NR; i++) {
2401 if (cfqd->async_cfqq[0][i])
2402 cfq_put_queue(cfqd->async_cfqq[0][i]);
2403 if (cfqd->async_cfqq[1][i])
2404 cfq_put_queue(cfqd->async_cfqq[1][i]);
2405 }
2406
2407 if (cfqd->async_idle_cfqq)
2408 cfq_put_queue(cfqd->async_idle_cfqq);
2409 }
2410
2411 static void cfq_exit_queue(struct elevator_queue *e)
2412 {
2413 struct cfq_data *cfqd = e->elevator_data;
2414 struct request_queue *q = cfqd->queue;
2415
2416 cfq_shutdown_timer_wq(cfqd);
2417
2418 spin_lock_irq(q->queue_lock);
2419
2420 if (cfqd->active_queue)
2421 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2422
2423 while (!list_empty(&cfqd->cic_list)) {
2424 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2425 struct cfq_io_context,
2426 queue_list);
2427
2428 __cfq_exit_single_io_context(cfqd, cic);
2429 }
2430
2431 cfq_put_async_queues(cfqd);
2432
2433 spin_unlock_irq(q->queue_lock);
2434
2435 cfq_shutdown_timer_wq(cfqd);
2436
2437 kfree(cfqd);
2438 }
2439
2440 static void *cfq_init_queue(struct request_queue *q)
2441 {
2442 struct cfq_data *cfqd;
2443 int i;
2444
2445 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2446 if (!cfqd)
2447 return NULL;
2448
2449 cfqd->service_tree = CFQ_RB_ROOT;
2450
2451 /*
2452 * Not strictly needed (since RB_ROOT just clears the node and we
2453 * zeroed cfqd on alloc), but better be safe in case someone decides
2454 * to add magic to the rb code
2455 */
2456 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2457 cfqd->prio_trees[i] = RB_ROOT;
2458
2459 /*
2460 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2461 * Grab a permanent reference to it, so that the normal code flow
2462 * will not attempt to free it.
2463 */
2464 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2465 atomic_inc(&cfqd->oom_cfqq.ref);
2466
2467 INIT_LIST_HEAD(&cfqd->cic_list);
2468
2469 cfqd->queue = q;
2470
2471 init_timer(&cfqd->idle_slice_timer);
2472 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2473 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2474
2475 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2476
2477 cfqd->cfq_quantum = cfq_quantum;
2478 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2479 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2480 cfqd->cfq_back_max = cfq_back_max;
2481 cfqd->cfq_back_penalty = cfq_back_penalty;
2482 cfqd->cfq_slice[0] = cfq_slice_async;
2483 cfqd->cfq_slice[1] = cfq_slice_sync;
2484 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2485 cfqd->cfq_slice_idle = cfq_slice_idle;
2486 cfqd->hw_tag = 1;
2487
2488 return cfqd;
2489 }
2490
2491 static void cfq_slab_kill(void)
2492 {
2493 /*
2494 * Caller already ensured that pending RCU callbacks are completed,
2495 * so we should have no busy allocations at this point.
2496 */
2497 if (cfq_pool)
2498 kmem_cache_destroy(cfq_pool);
2499 if (cfq_ioc_pool)
2500 kmem_cache_destroy(cfq_ioc_pool);
2501 }
2502
2503 static int __init cfq_slab_setup(void)
2504 {
2505 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2506 if (!cfq_pool)
2507 goto fail;
2508
2509 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2510 if (!cfq_ioc_pool)
2511 goto fail;
2512
2513 return 0;
2514 fail:
2515 cfq_slab_kill();
2516 return -ENOMEM;
2517 }
2518
2519 /*
2520 * sysfs parts below -->
2521 */
2522 static ssize_t
2523 cfq_var_show(unsigned int var, char *page)
2524 {
2525 return sprintf(page, "%d\n", var);
2526 }
2527
2528 static ssize_t
2529 cfq_var_store(unsigned int *var, const char *page, size_t count)
2530 {
2531 char *p = (char *) page;
2532
2533 *var = simple_strtoul(p, &p, 10);
2534 return count;
2535 }
2536
2537 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2538 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
2539 { \
2540 struct cfq_data *cfqd = e->elevator_data; \
2541 unsigned int __data = __VAR; \
2542 if (__CONV) \
2543 __data = jiffies_to_msecs(__data); \
2544 return cfq_var_show(__data, (page)); \
2545 }
2546 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2547 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2548 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2549 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2550 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2551 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2552 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2553 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2554 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2555 #undef SHOW_FUNCTION
2556
2557 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2558 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2559 { \
2560 struct cfq_data *cfqd = e->elevator_data; \
2561 unsigned int __data; \
2562 int ret = cfq_var_store(&__data, (page), count); \
2563 if (__data < (MIN)) \
2564 __data = (MIN); \
2565 else if (__data > (MAX)) \
2566 __data = (MAX); \
2567 if (__CONV) \
2568 *(__PTR) = msecs_to_jiffies(__data); \
2569 else \
2570 *(__PTR) = __data; \
2571 return ret; \
2572 }
2573 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2574 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2575 UINT_MAX, 1);
2576 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2577 UINT_MAX, 1);
2578 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2579 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2580 UINT_MAX, 0);
2581 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2582 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2583 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2584 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2585 UINT_MAX, 0);
2586 #undef STORE_FUNCTION
2587
2588 #define CFQ_ATTR(name) \
2589 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2590
2591 static struct elv_fs_entry cfq_attrs[] = {
2592 CFQ_ATTR(quantum),
2593 CFQ_ATTR(fifo_expire_sync),
2594 CFQ_ATTR(fifo_expire_async),
2595 CFQ_ATTR(back_seek_max),
2596 CFQ_ATTR(back_seek_penalty),
2597 CFQ_ATTR(slice_sync),
2598 CFQ_ATTR(slice_async),
2599 CFQ_ATTR(slice_async_rq),
2600 CFQ_ATTR(slice_idle),
2601 __ATTR_NULL
2602 };
2603
2604 static struct elevator_type iosched_cfq = {
2605 .ops = {
2606 .elevator_merge_fn = cfq_merge,
2607 .elevator_merged_fn = cfq_merged_request,
2608 .elevator_merge_req_fn = cfq_merged_requests,
2609 .elevator_allow_merge_fn = cfq_allow_merge,
2610 .elevator_dispatch_fn = cfq_dispatch_requests,
2611 .elevator_add_req_fn = cfq_insert_request,
2612 .elevator_activate_req_fn = cfq_activate_request,
2613 .elevator_deactivate_req_fn = cfq_deactivate_request,
2614 .elevator_queue_empty_fn = cfq_queue_empty,
2615 .elevator_completed_req_fn = cfq_completed_request,
2616 .elevator_former_req_fn = elv_rb_former_request,
2617 .elevator_latter_req_fn = elv_rb_latter_request,
2618 .elevator_set_req_fn = cfq_set_request,
2619 .elevator_put_req_fn = cfq_put_request,
2620 .elevator_may_queue_fn = cfq_may_queue,
2621 .elevator_init_fn = cfq_init_queue,
2622 .elevator_exit_fn = cfq_exit_queue,
2623 .trim = cfq_free_io_context,
2624 },
2625 .elevator_attrs = cfq_attrs,
2626 .elevator_name = "cfq",
2627 .elevator_owner = THIS_MODULE,
2628 };
2629
2630 static int __init cfq_init(void)
2631 {
2632 /*
2633 * could be 0 on HZ < 1000 setups
2634 */
2635 if (!cfq_slice_async)
2636 cfq_slice_async = 1;
2637 if (!cfq_slice_idle)
2638 cfq_slice_idle = 1;
2639
2640 if (cfq_slab_setup())
2641 return -ENOMEM;
2642
2643 elv_register(&iosched_cfq);
2644
2645 return 0;
2646 }
2647
2648 static void __exit cfq_exit(void)
2649 {
2650 DECLARE_COMPLETION_ONSTACK(all_gone);
2651 elv_unregister(&iosched_cfq);
2652 ioc_gone = &all_gone;
2653 /* ioc_gone's update must be visible before reading ioc_count */
2654 smp_wmb();
2655
2656 /*
2657 * this also protects us from entering cfq_slab_kill() with
2658 * pending RCU callbacks
2659 */
2660 if (elv_ioc_count_read(ioc_count))
2661 wait_for_completion(&all_gone);
2662 cfq_slab_kill();
2663 }
2664
2665 module_init(cfq_init);
2666 module_exit(cfq_exit);
2667
2668 MODULE_AUTHOR("Jens Axboe");
2669 MODULE_LICENSE("GPL");
2670 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");