]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - block/cfq-iosched.c
Merge branch 'hwmon-for-linus' of git://jdelvare.pck.nerim.net/jdelvare-2.6
[mirror_ubuntu-zesty-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/hash.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15
16 /*
17 * tunables
18 */
19 static const int cfq_quantum = 4; /* max queue in one round of service */
20 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
21 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
22 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
23
24 static const int cfq_slice_sync = HZ / 10;
25 static int cfq_slice_async = HZ / 25;
26 static const int cfq_slice_async_rq = 2;
27 static int cfq_slice_idle = HZ / 125;
28
29 #define CFQ_IDLE_GRACE (HZ / 10)
30 #define CFQ_SLICE_SCALE (5)
31
32 #define CFQ_KEY_ASYNC (0)
33
34 /*
35 * for the hash of cfqq inside the cfqd
36 */
37 #define CFQ_QHASH_SHIFT 6
38 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
39 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
40
41 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
42
43 #define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
44 #define RQ_CFQQ(rq) ((rq)->elevator_private2)
45
46 static struct kmem_cache *cfq_pool;
47 static struct kmem_cache *cfq_ioc_pool;
48
49 static DEFINE_PER_CPU(unsigned long, ioc_count);
50 static struct completion *ioc_gone;
51
52 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
53 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
54 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
55
56 #define ASYNC (0)
57 #define SYNC (1)
58
59 #define cfq_cfqq_dispatched(cfqq) \
60 ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
61
62 #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
63
64 #define cfq_cfqq_sync(cfqq) \
65 (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
66
67 #define sample_valid(samples) ((samples) > 80)
68
69 /*
70 * Per block device queue structure
71 */
72 struct cfq_data {
73 request_queue_t *queue;
74
75 /*
76 * rr list of queues with requests and the count of them
77 */
78 struct list_head rr_list[CFQ_PRIO_LISTS];
79 struct list_head busy_rr;
80 struct list_head cur_rr;
81 struct list_head idle_rr;
82 unsigned int busy_queues;
83
84 /*
85 * cfqq lookup hash
86 */
87 struct hlist_head *cfq_hash;
88
89 int rq_in_driver;
90 int hw_tag;
91
92 /*
93 * idle window management
94 */
95 struct timer_list idle_slice_timer;
96 struct work_struct unplug_work;
97
98 struct cfq_queue *active_queue;
99 struct cfq_io_context *active_cic;
100 int cur_prio, cur_end_prio;
101 unsigned int dispatch_slice;
102
103 struct timer_list idle_class_timer;
104
105 sector_t last_sector;
106 unsigned long last_end_request;
107
108 /*
109 * tunables, see top of file
110 */
111 unsigned int cfq_quantum;
112 unsigned int cfq_fifo_expire[2];
113 unsigned int cfq_back_penalty;
114 unsigned int cfq_back_max;
115 unsigned int cfq_slice[2];
116 unsigned int cfq_slice_async_rq;
117 unsigned int cfq_slice_idle;
118
119 struct list_head cic_list;
120 };
121
122 /*
123 * Per process-grouping structure
124 */
125 struct cfq_queue {
126 /* reference count */
127 atomic_t ref;
128 /* parent cfq_data */
129 struct cfq_data *cfqd;
130 /* cfqq lookup hash */
131 struct hlist_node cfq_hash;
132 /* hash key */
133 unsigned int key;
134 /* member of the rr/busy/cur/idle cfqd list */
135 struct list_head cfq_list;
136 /* sorted list of pending requests */
137 struct rb_root sort_list;
138 /* if fifo isn't expired, next request to serve */
139 struct request *next_rq;
140 /* requests queued in sort_list */
141 int queued[2];
142 /* currently allocated requests */
143 int allocated[2];
144 /* pending metadata requests */
145 int meta_pending;
146 /* fifo list of requests in sort_list */
147 struct list_head fifo;
148
149 unsigned long slice_end;
150 unsigned long service_last;
151 long slice_resid;
152
153 /* number of requests that are on the dispatch list */
154 int on_dispatch[2];
155
156 /* io prio of this group */
157 unsigned short ioprio, org_ioprio;
158 unsigned short ioprio_class, org_ioprio_class;
159
160 /* various state flags, see below */
161 unsigned int flags;
162 };
163
164 enum cfqq_state_flags {
165 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
166 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
167 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
168 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
169 CFQ_CFQQ_FLAG_must_dispatch, /* must dispatch, even if expired */
170 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
171 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
172 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
173 CFQ_CFQQ_FLAG_queue_new, /* queue never been serviced */
174 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
175 };
176
177 #define CFQ_CFQQ_FNS(name) \
178 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
179 { \
180 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
181 } \
182 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
183 { \
184 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
185 } \
186 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
187 { \
188 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
189 }
190
191 CFQ_CFQQ_FNS(on_rr);
192 CFQ_CFQQ_FNS(wait_request);
193 CFQ_CFQQ_FNS(must_alloc);
194 CFQ_CFQQ_FNS(must_alloc_slice);
195 CFQ_CFQQ_FNS(must_dispatch);
196 CFQ_CFQQ_FNS(fifo_expire);
197 CFQ_CFQQ_FNS(idle_window);
198 CFQ_CFQQ_FNS(prio_changed);
199 CFQ_CFQQ_FNS(queue_new);
200 CFQ_CFQQ_FNS(slice_new);
201 #undef CFQ_CFQQ_FNS
202
203 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
204 static void cfq_dispatch_insert(request_queue_t *, struct request *);
205 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
206
207 /*
208 * scheduler run of queue, if there are requests pending and no one in the
209 * driver that will restart queueing
210 */
211 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
212 {
213 if (cfqd->busy_queues)
214 kblockd_schedule_work(&cfqd->unplug_work);
215 }
216
217 static int cfq_queue_empty(request_queue_t *q)
218 {
219 struct cfq_data *cfqd = q->elevator->elevator_data;
220
221 return !cfqd->busy_queues;
222 }
223
224 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw, int is_sync)
225 {
226 /*
227 * Use the per-process queue, for read requests and syncronous writes
228 */
229 if (!(rw & REQ_RW) || is_sync)
230 return task->pid;
231
232 return CFQ_KEY_ASYNC;
233 }
234
235 /*
236 * Scale schedule slice based on io priority. Use the sync time slice only
237 * if a queue is marked sync and has sync io queued. A sync queue with async
238 * io only, should not get full sync slice length.
239 */
240 static inline int
241 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
242 {
243 const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
244
245 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
246
247 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
248 }
249
250 static inline void
251 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
252 {
253 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
254 cfqq->slice_end += cfqq->slice_resid;
255
256 /*
257 * Don't carry over residual for more than one slice, we only want
258 * to slightly correct the fairness. Carrying over forever would
259 * easily introduce oscillations.
260 */
261 cfqq->slice_resid = 0;
262 }
263
264 /*
265 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
266 * isn't valid until the first request from the dispatch is activated
267 * and the slice time set.
268 */
269 static inline int cfq_slice_used(struct cfq_queue *cfqq)
270 {
271 if (cfq_cfqq_slice_new(cfqq))
272 return 0;
273 if (time_before(jiffies, cfqq->slice_end))
274 return 0;
275
276 return 1;
277 }
278
279 /*
280 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
281 * We choose the request that is closest to the head right now. Distance
282 * behind the head is penalized and only allowed to a certain extent.
283 */
284 static struct request *
285 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
286 {
287 sector_t last, s1, s2, d1 = 0, d2 = 0;
288 unsigned long back_max;
289 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
290 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
291 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
292
293 if (rq1 == NULL || rq1 == rq2)
294 return rq2;
295 if (rq2 == NULL)
296 return rq1;
297
298 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
299 return rq1;
300 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
301 return rq2;
302 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
303 return rq1;
304 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
305 return rq2;
306
307 s1 = rq1->sector;
308 s2 = rq2->sector;
309
310 last = cfqd->last_sector;
311
312 /*
313 * by definition, 1KiB is 2 sectors
314 */
315 back_max = cfqd->cfq_back_max * 2;
316
317 /*
318 * Strict one way elevator _except_ in the case where we allow
319 * short backward seeks which are biased as twice the cost of a
320 * similar forward seek.
321 */
322 if (s1 >= last)
323 d1 = s1 - last;
324 else if (s1 + back_max >= last)
325 d1 = (last - s1) * cfqd->cfq_back_penalty;
326 else
327 wrap |= CFQ_RQ1_WRAP;
328
329 if (s2 >= last)
330 d2 = s2 - last;
331 else if (s2 + back_max >= last)
332 d2 = (last - s2) * cfqd->cfq_back_penalty;
333 else
334 wrap |= CFQ_RQ2_WRAP;
335
336 /* Found required data */
337
338 /*
339 * By doing switch() on the bit mask "wrap" we avoid having to
340 * check two variables for all permutations: --> faster!
341 */
342 switch (wrap) {
343 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
344 if (d1 < d2)
345 return rq1;
346 else if (d2 < d1)
347 return rq2;
348 else {
349 if (s1 >= s2)
350 return rq1;
351 else
352 return rq2;
353 }
354
355 case CFQ_RQ2_WRAP:
356 return rq1;
357 case CFQ_RQ1_WRAP:
358 return rq2;
359 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
360 default:
361 /*
362 * Since both rqs are wrapped,
363 * start with the one that's further behind head
364 * (--> only *one* back seek required),
365 * since back seek takes more time than forward.
366 */
367 if (s1 <= s2)
368 return rq1;
369 else
370 return rq2;
371 }
372 }
373
374 /*
375 * would be nice to take fifo expire time into account as well
376 */
377 static struct request *
378 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
379 struct request *last)
380 {
381 struct rb_node *rbnext = rb_next(&last->rb_node);
382 struct rb_node *rbprev = rb_prev(&last->rb_node);
383 struct request *next = NULL, *prev = NULL;
384
385 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
386
387 if (rbprev)
388 prev = rb_entry_rq(rbprev);
389
390 if (rbnext)
391 next = rb_entry_rq(rbnext);
392 else {
393 rbnext = rb_first(&cfqq->sort_list);
394 if (rbnext && rbnext != &last->rb_node)
395 next = rb_entry_rq(rbnext);
396 }
397
398 return cfq_choose_req(cfqd, next, prev);
399 }
400
401 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
402 {
403 struct cfq_data *cfqd = cfqq->cfqd;
404 struct list_head *list, *n;
405 struct cfq_queue *__cfqq;
406
407 /*
408 * Resorting requires the cfqq to be on the RR list already.
409 */
410 if (!cfq_cfqq_on_rr(cfqq))
411 return;
412
413 list_del(&cfqq->cfq_list);
414
415 if (cfq_class_rt(cfqq))
416 list = &cfqd->cur_rr;
417 else if (cfq_class_idle(cfqq))
418 list = &cfqd->idle_rr;
419 else {
420 /*
421 * if cfqq has requests in flight, don't allow it to be
422 * found in cfq_set_active_queue before it has finished them.
423 * this is done to increase fairness between a process that
424 * has lots of io pending vs one that only generates one
425 * sporadically or synchronously
426 */
427 if (cfq_cfqq_dispatched(cfqq))
428 list = &cfqd->busy_rr;
429 else
430 list = &cfqd->rr_list[cfqq->ioprio];
431 }
432
433 if (preempted || cfq_cfqq_queue_new(cfqq)) {
434 /*
435 * If this queue was preempted or is new (never been serviced),
436 * let it be added first for fairness but beind other new
437 * queues.
438 */
439 n = list;
440 while (n->next != list) {
441 __cfqq = list_entry_cfqq(n->next);
442 if (!cfq_cfqq_queue_new(__cfqq))
443 break;
444
445 n = n->next;
446 }
447 list_add_tail(&cfqq->cfq_list, n);
448 } else if (!cfq_cfqq_class_sync(cfqq)) {
449 /*
450 * async queue always goes to the end. this wont be overly
451 * unfair to writes, as the sort of the sync queue wont be
452 * allowed to pass the async queue again.
453 */
454 list_add_tail(&cfqq->cfq_list, list);
455 } else {
456 /*
457 * sort by last service, but don't cross a new or async
458 * queue. we don't cross a new queue because it hasn't been
459 * service before, and we don't cross an async queue because
460 * it gets added to the end on expire.
461 */
462 n = list;
463 while ((n = n->prev) != list) {
464 struct cfq_queue *__cfqq = list_entry_cfqq(n);
465
466 if (!cfq_cfqq_class_sync(cfqq) || !__cfqq->service_last)
467 break;
468 if (time_before(__cfqq->service_last, cfqq->service_last))
469 break;
470 }
471 list_add(&cfqq->cfq_list, n);
472 }
473 }
474
475 /*
476 * add to busy list of queues for service, trying to be fair in ordering
477 * the pending list according to last request service
478 */
479 static inline void
480 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
481 {
482 BUG_ON(cfq_cfqq_on_rr(cfqq));
483 cfq_mark_cfqq_on_rr(cfqq);
484 cfqd->busy_queues++;
485
486 cfq_resort_rr_list(cfqq, 0);
487 }
488
489 static inline void
490 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
491 {
492 BUG_ON(!cfq_cfqq_on_rr(cfqq));
493 cfq_clear_cfqq_on_rr(cfqq);
494 list_del_init(&cfqq->cfq_list);
495
496 BUG_ON(!cfqd->busy_queues);
497 cfqd->busy_queues--;
498 }
499
500 /*
501 * rb tree support functions
502 */
503 static inline void cfq_del_rq_rb(struct request *rq)
504 {
505 struct cfq_queue *cfqq = RQ_CFQQ(rq);
506 struct cfq_data *cfqd = cfqq->cfqd;
507 const int sync = rq_is_sync(rq);
508
509 BUG_ON(!cfqq->queued[sync]);
510 cfqq->queued[sync]--;
511
512 elv_rb_del(&cfqq->sort_list, rq);
513
514 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
515 cfq_del_cfqq_rr(cfqd, cfqq);
516 }
517
518 static void cfq_add_rq_rb(struct request *rq)
519 {
520 struct cfq_queue *cfqq = RQ_CFQQ(rq);
521 struct cfq_data *cfqd = cfqq->cfqd;
522 struct request *__alias;
523
524 cfqq->queued[rq_is_sync(rq)]++;
525
526 /*
527 * looks a little odd, but the first insert might return an alias.
528 * if that happens, put the alias on the dispatch list
529 */
530 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
531 cfq_dispatch_insert(cfqd->queue, __alias);
532
533 if (!cfq_cfqq_on_rr(cfqq))
534 cfq_add_cfqq_rr(cfqd, cfqq);
535 }
536
537 static inline void
538 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
539 {
540 elv_rb_del(&cfqq->sort_list, rq);
541 cfqq->queued[rq_is_sync(rq)]--;
542 cfq_add_rq_rb(rq);
543 }
544
545 static struct request *
546 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
547 {
548 struct task_struct *tsk = current;
549 pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio), bio_sync(bio));
550 struct cfq_queue *cfqq;
551
552 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
553 if (cfqq) {
554 sector_t sector = bio->bi_sector + bio_sectors(bio);
555
556 return elv_rb_find(&cfqq->sort_list, sector);
557 }
558
559 return NULL;
560 }
561
562 static void cfq_activate_request(request_queue_t *q, struct request *rq)
563 {
564 struct cfq_data *cfqd = q->elevator->elevator_data;
565
566 cfqd->rq_in_driver++;
567
568 /*
569 * If the depth is larger 1, it really could be queueing. But lets
570 * make the mark a little higher - idling could still be good for
571 * low queueing, and a low queueing number could also just indicate
572 * a SCSI mid layer like behaviour where limit+1 is often seen.
573 */
574 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
575 cfqd->hw_tag = 1;
576 }
577
578 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
579 {
580 struct cfq_data *cfqd = q->elevator->elevator_data;
581
582 WARN_ON(!cfqd->rq_in_driver);
583 cfqd->rq_in_driver--;
584 }
585
586 static void cfq_remove_request(struct request *rq)
587 {
588 struct cfq_queue *cfqq = RQ_CFQQ(rq);
589
590 if (cfqq->next_rq == rq)
591 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
592
593 list_del_init(&rq->queuelist);
594 cfq_del_rq_rb(rq);
595
596 if (rq_is_meta(rq)) {
597 WARN_ON(!cfqq->meta_pending);
598 cfqq->meta_pending--;
599 }
600 }
601
602 static int
603 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
604 {
605 struct cfq_data *cfqd = q->elevator->elevator_data;
606 struct request *__rq;
607
608 __rq = cfq_find_rq_fmerge(cfqd, bio);
609 if (__rq && elv_rq_merge_ok(__rq, bio)) {
610 *req = __rq;
611 return ELEVATOR_FRONT_MERGE;
612 }
613
614 return ELEVATOR_NO_MERGE;
615 }
616
617 static void cfq_merged_request(request_queue_t *q, struct request *req,
618 int type)
619 {
620 if (type == ELEVATOR_FRONT_MERGE) {
621 struct cfq_queue *cfqq = RQ_CFQQ(req);
622
623 cfq_reposition_rq_rb(cfqq, req);
624 }
625 }
626
627 static void
628 cfq_merged_requests(request_queue_t *q, struct request *rq,
629 struct request *next)
630 {
631 /*
632 * reposition in fifo if next is older than rq
633 */
634 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
635 time_before(next->start_time, rq->start_time))
636 list_move(&rq->queuelist, &next->queuelist);
637
638 cfq_remove_request(next);
639 }
640
641 static int cfq_allow_merge(request_queue_t *q, struct request *rq,
642 struct bio *bio)
643 {
644 struct cfq_data *cfqd = q->elevator->elevator_data;
645 const int rw = bio_data_dir(bio);
646 struct cfq_queue *cfqq;
647 pid_t key;
648
649 /*
650 * Disallow merge of a sync bio into an async request.
651 */
652 if ((bio_data_dir(bio) == READ || bio_sync(bio)) && !rq_is_sync(rq))
653 return 0;
654
655 /*
656 * Lookup the cfqq that this bio will be queued with. Allow
657 * merge only if rq is queued there.
658 */
659 key = cfq_queue_pid(current, rw, bio_sync(bio));
660 cfqq = cfq_find_cfq_hash(cfqd, key, current->ioprio);
661
662 if (cfqq == RQ_CFQQ(rq))
663 return 1;
664
665 return 0;
666 }
667
668 static inline void
669 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
670 {
671 if (cfqq) {
672 /*
673 * stop potential idle class queues waiting service
674 */
675 del_timer(&cfqd->idle_class_timer);
676
677 cfqq->slice_end = 0;
678 cfq_clear_cfqq_must_alloc_slice(cfqq);
679 cfq_clear_cfqq_fifo_expire(cfqq);
680 cfq_mark_cfqq_slice_new(cfqq);
681 }
682
683 cfqd->active_queue = cfqq;
684 }
685
686 /*
687 * current cfqq expired its slice (or was too idle), select new one
688 */
689 static void
690 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
691 int preempted, int timed_out)
692 {
693 if (cfq_cfqq_wait_request(cfqq))
694 del_timer(&cfqd->idle_slice_timer);
695
696 cfq_clear_cfqq_must_dispatch(cfqq);
697 cfq_clear_cfqq_wait_request(cfqq);
698 cfq_clear_cfqq_queue_new(cfqq);
699
700 /*
701 * store what was left of this slice, if the queue idled out
702 * or was preempted
703 */
704 if (timed_out && !cfq_cfqq_slice_new(cfqq))
705 cfqq->slice_resid = cfqq->slice_end - jiffies;
706
707 cfq_resort_rr_list(cfqq, preempted);
708
709 if (cfqq == cfqd->active_queue)
710 cfqd->active_queue = NULL;
711
712 if (cfqd->active_cic) {
713 put_io_context(cfqd->active_cic->ioc);
714 cfqd->active_cic = NULL;
715 }
716
717 cfqd->dispatch_slice = 0;
718 }
719
720 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted,
721 int timed_out)
722 {
723 struct cfq_queue *cfqq = cfqd->active_queue;
724
725 if (cfqq)
726 __cfq_slice_expired(cfqd, cfqq, preempted, timed_out);
727 }
728
729 /*
730 * 0
731 * 0,1
732 * 0,1,2
733 * 0,1,2,3
734 * 0,1,2,3,4
735 * 0,1,2,3,4,5
736 * 0,1,2,3,4,5,6
737 * 0,1,2,3,4,5,6,7
738 */
739 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
740 {
741 int prio, wrap;
742
743 prio = -1;
744 wrap = 0;
745 do {
746 int p;
747
748 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
749 if (!list_empty(&cfqd->rr_list[p])) {
750 prio = p;
751 break;
752 }
753 }
754
755 if (prio != -1)
756 break;
757 cfqd->cur_prio = 0;
758 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
759 cfqd->cur_end_prio = 0;
760 if (wrap)
761 break;
762 wrap = 1;
763 }
764 } while (1);
765
766 if (unlikely(prio == -1))
767 return -1;
768
769 BUG_ON(prio >= CFQ_PRIO_LISTS);
770
771 list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
772
773 cfqd->cur_prio = prio + 1;
774 if (cfqd->cur_prio > cfqd->cur_end_prio) {
775 cfqd->cur_end_prio = cfqd->cur_prio;
776 cfqd->cur_prio = 0;
777 }
778 if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
779 cfqd->cur_prio = 0;
780 cfqd->cur_end_prio = 0;
781 }
782
783 return prio;
784 }
785
786 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
787 {
788 struct cfq_queue *cfqq = NULL;
789
790 if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1) {
791 /*
792 * if current list is non-empty, grab first entry. if it is
793 * empty, get next prio level and grab first entry then if any
794 * are spliced
795 */
796 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
797 } else if (!list_empty(&cfqd->busy_rr)) {
798 /*
799 * If no new queues are available, check if the busy list has
800 * some before falling back to idle io.
801 */
802 cfqq = list_entry_cfqq(cfqd->busy_rr.next);
803 } else if (!list_empty(&cfqd->idle_rr)) {
804 /*
805 * if we have idle queues and no rt or be queues had pending
806 * requests, either allow immediate service if the grace period
807 * has passed or arm the idle grace timer
808 */
809 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
810
811 if (time_after_eq(jiffies, end))
812 cfqq = list_entry_cfqq(cfqd->idle_rr.next);
813 else
814 mod_timer(&cfqd->idle_class_timer, end);
815 }
816
817 __cfq_set_active_queue(cfqd, cfqq);
818 return cfqq;
819 }
820
821 #define CIC_SEEKY(cic) ((cic)->seek_mean > (128 * 1024))
822
823 static int cfq_arm_slice_timer(struct cfq_data *cfqd)
824 {
825 struct cfq_queue *cfqq = cfqd->active_queue;
826 struct cfq_io_context *cic;
827 unsigned long sl;
828
829 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
830
831 /*
832 * idle is disabled, either manually or by past process history
833 */
834 if (!cfqd->cfq_slice_idle)
835 return 0;
836 if (!cfq_cfqq_idle_window(cfqq))
837 return 0;
838 /*
839 * task has exited, don't wait
840 */
841 cic = cfqd->active_cic;
842 if (!cic || !cic->ioc->task)
843 return 0;
844
845 cfq_mark_cfqq_must_dispatch(cfqq);
846 cfq_mark_cfqq_wait_request(cfqq);
847
848 sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
849
850 /*
851 * we don't want to idle for seeks, but we do want to allow
852 * fair distribution of slice time for a process doing back-to-back
853 * seeks. so allow a little bit of time for him to submit a new rq
854 */
855 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
856 sl = min(sl, msecs_to_jiffies(2));
857
858 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
859 return 1;
860 }
861
862 static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
863 {
864 struct cfq_data *cfqd = q->elevator->elevator_data;
865 struct cfq_queue *cfqq = RQ_CFQQ(rq);
866
867 cfq_remove_request(rq);
868 cfqq->on_dispatch[rq_is_sync(rq)]++;
869 elv_dispatch_sort(q, rq);
870
871 rq = list_entry(q->queue_head.prev, struct request, queuelist);
872 cfqd->last_sector = rq->sector + rq->nr_sectors;
873 }
874
875 /*
876 * return expired entry, or NULL to just start from scratch in rbtree
877 */
878 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
879 {
880 struct cfq_data *cfqd = cfqq->cfqd;
881 struct request *rq;
882 int fifo;
883
884 if (cfq_cfqq_fifo_expire(cfqq))
885 return NULL;
886
887 cfq_mark_cfqq_fifo_expire(cfqq);
888
889 if (list_empty(&cfqq->fifo))
890 return NULL;
891
892 fifo = cfq_cfqq_class_sync(cfqq);
893 rq = rq_entry_fifo(cfqq->fifo.next);
894
895 if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
896 return rq;
897
898 return NULL;
899 }
900
901 static inline int
902 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
903 {
904 const int base_rq = cfqd->cfq_slice_async_rq;
905
906 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
907
908 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
909 }
910
911 /*
912 * get next queue for service
913 */
914 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
915 {
916 struct cfq_queue *cfqq;
917
918 cfqq = cfqd->active_queue;
919 if (!cfqq)
920 goto new_queue;
921
922 /*
923 * slice has expired
924 */
925 if (!cfq_cfqq_must_dispatch(cfqq) && cfq_slice_used(cfqq))
926 goto expire;
927
928 /*
929 * if queue has requests, dispatch one. if not, check if
930 * enough slice is left to wait for one
931 */
932 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
933 goto keep_queue;
934 else if (cfq_cfqq_slice_new(cfqq) || cfq_cfqq_dispatched(cfqq)) {
935 cfqq = NULL;
936 goto keep_queue;
937 } else if (cfq_cfqq_class_sync(cfqq)) {
938 if (cfq_arm_slice_timer(cfqd))
939 return NULL;
940 }
941
942 expire:
943 cfq_slice_expired(cfqd, 0, 0);
944 new_queue:
945 cfqq = cfq_set_active_queue(cfqd);
946 keep_queue:
947 return cfqq;
948 }
949
950 static int
951 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
952 int max_dispatch)
953 {
954 int dispatched = 0;
955
956 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
957
958 do {
959 struct request *rq;
960
961 /*
962 * follow expired path, else get first next available
963 */
964 if ((rq = cfq_check_fifo(cfqq)) == NULL)
965 rq = cfqq->next_rq;
966
967 /*
968 * finally, insert request into driver dispatch list
969 */
970 cfq_dispatch_insert(cfqd->queue, rq);
971
972 cfqd->dispatch_slice++;
973 dispatched++;
974
975 if (!cfqd->active_cic) {
976 atomic_inc(&RQ_CIC(rq)->ioc->refcount);
977 cfqd->active_cic = RQ_CIC(rq);
978 }
979
980 if (RB_EMPTY_ROOT(&cfqq->sort_list))
981 break;
982
983 } while (dispatched < max_dispatch);
984
985 /*
986 * expire an async queue immediately if it has used up its slice. idle
987 * queue always expire after 1 dispatch round.
988 */
989 if ((!cfq_cfqq_sync(cfqq) &&
990 cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
991 cfq_class_idle(cfqq)) {
992 cfqq->slice_end = jiffies + 1;
993 cfq_slice_expired(cfqd, 0, 0);
994 }
995
996 return dispatched;
997 }
998
999 static int
1000 cfq_forced_dispatch_cfqqs(struct list_head *list)
1001 {
1002 struct cfq_queue *cfqq, *next;
1003 int dispatched;
1004
1005 dispatched = 0;
1006 list_for_each_entry_safe(cfqq, next, list, cfq_list) {
1007 while (cfqq->next_rq) {
1008 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1009 dispatched++;
1010 }
1011 BUG_ON(!list_empty(&cfqq->fifo));
1012 }
1013
1014 return dispatched;
1015 }
1016
1017 static int
1018 cfq_forced_dispatch(struct cfq_data *cfqd)
1019 {
1020 int i, dispatched = 0;
1021
1022 for (i = 0; i < CFQ_PRIO_LISTS; i++)
1023 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
1024
1025 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
1026 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
1027 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
1028
1029 cfq_slice_expired(cfqd, 0, 0);
1030
1031 BUG_ON(cfqd->busy_queues);
1032
1033 return dispatched;
1034 }
1035
1036 static int
1037 cfq_dispatch_requests(request_queue_t *q, int force)
1038 {
1039 struct cfq_data *cfqd = q->elevator->elevator_data;
1040 struct cfq_queue *cfqq, *prev_cfqq;
1041 int dispatched;
1042
1043 if (!cfqd->busy_queues)
1044 return 0;
1045
1046 if (unlikely(force))
1047 return cfq_forced_dispatch(cfqd);
1048
1049 dispatched = 0;
1050 prev_cfqq = NULL;
1051 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1052 int max_dispatch;
1053
1054 /*
1055 * Don't repeat dispatch from the previous queue.
1056 */
1057 if (prev_cfqq == cfqq)
1058 break;
1059
1060 /*
1061 * So we have dispatched before in this round, if the
1062 * next queue has idling enabled (must be sync), don't
1063 * allow it service until the previous have continued.
1064 */
1065 if (cfqd->rq_in_driver && cfq_cfqq_idle_window(cfqq))
1066 break;
1067
1068 cfq_clear_cfqq_must_dispatch(cfqq);
1069 cfq_clear_cfqq_wait_request(cfqq);
1070 del_timer(&cfqd->idle_slice_timer);
1071
1072 max_dispatch = cfqd->cfq_quantum;
1073 if (cfq_class_idle(cfqq))
1074 max_dispatch = 1;
1075
1076 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1077 prev_cfqq = cfqq;
1078 }
1079
1080 return dispatched;
1081 }
1082
1083 /*
1084 * task holds one reference to the queue, dropped when task exits. each rq
1085 * in-flight on this queue also holds a reference, dropped when rq is freed.
1086 *
1087 * queue lock must be held here.
1088 */
1089 static void cfq_put_queue(struct cfq_queue *cfqq)
1090 {
1091 struct cfq_data *cfqd = cfqq->cfqd;
1092
1093 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1094
1095 if (!atomic_dec_and_test(&cfqq->ref))
1096 return;
1097
1098 BUG_ON(rb_first(&cfqq->sort_list));
1099 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1100 BUG_ON(cfq_cfqq_on_rr(cfqq));
1101
1102 if (unlikely(cfqd->active_queue == cfqq)) {
1103 __cfq_slice_expired(cfqd, cfqq, 0, 0);
1104 cfq_schedule_dispatch(cfqd);
1105 }
1106
1107 /*
1108 * it's on the empty list and still hashed
1109 */
1110 list_del(&cfqq->cfq_list);
1111 hlist_del(&cfqq->cfq_hash);
1112 kmem_cache_free(cfq_pool, cfqq);
1113 }
1114
1115 static struct cfq_queue *
1116 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1117 const int hashval)
1118 {
1119 struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1120 struct hlist_node *entry;
1121 struct cfq_queue *__cfqq;
1122
1123 hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1124 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1125
1126 if (__cfqq->key == key && (__p == prio || !prio))
1127 return __cfqq;
1128 }
1129
1130 return NULL;
1131 }
1132
1133 static struct cfq_queue *
1134 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1135 {
1136 return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1137 }
1138
1139 static void cfq_free_io_context(struct io_context *ioc)
1140 {
1141 struct cfq_io_context *__cic;
1142 struct rb_node *n;
1143 int freed = 0;
1144
1145 while ((n = rb_first(&ioc->cic_root)) != NULL) {
1146 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1147 rb_erase(&__cic->rb_node, &ioc->cic_root);
1148 kmem_cache_free(cfq_ioc_pool, __cic);
1149 freed++;
1150 }
1151
1152 elv_ioc_count_mod(ioc_count, -freed);
1153
1154 if (ioc_gone && !elv_ioc_count_read(ioc_count))
1155 complete(ioc_gone);
1156 }
1157
1158 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1159 {
1160 if (unlikely(cfqq == cfqd->active_queue)) {
1161 __cfq_slice_expired(cfqd, cfqq, 0, 0);
1162 cfq_schedule_dispatch(cfqd);
1163 }
1164
1165 cfq_put_queue(cfqq);
1166 }
1167
1168 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1169 struct cfq_io_context *cic)
1170 {
1171 list_del_init(&cic->queue_list);
1172 smp_wmb();
1173 cic->key = NULL;
1174
1175 if (cic->cfqq[ASYNC]) {
1176 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1177 cic->cfqq[ASYNC] = NULL;
1178 }
1179
1180 if (cic->cfqq[SYNC]) {
1181 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1182 cic->cfqq[SYNC] = NULL;
1183 }
1184 }
1185
1186
1187 /*
1188 * Called with interrupts disabled
1189 */
1190 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1191 {
1192 struct cfq_data *cfqd = cic->key;
1193
1194 if (cfqd) {
1195 request_queue_t *q = cfqd->queue;
1196
1197 spin_lock_irq(q->queue_lock);
1198 __cfq_exit_single_io_context(cfqd, cic);
1199 spin_unlock_irq(q->queue_lock);
1200 }
1201 }
1202
1203 static void cfq_exit_io_context(struct io_context *ioc)
1204 {
1205 struct cfq_io_context *__cic;
1206 struct rb_node *n;
1207
1208 /*
1209 * put the reference this task is holding to the various queues
1210 */
1211
1212 n = rb_first(&ioc->cic_root);
1213 while (n != NULL) {
1214 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1215
1216 cfq_exit_single_io_context(__cic);
1217 n = rb_next(n);
1218 }
1219 }
1220
1221 static struct cfq_io_context *
1222 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1223 {
1224 struct cfq_io_context *cic;
1225
1226 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
1227 if (cic) {
1228 memset(cic, 0, sizeof(*cic));
1229 cic->last_end_request = jiffies;
1230 INIT_LIST_HEAD(&cic->queue_list);
1231 cic->dtor = cfq_free_io_context;
1232 cic->exit = cfq_exit_io_context;
1233 elv_ioc_count_inc(ioc_count);
1234 }
1235
1236 return cic;
1237 }
1238
1239 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1240 {
1241 struct task_struct *tsk = current;
1242 int ioprio_class;
1243
1244 if (!cfq_cfqq_prio_changed(cfqq))
1245 return;
1246
1247 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1248 switch (ioprio_class) {
1249 default:
1250 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1251 case IOPRIO_CLASS_NONE:
1252 /*
1253 * no prio set, place us in the middle of the BE classes
1254 */
1255 cfqq->ioprio = task_nice_ioprio(tsk);
1256 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1257 break;
1258 case IOPRIO_CLASS_RT:
1259 cfqq->ioprio = task_ioprio(tsk);
1260 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1261 break;
1262 case IOPRIO_CLASS_BE:
1263 cfqq->ioprio = task_ioprio(tsk);
1264 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1265 break;
1266 case IOPRIO_CLASS_IDLE:
1267 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1268 cfqq->ioprio = 7;
1269 cfq_clear_cfqq_idle_window(cfqq);
1270 break;
1271 }
1272
1273 /*
1274 * keep track of original prio settings in case we have to temporarily
1275 * elevate the priority of this queue
1276 */
1277 cfqq->org_ioprio = cfqq->ioprio;
1278 cfqq->org_ioprio_class = cfqq->ioprio_class;
1279
1280 cfq_resort_rr_list(cfqq, 0);
1281 cfq_clear_cfqq_prio_changed(cfqq);
1282 }
1283
1284 static inline void changed_ioprio(struct cfq_io_context *cic)
1285 {
1286 struct cfq_data *cfqd = cic->key;
1287 struct cfq_queue *cfqq;
1288 unsigned long flags;
1289
1290 if (unlikely(!cfqd))
1291 return;
1292
1293 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1294
1295 cfqq = cic->cfqq[ASYNC];
1296 if (cfqq) {
1297 struct cfq_queue *new_cfqq;
1298 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1299 GFP_ATOMIC);
1300 if (new_cfqq) {
1301 cic->cfqq[ASYNC] = new_cfqq;
1302 cfq_put_queue(cfqq);
1303 }
1304 }
1305
1306 cfqq = cic->cfqq[SYNC];
1307 if (cfqq)
1308 cfq_mark_cfqq_prio_changed(cfqq);
1309
1310 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1311 }
1312
1313 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1314 {
1315 struct cfq_io_context *cic;
1316 struct rb_node *n;
1317
1318 ioc->ioprio_changed = 0;
1319
1320 n = rb_first(&ioc->cic_root);
1321 while (n != NULL) {
1322 cic = rb_entry(n, struct cfq_io_context, rb_node);
1323
1324 changed_ioprio(cic);
1325 n = rb_next(n);
1326 }
1327 }
1328
1329 static struct cfq_queue *
1330 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1331 gfp_t gfp_mask)
1332 {
1333 const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1334 struct cfq_queue *cfqq, *new_cfqq = NULL;
1335 unsigned short ioprio;
1336
1337 retry:
1338 ioprio = tsk->ioprio;
1339 cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1340
1341 if (!cfqq) {
1342 if (new_cfqq) {
1343 cfqq = new_cfqq;
1344 new_cfqq = NULL;
1345 } else if (gfp_mask & __GFP_WAIT) {
1346 /*
1347 * Inform the allocator of the fact that we will
1348 * just repeat this allocation if it fails, to allow
1349 * the allocator to do whatever it needs to attempt to
1350 * free memory.
1351 */
1352 spin_unlock_irq(cfqd->queue->queue_lock);
1353 new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
1354 spin_lock_irq(cfqd->queue->queue_lock);
1355 goto retry;
1356 } else {
1357 cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
1358 if (!cfqq)
1359 goto out;
1360 }
1361
1362 memset(cfqq, 0, sizeof(*cfqq));
1363
1364 INIT_HLIST_NODE(&cfqq->cfq_hash);
1365 INIT_LIST_HEAD(&cfqq->cfq_list);
1366 INIT_LIST_HEAD(&cfqq->fifo);
1367
1368 cfqq->key = key;
1369 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1370 atomic_set(&cfqq->ref, 0);
1371 cfqq->cfqd = cfqd;
1372
1373 cfq_mark_cfqq_idle_window(cfqq);
1374 cfq_mark_cfqq_prio_changed(cfqq);
1375 cfq_mark_cfqq_queue_new(cfqq);
1376 cfq_init_prio_data(cfqq);
1377 }
1378
1379 if (new_cfqq)
1380 kmem_cache_free(cfq_pool, new_cfqq);
1381
1382 atomic_inc(&cfqq->ref);
1383 out:
1384 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1385 return cfqq;
1386 }
1387
1388 static void
1389 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1390 {
1391 WARN_ON(!list_empty(&cic->queue_list));
1392 rb_erase(&cic->rb_node, &ioc->cic_root);
1393 kmem_cache_free(cfq_ioc_pool, cic);
1394 elv_ioc_count_dec(ioc_count);
1395 }
1396
1397 static struct cfq_io_context *
1398 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1399 {
1400 struct rb_node *n;
1401 struct cfq_io_context *cic;
1402 void *k, *key = cfqd;
1403
1404 restart:
1405 n = ioc->cic_root.rb_node;
1406 while (n) {
1407 cic = rb_entry(n, struct cfq_io_context, rb_node);
1408 /* ->key must be copied to avoid race with cfq_exit_queue() */
1409 k = cic->key;
1410 if (unlikely(!k)) {
1411 cfq_drop_dead_cic(ioc, cic);
1412 goto restart;
1413 }
1414
1415 if (key < k)
1416 n = n->rb_left;
1417 else if (key > k)
1418 n = n->rb_right;
1419 else
1420 return cic;
1421 }
1422
1423 return NULL;
1424 }
1425
1426 static inline void
1427 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1428 struct cfq_io_context *cic)
1429 {
1430 struct rb_node **p;
1431 struct rb_node *parent;
1432 struct cfq_io_context *__cic;
1433 unsigned long flags;
1434 void *k;
1435
1436 cic->ioc = ioc;
1437 cic->key = cfqd;
1438
1439 restart:
1440 parent = NULL;
1441 p = &ioc->cic_root.rb_node;
1442 while (*p) {
1443 parent = *p;
1444 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1445 /* ->key must be copied to avoid race with cfq_exit_queue() */
1446 k = __cic->key;
1447 if (unlikely(!k)) {
1448 cfq_drop_dead_cic(ioc, __cic);
1449 goto restart;
1450 }
1451
1452 if (cic->key < k)
1453 p = &(*p)->rb_left;
1454 else if (cic->key > k)
1455 p = &(*p)->rb_right;
1456 else
1457 BUG();
1458 }
1459
1460 rb_link_node(&cic->rb_node, parent, p);
1461 rb_insert_color(&cic->rb_node, &ioc->cic_root);
1462
1463 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1464 list_add(&cic->queue_list, &cfqd->cic_list);
1465 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1466 }
1467
1468 /*
1469 * Setup general io context and cfq io context. There can be several cfq
1470 * io contexts per general io context, if this process is doing io to more
1471 * than one device managed by cfq.
1472 */
1473 static struct cfq_io_context *
1474 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1475 {
1476 struct io_context *ioc = NULL;
1477 struct cfq_io_context *cic;
1478
1479 might_sleep_if(gfp_mask & __GFP_WAIT);
1480
1481 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1482 if (!ioc)
1483 return NULL;
1484
1485 cic = cfq_cic_rb_lookup(cfqd, ioc);
1486 if (cic)
1487 goto out;
1488
1489 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1490 if (cic == NULL)
1491 goto err;
1492
1493 cfq_cic_link(cfqd, ioc, cic);
1494 out:
1495 smp_read_barrier_depends();
1496 if (unlikely(ioc->ioprio_changed))
1497 cfq_ioc_set_ioprio(ioc);
1498
1499 return cic;
1500 err:
1501 put_io_context(ioc);
1502 return NULL;
1503 }
1504
1505 static void
1506 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1507 {
1508 unsigned long elapsed = jiffies - cic->last_end_request;
1509 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1510
1511 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1512 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1513 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1514 }
1515
1516 static void
1517 cfq_update_io_seektime(struct cfq_io_context *cic, struct request *rq)
1518 {
1519 sector_t sdist;
1520 u64 total;
1521
1522 if (cic->last_request_pos < rq->sector)
1523 sdist = rq->sector - cic->last_request_pos;
1524 else
1525 sdist = cic->last_request_pos - rq->sector;
1526
1527 /*
1528 * Don't allow the seek distance to get too large from the
1529 * odd fragment, pagein, etc
1530 */
1531 if (cic->seek_samples <= 60) /* second&third seek */
1532 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1533 else
1534 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1535
1536 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1537 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1538 total = cic->seek_total + (cic->seek_samples/2);
1539 do_div(total, cic->seek_samples);
1540 cic->seek_mean = (sector_t)total;
1541 }
1542
1543 /*
1544 * Disable idle window if the process thinks too long or seeks so much that
1545 * it doesn't matter
1546 */
1547 static void
1548 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1549 struct cfq_io_context *cic)
1550 {
1551 int enable_idle = cfq_cfqq_idle_window(cfqq);
1552
1553 if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1554 (cfqd->hw_tag && CIC_SEEKY(cic)))
1555 enable_idle = 0;
1556 else if (sample_valid(cic->ttime_samples)) {
1557 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1558 enable_idle = 0;
1559 else
1560 enable_idle = 1;
1561 }
1562
1563 if (enable_idle)
1564 cfq_mark_cfqq_idle_window(cfqq);
1565 else
1566 cfq_clear_cfqq_idle_window(cfqq);
1567 }
1568
1569 /*
1570 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1571 * no or if we aren't sure, a 1 will cause a preempt.
1572 */
1573 static int
1574 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1575 struct request *rq)
1576 {
1577 struct cfq_queue *cfqq = cfqd->active_queue;
1578
1579 if (cfq_class_idle(new_cfqq))
1580 return 0;
1581
1582 if (!cfqq)
1583 return 0;
1584
1585 if (cfq_class_idle(cfqq))
1586 return 1;
1587 if (!cfq_cfqq_wait_request(new_cfqq))
1588 return 0;
1589 /*
1590 * if the new request is sync, but the currently running queue is
1591 * not, let the sync request have priority.
1592 */
1593 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1594 return 1;
1595 /*
1596 * So both queues are sync. Let the new request get disk time if
1597 * it's a metadata request and the current queue is doing regular IO.
1598 */
1599 if (rq_is_meta(rq) && !cfqq->meta_pending)
1600 return 1;
1601
1602 return 0;
1603 }
1604
1605 /*
1606 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1607 * let it have half of its nominal slice.
1608 */
1609 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1610 {
1611 cfq_slice_expired(cfqd, 1, 1);
1612
1613 /*
1614 * Put the new queue at the front of the of the current list,
1615 * so we know that it will be selected next.
1616 */
1617 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1618 list_move(&cfqq->cfq_list, &cfqd->cur_rr);
1619
1620 cfqq->slice_end = 0;
1621 cfq_mark_cfqq_slice_new(cfqq);
1622 }
1623
1624 /*
1625 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1626 * something we should do about it
1627 */
1628 static void
1629 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1630 struct request *rq)
1631 {
1632 struct cfq_io_context *cic = RQ_CIC(rq);
1633
1634 if (rq_is_meta(rq))
1635 cfqq->meta_pending++;
1636
1637 /*
1638 * check if this request is a better next-serve candidate)) {
1639 */
1640 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
1641 BUG_ON(!cfqq->next_rq);
1642
1643 /*
1644 * we never wait for an async request and we don't allow preemption
1645 * of an async request. so just return early
1646 */
1647 if (!rq_is_sync(rq)) {
1648 /*
1649 * sync process issued an async request, if it's waiting
1650 * then expire it and kick rq handling.
1651 */
1652 if (cic == cfqd->active_cic &&
1653 del_timer(&cfqd->idle_slice_timer)) {
1654 cfq_slice_expired(cfqd, 0, 0);
1655 blk_start_queueing(cfqd->queue);
1656 }
1657 return;
1658 }
1659
1660 cfq_update_io_thinktime(cfqd, cic);
1661 cfq_update_io_seektime(cic, rq);
1662 cfq_update_idle_window(cfqd, cfqq, cic);
1663
1664 cic->last_request_pos = rq->sector + rq->nr_sectors;
1665
1666 if (cfqq == cfqd->active_queue) {
1667 /*
1668 * if we are waiting for a request for this queue, let it rip
1669 * immediately and flag that we must not expire this queue
1670 * just now
1671 */
1672 if (cfq_cfqq_wait_request(cfqq)) {
1673 cfq_mark_cfqq_must_dispatch(cfqq);
1674 del_timer(&cfqd->idle_slice_timer);
1675 blk_start_queueing(cfqd->queue);
1676 }
1677 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1678 /*
1679 * not the active queue - expire current slice if it is
1680 * idle and has expired it's mean thinktime or this new queue
1681 * has some old slice time left and is of higher priority
1682 */
1683 cfq_preempt_queue(cfqd, cfqq);
1684 cfq_mark_cfqq_must_dispatch(cfqq);
1685 blk_start_queueing(cfqd->queue);
1686 }
1687 }
1688
1689 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1690 {
1691 struct cfq_data *cfqd = q->elevator->elevator_data;
1692 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1693
1694 cfq_init_prio_data(cfqq);
1695
1696 cfq_add_rq_rb(rq);
1697
1698 list_add_tail(&rq->queuelist, &cfqq->fifo);
1699
1700 cfq_rq_enqueued(cfqd, cfqq, rq);
1701 }
1702
1703 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1704 {
1705 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1706 struct cfq_data *cfqd = cfqq->cfqd;
1707 const int sync = rq_is_sync(rq);
1708 unsigned long now;
1709
1710 now = jiffies;
1711
1712 WARN_ON(!cfqd->rq_in_driver);
1713 WARN_ON(!cfqq->on_dispatch[sync]);
1714 cfqd->rq_in_driver--;
1715 cfqq->on_dispatch[sync]--;
1716 cfqq->service_last = now;
1717
1718 if (!cfq_class_idle(cfqq))
1719 cfqd->last_end_request = now;
1720
1721 cfq_resort_rr_list(cfqq, 0);
1722
1723 if (sync)
1724 RQ_CIC(rq)->last_end_request = now;
1725
1726 /*
1727 * If this is the active queue, check if it needs to be expired,
1728 * or if we want to idle in case it has no pending requests.
1729 */
1730 if (cfqd->active_queue == cfqq) {
1731 if (cfq_cfqq_slice_new(cfqq)) {
1732 cfq_set_prio_slice(cfqd, cfqq);
1733 cfq_clear_cfqq_slice_new(cfqq);
1734 }
1735 if (cfq_slice_used(cfqq))
1736 cfq_slice_expired(cfqd, 0, 1);
1737 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1738 if (!cfq_arm_slice_timer(cfqd))
1739 cfq_schedule_dispatch(cfqd);
1740 }
1741 }
1742 }
1743
1744 /*
1745 * we temporarily boost lower priority queues if they are holding fs exclusive
1746 * resources. they are boosted to normal prio (CLASS_BE/4)
1747 */
1748 static void cfq_prio_boost(struct cfq_queue *cfqq)
1749 {
1750 const int ioprio_class = cfqq->ioprio_class;
1751 const int ioprio = cfqq->ioprio;
1752
1753 if (has_fs_excl()) {
1754 /*
1755 * boost idle prio on transactions that would lock out other
1756 * users of the filesystem
1757 */
1758 if (cfq_class_idle(cfqq))
1759 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1760 if (cfqq->ioprio > IOPRIO_NORM)
1761 cfqq->ioprio = IOPRIO_NORM;
1762 } else {
1763 /*
1764 * check if we need to unboost the queue
1765 */
1766 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1767 cfqq->ioprio_class = cfqq->org_ioprio_class;
1768 if (cfqq->ioprio != cfqq->org_ioprio)
1769 cfqq->ioprio = cfqq->org_ioprio;
1770 }
1771
1772 /*
1773 * refile between round-robin lists if we moved the priority class
1774 */
1775 if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio))
1776 cfq_resort_rr_list(cfqq, 0);
1777 }
1778
1779 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1780 {
1781 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1782 !cfq_cfqq_must_alloc_slice(cfqq)) {
1783 cfq_mark_cfqq_must_alloc_slice(cfqq);
1784 return ELV_MQUEUE_MUST;
1785 }
1786
1787 return ELV_MQUEUE_MAY;
1788 }
1789
1790 static int cfq_may_queue(request_queue_t *q, int rw)
1791 {
1792 struct cfq_data *cfqd = q->elevator->elevator_data;
1793 struct task_struct *tsk = current;
1794 struct cfq_queue *cfqq;
1795 unsigned int key;
1796
1797 key = cfq_queue_pid(tsk, rw, rw & REQ_RW_SYNC);
1798
1799 /*
1800 * don't force setup of a queue from here, as a call to may_queue
1801 * does not necessarily imply that a request actually will be queued.
1802 * so just lookup a possibly existing queue, or return 'may queue'
1803 * if that fails
1804 */
1805 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
1806 if (cfqq) {
1807 cfq_init_prio_data(cfqq);
1808 cfq_prio_boost(cfqq);
1809
1810 return __cfq_may_queue(cfqq);
1811 }
1812
1813 return ELV_MQUEUE_MAY;
1814 }
1815
1816 /*
1817 * queue lock held here
1818 */
1819 static void cfq_put_request(struct request *rq)
1820 {
1821 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1822
1823 if (cfqq) {
1824 const int rw = rq_data_dir(rq);
1825
1826 BUG_ON(!cfqq->allocated[rw]);
1827 cfqq->allocated[rw]--;
1828
1829 put_io_context(RQ_CIC(rq)->ioc);
1830
1831 rq->elevator_private = NULL;
1832 rq->elevator_private2 = NULL;
1833
1834 cfq_put_queue(cfqq);
1835 }
1836 }
1837
1838 /*
1839 * Allocate cfq data structures associated with this request.
1840 */
1841 static int
1842 cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1843 {
1844 struct cfq_data *cfqd = q->elevator->elevator_data;
1845 struct task_struct *tsk = current;
1846 struct cfq_io_context *cic;
1847 const int rw = rq_data_dir(rq);
1848 const int is_sync = rq_is_sync(rq);
1849 pid_t key = cfq_queue_pid(tsk, rw, is_sync);
1850 struct cfq_queue *cfqq;
1851 unsigned long flags;
1852
1853 might_sleep_if(gfp_mask & __GFP_WAIT);
1854
1855 cic = cfq_get_io_context(cfqd, gfp_mask);
1856
1857 spin_lock_irqsave(q->queue_lock, flags);
1858
1859 if (!cic)
1860 goto queue_fail;
1861
1862 if (!cic->cfqq[is_sync]) {
1863 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
1864 if (!cfqq)
1865 goto queue_fail;
1866
1867 cic->cfqq[is_sync] = cfqq;
1868 } else
1869 cfqq = cic->cfqq[is_sync];
1870
1871 cfqq->allocated[rw]++;
1872 cfq_clear_cfqq_must_alloc(cfqq);
1873 atomic_inc(&cfqq->ref);
1874
1875 spin_unlock_irqrestore(q->queue_lock, flags);
1876
1877 rq->elevator_private = cic;
1878 rq->elevator_private2 = cfqq;
1879 return 0;
1880
1881 queue_fail:
1882 if (cic)
1883 put_io_context(cic->ioc);
1884
1885 cfq_schedule_dispatch(cfqd);
1886 spin_unlock_irqrestore(q->queue_lock, flags);
1887 return 1;
1888 }
1889
1890 static void cfq_kick_queue(struct work_struct *work)
1891 {
1892 struct cfq_data *cfqd =
1893 container_of(work, struct cfq_data, unplug_work);
1894 request_queue_t *q = cfqd->queue;
1895 unsigned long flags;
1896
1897 spin_lock_irqsave(q->queue_lock, flags);
1898 blk_start_queueing(q);
1899 spin_unlock_irqrestore(q->queue_lock, flags);
1900 }
1901
1902 /*
1903 * Timer running if the active_queue is currently idling inside its time slice
1904 */
1905 static void cfq_idle_slice_timer(unsigned long data)
1906 {
1907 struct cfq_data *cfqd = (struct cfq_data *) data;
1908 struct cfq_queue *cfqq;
1909 unsigned long flags;
1910 int timed_out = 1;
1911
1912 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1913
1914 if ((cfqq = cfqd->active_queue) != NULL) {
1915 timed_out = 0;
1916
1917 /*
1918 * expired
1919 */
1920 if (cfq_slice_used(cfqq))
1921 goto expire;
1922
1923 /*
1924 * only expire and reinvoke request handler, if there are
1925 * other queues with pending requests
1926 */
1927 if (!cfqd->busy_queues)
1928 goto out_cont;
1929
1930 /*
1931 * not expired and it has a request pending, let it dispatch
1932 */
1933 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
1934 cfq_mark_cfqq_must_dispatch(cfqq);
1935 goto out_kick;
1936 }
1937 }
1938 expire:
1939 cfq_slice_expired(cfqd, 0, timed_out);
1940 out_kick:
1941 cfq_schedule_dispatch(cfqd);
1942 out_cont:
1943 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1944 }
1945
1946 /*
1947 * Timer running if an idle class queue is waiting for service
1948 */
1949 static void cfq_idle_class_timer(unsigned long data)
1950 {
1951 struct cfq_data *cfqd = (struct cfq_data *) data;
1952 unsigned long flags, end;
1953
1954 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1955
1956 /*
1957 * race with a non-idle queue, reset timer
1958 */
1959 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
1960 if (!time_after_eq(jiffies, end))
1961 mod_timer(&cfqd->idle_class_timer, end);
1962 else
1963 cfq_schedule_dispatch(cfqd);
1964
1965 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1966 }
1967
1968 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
1969 {
1970 del_timer_sync(&cfqd->idle_slice_timer);
1971 del_timer_sync(&cfqd->idle_class_timer);
1972 blk_sync_queue(cfqd->queue);
1973 }
1974
1975 static void cfq_exit_queue(elevator_t *e)
1976 {
1977 struct cfq_data *cfqd = e->elevator_data;
1978 request_queue_t *q = cfqd->queue;
1979
1980 cfq_shutdown_timer_wq(cfqd);
1981
1982 spin_lock_irq(q->queue_lock);
1983
1984 if (cfqd->active_queue)
1985 __cfq_slice_expired(cfqd, cfqd->active_queue, 0, 0);
1986
1987 while (!list_empty(&cfqd->cic_list)) {
1988 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
1989 struct cfq_io_context,
1990 queue_list);
1991
1992 __cfq_exit_single_io_context(cfqd, cic);
1993 }
1994
1995 spin_unlock_irq(q->queue_lock);
1996
1997 cfq_shutdown_timer_wq(cfqd);
1998
1999 kfree(cfqd->cfq_hash);
2000 kfree(cfqd);
2001 }
2002
2003 static void *cfq_init_queue(request_queue_t *q)
2004 {
2005 struct cfq_data *cfqd;
2006 int i;
2007
2008 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
2009 if (!cfqd)
2010 return NULL;
2011
2012 memset(cfqd, 0, sizeof(*cfqd));
2013
2014 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2015 INIT_LIST_HEAD(&cfqd->rr_list[i]);
2016
2017 INIT_LIST_HEAD(&cfqd->busy_rr);
2018 INIT_LIST_HEAD(&cfqd->cur_rr);
2019 INIT_LIST_HEAD(&cfqd->idle_rr);
2020 INIT_LIST_HEAD(&cfqd->cic_list);
2021
2022 cfqd->cfq_hash = kmalloc_node(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL, q->node);
2023 if (!cfqd->cfq_hash)
2024 goto out_free;
2025
2026 for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2027 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2028
2029 cfqd->queue = q;
2030
2031 init_timer(&cfqd->idle_slice_timer);
2032 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2033 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2034
2035 init_timer(&cfqd->idle_class_timer);
2036 cfqd->idle_class_timer.function = cfq_idle_class_timer;
2037 cfqd->idle_class_timer.data = (unsigned long) cfqd;
2038
2039 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2040
2041 cfqd->cfq_quantum = cfq_quantum;
2042 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2043 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2044 cfqd->cfq_back_max = cfq_back_max;
2045 cfqd->cfq_back_penalty = cfq_back_penalty;
2046 cfqd->cfq_slice[0] = cfq_slice_async;
2047 cfqd->cfq_slice[1] = cfq_slice_sync;
2048 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2049 cfqd->cfq_slice_idle = cfq_slice_idle;
2050
2051 return cfqd;
2052 out_free:
2053 kfree(cfqd);
2054 return NULL;
2055 }
2056
2057 static void cfq_slab_kill(void)
2058 {
2059 if (cfq_pool)
2060 kmem_cache_destroy(cfq_pool);
2061 if (cfq_ioc_pool)
2062 kmem_cache_destroy(cfq_ioc_pool);
2063 }
2064
2065 static int __init cfq_slab_setup(void)
2066 {
2067 cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2068 NULL, NULL);
2069 if (!cfq_pool)
2070 goto fail;
2071
2072 cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2073 sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2074 if (!cfq_ioc_pool)
2075 goto fail;
2076
2077 return 0;
2078 fail:
2079 cfq_slab_kill();
2080 return -ENOMEM;
2081 }
2082
2083 /*
2084 * sysfs parts below -->
2085 */
2086
2087 static ssize_t
2088 cfq_var_show(unsigned int var, char *page)
2089 {
2090 return sprintf(page, "%d\n", var);
2091 }
2092
2093 static ssize_t
2094 cfq_var_store(unsigned int *var, const char *page, size_t count)
2095 {
2096 char *p = (char *) page;
2097
2098 *var = simple_strtoul(p, &p, 10);
2099 return count;
2100 }
2101
2102 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2103 static ssize_t __FUNC(elevator_t *e, char *page) \
2104 { \
2105 struct cfq_data *cfqd = e->elevator_data; \
2106 unsigned int __data = __VAR; \
2107 if (__CONV) \
2108 __data = jiffies_to_msecs(__data); \
2109 return cfq_var_show(__data, (page)); \
2110 }
2111 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2112 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2113 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2114 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2115 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2116 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2117 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2118 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2119 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2120 #undef SHOW_FUNCTION
2121
2122 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2123 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2124 { \
2125 struct cfq_data *cfqd = e->elevator_data; \
2126 unsigned int __data; \
2127 int ret = cfq_var_store(&__data, (page), count); \
2128 if (__data < (MIN)) \
2129 __data = (MIN); \
2130 else if (__data > (MAX)) \
2131 __data = (MAX); \
2132 if (__CONV) \
2133 *(__PTR) = msecs_to_jiffies(__data); \
2134 else \
2135 *(__PTR) = __data; \
2136 return ret; \
2137 }
2138 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2139 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2140 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2141 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2142 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2143 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2144 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2145 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2146 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2147 #undef STORE_FUNCTION
2148
2149 #define CFQ_ATTR(name) \
2150 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2151
2152 static struct elv_fs_entry cfq_attrs[] = {
2153 CFQ_ATTR(quantum),
2154 CFQ_ATTR(fifo_expire_sync),
2155 CFQ_ATTR(fifo_expire_async),
2156 CFQ_ATTR(back_seek_max),
2157 CFQ_ATTR(back_seek_penalty),
2158 CFQ_ATTR(slice_sync),
2159 CFQ_ATTR(slice_async),
2160 CFQ_ATTR(slice_async_rq),
2161 CFQ_ATTR(slice_idle),
2162 __ATTR_NULL
2163 };
2164
2165 static struct elevator_type iosched_cfq = {
2166 .ops = {
2167 .elevator_merge_fn = cfq_merge,
2168 .elevator_merged_fn = cfq_merged_request,
2169 .elevator_merge_req_fn = cfq_merged_requests,
2170 .elevator_allow_merge_fn = cfq_allow_merge,
2171 .elevator_dispatch_fn = cfq_dispatch_requests,
2172 .elevator_add_req_fn = cfq_insert_request,
2173 .elevator_activate_req_fn = cfq_activate_request,
2174 .elevator_deactivate_req_fn = cfq_deactivate_request,
2175 .elevator_queue_empty_fn = cfq_queue_empty,
2176 .elevator_completed_req_fn = cfq_completed_request,
2177 .elevator_former_req_fn = elv_rb_former_request,
2178 .elevator_latter_req_fn = elv_rb_latter_request,
2179 .elevator_set_req_fn = cfq_set_request,
2180 .elevator_put_req_fn = cfq_put_request,
2181 .elevator_may_queue_fn = cfq_may_queue,
2182 .elevator_init_fn = cfq_init_queue,
2183 .elevator_exit_fn = cfq_exit_queue,
2184 .trim = cfq_free_io_context,
2185 },
2186 .elevator_attrs = cfq_attrs,
2187 .elevator_name = "cfq",
2188 .elevator_owner = THIS_MODULE,
2189 };
2190
2191 static int __init cfq_init(void)
2192 {
2193 int ret;
2194
2195 /*
2196 * could be 0 on HZ < 1000 setups
2197 */
2198 if (!cfq_slice_async)
2199 cfq_slice_async = 1;
2200 if (!cfq_slice_idle)
2201 cfq_slice_idle = 1;
2202
2203 if (cfq_slab_setup())
2204 return -ENOMEM;
2205
2206 ret = elv_register(&iosched_cfq);
2207 if (ret)
2208 cfq_slab_kill();
2209
2210 return ret;
2211 }
2212
2213 static void __exit cfq_exit(void)
2214 {
2215 DECLARE_COMPLETION_ONSTACK(all_gone);
2216 elv_unregister(&iosched_cfq);
2217 ioc_gone = &all_gone;
2218 /* ioc_gone's update must be visible before reading ioc_count */
2219 smp_wmb();
2220 if (elv_ioc_count_read(ioc_count))
2221 wait_for_completion(ioc_gone);
2222 synchronize_rcu();
2223 cfq_slab_kill();
2224 }
2225
2226 module_init(cfq_init);
2227 module_exit(cfq_exit);
2228
2229 MODULE_AUTHOR("Jens Axboe");
2230 MODULE_LICENSE("GPL");
2231 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");