]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/cfq-iosched.c
[PATCH] cfq-iosched: don't allow sync merges across queues
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/hash.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15
16 /*
17 * tunables
18 */
19 static const int cfq_quantum = 4; /* max queue in one round of service */
20 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
21 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
22 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
23
24 static const int cfq_slice_sync = HZ / 10;
25 static int cfq_slice_async = HZ / 25;
26 static const int cfq_slice_async_rq = 2;
27 static int cfq_slice_idle = HZ / 125;
28
29 #define CFQ_IDLE_GRACE (HZ / 10)
30 #define CFQ_SLICE_SCALE (5)
31
32 #define CFQ_KEY_ASYNC (0)
33
34 /*
35 * for the hash of cfqq inside the cfqd
36 */
37 #define CFQ_QHASH_SHIFT 6
38 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
39 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
40
41 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
42
43 #define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
44 #define RQ_CFQQ(rq) ((rq)->elevator_private2)
45
46 static struct kmem_cache *cfq_pool;
47 static struct kmem_cache *cfq_ioc_pool;
48
49 static DEFINE_PER_CPU(unsigned long, ioc_count);
50 static struct completion *ioc_gone;
51
52 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
53 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
54 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
55
56 #define ASYNC (0)
57 #define SYNC (1)
58
59 #define cfq_cfqq_dispatched(cfqq) \
60 ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
61
62 #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
63
64 #define cfq_cfqq_sync(cfqq) \
65 (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
66
67 #define sample_valid(samples) ((samples) > 80)
68
69 /*
70 * Per block device queue structure
71 */
72 struct cfq_data {
73 request_queue_t *queue;
74
75 /*
76 * rr list of queues with requests and the count of them
77 */
78 struct list_head rr_list[CFQ_PRIO_LISTS];
79 struct list_head busy_rr;
80 struct list_head cur_rr;
81 struct list_head idle_rr;
82 unsigned int busy_queues;
83
84 /*
85 * cfqq lookup hash
86 */
87 struct hlist_head *cfq_hash;
88
89 int rq_in_driver;
90 int hw_tag;
91
92 /*
93 * idle window management
94 */
95 struct timer_list idle_slice_timer;
96 struct work_struct unplug_work;
97
98 struct cfq_queue *active_queue;
99 struct cfq_io_context *active_cic;
100 int cur_prio, cur_end_prio;
101 unsigned int dispatch_slice;
102
103 struct timer_list idle_class_timer;
104
105 sector_t last_sector;
106 unsigned long last_end_request;
107
108 /*
109 * tunables, see top of file
110 */
111 unsigned int cfq_quantum;
112 unsigned int cfq_fifo_expire[2];
113 unsigned int cfq_back_penalty;
114 unsigned int cfq_back_max;
115 unsigned int cfq_slice[2];
116 unsigned int cfq_slice_async_rq;
117 unsigned int cfq_slice_idle;
118
119 struct list_head cic_list;
120 };
121
122 /*
123 * Per process-grouping structure
124 */
125 struct cfq_queue {
126 /* reference count */
127 atomic_t ref;
128 /* parent cfq_data */
129 struct cfq_data *cfqd;
130 /* cfqq lookup hash */
131 struct hlist_node cfq_hash;
132 /* hash key */
133 unsigned int key;
134 /* member of the rr/busy/cur/idle cfqd list */
135 struct list_head cfq_list;
136 /* sorted list of pending requests */
137 struct rb_root sort_list;
138 /* if fifo isn't expired, next request to serve */
139 struct request *next_rq;
140 /* requests queued in sort_list */
141 int queued[2];
142 /* currently allocated requests */
143 int allocated[2];
144 /* pending metadata requests */
145 int meta_pending;
146 /* fifo list of requests in sort_list */
147 struct list_head fifo;
148
149 unsigned long slice_start;
150 unsigned long slice_end;
151 unsigned long slice_left;
152
153 /* number of requests that are on the dispatch list */
154 int on_dispatch[2];
155
156 /* io prio of this group */
157 unsigned short ioprio, org_ioprio;
158 unsigned short ioprio_class, org_ioprio_class;
159
160 /* various state flags, see below */
161 unsigned int flags;
162 };
163
164 enum cfqq_state_flags {
165 CFQ_CFQQ_FLAG_on_rr = 0,
166 CFQ_CFQQ_FLAG_wait_request,
167 CFQ_CFQQ_FLAG_must_alloc,
168 CFQ_CFQQ_FLAG_must_alloc_slice,
169 CFQ_CFQQ_FLAG_must_dispatch,
170 CFQ_CFQQ_FLAG_fifo_expire,
171 CFQ_CFQQ_FLAG_idle_window,
172 CFQ_CFQQ_FLAG_prio_changed,
173 CFQ_CFQQ_FLAG_queue_new,
174 };
175
176 #define CFQ_CFQQ_FNS(name) \
177 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
178 { \
179 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
180 } \
181 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
182 { \
183 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
184 } \
185 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
186 { \
187 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
188 }
189
190 CFQ_CFQQ_FNS(on_rr);
191 CFQ_CFQQ_FNS(wait_request);
192 CFQ_CFQQ_FNS(must_alloc);
193 CFQ_CFQQ_FNS(must_alloc_slice);
194 CFQ_CFQQ_FNS(must_dispatch);
195 CFQ_CFQQ_FNS(fifo_expire);
196 CFQ_CFQQ_FNS(idle_window);
197 CFQ_CFQQ_FNS(prio_changed);
198 CFQ_CFQQ_FNS(queue_new);
199 #undef CFQ_CFQQ_FNS
200
201 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
202 static void cfq_dispatch_insert(request_queue_t *, struct request *);
203 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
204
205 /*
206 * scheduler run of queue, if there are requests pending and no one in the
207 * driver that will restart queueing
208 */
209 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
210 {
211 if (cfqd->busy_queues)
212 kblockd_schedule_work(&cfqd->unplug_work);
213 }
214
215 static int cfq_queue_empty(request_queue_t *q)
216 {
217 struct cfq_data *cfqd = q->elevator->elevator_data;
218
219 return !cfqd->busy_queues;
220 }
221
222 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw, int is_sync)
223 {
224 /*
225 * Use the per-process queue, for read requests and syncronous writes
226 */
227 if (!(rw & REQ_RW) || is_sync)
228 return task->pid;
229
230 return CFQ_KEY_ASYNC;
231 }
232
233 /*
234 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
235 * We choose the request that is closest to the head right now. Distance
236 * behind the head is penalized and only allowed to a certain extent.
237 */
238 static struct request *
239 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
240 {
241 sector_t last, s1, s2, d1 = 0, d2 = 0;
242 unsigned long back_max;
243 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
244 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
245 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
246
247 if (rq1 == NULL || rq1 == rq2)
248 return rq2;
249 if (rq2 == NULL)
250 return rq1;
251
252 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
253 return rq1;
254 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
255 return rq2;
256 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
257 return rq1;
258 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
259 return rq2;
260
261 s1 = rq1->sector;
262 s2 = rq2->sector;
263
264 last = cfqd->last_sector;
265
266 /*
267 * by definition, 1KiB is 2 sectors
268 */
269 back_max = cfqd->cfq_back_max * 2;
270
271 /*
272 * Strict one way elevator _except_ in the case where we allow
273 * short backward seeks which are biased as twice the cost of a
274 * similar forward seek.
275 */
276 if (s1 >= last)
277 d1 = s1 - last;
278 else if (s1 + back_max >= last)
279 d1 = (last - s1) * cfqd->cfq_back_penalty;
280 else
281 wrap |= CFQ_RQ1_WRAP;
282
283 if (s2 >= last)
284 d2 = s2 - last;
285 else if (s2 + back_max >= last)
286 d2 = (last - s2) * cfqd->cfq_back_penalty;
287 else
288 wrap |= CFQ_RQ2_WRAP;
289
290 /* Found required data */
291
292 /*
293 * By doing switch() on the bit mask "wrap" we avoid having to
294 * check two variables for all permutations: --> faster!
295 */
296 switch (wrap) {
297 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
298 if (d1 < d2)
299 return rq1;
300 else if (d2 < d1)
301 return rq2;
302 else {
303 if (s1 >= s2)
304 return rq1;
305 else
306 return rq2;
307 }
308
309 case CFQ_RQ2_WRAP:
310 return rq1;
311 case CFQ_RQ1_WRAP:
312 return rq2;
313 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
314 default:
315 /*
316 * Since both rqs are wrapped,
317 * start with the one that's further behind head
318 * (--> only *one* back seek required),
319 * since back seek takes more time than forward.
320 */
321 if (s1 <= s2)
322 return rq1;
323 else
324 return rq2;
325 }
326 }
327
328 /*
329 * would be nice to take fifo expire time into account as well
330 */
331 static struct request *
332 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
333 struct request *last)
334 {
335 struct rb_node *rbnext = rb_next(&last->rb_node);
336 struct rb_node *rbprev = rb_prev(&last->rb_node);
337 struct request *next = NULL, *prev = NULL;
338
339 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
340
341 if (rbprev)
342 prev = rb_entry_rq(rbprev);
343
344 if (rbnext)
345 next = rb_entry_rq(rbnext);
346 else {
347 rbnext = rb_first(&cfqq->sort_list);
348 if (rbnext && rbnext != &last->rb_node)
349 next = rb_entry_rq(rbnext);
350 }
351
352 return cfq_choose_req(cfqd, next, prev);
353 }
354
355 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
356 {
357 struct cfq_data *cfqd = cfqq->cfqd;
358 struct list_head *list;
359
360 BUG_ON(!cfq_cfqq_on_rr(cfqq));
361
362 list_del(&cfqq->cfq_list);
363
364 if (cfq_class_rt(cfqq))
365 list = &cfqd->cur_rr;
366 else if (cfq_class_idle(cfqq))
367 list = &cfqd->idle_rr;
368 else {
369 /*
370 * if cfqq has requests in flight, don't allow it to be
371 * found in cfq_set_active_queue before it has finished them.
372 * this is done to increase fairness between a process that
373 * has lots of io pending vs one that only generates one
374 * sporadically or synchronously
375 */
376 if (cfq_cfqq_dispatched(cfqq))
377 list = &cfqd->busy_rr;
378 else
379 list = &cfqd->rr_list[cfqq->ioprio];
380 }
381
382 /*
383 * If this queue was preempted or is new (never been serviced), let
384 * it be added first for fairness but beind other new queues.
385 * Otherwise, just add to the back of the list.
386 */
387 if (preempted || cfq_cfqq_queue_new(cfqq)) {
388 struct list_head *n = list;
389 struct cfq_queue *__cfqq;
390
391 while (n->next != list) {
392 __cfqq = list_entry_cfqq(n->next);
393 if (!cfq_cfqq_queue_new(__cfqq))
394 break;
395
396 n = n->next;
397 }
398
399 list = n;
400 }
401
402 list_add_tail(&cfqq->cfq_list, list);
403 }
404
405 /*
406 * add to busy list of queues for service, trying to be fair in ordering
407 * the pending list according to last request service
408 */
409 static inline void
410 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
411 {
412 BUG_ON(cfq_cfqq_on_rr(cfqq));
413 cfq_mark_cfqq_on_rr(cfqq);
414 cfqd->busy_queues++;
415
416 cfq_resort_rr_list(cfqq, 0);
417 }
418
419 static inline void
420 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
421 {
422 BUG_ON(!cfq_cfqq_on_rr(cfqq));
423 cfq_clear_cfqq_on_rr(cfqq);
424 list_del_init(&cfqq->cfq_list);
425
426 BUG_ON(!cfqd->busy_queues);
427 cfqd->busy_queues--;
428 }
429
430 /*
431 * rb tree support functions
432 */
433 static inline void cfq_del_rq_rb(struct request *rq)
434 {
435 struct cfq_queue *cfqq = RQ_CFQQ(rq);
436 struct cfq_data *cfqd = cfqq->cfqd;
437 const int sync = rq_is_sync(rq);
438
439 BUG_ON(!cfqq->queued[sync]);
440 cfqq->queued[sync]--;
441
442 elv_rb_del(&cfqq->sort_list, rq);
443
444 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
445 cfq_del_cfqq_rr(cfqd, cfqq);
446 }
447
448 static void cfq_add_rq_rb(struct request *rq)
449 {
450 struct cfq_queue *cfqq = RQ_CFQQ(rq);
451 struct cfq_data *cfqd = cfqq->cfqd;
452 struct request *__alias;
453
454 cfqq->queued[rq_is_sync(rq)]++;
455
456 /*
457 * looks a little odd, but the first insert might return an alias.
458 * if that happens, put the alias on the dispatch list
459 */
460 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
461 cfq_dispatch_insert(cfqd->queue, __alias);
462
463 if (!cfq_cfqq_on_rr(cfqq))
464 cfq_add_cfqq_rr(cfqd, cfqq);
465 }
466
467 static inline void
468 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
469 {
470 elv_rb_del(&cfqq->sort_list, rq);
471 cfqq->queued[rq_is_sync(rq)]--;
472 cfq_add_rq_rb(rq);
473 }
474
475 static struct request *
476 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
477 {
478 struct task_struct *tsk = current;
479 pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio), bio_sync(bio));
480 struct cfq_queue *cfqq;
481
482 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
483 if (cfqq) {
484 sector_t sector = bio->bi_sector + bio_sectors(bio);
485
486 return elv_rb_find(&cfqq->sort_list, sector);
487 }
488
489 return NULL;
490 }
491
492 static void cfq_activate_request(request_queue_t *q, struct request *rq)
493 {
494 struct cfq_data *cfqd = q->elevator->elevator_data;
495
496 cfqd->rq_in_driver++;
497
498 /*
499 * If the depth is larger 1, it really could be queueing. But lets
500 * make the mark a little higher - idling could still be good for
501 * low queueing, and a low queueing number could also just indicate
502 * a SCSI mid layer like behaviour where limit+1 is often seen.
503 */
504 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
505 cfqd->hw_tag = 1;
506 }
507
508 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
509 {
510 struct cfq_data *cfqd = q->elevator->elevator_data;
511
512 WARN_ON(!cfqd->rq_in_driver);
513 cfqd->rq_in_driver--;
514 }
515
516 static void cfq_remove_request(struct request *rq)
517 {
518 struct cfq_queue *cfqq = RQ_CFQQ(rq);
519
520 if (cfqq->next_rq == rq)
521 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
522
523 list_del_init(&rq->queuelist);
524 cfq_del_rq_rb(rq);
525
526 if (rq_is_meta(rq)) {
527 WARN_ON(!cfqq->meta_pending);
528 cfqq->meta_pending--;
529 }
530 }
531
532 static int
533 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
534 {
535 struct cfq_data *cfqd = q->elevator->elevator_data;
536 struct request *__rq;
537
538 __rq = cfq_find_rq_fmerge(cfqd, bio);
539 if (__rq && elv_rq_merge_ok(__rq, bio)) {
540 *req = __rq;
541 return ELEVATOR_FRONT_MERGE;
542 }
543
544 return ELEVATOR_NO_MERGE;
545 }
546
547 static void cfq_merged_request(request_queue_t *q, struct request *req,
548 int type)
549 {
550 if (type == ELEVATOR_FRONT_MERGE) {
551 struct cfq_queue *cfqq = RQ_CFQQ(req);
552
553 cfq_reposition_rq_rb(cfqq, req);
554 }
555 }
556
557 static void
558 cfq_merged_requests(request_queue_t *q, struct request *rq,
559 struct request *next)
560 {
561 /*
562 * reposition in fifo if next is older than rq
563 */
564 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
565 time_before(next->start_time, rq->start_time))
566 list_move(&rq->queuelist, &next->queuelist);
567
568 cfq_remove_request(next);
569 }
570
571 static int cfq_allow_merge(request_queue_t *q, struct request *rq,
572 struct bio *bio)
573 {
574 struct cfq_data *cfqd = q->elevator->elevator_data;
575 const int rw = bio_data_dir(bio);
576 struct cfq_queue *cfqq;
577 pid_t key;
578
579 /*
580 * If bio is async or a write, always allow merge
581 */
582 if (!bio_sync(bio) || rw == WRITE)
583 return 1;
584
585 /*
586 * bio is sync. if request is not, disallow.
587 */
588 if (!rq_is_sync(rq))
589 return 0;
590
591 /*
592 * Ok, both bio and request are sync. Allow merge if they are
593 * from the same queue.
594 */
595 key = cfq_queue_pid(current, rw, 1);
596 cfqq = cfq_find_cfq_hash(cfqd, key, current->ioprio);
597 if (cfqq != RQ_CFQQ(rq))
598 return 0;
599
600 return 1;
601 }
602
603 static inline void
604 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
605 {
606 if (cfqq) {
607 /*
608 * stop potential idle class queues waiting service
609 */
610 del_timer(&cfqd->idle_class_timer);
611
612 cfqq->slice_start = jiffies;
613 cfqq->slice_end = 0;
614 cfqq->slice_left = 0;
615 cfq_clear_cfqq_must_alloc_slice(cfqq);
616 cfq_clear_cfqq_fifo_expire(cfqq);
617 }
618
619 cfqd->active_queue = cfqq;
620 }
621
622 /*
623 * current cfqq expired its slice (or was too idle), select new one
624 */
625 static void
626 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
627 int preempted)
628 {
629 unsigned long now = jiffies;
630
631 if (cfq_cfqq_wait_request(cfqq))
632 del_timer(&cfqd->idle_slice_timer);
633
634 if (!preempted && !cfq_cfqq_dispatched(cfqq))
635 cfq_schedule_dispatch(cfqd);
636
637 cfq_clear_cfqq_must_dispatch(cfqq);
638 cfq_clear_cfqq_wait_request(cfqq);
639 cfq_clear_cfqq_queue_new(cfqq);
640
641 /*
642 * store what was left of this slice, if the queue idled out
643 * or was preempted
644 */
645 if (time_after(cfqq->slice_end, now))
646 cfqq->slice_left = cfqq->slice_end - now;
647 else
648 cfqq->slice_left = 0;
649
650 if (cfq_cfqq_on_rr(cfqq))
651 cfq_resort_rr_list(cfqq, preempted);
652
653 if (cfqq == cfqd->active_queue)
654 cfqd->active_queue = NULL;
655
656 if (cfqd->active_cic) {
657 put_io_context(cfqd->active_cic->ioc);
658 cfqd->active_cic = NULL;
659 }
660
661 cfqd->dispatch_slice = 0;
662 }
663
664 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
665 {
666 struct cfq_queue *cfqq = cfqd->active_queue;
667
668 if (cfqq)
669 __cfq_slice_expired(cfqd, cfqq, preempted);
670 }
671
672 /*
673 * 0
674 * 0,1
675 * 0,1,2
676 * 0,1,2,3
677 * 0,1,2,3,4
678 * 0,1,2,3,4,5
679 * 0,1,2,3,4,5,6
680 * 0,1,2,3,4,5,6,7
681 */
682 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
683 {
684 int prio, wrap;
685
686 prio = -1;
687 wrap = 0;
688 do {
689 int p;
690
691 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
692 if (!list_empty(&cfqd->rr_list[p])) {
693 prio = p;
694 break;
695 }
696 }
697
698 if (prio != -1)
699 break;
700 cfqd->cur_prio = 0;
701 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
702 cfqd->cur_end_prio = 0;
703 if (wrap)
704 break;
705 wrap = 1;
706 }
707 } while (1);
708
709 if (unlikely(prio == -1))
710 return -1;
711
712 BUG_ON(prio >= CFQ_PRIO_LISTS);
713
714 list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
715
716 cfqd->cur_prio = prio + 1;
717 if (cfqd->cur_prio > cfqd->cur_end_prio) {
718 cfqd->cur_end_prio = cfqd->cur_prio;
719 cfqd->cur_prio = 0;
720 }
721 if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
722 cfqd->cur_prio = 0;
723 cfqd->cur_end_prio = 0;
724 }
725
726 return prio;
727 }
728
729 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
730 {
731 struct cfq_queue *cfqq = NULL;
732
733 if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1) {
734 /*
735 * if current list is non-empty, grab first entry. if it is
736 * empty, get next prio level and grab first entry then if any
737 * are spliced
738 */
739 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
740 } else if (!list_empty(&cfqd->busy_rr)) {
741 /*
742 * If no new queues are available, check if the busy list has
743 * some before falling back to idle io.
744 */
745 cfqq = list_entry_cfqq(cfqd->busy_rr.next);
746 } else if (!list_empty(&cfqd->idle_rr)) {
747 /*
748 * if we have idle queues and no rt or be queues had pending
749 * requests, either allow immediate service if the grace period
750 * has passed or arm the idle grace timer
751 */
752 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
753
754 if (time_after_eq(jiffies, end))
755 cfqq = list_entry_cfqq(cfqd->idle_rr.next);
756 else
757 mod_timer(&cfqd->idle_class_timer, end);
758 }
759
760 __cfq_set_active_queue(cfqd, cfqq);
761 return cfqq;
762 }
763
764 #define CIC_SEEKY(cic) ((cic)->seek_mean > (128 * 1024))
765
766 static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
767
768 {
769 struct cfq_io_context *cic;
770 unsigned long sl;
771
772 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
773 WARN_ON(cfqq != cfqd->active_queue);
774
775 /*
776 * idle is disabled, either manually or by past process history
777 */
778 if (!cfqd->cfq_slice_idle)
779 return 0;
780 if (!cfq_cfqq_idle_window(cfqq))
781 return 0;
782 /*
783 * task has exited, don't wait
784 */
785 cic = cfqd->active_cic;
786 if (!cic || !cic->ioc->task)
787 return 0;
788
789 cfq_mark_cfqq_must_dispatch(cfqq);
790 cfq_mark_cfqq_wait_request(cfqq);
791
792 sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
793
794 /*
795 * we don't want to idle for seeks, but we do want to allow
796 * fair distribution of slice time for a process doing back-to-back
797 * seeks. so allow a little bit of time for him to submit a new rq
798 */
799 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
800 sl = min(sl, msecs_to_jiffies(2));
801
802 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
803 return 1;
804 }
805
806 static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
807 {
808 struct cfq_data *cfqd = q->elevator->elevator_data;
809 struct cfq_queue *cfqq = RQ_CFQQ(rq);
810
811 cfq_remove_request(rq);
812 cfqq->on_dispatch[rq_is_sync(rq)]++;
813 elv_dispatch_sort(q, rq);
814
815 rq = list_entry(q->queue_head.prev, struct request, queuelist);
816 cfqd->last_sector = rq->sector + rq->nr_sectors;
817 }
818
819 /*
820 * return expired entry, or NULL to just start from scratch in rbtree
821 */
822 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
823 {
824 struct cfq_data *cfqd = cfqq->cfqd;
825 struct request *rq;
826 int fifo;
827
828 if (cfq_cfqq_fifo_expire(cfqq))
829 return NULL;
830 if (list_empty(&cfqq->fifo))
831 return NULL;
832
833 fifo = cfq_cfqq_class_sync(cfqq);
834 rq = rq_entry_fifo(cfqq->fifo.next);
835
836 if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
837 cfq_mark_cfqq_fifo_expire(cfqq);
838 return rq;
839 }
840
841 return NULL;
842 }
843
844 /*
845 * Scale schedule slice based on io priority. Use the sync time slice only
846 * if a queue is marked sync and has sync io queued. A sync queue with async
847 * io only, should not get full sync slice length.
848 */
849 static inline int
850 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
851 {
852 const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
853
854 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
855
856 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
857 }
858
859 static inline void
860 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
861 {
862 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
863 }
864
865 static inline int
866 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
867 {
868 const int base_rq = cfqd->cfq_slice_async_rq;
869
870 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
871
872 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
873 }
874
875 /*
876 * get next queue for service
877 */
878 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
879 {
880 unsigned long now = jiffies;
881 struct cfq_queue *cfqq;
882
883 cfqq = cfqd->active_queue;
884 if (!cfqq)
885 goto new_queue;
886
887 /*
888 * slice has expired
889 */
890 if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
891 goto expire;
892
893 /*
894 * if queue has requests, dispatch one. if not, check if
895 * enough slice is left to wait for one
896 */
897 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
898 goto keep_queue;
899 else if (cfq_cfqq_dispatched(cfqq)) {
900 cfqq = NULL;
901 goto keep_queue;
902 } else if (cfq_cfqq_class_sync(cfqq)) {
903 if (cfq_arm_slice_timer(cfqd, cfqq))
904 return NULL;
905 }
906
907 expire:
908 cfq_slice_expired(cfqd, 0);
909 new_queue:
910 cfqq = cfq_set_active_queue(cfqd);
911 keep_queue:
912 return cfqq;
913 }
914
915 static int
916 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
917 int max_dispatch)
918 {
919 int dispatched = 0;
920
921 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
922
923 do {
924 struct request *rq;
925
926 /*
927 * follow expired path, else get first next available
928 */
929 if ((rq = cfq_check_fifo(cfqq)) == NULL)
930 rq = cfqq->next_rq;
931
932 /*
933 * finally, insert request into driver dispatch list
934 */
935 cfq_dispatch_insert(cfqd->queue, rq);
936
937 cfqd->dispatch_slice++;
938 dispatched++;
939
940 if (!cfqd->active_cic) {
941 atomic_inc(&RQ_CIC(rq)->ioc->refcount);
942 cfqd->active_cic = RQ_CIC(rq);
943 }
944
945 if (RB_EMPTY_ROOT(&cfqq->sort_list))
946 break;
947
948 } while (dispatched < max_dispatch);
949
950 /*
951 * if slice end isn't set yet, set it.
952 */
953 if (!cfqq->slice_end)
954 cfq_set_prio_slice(cfqd, cfqq);
955
956 /*
957 * expire an async queue immediately if it has used up its slice. idle
958 * queue always expire after 1 dispatch round.
959 */
960 if ((!cfq_cfqq_sync(cfqq) &&
961 cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
962 cfq_class_idle(cfqq) ||
963 !cfq_cfqq_idle_window(cfqq))
964 cfq_slice_expired(cfqd, 0);
965
966 return dispatched;
967 }
968
969 static int
970 cfq_forced_dispatch_cfqqs(struct list_head *list)
971 {
972 struct cfq_queue *cfqq, *next;
973 int dispatched;
974
975 dispatched = 0;
976 list_for_each_entry_safe(cfqq, next, list, cfq_list) {
977 while (cfqq->next_rq) {
978 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
979 dispatched++;
980 }
981 BUG_ON(!list_empty(&cfqq->fifo));
982 }
983
984 return dispatched;
985 }
986
987 static int
988 cfq_forced_dispatch(struct cfq_data *cfqd)
989 {
990 int i, dispatched = 0;
991
992 for (i = 0; i < CFQ_PRIO_LISTS; i++)
993 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
994
995 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
996 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
997 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
998
999 cfq_slice_expired(cfqd, 0);
1000
1001 BUG_ON(cfqd->busy_queues);
1002
1003 return dispatched;
1004 }
1005
1006 static int
1007 cfq_dispatch_requests(request_queue_t *q, int force)
1008 {
1009 struct cfq_data *cfqd = q->elevator->elevator_data;
1010 struct cfq_queue *cfqq, *prev_cfqq;
1011 int dispatched;
1012
1013 if (!cfqd->busy_queues)
1014 return 0;
1015
1016 if (unlikely(force))
1017 return cfq_forced_dispatch(cfqd);
1018
1019 dispatched = 0;
1020 prev_cfqq = NULL;
1021 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1022 int max_dispatch;
1023
1024 /*
1025 * Don't repeat dispatch from the previous queue.
1026 */
1027 if (prev_cfqq == cfqq)
1028 break;
1029
1030 cfq_clear_cfqq_must_dispatch(cfqq);
1031 cfq_clear_cfqq_wait_request(cfqq);
1032 del_timer(&cfqd->idle_slice_timer);
1033
1034 max_dispatch = cfqd->cfq_quantum;
1035 if (cfq_class_idle(cfqq))
1036 max_dispatch = 1;
1037
1038 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1039
1040 /*
1041 * If the dispatch cfqq has idling enabled and is still
1042 * the active queue, break out.
1043 */
1044 if (cfq_cfqq_idle_window(cfqq) && cfqd->active_queue)
1045 break;
1046
1047 prev_cfqq = cfqq;
1048 }
1049
1050 return dispatched;
1051 }
1052
1053 /*
1054 * task holds one reference to the queue, dropped when task exits. each rq
1055 * in-flight on this queue also holds a reference, dropped when rq is freed.
1056 *
1057 * queue lock must be held here.
1058 */
1059 static void cfq_put_queue(struct cfq_queue *cfqq)
1060 {
1061 struct cfq_data *cfqd = cfqq->cfqd;
1062
1063 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1064
1065 if (!atomic_dec_and_test(&cfqq->ref))
1066 return;
1067
1068 BUG_ON(rb_first(&cfqq->sort_list));
1069 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1070 BUG_ON(cfq_cfqq_on_rr(cfqq));
1071
1072 if (unlikely(cfqd->active_queue == cfqq))
1073 __cfq_slice_expired(cfqd, cfqq, 0);
1074
1075 /*
1076 * it's on the empty list and still hashed
1077 */
1078 list_del(&cfqq->cfq_list);
1079 hlist_del(&cfqq->cfq_hash);
1080 kmem_cache_free(cfq_pool, cfqq);
1081 }
1082
1083 static struct cfq_queue *
1084 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1085 const int hashval)
1086 {
1087 struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1088 struct hlist_node *entry;
1089 struct cfq_queue *__cfqq;
1090
1091 hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1092 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1093
1094 if (__cfqq->key == key && (__p == prio || !prio))
1095 return __cfqq;
1096 }
1097
1098 return NULL;
1099 }
1100
1101 static struct cfq_queue *
1102 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1103 {
1104 return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1105 }
1106
1107 static void cfq_free_io_context(struct io_context *ioc)
1108 {
1109 struct cfq_io_context *__cic;
1110 struct rb_node *n;
1111 int freed = 0;
1112
1113 while ((n = rb_first(&ioc->cic_root)) != NULL) {
1114 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1115 rb_erase(&__cic->rb_node, &ioc->cic_root);
1116 kmem_cache_free(cfq_ioc_pool, __cic);
1117 freed++;
1118 }
1119
1120 elv_ioc_count_mod(ioc_count, -freed);
1121
1122 if (ioc_gone && !elv_ioc_count_read(ioc_count))
1123 complete(ioc_gone);
1124 }
1125
1126 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1127 {
1128 if (unlikely(cfqq == cfqd->active_queue))
1129 __cfq_slice_expired(cfqd, cfqq, 0);
1130
1131 cfq_put_queue(cfqq);
1132 }
1133
1134 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1135 struct cfq_io_context *cic)
1136 {
1137 list_del_init(&cic->queue_list);
1138 smp_wmb();
1139 cic->key = NULL;
1140
1141 if (cic->cfqq[ASYNC]) {
1142 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1143 cic->cfqq[ASYNC] = NULL;
1144 }
1145
1146 if (cic->cfqq[SYNC]) {
1147 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1148 cic->cfqq[SYNC] = NULL;
1149 }
1150 }
1151
1152
1153 /*
1154 * Called with interrupts disabled
1155 */
1156 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1157 {
1158 struct cfq_data *cfqd = cic->key;
1159
1160 if (cfqd) {
1161 request_queue_t *q = cfqd->queue;
1162
1163 spin_lock_irq(q->queue_lock);
1164 __cfq_exit_single_io_context(cfqd, cic);
1165 spin_unlock_irq(q->queue_lock);
1166 }
1167 }
1168
1169 static void cfq_exit_io_context(struct io_context *ioc)
1170 {
1171 struct cfq_io_context *__cic;
1172 struct rb_node *n;
1173
1174 /*
1175 * put the reference this task is holding to the various queues
1176 */
1177
1178 n = rb_first(&ioc->cic_root);
1179 while (n != NULL) {
1180 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1181
1182 cfq_exit_single_io_context(__cic);
1183 n = rb_next(n);
1184 }
1185 }
1186
1187 static struct cfq_io_context *
1188 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1189 {
1190 struct cfq_io_context *cic;
1191
1192 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
1193 if (cic) {
1194 memset(cic, 0, sizeof(*cic));
1195 cic->last_end_request = jiffies;
1196 INIT_LIST_HEAD(&cic->queue_list);
1197 cic->dtor = cfq_free_io_context;
1198 cic->exit = cfq_exit_io_context;
1199 elv_ioc_count_inc(ioc_count);
1200 }
1201
1202 return cic;
1203 }
1204
1205 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1206 {
1207 struct task_struct *tsk = current;
1208 int ioprio_class;
1209
1210 if (!cfq_cfqq_prio_changed(cfqq))
1211 return;
1212
1213 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1214 switch (ioprio_class) {
1215 default:
1216 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1217 case IOPRIO_CLASS_NONE:
1218 /*
1219 * no prio set, place us in the middle of the BE classes
1220 */
1221 cfqq->ioprio = task_nice_ioprio(tsk);
1222 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1223 break;
1224 case IOPRIO_CLASS_RT:
1225 cfqq->ioprio = task_ioprio(tsk);
1226 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1227 break;
1228 case IOPRIO_CLASS_BE:
1229 cfqq->ioprio = task_ioprio(tsk);
1230 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1231 break;
1232 case IOPRIO_CLASS_IDLE:
1233 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1234 cfqq->ioprio = 7;
1235 cfq_clear_cfqq_idle_window(cfqq);
1236 break;
1237 }
1238
1239 /*
1240 * keep track of original prio settings in case we have to temporarily
1241 * elevate the priority of this queue
1242 */
1243 cfqq->org_ioprio = cfqq->ioprio;
1244 cfqq->org_ioprio_class = cfqq->ioprio_class;
1245
1246 if (cfq_cfqq_on_rr(cfqq))
1247 cfq_resort_rr_list(cfqq, 0);
1248
1249 cfq_clear_cfqq_prio_changed(cfqq);
1250 }
1251
1252 static inline void changed_ioprio(struct cfq_io_context *cic)
1253 {
1254 struct cfq_data *cfqd = cic->key;
1255 struct cfq_queue *cfqq;
1256 unsigned long flags;
1257
1258 if (unlikely(!cfqd))
1259 return;
1260
1261 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1262
1263 cfqq = cic->cfqq[ASYNC];
1264 if (cfqq) {
1265 struct cfq_queue *new_cfqq;
1266 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1267 GFP_ATOMIC);
1268 if (new_cfqq) {
1269 cic->cfqq[ASYNC] = new_cfqq;
1270 cfq_put_queue(cfqq);
1271 }
1272 }
1273
1274 cfqq = cic->cfqq[SYNC];
1275 if (cfqq)
1276 cfq_mark_cfqq_prio_changed(cfqq);
1277
1278 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1279 }
1280
1281 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1282 {
1283 struct cfq_io_context *cic;
1284 struct rb_node *n;
1285
1286 ioc->ioprio_changed = 0;
1287
1288 n = rb_first(&ioc->cic_root);
1289 while (n != NULL) {
1290 cic = rb_entry(n, struct cfq_io_context, rb_node);
1291
1292 changed_ioprio(cic);
1293 n = rb_next(n);
1294 }
1295 }
1296
1297 static struct cfq_queue *
1298 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1299 gfp_t gfp_mask)
1300 {
1301 const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1302 struct cfq_queue *cfqq, *new_cfqq = NULL;
1303 unsigned short ioprio;
1304
1305 retry:
1306 ioprio = tsk->ioprio;
1307 cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1308
1309 if (!cfqq) {
1310 if (new_cfqq) {
1311 cfqq = new_cfqq;
1312 new_cfqq = NULL;
1313 } else if (gfp_mask & __GFP_WAIT) {
1314 /*
1315 * Inform the allocator of the fact that we will
1316 * just repeat this allocation if it fails, to allow
1317 * the allocator to do whatever it needs to attempt to
1318 * free memory.
1319 */
1320 spin_unlock_irq(cfqd->queue->queue_lock);
1321 new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
1322 spin_lock_irq(cfqd->queue->queue_lock);
1323 goto retry;
1324 } else {
1325 cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
1326 if (!cfqq)
1327 goto out;
1328 }
1329
1330 memset(cfqq, 0, sizeof(*cfqq));
1331
1332 INIT_HLIST_NODE(&cfqq->cfq_hash);
1333 INIT_LIST_HEAD(&cfqq->cfq_list);
1334 INIT_LIST_HEAD(&cfqq->fifo);
1335
1336 cfqq->key = key;
1337 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1338 atomic_set(&cfqq->ref, 0);
1339 cfqq->cfqd = cfqd;
1340 /*
1341 * set ->slice_left to allow preemption for a new process
1342 */
1343 cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1344 cfq_mark_cfqq_idle_window(cfqq);
1345 cfq_mark_cfqq_prio_changed(cfqq);
1346 cfq_mark_cfqq_queue_new(cfqq);
1347 cfq_init_prio_data(cfqq);
1348 }
1349
1350 if (new_cfqq)
1351 kmem_cache_free(cfq_pool, new_cfqq);
1352
1353 atomic_inc(&cfqq->ref);
1354 out:
1355 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1356 return cfqq;
1357 }
1358
1359 static void
1360 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1361 {
1362 WARN_ON(!list_empty(&cic->queue_list));
1363 rb_erase(&cic->rb_node, &ioc->cic_root);
1364 kmem_cache_free(cfq_ioc_pool, cic);
1365 elv_ioc_count_dec(ioc_count);
1366 }
1367
1368 static struct cfq_io_context *
1369 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1370 {
1371 struct rb_node *n;
1372 struct cfq_io_context *cic;
1373 void *k, *key = cfqd;
1374
1375 restart:
1376 n = ioc->cic_root.rb_node;
1377 while (n) {
1378 cic = rb_entry(n, struct cfq_io_context, rb_node);
1379 /* ->key must be copied to avoid race with cfq_exit_queue() */
1380 k = cic->key;
1381 if (unlikely(!k)) {
1382 cfq_drop_dead_cic(ioc, cic);
1383 goto restart;
1384 }
1385
1386 if (key < k)
1387 n = n->rb_left;
1388 else if (key > k)
1389 n = n->rb_right;
1390 else
1391 return cic;
1392 }
1393
1394 return NULL;
1395 }
1396
1397 static inline void
1398 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1399 struct cfq_io_context *cic)
1400 {
1401 struct rb_node **p;
1402 struct rb_node *parent;
1403 struct cfq_io_context *__cic;
1404 unsigned long flags;
1405 void *k;
1406
1407 cic->ioc = ioc;
1408 cic->key = cfqd;
1409
1410 restart:
1411 parent = NULL;
1412 p = &ioc->cic_root.rb_node;
1413 while (*p) {
1414 parent = *p;
1415 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1416 /* ->key must be copied to avoid race with cfq_exit_queue() */
1417 k = __cic->key;
1418 if (unlikely(!k)) {
1419 cfq_drop_dead_cic(ioc, __cic);
1420 goto restart;
1421 }
1422
1423 if (cic->key < k)
1424 p = &(*p)->rb_left;
1425 else if (cic->key > k)
1426 p = &(*p)->rb_right;
1427 else
1428 BUG();
1429 }
1430
1431 rb_link_node(&cic->rb_node, parent, p);
1432 rb_insert_color(&cic->rb_node, &ioc->cic_root);
1433
1434 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1435 list_add(&cic->queue_list, &cfqd->cic_list);
1436 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1437 }
1438
1439 /*
1440 * Setup general io context and cfq io context. There can be several cfq
1441 * io contexts per general io context, if this process is doing io to more
1442 * than one device managed by cfq.
1443 */
1444 static struct cfq_io_context *
1445 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1446 {
1447 struct io_context *ioc = NULL;
1448 struct cfq_io_context *cic;
1449
1450 might_sleep_if(gfp_mask & __GFP_WAIT);
1451
1452 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1453 if (!ioc)
1454 return NULL;
1455
1456 cic = cfq_cic_rb_lookup(cfqd, ioc);
1457 if (cic)
1458 goto out;
1459
1460 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1461 if (cic == NULL)
1462 goto err;
1463
1464 cfq_cic_link(cfqd, ioc, cic);
1465 out:
1466 smp_read_barrier_depends();
1467 if (unlikely(ioc->ioprio_changed))
1468 cfq_ioc_set_ioprio(ioc);
1469
1470 return cic;
1471 err:
1472 put_io_context(ioc);
1473 return NULL;
1474 }
1475
1476 static void
1477 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1478 {
1479 unsigned long elapsed, ttime;
1480
1481 /*
1482 * if this context already has stuff queued, thinktime is from
1483 * last queue not last end
1484 */
1485 #if 0
1486 if (time_after(cic->last_end_request, cic->last_queue))
1487 elapsed = jiffies - cic->last_end_request;
1488 else
1489 elapsed = jiffies - cic->last_queue;
1490 #else
1491 elapsed = jiffies - cic->last_end_request;
1492 #endif
1493
1494 ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1495
1496 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1497 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1498 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1499 }
1500
1501 static void
1502 cfq_update_io_seektime(struct cfq_io_context *cic, struct request *rq)
1503 {
1504 sector_t sdist;
1505 u64 total;
1506
1507 if (cic->last_request_pos < rq->sector)
1508 sdist = rq->sector - cic->last_request_pos;
1509 else
1510 sdist = cic->last_request_pos - rq->sector;
1511
1512 /*
1513 * Don't allow the seek distance to get too large from the
1514 * odd fragment, pagein, etc
1515 */
1516 if (cic->seek_samples <= 60) /* second&third seek */
1517 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1518 else
1519 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1520
1521 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1522 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1523 total = cic->seek_total + (cic->seek_samples/2);
1524 do_div(total, cic->seek_samples);
1525 cic->seek_mean = (sector_t)total;
1526 }
1527
1528 /*
1529 * Disable idle window if the process thinks too long or seeks so much that
1530 * it doesn't matter
1531 */
1532 static void
1533 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1534 struct cfq_io_context *cic)
1535 {
1536 int enable_idle = cfq_cfqq_idle_window(cfqq);
1537
1538 if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1539 (cfqd->hw_tag && CIC_SEEKY(cic)))
1540 enable_idle = 0;
1541 else if (sample_valid(cic->ttime_samples)) {
1542 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1543 enable_idle = 0;
1544 else
1545 enable_idle = 1;
1546 }
1547
1548 if (enable_idle)
1549 cfq_mark_cfqq_idle_window(cfqq);
1550 else
1551 cfq_clear_cfqq_idle_window(cfqq);
1552 }
1553
1554
1555 /*
1556 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1557 * no or if we aren't sure, a 1 will cause a preempt.
1558 */
1559 static int
1560 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1561 struct request *rq)
1562 {
1563 struct cfq_queue *cfqq = cfqd->active_queue;
1564
1565 if (cfq_class_idle(new_cfqq))
1566 return 0;
1567
1568 if (!cfqq)
1569 return 0;
1570
1571 if (cfq_class_idle(cfqq))
1572 return 1;
1573 if (!cfq_cfqq_wait_request(new_cfqq))
1574 return 0;
1575 /*
1576 * if it doesn't have slice left, forget it
1577 */
1578 if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1579 return 0;
1580 /*
1581 * if the new request is sync, but the currently running queue is
1582 * not, let the sync request have priority.
1583 */
1584 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1585 return 1;
1586 /*
1587 * So both queues are sync. Let the new request get disk time if
1588 * it's a metadata request and the current queue is doing regular IO.
1589 */
1590 if (rq_is_meta(rq) && !cfqq->meta_pending)
1591 return 1;
1592
1593 return 0;
1594 }
1595
1596 /*
1597 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1598 * let it have half of its nominal slice.
1599 */
1600 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1601 {
1602 cfq_slice_expired(cfqd, 1);
1603
1604 if (!cfqq->slice_left)
1605 cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1606
1607 /*
1608 * Put the new queue at the front of the of the current list,
1609 * so we know that it will be selected next.
1610 */
1611 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1612 list_move(&cfqq->cfq_list, &cfqd->cur_rr);
1613
1614 cfqq->slice_end = cfqq->slice_left + jiffies;
1615 }
1616
1617 /*
1618 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1619 * something we should do about it
1620 */
1621 static void
1622 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1623 struct request *rq)
1624 {
1625 struct cfq_io_context *cic = RQ_CIC(rq);
1626
1627 if (rq_is_meta(rq))
1628 cfqq->meta_pending++;
1629
1630 /*
1631 * check if this request is a better next-serve candidate)) {
1632 */
1633 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
1634 BUG_ON(!cfqq->next_rq);
1635
1636 /*
1637 * we never wait for an async request and we don't allow preemption
1638 * of an async request. so just return early
1639 */
1640 if (!rq_is_sync(rq)) {
1641 /*
1642 * sync process issued an async request, if it's waiting
1643 * then expire it and kick rq handling.
1644 */
1645 if (cic == cfqd->active_cic &&
1646 del_timer(&cfqd->idle_slice_timer)) {
1647 cfq_slice_expired(cfqd, 0);
1648 blk_start_queueing(cfqd->queue);
1649 }
1650 return;
1651 }
1652
1653 cfq_update_io_thinktime(cfqd, cic);
1654 cfq_update_io_seektime(cic, rq);
1655 cfq_update_idle_window(cfqd, cfqq, cic);
1656
1657 cic->last_queue = jiffies;
1658 cic->last_request_pos = rq->sector + rq->nr_sectors;
1659
1660 if (cfqq == cfqd->active_queue) {
1661 /*
1662 * if we are waiting for a request for this queue, let it rip
1663 * immediately and flag that we must not expire this queue
1664 * just now
1665 */
1666 if (cfq_cfqq_wait_request(cfqq)) {
1667 cfq_mark_cfqq_must_dispatch(cfqq);
1668 del_timer(&cfqd->idle_slice_timer);
1669 blk_start_queueing(cfqd->queue);
1670 }
1671 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1672 /*
1673 * not the active queue - expire current slice if it is
1674 * idle and has expired it's mean thinktime or this new queue
1675 * has some old slice time left and is of higher priority
1676 */
1677 cfq_preempt_queue(cfqd, cfqq);
1678 cfq_mark_cfqq_must_dispatch(cfqq);
1679 blk_start_queueing(cfqd->queue);
1680 }
1681 }
1682
1683 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1684 {
1685 struct cfq_data *cfqd = q->elevator->elevator_data;
1686 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1687
1688 cfq_init_prio_data(cfqq);
1689
1690 cfq_add_rq_rb(rq);
1691
1692 list_add_tail(&rq->queuelist, &cfqq->fifo);
1693
1694 cfq_rq_enqueued(cfqd, cfqq, rq);
1695 }
1696
1697 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1698 {
1699 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1700 struct cfq_data *cfqd = cfqq->cfqd;
1701 const int sync = rq_is_sync(rq);
1702 unsigned long now;
1703
1704 now = jiffies;
1705
1706 WARN_ON(!cfqd->rq_in_driver);
1707 WARN_ON(!cfqq->on_dispatch[sync]);
1708 cfqd->rq_in_driver--;
1709 cfqq->on_dispatch[sync]--;
1710
1711 if (!cfq_class_idle(cfqq))
1712 cfqd->last_end_request = now;
1713
1714 if (!cfq_cfqq_dispatched(cfqq) && cfq_cfqq_on_rr(cfqq))
1715 cfq_resort_rr_list(cfqq, 0);
1716
1717 if (sync)
1718 RQ_CIC(rq)->last_end_request = now;
1719
1720 /*
1721 * If this is the active queue, check if it needs to be expired,
1722 * or if we want to idle in case it has no pending requests.
1723 */
1724 if (cfqd->active_queue == cfqq) {
1725 if (time_after(now, cfqq->slice_end))
1726 cfq_slice_expired(cfqd, 0);
1727 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1728 if (!cfq_arm_slice_timer(cfqd, cfqq))
1729 cfq_schedule_dispatch(cfqd);
1730 }
1731 }
1732 }
1733
1734 /*
1735 * we temporarily boost lower priority queues if they are holding fs exclusive
1736 * resources. they are boosted to normal prio (CLASS_BE/4)
1737 */
1738 static void cfq_prio_boost(struct cfq_queue *cfqq)
1739 {
1740 const int ioprio_class = cfqq->ioprio_class;
1741 const int ioprio = cfqq->ioprio;
1742
1743 if (has_fs_excl()) {
1744 /*
1745 * boost idle prio on transactions that would lock out other
1746 * users of the filesystem
1747 */
1748 if (cfq_class_idle(cfqq))
1749 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1750 if (cfqq->ioprio > IOPRIO_NORM)
1751 cfqq->ioprio = IOPRIO_NORM;
1752 } else {
1753 /*
1754 * check if we need to unboost the queue
1755 */
1756 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1757 cfqq->ioprio_class = cfqq->org_ioprio_class;
1758 if (cfqq->ioprio != cfqq->org_ioprio)
1759 cfqq->ioprio = cfqq->org_ioprio;
1760 }
1761
1762 /*
1763 * refile between round-robin lists if we moved the priority class
1764 */
1765 if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
1766 cfq_cfqq_on_rr(cfqq))
1767 cfq_resort_rr_list(cfqq, 0);
1768 }
1769
1770 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1771 {
1772 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1773 !cfq_cfqq_must_alloc_slice(cfqq)) {
1774 cfq_mark_cfqq_must_alloc_slice(cfqq);
1775 return ELV_MQUEUE_MUST;
1776 }
1777
1778 return ELV_MQUEUE_MAY;
1779 }
1780
1781 static int cfq_may_queue(request_queue_t *q, int rw)
1782 {
1783 struct cfq_data *cfqd = q->elevator->elevator_data;
1784 struct task_struct *tsk = current;
1785 struct cfq_queue *cfqq;
1786 unsigned int key;
1787
1788 key = cfq_queue_pid(tsk, rw, rw & REQ_RW_SYNC);
1789
1790 /*
1791 * don't force setup of a queue from here, as a call to may_queue
1792 * does not necessarily imply that a request actually will be queued.
1793 * so just lookup a possibly existing queue, or return 'may queue'
1794 * if that fails
1795 */
1796 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
1797 if (cfqq) {
1798 cfq_init_prio_data(cfqq);
1799 cfq_prio_boost(cfqq);
1800
1801 return __cfq_may_queue(cfqq);
1802 }
1803
1804 return ELV_MQUEUE_MAY;
1805 }
1806
1807 /*
1808 * queue lock held here
1809 */
1810 static void cfq_put_request(struct request *rq)
1811 {
1812 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1813
1814 if (cfqq) {
1815 const int rw = rq_data_dir(rq);
1816
1817 BUG_ON(!cfqq->allocated[rw]);
1818 cfqq->allocated[rw]--;
1819
1820 put_io_context(RQ_CIC(rq)->ioc);
1821
1822 rq->elevator_private = NULL;
1823 rq->elevator_private2 = NULL;
1824
1825 cfq_put_queue(cfqq);
1826 }
1827 }
1828
1829 /*
1830 * Allocate cfq data structures associated with this request.
1831 */
1832 static int
1833 cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1834 {
1835 struct cfq_data *cfqd = q->elevator->elevator_data;
1836 struct task_struct *tsk = current;
1837 struct cfq_io_context *cic;
1838 const int rw = rq_data_dir(rq);
1839 const int is_sync = rq_is_sync(rq);
1840 pid_t key = cfq_queue_pid(tsk, rw, is_sync);
1841 struct cfq_queue *cfqq;
1842 unsigned long flags;
1843
1844 might_sleep_if(gfp_mask & __GFP_WAIT);
1845
1846 cic = cfq_get_io_context(cfqd, gfp_mask);
1847
1848 spin_lock_irqsave(q->queue_lock, flags);
1849
1850 if (!cic)
1851 goto queue_fail;
1852
1853 if (!cic->cfqq[is_sync]) {
1854 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
1855 if (!cfqq)
1856 goto queue_fail;
1857
1858 cic->cfqq[is_sync] = cfqq;
1859 } else
1860 cfqq = cic->cfqq[is_sync];
1861
1862 cfqq->allocated[rw]++;
1863 cfq_clear_cfqq_must_alloc(cfqq);
1864 atomic_inc(&cfqq->ref);
1865
1866 spin_unlock_irqrestore(q->queue_lock, flags);
1867
1868 rq->elevator_private = cic;
1869 rq->elevator_private2 = cfqq;
1870 return 0;
1871
1872 queue_fail:
1873 if (cic)
1874 put_io_context(cic->ioc);
1875
1876 cfq_schedule_dispatch(cfqd);
1877 spin_unlock_irqrestore(q->queue_lock, flags);
1878 return 1;
1879 }
1880
1881 static void cfq_kick_queue(struct work_struct *work)
1882 {
1883 struct cfq_data *cfqd =
1884 container_of(work, struct cfq_data, unplug_work);
1885 request_queue_t *q = cfqd->queue;
1886 unsigned long flags;
1887
1888 spin_lock_irqsave(q->queue_lock, flags);
1889 blk_start_queueing(q);
1890 spin_unlock_irqrestore(q->queue_lock, flags);
1891 }
1892
1893 /*
1894 * Timer running if the active_queue is currently idling inside its time slice
1895 */
1896 static void cfq_idle_slice_timer(unsigned long data)
1897 {
1898 struct cfq_data *cfqd = (struct cfq_data *) data;
1899 struct cfq_queue *cfqq;
1900 unsigned long flags;
1901
1902 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1903
1904 if ((cfqq = cfqd->active_queue) != NULL) {
1905 unsigned long now = jiffies;
1906
1907 /*
1908 * expired
1909 */
1910 if (time_after(now, cfqq->slice_end))
1911 goto expire;
1912
1913 /*
1914 * only expire and reinvoke request handler, if there are
1915 * other queues with pending requests
1916 */
1917 if (!cfqd->busy_queues)
1918 goto out_cont;
1919
1920 /*
1921 * not expired and it has a request pending, let it dispatch
1922 */
1923 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
1924 cfq_mark_cfqq_must_dispatch(cfqq);
1925 goto out_kick;
1926 }
1927 }
1928 expire:
1929 cfq_slice_expired(cfqd, 0);
1930 out_kick:
1931 cfq_schedule_dispatch(cfqd);
1932 out_cont:
1933 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1934 }
1935
1936 /*
1937 * Timer running if an idle class queue is waiting for service
1938 */
1939 static void cfq_idle_class_timer(unsigned long data)
1940 {
1941 struct cfq_data *cfqd = (struct cfq_data *) data;
1942 unsigned long flags, end;
1943
1944 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1945
1946 /*
1947 * race with a non-idle queue, reset timer
1948 */
1949 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
1950 if (!time_after_eq(jiffies, end))
1951 mod_timer(&cfqd->idle_class_timer, end);
1952 else
1953 cfq_schedule_dispatch(cfqd);
1954
1955 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1956 }
1957
1958 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
1959 {
1960 del_timer_sync(&cfqd->idle_slice_timer);
1961 del_timer_sync(&cfqd->idle_class_timer);
1962 blk_sync_queue(cfqd->queue);
1963 }
1964
1965 static void cfq_exit_queue(elevator_t *e)
1966 {
1967 struct cfq_data *cfqd = e->elevator_data;
1968 request_queue_t *q = cfqd->queue;
1969
1970 cfq_shutdown_timer_wq(cfqd);
1971
1972 spin_lock_irq(q->queue_lock);
1973
1974 if (cfqd->active_queue)
1975 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
1976
1977 while (!list_empty(&cfqd->cic_list)) {
1978 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
1979 struct cfq_io_context,
1980 queue_list);
1981
1982 __cfq_exit_single_io_context(cfqd, cic);
1983 }
1984
1985 spin_unlock_irq(q->queue_lock);
1986
1987 cfq_shutdown_timer_wq(cfqd);
1988
1989 kfree(cfqd->cfq_hash);
1990 kfree(cfqd);
1991 }
1992
1993 static void *cfq_init_queue(request_queue_t *q)
1994 {
1995 struct cfq_data *cfqd;
1996 int i;
1997
1998 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
1999 if (!cfqd)
2000 return NULL;
2001
2002 memset(cfqd, 0, sizeof(*cfqd));
2003
2004 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2005 INIT_LIST_HEAD(&cfqd->rr_list[i]);
2006
2007 INIT_LIST_HEAD(&cfqd->busy_rr);
2008 INIT_LIST_HEAD(&cfqd->cur_rr);
2009 INIT_LIST_HEAD(&cfqd->idle_rr);
2010 INIT_LIST_HEAD(&cfqd->cic_list);
2011
2012 cfqd->cfq_hash = kmalloc_node(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL, q->node);
2013 if (!cfqd->cfq_hash)
2014 goto out_free;
2015
2016 for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2017 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2018
2019 cfqd->queue = q;
2020
2021 init_timer(&cfqd->idle_slice_timer);
2022 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2023 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2024
2025 init_timer(&cfqd->idle_class_timer);
2026 cfqd->idle_class_timer.function = cfq_idle_class_timer;
2027 cfqd->idle_class_timer.data = (unsigned long) cfqd;
2028
2029 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2030
2031 cfqd->cfq_quantum = cfq_quantum;
2032 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2033 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2034 cfqd->cfq_back_max = cfq_back_max;
2035 cfqd->cfq_back_penalty = cfq_back_penalty;
2036 cfqd->cfq_slice[0] = cfq_slice_async;
2037 cfqd->cfq_slice[1] = cfq_slice_sync;
2038 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2039 cfqd->cfq_slice_idle = cfq_slice_idle;
2040
2041 return cfqd;
2042 out_free:
2043 kfree(cfqd);
2044 return NULL;
2045 }
2046
2047 static void cfq_slab_kill(void)
2048 {
2049 if (cfq_pool)
2050 kmem_cache_destroy(cfq_pool);
2051 if (cfq_ioc_pool)
2052 kmem_cache_destroy(cfq_ioc_pool);
2053 }
2054
2055 static int __init cfq_slab_setup(void)
2056 {
2057 cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2058 NULL, NULL);
2059 if (!cfq_pool)
2060 goto fail;
2061
2062 cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2063 sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2064 if (!cfq_ioc_pool)
2065 goto fail;
2066
2067 return 0;
2068 fail:
2069 cfq_slab_kill();
2070 return -ENOMEM;
2071 }
2072
2073 /*
2074 * sysfs parts below -->
2075 */
2076
2077 static ssize_t
2078 cfq_var_show(unsigned int var, char *page)
2079 {
2080 return sprintf(page, "%d\n", var);
2081 }
2082
2083 static ssize_t
2084 cfq_var_store(unsigned int *var, const char *page, size_t count)
2085 {
2086 char *p = (char *) page;
2087
2088 *var = simple_strtoul(p, &p, 10);
2089 return count;
2090 }
2091
2092 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2093 static ssize_t __FUNC(elevator_t *e, char *page) \
2094 { \
2095 struct cfq_data *cfqd = e->elevator_data; \
2096 unsigned int __data = __VAR; \
2097 if (__CONV) \
2098 __data = jiffies_to_msecs(__data); \
2099 return cfq_var_show(__data, (page)); \
2100 }
2101 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2102 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2103 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2104 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2105 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2106 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2107 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2108 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2109 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2110 #undef SHOW_FUNCTION
2111
2112 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2113 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2114 { \
2115 struct cfq_data *cfqd = e->elevator_data; \
2116 unsigned int __data; \
2117 int ret = cfq_var_store(&__data, (page), count); \
2118 if (__data < (MIN)) \
2119 __data = (MIN); \
2120 else if (__data > (MAX)) \
2121 __data = (MAX); \
2122 if (__CONV) \
2123 *(__PTR) = msecs_to_jiffies(__data); \
2124 else \
2125 *(__PTR) = __data; \
2126 return ret; \
2127 }
2128 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2129 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2130 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2131 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2132 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2133 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2134 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2135 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2136 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2137 #undef STORE_FUNCTION
2138
2139 #define CFQ_ATTR(name) \
2140 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2141
2142 static struct elv_fs_entry cfq_attrs[] = {
2143 CFQ_ATTR(quantum),
2144 CFQ_ATTR(fifo_expire_sync),
2145 CFQ_ATTR(fifo_expire_async),
2146 CFQ_ATTR(back_seek_max),
2147 CFQ_ATTR(back_seek_penalty),
2148 CFQ_ATTR(slice_sync),
2149 CFQ_ATTR(slice_async),
2150 CFQ_ATTR(slice_async_rq),
2151 CFQ_ATTR(slice_idle),
2152 __ATTR_NULL
2153 };
2154
2155 static struct elevator_type iosched_cfq = {
2156 .ops = {
2157 .elevator_merge_fn = cfq_merge,
2158 .elevator_merged_fn = cfq_merged_request,
2159 .elevator_merge_req_fn = cfq_merged_requests,
2160 .elevator_allow_merge_fn = cfq_allow_merge,
2161 .elevator_dispatch_fn = cfq_dispatch_requests,
2162 .elevator_add_req_fn = cfq_insert_request,
2163 .elevator_activate_req_fn = cfq_activate_request,
2164 .elevator_deactivate_req_fn = cfq_deactivate_request,
2165 .elevator_queue_empty_fn = cfq_queue_empty,
2166 .elevator_completed_req_fn = cfq_completed_request,
2167 .elevator_former_req_fn = elv_rb_former_request,
2168 .elevator_latter_req_fn = elv_rb_latter_request,
2169 .elevator_set_req_fn = cfq_set_request,
2170 .elevator_put_req_fn = cfq_put_request,
2171 .elevator_may_queue_fn = cfq_may_queue,
2172 .elevator_init_fn = cfq_init_queue,
2173 .elevator_exit_fn = cfq_exit_queue,
2174 .trim = cfq_free_io_context,
2175 },
2176 .elevator_attrs = cfq_attrs,
2177 .elevator_name = "cfq",
2178 .elevator_owner = THIS_MODULE,
2179 };
2180
2181 static int __init cfq_init(void)
2182 {
2183 int ret;
2184
2185 /*
2186 * could be 0 on HZ < 1000 setups
2187 */
2188 if (!cfq_slice_async)
2189 cfq_slice_async = 1;
2190 if (!cfq_slice_idle)
2191 cfq_slice_idle = 1;
2192
2193 if (cfq_slab_setup())
2194 return -ENOMEM;
2195
2196 ret = elv_register(&iosched_cfq);
2197 if (ret)
2198 cfq_slab_kill();
2199
2200 return ret;
2201 }
2202
2203 static void __exit cfq_exit(void)
2204 {
2205 DECLARE_COMPLETION_ONSTACK(all_gone);
2206 elv_unregister(&iosched_cfq);
2207 ioc_gone = &all_gone;
2208 /* ioc_gone's update must be visible before reading ioc_count */
2209 smp_wmb();
2210 if (elv_ioc_count_read(ioc_count))
2211 wait_for_completion(ioc_gone);
2212 synchronize_rcu();
2213 cfq_slab_kill();
2214 }
2215
2216 module_init(cfq_init);
2217 module_exit(cfq_exit);
2218
2219 MODULE_AUTHOR("Jens Axboe");
2220 MODULE_LICENSE("GPL");
2221 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");