]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/cfq-iosched.c
Merge branches 'intel_pstate' and 'pm-sleep'
[mirror_ubuntu-artful-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/sched/clock.h>
12 #include <linux/blkdev.h>
13 #include <linux/elevator.h>
14 #include <linux/ktime.h>
15 #include <linux/rbtree.h>
16 #include <linux/ioprio.h>
17 #include <linux/blktrace_api.h>
18 #include <linux/blk-cgroup.h>
19 #include "blk.h"
20 #include "blk-wbt.h"
21
22 /*
23 * tunables
24 */
25 /* max queue in one round of service */
26 static const int cfq_quantum = 8;
27 static const u64 cfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
28 /* maximum backwards seek, in KiB */
29 static const int cfq_back_max = 16 * 1024;
30 /* penalty of a backwards seek */
31 static const int cfq_back_penalty = 2;
32 static const u64 cfq_slice_sync = NSEC_PER_SEC / 10;
33 static u64 cfq_slice_async = NSEC_PER_SEC / 25;
34 static const int cfq_slice_async_rq = 2;
35 static u64 cfq_slice_idle = NSEC_PER_SEC / 125;
36 static u64 cfq_group_idle = NSEC_PER_SEC / 125;
37 static const u64 cfq_target_latency = (u64)NSEC_PER_SEC * 3/10; /* 300 ms */
38 static const int cfq_hist_divisor = 4;
39
40 /*
41 * offset from end of queue service tree for idle class
42 */
43 #define CFQ_IDLE_DELAY (NSEC_PER_SEC / 5)
44 /* offset from end of group service tree under time slice mode */
45 #define CFQ_SLICE_MODE_GROUP_DELAY (NSEC_PER_SEC / 5)
46 /* offset from end of group service under IOPS mode */
47 #define CFQ_IOPS_MODE_GROUP_DELAY (HZ / 5)
48
49 /*
50 * below this threshold, we consider thinktime immediate
51 */
52 #define CFQ_MIN_TT (2 * NSEC_PER_SEC / HZ)
53
54 #define CFQ_SLICE_SCALE (5)
55 #define CFQ_HW_QUEUE_MIN (5)
56 #define CFQ_SERVICE_SHIFT 12
57
58 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
59 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
60 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
61 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
62
63 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
64 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
65 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
66
67 static struct kmem_cache *cfq_pool;
68
69 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
70 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
71 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
72
73 #define sample_valid(samples) ((samples) > 80)
74 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
75
76 /* blkio-related constants */
77 #define CFQ_WEIGHT_LEGACY_MIN 10
78 #define CFQ_WEIGHT_LEGACY_DFL 500
79 #define CFQ_WEIGHT_LEGACY_MAX 1000
80
81 struct cfq_ttime {
82 u64 last_end_request;
83
84 u64 ttime_total;
85 u64 ttime_mean;
86 unsigned long ttime_samples;
87 };
88
89 /*
90 * Most of our rbtree usage is for sorting with min extraction, so
91 * if we cache the leftmost node we don't have to walk down the tree
92 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
93 * move this into the elevator for the rq sorting as well.
94 */
95 struct cfq_rb_root {
96 struct rb_root rb;
97 struct rb_node *left;
98 unsigned count;
99 u64 min_vdisktime;
100 struct cfq_ttime ttime;
101 };
102 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
103 .ttime = {.last_end_request = ktime_get_ns(),},}
104
105 /*
106 * Per process-grouping structure
107 */
108 struct cfq_queue {
109 /* reference count */
110 int ref;
111 /* various state flags, see below */
112 unsigned int flags;
113 /* parent cfq_data */
114 struct cfq_data *cfqd;
115 /* service_tree member */
116 struct rb_node rb_node;
117 /* service_tree key */
118 u64 rb_key;
119 /* prio tree member */
120 struct rb_node p_node;
121 /* prio tree root we belong to, if any */
122 struct rb_root *p_root;
123 /* sorted list of pending requests */
124 struct rb_root sort_list;
125 /* if fifo isn't expired, next request to serve */
126 struct request *next_rq;
127 /* requests queued in sort_list */
128 int queued[2];
129 /* currently allocated requests */
130 int allocated[2];
131 /* fifo list of requests in sort_list */
132 struct list_head fifo;
133
134 /* time when queue got scheduled in to dispatch first request. */
135 u64 dispatch_start;
136 u64 allocated_slice;
137 u64 slice_dispatch;
138 /* time when first request from queue completed and slice started. */
139 u64 slice_start;
140 u64 slice_end;
141 s64 slice_resid;
142
143 /* pending priority requests */
144 int prio_pending;
145 /* number of requests that are on the dispatch list or inside driver */
146 int dispatched;
147
148 /* io prio of this group */
149 unsigned short ioprio, org_ioprio;
150 unsigned short ioprio_class, org_ioprio_class;
151
152 pid_t pid;
153
154 u32 seek_history;
155 sector_t last_request_pos;
156
157 struct cfq_rb_root *service_tree;
158 struct cfq_queue *new_cfqq;
159 struct cfq_group *cfqg;
160 /* Number of sectors dispatched from queue in single dispatch round */
161 unsigned long nr_sectors;
162 };
163
164 /*
165 * First index in the service_trees.
166 * IDLE is handled separately, so it has negative index
167 */
168 enum wl_class_t {
169 BE_WORKLOAD = 0,
170 RT_WORKLOAD = 1,
171 IDLE_WORKLOAD = 2,
172 CFQ_PRIO_NR,
173 };
174
175 /*
176 * Second index in the service_trees.
177 */
178 enum wl_type_t {
179 ASYNC_WORKLOAD = 0,
180 SYNC_NOIDLE_WORKLOAD = 1,
181 SYNC_WORKLOAD = 2
182 };
183
184 struct cfqg_stats {
185 #ifdef CONFIG_CFQ_GROUP_IOSCHED
186 /* number of ios merged */
187 struct blkg_rwstat merged;
188 /* total time spent on device in ns, may not be accurate w/ queueing */
189 struct blkg_rwstat service_time;
190 /* total time spent waiting in scheduler queue in ns */
191 struct blkg_rwstat wait_time;
192 /* number of IOs queued up */
193 struct blkg_rwstat queued;
194 /* total disk time and nr sectors dispatched by this group */
195 struct blkg_stat time;
196 #ifdef CONFIG_DEBUG_BLK_CGROUP
197 /* time not charged to this cgroup */
198 struct blkg_stat unaccounted_time;
199 /* sum of number of ios queued across all samples */
200 struct blkg_stat avg_queue_size_sum;
201 /* count of samples taken for average */
202 struct blkg_stat avg_queue_size_samples;
203 /* how many times this group has been removed from service tree */
204 struct blkg_stat dequeue;
205 /* total time spent waiting for it to be assigned a timeslice. */
206 struct blkg_stat group_wait_time;
207 /* time spent idling for this blkcg_gq */
208 struct blkg_stat idle_time;
209 /* total time with empty current active q with other requests queued */
210 struct blkg_stat empty_time;
211 /* fields after this shouldn't be cleared on stat reset */
212 uint64_t start_group_wait_time;
213 uint64_t start_idle_time;
214 uint64_t start_empty_time;
215 uint16_t flags;
216 #endif /* CONFIG_DEBUG_BLK_CGROUP */
217 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
218 };
219
220 /* Per-cgroup data */
221 struct cfq_group_data {
222 /* must be the first member */
223 struct blkcg_policy_data cpd;
224
225 unsigned int weight;
226 unsigned int leaf_weight;
227 };
228
229 /* This is per cgroup per device grouping structure */
230 struct cfq_group {
231 /* must be the first member */
232 struct blkg_policy_data pd;
233
234 /* group service_tree member */
235 struct rb_node rb_node;
236
237 /* group service_tree key */
238 u64 vdisktime;
239
240 /*
241 * The number of active cfqgs and sum of their weights under this
242 * cfqg. This covers this cfqg's leaf_weight and all children's
243 * weights, but does not cover weights of further descendants.
244 *
245 * If a cfqg is on the service tree, it's active. An active cfqg
246 * also activates its parent and contributes to the children_weight
247 * of the parent.
248 */
249 int nr_active;
250 unsigned int children_weight;
251
252 /*
253 * vfraction is the fraction of vdisktime that the tasks in this
254 * cfqg are entitled to. This is determined by compounding the
255 * ratios walking up from this cfqg to the root.
256 *
257 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
258 * vfractions on a service tree is approximately 1. The sum may
259 * deviate a bit due to rounding errors and fluctuations caused by
260 * cfqgs entering and leaving the service tree.
261 */
262 unsigned int vfraction;
263
264 /*
265 * There are two weights - (internal) weight is the weight of this
266 * cfqg against the sibling cfqgs. leaf_weight is the wight of
267 * this cfqg against the child cfqgs. For the root cfqg, both
268 * weights are kept in sync for backward compatibility.
269 */
270 unsigned int weight;
271 unsigned int new_weight;
272 unsigned int dev_weight;
273
274 unsigned int leaf_weight;
275 unsigned int new_leaf_weight;
276 unsigned int dev_leaf_weight;
277
278 /* number of cfqq currently on this group */
279 int nr_cfqq;
280
281 /*
282 * Per group busy queues average. Useful for workload slice calc. We
283 * create the array for each prio class but at run time it is used
284 * only for RT and BE class and slot for IDLE class remains unused.
285 * This is primarily done to avoid confusion and a gcc warning.
286 */
287 unsigned int busy_queues_avg[CFQ_PRIO_NR];
288 /*
289 * rr lists of queues with requests. We maintain service trees for
290 * RT and BE classes. These trees are subdivided in subclasses
291 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
292 * class there is no subclassification and all the cfq queues go on
293 * a single tree service_tree_idle.
294 * Counts are embedded in the cfq_rb_root
295 */
296 struct cfq_rb_root service_trees[2][3];
297 struct cfq_rb_root service_tree_idle;
298
299 u64 saved_wl_slice;
300 enum wl_type_t saved_wl_type;
301 enum wl_class_t saved_wl_class;
302
303 /* number of requests that are on the dispatch list or inside driver */
304 int dispatched;
305 struct cfq_ttime ttime;
306 struct cfqg_stats stats; /* stats for this cfqg */
307
308 /* async queue for each priority case */
309 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
310 struct cfq_queue *async_idle_cfqq;
311
312 };
313
314 struct cfq_io_cq {
315 struct io_cq icq; /* must be the first member */
316 struct cfq_queue *cfqq[2];
317 struct cfq_ttime ttime;
318 int ioprio; /* the current ioprio */
319 #ifdef CONFIG_CFQ_GROUP_IOSCHED
320 uint64_t blkcg_serial_nr; /* the current blkcg serial */
321 #endif
322 };
323
324 /*
325 * Per block device queue structure
326 */
327 struct cfq_data {
328 struct request_queue *queue;
329 /* Root service tree for cfq_groups */
330 struct cfq_rb_root grp_service_tree;
331 struct cfq_group *root_group;
332
333 /*
334 * The priority currently being served
335 */
336 enum wl_class_t serving_wl_class;
337 enum wl_type_t serving_wl_type;
338 u64 workload_expires;
339 struct cfq_group *serving_group;
340
341 /*
342 * Each priority tree is sorted by next_request position. These
343 * trees are used when determining if two or more queues are
344 * interleaving requests (see cfq_close_cooperator).
345 */
346 struct rb_root prio_trees[CFQ_PRIO_LISTS];
347
348 unsigned int busy_queues;
349 unsigned int busy_sync_queues;
350
351 int rq_in_driver;
352 int rq_in_flight[2];
353
354 /*
355 * queue-depth detection
356 */
357 int rq_queued;
358 int hw_tag;
359 /*
360 * hw_tag can be
361 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
362 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
363 * 0 => no NCQ
364 */
365 int hw_tag_est_depth;
366 unsigned int hw_tag_samples;
367
368 /*
369 * idle window management
370 */
371 struct hrtimer idle_slice_timer;
372 struct work_struct unplug_work;
373
374 struct cfq_queue *active_queue;
375 struct cfq_io_cq *active_cic;
376
377 sector_t last_position;
378
379 /*
380 * tunables, see top of file
381 */
382 unsigned int cfq_quantum;
383 unsigned int cfq_back_penalty;
384 unsigned int cfq_back_max;
385 unsigned int cfq_slice_async_rq;
386 unsigned int cfq_latency;
387 u64 cfq_fifo_expire[2];
388 u64 cfq_slice[2];
389 u64 cfq_slice_idle;
390 u64 cfq_group_idle;
391 u64 cfq_target_latency;
392
393 /*
394 * Fallback dummy cfqq for extreme OOM conditions
395 */
396 struct cfq_queue oom_cfqq;
397
398 u64 last_delayed_sync;
399 };
400
401 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
402 static void cfq_put_queue(struct cfq_queue *cfqq);
403
404 static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
405 enum wl_class_t class,
406 enum wl_type_t type)
407 {
408 if (!cfqg)
409 return NULL;
410
411 if (class == IDLE_WORKLOAD)
412 return &cfqg->service_tree_idle;
413
414 return &cfqg->service_trees[class][type];
415 }
416
417 enum cfqq_state_flags {
418 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
419 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
420 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
421 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
422 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
423 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
424 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
425 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
426 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
427 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
428 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
429 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
430 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
431 };
432
433 #define CFQ_CFQQ_FNS(name) \
434 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
435 { \
436 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
437 } \
438 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
439 { \
440 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
441 } \
442 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
443 { \
444 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
445 }
446
447 CFQ_CFQQ_FNS(on_rr);
448 CFQ_CFQQ_FNS(wait_request);
449 CFQ_CFQQ_FNS(must_dispatch);
450 CFQ_CFQQ_FNS(must_alloc_slice);
451 CFQ_CFQQ_FNS(fifo_expire);
452 CFQ_CFQQ_FNS(idle_window);
453 CFQ_CFQQ_FNS(prio_changed);
454 CFQ_CFQQ_FNS(slice_new);
455 CFQ_CFQQ_FNS(sync);
456 CFQ_CFQQ_FNS(coop);
457 CFQ_CFQQ_FNS(split_coop);
458 CFQ_CFQQ_FNS(deep);
459 CFQ_CFQQ_FNS(wait_busy);
460 #undef CFQ_CFQQ_FNS
461
462 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
463
464 /* cfqg stats flags */
465 enum cfqg_stats_flags {
466 CFQG_stats_waiting = 0,
467 CFQG_stats_idling,
468 CFQG_stats_empty,
469 };
470
471 #define CFQG_FLAG_FNS(name) \
472 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
473 { \
474 stats->flags |= (1 << CFQG_stats_##name); \
475 } \
476 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
477 { \
478 stats->flags &= ~(1 << CFQG_stats_##name); \
479 } \
480 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
481 { \
482 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
483 } \
484
485 CFQG_FLAG_FNS(waiting)
486 CFQG_FLAG_FNS(idling)
487 CFQG_FLAG_FNS(empty)
488 #undef CFQG_FLAG_FNS
489
490 /* This should be called with the queue_lock held. */
491 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
492 {
493 unsigned long long now;
494
495 if (!cfqg_stats_waiting(stats))
496 return;
497
498 now = sched_clock();
499 if (time_after64(now, stats->start_group_wait_time))
500 blkg_stat_add(&stats->group_wait_time,
501 now - stats->start_group_wait_time);
502 cfqg_stats_clear_waiting(stats);
503 }
504
505 /* This should be called with the queue_lock held. */
506 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
507 struct cfq_group *curr_cfqg)
508 {
509 struct cfqg_stats *stats = &cfqg->stats;
510
511 if (cfqg_stats_waiting(stats))
512 return;
513 if (cfqg == curr_cfqg)
514 return;
515 stats->start_group_wait_time = sched_clock();
516 cfqg_stats_mark_waiting(stats);
517 }
518
519 /* This should be called with the queue_lock held. */
520 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
521 {
522 unsigned long long now;
523
524 if (!cfqg_stats_empty(stats))
525 return;
526
527 now = sched_clock();
528 if (time_after64(now, stats->start_empty_time))
529 blkg_stat_add(&stats->empty_time,
530 now - stats->start_empty_time);
531 cfqg_stats_clear_empty(stats);
532 }
533
534 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
535 {
536 blkg_stat_add(&cfqg->stats.dequeue, 1);
537 }
538
539 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
540 {
541 struct cfqg_stats *stats = &cfqg->stats;
542
543 if (blkg_rwstat_total(&stats->queued))
544 return;
545
546 /*
547 * group is already marked empty. This can happen if cfqq got new
548 * request in parent group and moved to this group while being added
549 * to service tree. Just ignore the event and move on.
550 */
551 if (cfqg_stats_empty(stats))
552 return;
553
554 stats->start_empty_time = sched_clock();
555 cfqg_stats_mark_empty(stats);
556 }
557
558 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
559 {
560 struct cfqg_stats *stats = &cfqg->stats;
561
562 if (cfqg_stats_idling(stats)) {
563 unsigned long long now = sched_clock();
564
565 if (time_after64(now, stats->start_idle_time))
566 blkg_stat_add(&stats->idle_time,
567 now - stats->start_idle_time);
568 cfqg_stats_clear_idling(stats);
569 }
570 }
571
572 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
573 {
574 struct cfqg_stats *stats = &cfqg->stats;
575
576 BUG_ON(cfqg_stats_idling(stats));
577
578 stats->start_idle_time = sched_clock();
579 cfqg_stats_mark_idling(stats);
580 }
581
582 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
583 {
584 struct cfqg_stats *stats = &cfqg->stats;
585
586 blkg_stat_add(&stats->avg_queue_size_sum,
587 blkg_rwstat_total(&stats->queued));
588 blkg_stat_add(&stats->avg_queue_size_samples, 1);
589 cfqg_stats_update_group_wait_time(stats);
590 }
591
592 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
593
594 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
595 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
596 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
597 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
598 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
599 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
600 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
601
602 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
603
604 #ifdef CONFIG_CFQ_GROUP_IOSCHED
605
606 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
607 {
608 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
609 }
610
611 static struct cfq_group_data
612 *cpd_to_cfqgd(struct blkcg_policy_data *cpd)
613 {
614 return cpd ? container_of(cpd, struct cfq_group_data, cpd) : NULL;
615 }
616
617 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
618 {
619 return pd_to_blkg(&cfqg->pd);
620 }
621
622 static struct blkcg_policy blkcg_policy_cfq;
623
624 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
625 {
626 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
627 }
628
629 static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg)
630 {
631 return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq));
632 }
633
634 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
635 {
636 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
637
638 return pblkg ? blkg_to_cfqg(pblkg) : NULL;
639 }
640
641 static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
642 struct cfq_group *ancestor)
643 {
644 return cgroup_is_descendant(cfqg_to_blkg(cfqg)->blkcg->css.cgroup,
645 cfqg_to_blkg(ancestor)->blkcg->css.cgroup);
646 }
647
648 static inline void cfqg_get(struct cfq_group *cfqg)
649 {
650 return blkg_get(cfqg_to_blkg(cfqg));
651 }
652
653 static inline void cfqg_put(struct cfq_group *cfqg)
654 {
655 return blkg_put(cfqg_to_blkg(cfqg));
656 }
657
658 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
659 char __pbuf[128]; \
660 \
661 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
662 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
663 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
664 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
665 __pbuf, ##args); \
666 } while (0)
667
668 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
669 char __pbuf[128]; \
670 \
671 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
672 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
673 } while (0)
674
675 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
676 struct cfq_group *curr_cfqg,
677 unsigned int op)
678 {
679 blkg_rwstat_add(&cfqg->stats.queued, op, 1);
680 cfqg_stats_end_empty_time(&cfqg->stats);
681 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
682 }
683
684 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
685 uint64_t time, unsigned long unaccounted_time)
686 {
687 blkg_stat_add(&cfqg->stats.time, time);
688 #ifdef CONFIG_DEBUG_BLK_CGROUP
689 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
690 #endif
691 }
692
693 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg,
694 unsigned int op)
695 {
696 blkg_rwstat_add(&cfqg->stats.queued, op, -1);
697 }
698
699 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg,
700 unsigned int op)
701 {
702 blkg_rwstat_add(&cfqg->stats.merged, op, 1);
703 }
704
705 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
706 uint64_t start_time, uint64_t io_start_time,
707 unsigned int op)
708 {
709 struct cfqg_stats *stats = &cfqg->stats;
710 unsigned long long now = sched_clock();
711
712 if (time_after64(now, io_start_time))
713 blkg_rwstat_add(&stats->service_time, op, now - io_start_time);
714 if (time_after64(io_start_time, start_time))
715 blkg_rwstat_add(&stats->wait_time, op,
716 io_start_time - start_time);
717 }
718
719 /* @stats = 0 */
720 static void cfqg_stats_reset(struct cfqg_stats *stats)
721 {
722 /* queued stats shouldn't be cleared */
723 blkg_rwstat_reset(&stats->merged);
724 blkg_rwstat_reset(&stats->service_time);
725 blkg_rwstat_reset(&stats->wait_time);
726 blkg_stat_reset(&stats->time);
727 #ifdef CONFIG_DEBUG_BLK_CGROUP
728 blkg_stat_reset(&stats->unaccounted_time);
729 blkg_stat_reset(&stats->avg_queue_size_sum);
730 blkg_stat_reset(&stats->avg_queue_size_samples);
731 blkg_stat_reset(&stats->dequeue);
732 blkg_stat_reset(&stats->group_wait_time);
733 blkg_stat_reset(&stats->idle_time);
734 blkg_stat_reset(&stats->empty_time);
735 #endif
736 }
737
738 /* @to += @from */
739 static void cfqg_stats_add_aux(struct cfqg_stats *to, struct cfqg_stats *from)
740 {
741 /* queued stats shouldn't be cleared */
742 blkg_rwstat_add_aux(&to->merged, &from->merged);
743 blkg_rwstat_add_aux(&to->service_time, &from->service_time);
744 blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
745 blkg_stat_add_aux(&from->time, &from->time);
746 #ifdef CONFIG_DEBUG_BLK_CGROUP
747 blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time);
748 blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
749 blkg_stat_add_aux(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
750 blkg_stat_add_aux(&to->dequeue, &from->dequeue);
751 blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
752 blkg_stat_add_aux(&to->idle_time, &from->idle_time);
753 blkg_stat_add_aux(&to->empty_time, &from->empty_time);
754 #endif
755 }
756
757 /*
758 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
759 * recursive stats can still account for the amount used by this cfqg after
760 * it's gone.
761 */
762 static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
763 {
764 struct cfq_group *parent = cfqg_parent(cfqg);
765
766 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
767
768 if (unlikely(!parent))
769 return;
770
771 cfqg_stats_add_aux(&parent->stats, &cfqg->stats);
772 cfqg_stats_reset(&cfqg->stats);
773 }
774
775 #else /* CONFIG_CFQ_GROUP_IOSCHED */
776
777 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
778 static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
779 struct cfq_group *ancestor)
780 {
781 return true;
782 }
783 static inline void cfqg_get(struct cfq_group *cfqg) { }
784 static inline void cfqg_put(struct cfq_group *cfqg) { }
785
786 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
787 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
788 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
789 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
790 ##args)
791 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
792
793 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
794 struct cfq_group *curr_cfqg, unsigned int op) { }
795 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
796 uint64_t time, unsigned long unaccounted_time) { }
797 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg,
798 unsigned int op) { }
799 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg,
800 unsigned int op) { }
801 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
802 uint64_t start_time, uint64_t io_start_time,
803 unsigned int op) { }
804
805 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
806
807 #define cfq_log(cfqd, fmt, args...) \
808 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
809
810 /* Traverses through cfq group service trees */
811 #define for_each_cfqg_st(cfqg, i, j, st) \
812 for (i = 0; i <= IDLE_WORKLOAD; i++) \
813 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
814 : &cfqg->service_tree_idle; \
815 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
816 (i == IDLE_WORKLOAD && j == 0); \
817 j++, st = i < IDLE_WORKLOAD ? \
818 &cfqg->service_trees[i][j]: NULL) \
819
820 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
821 struct cfq_ttime *ttime, bool group_idle)
822 {
823 u64 slice;
824 if (!sample_valid(ttime->ttime_samples))
825 return false;
826 if (group_idle)
827 slice = cfqd->cfq_group_idle;
828 else
829 slice = cfqd->cfq_slice_idle;
830 return ttime->ttime_mean > slice;
831 }
832
833 static inline bool iops_mode(struct cfq_data *cfqd)
834 {
835 /*
836 * If we are not idling on queues and it is a NCQ drive, parallel
837 * execution of requests is on and measuring time is not possible
838 * in most of the cases until and unless we drive shallower queue
839 * depths and that becomes a performance bottleneck. In such cases
840 * switch to start providing fairness in terms of number of IOs.
841 */
842 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
843 return true;
844 else
845 return false;
846 }
847
848 static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
849 {
850 if (cfq_class_idle(cfqq))
851 return IDLE_WORKLOAD;
852 if (cfq_class_rt(cfqq))
853 return RT_WORKLOAD;
854 return BE_WORKLOAD;
855 }
856
857
858 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
859 {
860 if (!cfq_cfqq_sync(cfqq))
861 return ASYNC_WORKLOAD;
862 if (!cfq_cfqq_idle_window(cfqq))
863 return SYNC_NOIDLE_WORKLOAD;
864 return SYNC_WORKLOAD;
865 }
866
867 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
868 struct cfq_data *cfqd,
869 struct cfq_group *cfqg)
870 {
871 if (wl_class == IDLE_WORKLOAD)
872 return cfqg->service_tree_idle.count;
873
874 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
875 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
876 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
877 }
878
879 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
880 struct cfq_group *cfqg)
881 {
882 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
883 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
884 }
885
886 static void cfq_dispatch_insert(struct request_queue *, struct request *);
887 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
888 struct cfq_io_cq *cic, struct bio *bio);
889
890 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
891 {
892 /* cic->icq is the first member, %NULL will convert to %NULL */
893 return container_of(icq, struct cfq_io_cq, icq);
894 }
895
896 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
897 struct io_context *ioc)
898 {
899 if (ioc)
900 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
901 return NULL;
902 }
903
904 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
905 {
906 return cic->cfqq[is_sync];
907 }
908
909 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
910 bool is_sync)
911 {
912 cic->cfqq[is_sync] = cfqq;
913 }
914
915 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
916 {
917 return cic->icq.q->elevator->elevator_data;
918 }
919
920 /*
921 * scheduler run of queue, if there are requests pending and no one in the
922 * driver that will restart queueing
923 */
924 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
925 {
926 if (cfqd->busy_queues) {
927 cfq_log(cfqd, "schedule dispatch");
928 kblockd_schedule_work(&cfqd->unplug_work);
929 }
930 }
931
932 /*
933 * Scale schedule slice based on io priority. Use the sync time slice only
934 * if a queue is marked sync and has sync io queued. A sync queue with async
935 * io only, should not get full sync slice length.
936 */
937 static inline u64 cfq_prio_slice(struct cfq_data *cfqd, bool sync,
938 unsigned short prio)
939 {
940 u64 base_slice = cfqd->cfq_slice[sync];
941 u64 slice = div_u64(base_slice, CFQ_SLICE_SCALE);
942
943 WARN_ON(prio >= IOPRIO_BE_NR);
944
945 return base_slice + (slice * (4 - prio));
946 }
947
948 static inline u64
949 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
950 {
951 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
952 }
953
954 /**
955 * cfqg_scale_charge - scale disk time charge according to cfqg weight
956 * @charge: disk time being charged
957 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
958 *
959 * Scale @charge according to @vfraction, which is in range (0, 1]. The
960 * scaling is inversely proportional.
961 *
962 * scaled = charge / vfraction
963 *
964 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
965 */
966 static inline u64 cfqg_scale_charge(u64 charge,
967 unsigned int vfraction)
968 {
969 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
970
971 /* charge / vfraction */
972 c <<= CFQ_SERVICE_SHIFT;
973 return div_u64(c, vfraction);
974 }
975
976 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
977 {
978 s64 delta = (s64)(vdisktime - min_vdisktime);
979 if (delta > 0)
980 min_vdisktime = vdisktime;
981
982 return min_vdisktime;
983 }
984
985 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
986 {
987 s64 delta = (s64)(vdisktime - min_vdisktime);
988 if (delta < 0)
989 min_vdisktime = vdisktime;
990
991 return min_vdisktime;
992 }
993
994 static void update_min_vdisktime(struct cfq_rb_root *st)
995 {
996 struct cfq_group *cfqg;
997
998 if (st->left) {
999 cfqg = rb_entry_cfqg(st->left);
1000 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
1001 cfqg->vdisktime);
1002 }
1003 }
1004
1005 /*
1006 * get averaged number of queues of RT/BE priority.
1007 * average is updated, with a formula that gives more weight to higher numbers,
1008 * to quickly follows sudden increases and decrease slowly
1009 */
1010
1011 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
1012 struct cfq_group *cfqg, bool rt)
1013 {
1014 unsigned min_q, max_q;
1015 unsigned mult = cfq_hist_divisor - 1;
1016 unsigned round = cfq_hist_divisor / 2;
1017 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1018
1019 min_q = min(cfqg->busy_queues_avg[rt], busy);
1020 max_q = max(cfqg->busy_queues_avg[rt], busy);
1021 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1022 cfq_hist_divisor;
1023 return cfqg->busy_queues_avg[rt];
1024 }
1025
1026 static inline u64
1027 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1028 {
1029 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1030 }
1031
1032 static inline u64
1033 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1034 {
1035 u64 slice = cfq_prio_to_slice(cfqd, cfqq);
1036 if (cfqd->cfq_latency) {
1037 /*
1038 * interested queues (we consider only the ones with the same
1039 * priority class in the cfq group)
1040 */
1041 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1042 cfq_class_rt(cfqq));
1043 u64 sync_slice = cfqd->cfq_slice[1];
1044 u64 expect_latency = sync_slice * iq;
1045 u64 group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1046
1047 if (expect_latency > group_slice) {
1048 u64 base_low_slice = 2 * cfqd->cfq_slice_idle;
1049 u64 low_slice;
1050
1051 /* scale low_slice according to IO priority
1052 * and sync vs async */
1053 low_slice = div64_u64(base_low_slice*slice, sync_slice);
1054 low_slice = min(slice, low_slice);
1055 /* the adapted slice value is scaled to fit all iqs
1056 * into the target latency */
1057 slice = div64_u64(slice*group_slice, expect_latency);
1058 slice = max(slice, low_slice);
1059 }
1060 }
1061 return slice;
1062 }
1063
1064 static inline void
1065 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1066 {
1067 u64 slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1068 u64 now = ktime_get_ns();
1069
1070 cfqq->slice_start = now;
1071 cfqq->slice_end = now + slice;
1072 cfqq->allocated_slice = slice;
1073 cfq_log_cfqq(cfqd, cfqq, "set_slice=%llu", cfqq->slice_end - now);
1074 }
1075
1076 /*
1077 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1078 * isn't valid until the first request from the dispatch is activated
1079 * and the slice time set.
1080 */
1081 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1082 {
1083 if (cfq_cfqq_slice_new(cfqq))
1084 return false;
1085 if (ktime_get_ns() < cfqq->slice_end)
1086 return false;
1087
1088 return true;
1089 }
1090
1091 /*
1092 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1093 * We choose the request that is closest to the head right now. Distance
1094 * behind the head is penalized and only allowed to a certain extent.
1095 */
1096 static struct request *
1097 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1098 {
1099 sector_t s1, s2, d1 = 0, d2 = 0;
1100 unsigned long back_max;
1101 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1102 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1103 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1104
1105 if (rq1 == NULL || rq1 == rq2)
1106 return rq2;
1107 if (rq2 == NULL)
1108 return rq1;
1109
1110 if (rq_is_sync(rq1) != rq_is_sync(rq2))
1111 return rq_is_sync(rq1) ? rq1 : rq2;
1112
1113 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1114 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1115
1116 s1 = blk_rq_pos(rq1);
1117 s2 = blk_rq_pos(rq2);
1118
1119 /*
1120 * by definition, 1KiB is 2 sectors
1121 */
1122 back_max = cfqd->cfq_back_max * 2;
1123
1124 /*
1125 * Strict one way elevator _except_ in the case where we allow
1126 * short backward seeks which are biased as twice the cost of a
1127 * similar forward seek.
1128 */
1129 if (s1 >= last)
1130 d1 = s1 - last;
1131 else if (s1 + back_max >= last)
1132 d1 = (last - s1) * cfqd->cfq_back_penalty;
1133 else
1134 wrap |= CFQ_RQ1_WRAP;
1135
1136 if (s2 >= last)
1137 d2 = s2 - last;
1138 else if (s2 + back_max >= last)
1139 d2 = (last - s2) * cfqd->cfq_back_penalty;
1140 else
1141 wrap |= CFQ_RQ2_WRAP;
1142
1143 /* Found required data */
1144
1145 /*
1146 * By doing switch() on the bit mask "wrap" we avoid having to
1147 * check two variables for all permutations: --> faster!
1148 */
1149 switch (wrap) {
1150 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1151 if (d1 < d2)
1152 return rq1;
1153 else if (d2 < d1)
1154 return rq2;
1155 else {
1156 if (s1 >= s2)
1157 return rq1;
1158 else
1159 return rq2;
1160 }
1161
1162 case CFQ_RQ2_WRAP:
1163 return rq1;
1164 case CFQ_RQ1_WRAP:
1165 return rq2;
1166 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1167 default:
1168 /*
1169 * Since both rqs are wrapped,
1170 * start with the one that's further behind head
1171 * (--> only *one* back seek required),
1172 * since back seek takes more time than forward.
1173 */
1174 if (s1 <= s2)
1175 return rq1;
1176 else
1177 return rq2;
1178 }
1179 }
1180
1181 /*
1182 * The below is leftmost cache rbtree addon
1183 */
1184 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1185 {
1186 /* Service tree is empty */
1187 if (!root->count)
1188 return NULL;
1189
1190 if (!root->left)
1191 root->left = rb_first(&root->rb);
1192
1193 if (root->left)
1194 return rb_entry(root->left, struct cfq_queue, rb_node);
1195
1196 return NULL;
1197 }
1198
1199 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1200 {
1201 if (!root->left)
1202 root->left = rb_first(&root->rb);
1203
1204 if (root->left)
1205 return rb_entry_cfqg(root->left);
1206
1207 return NULL;
1208 }
1209
1210 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1211 {
1212 rb_erase(n, root);
1213 RB_CLEAR_NODE(n);
1214 }
1215
1216 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1217 {
1218 if (root->left == n)
1219 root->left = NULL;
1220 rb_erase_init(n, &root->rb);
1221 --root->count;
1222 }
1223
1224 /*
1225 * would be nice to take fifo expire time into account as well
1226 */
1227 static struct request *
1228 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1229 struct request *last)
1230 {
1231 struct rb_node *rbnext = rb_next(&last->rb_node);
1232 struct rb_node *rbprev = rb_prev(&last->rb_node);
1233 struct request *next = NULL, *prev = NULL;
1234
1235 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1236
1237 if (rbprev)
1238 prev = rb_entry_rq(rbprev);
1239
1240 if (rbnext)
1241 next = rb_entry_rq(rbnext);
1242 else {
1243 rbnext = rb_first(&cfqq->sort_list);
1244 if (rbnext && rbnext != &last->rb_node)
1245 next = rb_entry_rq(rbnext);
1246 }
1247
1248 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1249 }
1250
1251 static u64 cfq_slice_offset(struct cfq_data *cfqd,
1252 struct cfq_queue *cfqq)
1253 {
1254 /*
1255 * just an approximation, should be ok.
1256 */
1257 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1258 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1259 }
1260
1261 static inline s64
1262 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1263 {
1264 return cfqg->vdisktime - st->min_vdisktime;
1265 }
1266
1267 static void
1268 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1269 {
1270 struct rb_node **node = &st->rb.rb_node;
1271 struct rb_node *parent = NULL;
1272 struct cfq_group *__cfqg;
1273 s64 key = cfqg_key(st, cfqg);
1274 int left = 1;
1275
1276 while (*node != NULL) {
1277 parent = *node;
1278 __cfqg = rb_entry_cfqg(parent);
1279
1280 if (key < cfqg_key(st, __cfqg))
1281 node = &parent->rb_left;
1282 else {
1283 node = &parent->rb_right;
1284 left = 0;
1285 }
1286 }
1287
1288 if (left)
1289 st->left = &cfqg->rb_node;
1290
1291 rb_link_node(&cfqg->rb_node, parent, node);
1292 rb_insert_color(&cfqg->rb_node, &st->rb);
1293 }
1294
1295 /*
1296 * This has to be called only on activation of cfqg
1297 */
1298 static void
1299 cfq_update_group_weight(struct cfq_group *cfqg)
1300 {
1301 if (cfqg->new_weight) {
1302 cfqg->weight = cfqg->new_weight;
1303 cfqg->new_weight = 0;
1304 }
1305 }
1306
1307 static void
1308 cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1309 {
1310 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1311
1312 if (cfqg->new_leaf_weight) {
1313 cfqg->leaf_weight = cfqg->new_leaf_weight;
1314 cfqg->new_leaf_weight = 0;
1315 }
1316 }
1317
1318 static void
1319 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1320 {
1321 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1322 struct cfq_group *pos = cfqg;
1323 struct cfq_group *parent;
1324 bool propagate;
1325
1326 /* add to the service tree */
1327 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1328
1329 /*
1330 * Update leaf_weight. We cannot update weight at this point
1331 * because cfqg might already have been activated and is
1332 * contributing its current weight to the parent's child_weight.
1333 */
1334 cfq_update_group_leaf_weight(cfqg);
1335 __cfq_group_service_tree_add(st, cfqg);
1336
1337 /*
1338 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1339 * entitled to. vfraction is calculated by walking the tree
1340 * towards the root calculating the fraction it has at each level.
1341 * The compounded ratio is how much vfraction @cfqg owns.
1342 *
1343 * Start with the proportion tasks in this cfqg has against active
1344 * children cfqgs - its leaf_weight against children_weight.
1345 */
1346 propagate = !pos->nr_active++;
1347 pos->children_weight += pos->leaf_weight;
1348 vfr = vfr * pos->leaf_weight / pos->children_weight;
1349
1350 /*
1351 * Compound ->weight walking up the tree. Both activation and
1352 * vfraction calculation are done in the same loop. Propagation
1353 * stops once an already activated node is met. vfraction
1354 * calculation should always continue to the root.
1355 */
1356 while ((parent = cfqg_parent(pos))) {
1357 if (propagate) {
1358 cfq_update_group_weight(pos);
1359 propagate = !parent->nr_active++;
1360 parent->children_weight += pos->weight;
1361 }
1362 vfr = vfr * pos->weight / parent->children_weight;
1363 pos = parent;
1364 }
1365
1366 cfqg->vfraction = max_t(unsigned, vfr, 1);
1367 }
1368
1369 static inline u64 cfq_get_cfqg_vdisktime_delay(struct cfq_data *cfqd)
1370 {
1371 if (!iops_mode(cfqd))
1372 return CFQ_SLICE_MODE_GROUP_DELAY;
1373 else
1374 return CFQ_IOPS_MODE_GROUP_DELAY;
1375 }
1376
1377 static void
1378 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1379 {
1380 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1381 struct cfq_group *__cfqg;
1382 struct rb_node *n;
1383
1384 cfqg->nr_cfqq++;
1385 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1386 return;
1387
1388 /*
1389 * Currently put the group at the end. Later implement something
1390 * so that groups get lesser vtime based on their weights, so that
1391 * if group does not loose all if it was not continuously backlogged.
1392 */
1393 n = rb_last(&st->rb);
1394 if (n) {
1395 __cfqg = rb_entry_cfqg(n);
1396 cfqg->vdisktime = __cfqg->vdisktime +
1397 cfq_get_cfqg_vdisktime_delay(cfqd);
1398 } else
1399 cfqg->vdisktime = st->min_vdisktime;
1400 cfq_group_service_tree_add(st, cfqg);
1401 }
1402
1403 static void
1404 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1405 {
1406 struct cfq_group *pos = cfqg;
1407 bool propagate;
1408
1409 /*
1410 * Undo activation from cfq_group_service_tree_add(). Deactivate
1411 * @cfqg and propagate deactivation upwards.
1412 */
1413 propagate = !--pos->nr_active;
1414 pos->children_weight -= pos->leaf_weight;
1415
1416 while (propagate) {
1417 struct cfq_group *parent = cfqg_parent(pos);
1418
1419 /* @pos has 0 nr_active at this point */
1420 WARN_ON_ONCE(pos->children_weight);
1421 pos->vfraction = 0;
1422
1423 if (!parent)
1424 break;
1425
1426 propagate = !--parent->nr_active;
1427 parent->children_weight -= pos->weight;
1428 pos = parent;
1429 }
1430
1431 /* remove from the service tree */
1432 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1433 cfq_rb_erase(&cfqg->rb_node, st);
1434 }
1435
1436 static void
1437 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1438 {
1439 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1440
1441 BUG_ON(cfqg->nr_cfqq < 1);
1442 cfqg->nr_cfqq--;
1443
1444 /* If there are other cfq queues under this group, don't delete it */
1445 if (cfqg->nr_cfqq)
1446 return;
1447
1448 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1449 cfq_group_service_tree_del(st, cfqg);
1450 cfqg->saved_wl_slice = 0;
1451 cfqg_stats_update_dequeue(cfqg);
1452 }
1453
1454 static inline u64 cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1455 u64 *unaccounted_time)
1456 {
1457 u64 slice_used;
1458 u64 now = ktime_get_ns();
1459
1460 /*
1461 * Queue got expired before even a single request completed or
1462 * got expired immediately after first request completion.
1463 */
1464 if (!cfqq->slice_start || cfqq->slice_start == now) {
1465 /*
1466 * Also charge the seek time incurred to the group, otherwise
1467 * if there are mutiple queues in the group, each can dispatch
1468 * a single request on seeky media and cause lots of seek time
1469 * and group will never know it.
1470 */
1471 slice_used = max_t(u64, (now - cfqq->dispatch_start),
1472 jiffies_to_nsecs(1));
1473 } else {
1474 slice_used = now - cfqq->slice_start;
1475 if (slice_used > cfqq->allocated_slice) {
1476 *unaccounted_time = slice_used - cfqq->allocated_slice;
1477 slice_used = cfqq->allocated_slice;
1478 }
1479 if (cfqq->slice_start > cfqq->dispatch_start)
1480 *unaccounted_time += cfqq->slice_start -
1481 cfqq->dispatch_start;
1482 }
1483
1484 return slice_used;
1485 }
1486
1487 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1488 struct cfq_queue *cfqq)
1489 {
1490 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1491 u64 used_sl, charge, unaccounted_sl = 0;
1492 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1493 - cfqg->service_tree_idle.count;
1494 unsigned int vfr;
1495 u64 now = ktime_get_ns();
1496
1497 BUG_ON(nr_sync < 0);
1498 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1499
1500 if (iops_mode(cfqd))
1501 charge = cfqq->slice_dispatch;
1502 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1503 charge = cfqq->allocated_slice;
1504
1505 /*
1506 * Can't update vdisktime while on service tree and cfqg->vfraction
1507 * is valid only while on it. Cache vfr, leave the service tree,
1508 * update vdisktime and go back on. The re-addition to the tree
1509 * will also update the weights as necessary.
1510 */
1511 vfr = cfqg->vfraction;
1512 cfq_group_service_tree_del(st, cfqg);
1513 cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1514 cfq_group_service_tree_add(st, cfqg);
1515
1516 /* This group is being expired. Save the context */
1517 if (cfqd->workload_expires > now) {
1518 cfqg->saved_wl_slice = cfqd->workload_expires - now;
1519 cfqg->saved_wl_type = cfqd->serving_wl_type;
1520 cfqg->saved_wl_class = cfqd->serving_wl_class;
1521 } else
1522 cfqg->saved_wl_slice = 0;
1523
1524 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1525 st->min_vdisktime);
1526 cfq_log_cfqq(cfqq->cfqd, cfqq,
1527 "sl_used=%llu disp=%llu charge=%llu iops=%u sect=%lu",
1528 used_sl, cfqq->slice_dispatch, charge,
1529 iops_mode(cfqd), cfqq->nr_sectors);
1530 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1531 cfqg_stats_set_start_empty_time(cfqg);
1532 }
1533
1534 /**
1535 * cfq_init_cfqg_base - initialize base part of a cfq_group
1536 * @cfqg: cfq_group to initialize
1537 *
1538 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1539 * is enabled or not.
1540 */
1541 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1542 {
1543 struct cfq_rb_root *st;
1544 int i, j;
1545
1546 for_each_cfqg_st(cfqg, i, j, st)
1547 *st = CFQ_RB_ROOT;
1548 RB_CLEAR_NODE(&cfqg->rb_node);
1549
1550 cfqg->ttime.last_end_request = ktime_get_ns();
1551 }
1552
1553 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1554 static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1555 bool on_dfl, bool reset_dev, bool is_leaf_weight);
1556
1557 static void cfqg_stats_exit(struct cfqg_stats *stats)
1558 {
1559 blkg_rwstat_exit(&stats->merged);
1560 blkg_rwstat_exit(&stats->service_time);
1561 blkg_rwstat_exit(&stats->wait_time);
1562 blkg_rwstat_exit(&stats->queued);
1563 blkg_stat_exit(&stats->time);
1564 #ifdef CONFIG_DEBUG_BLK_CGROUP
1565 blkg_stat_exit(&stats->unaccounted_time);
1566 blkg_stat_exit(&stats->avg_queue_size_sum);
1567 blkg_stat_exit(&stats->avg_queue_size_samples);
1568 blkg_stat_exit(&stats->dequeue);
1569 blkg_stat_exit(&stats->group_wait_time);
1570 blkg_stat_exit(&stats->idle_time);
1571 blkg_stat_exit(&stats->empty_time);
1572 #endif
1573 }
1574
1575 static int cfqg_stats_init(struct cfqg_stats *stats, gfp_t gfp)
1576 {
1577 if (blkg_rwstat_init(&stats->merged, gfp) ||
1578 blkg_rwstat_init(&stats->service_time, gfp) ||
1579 blkg_rwstat_init(&stats->wait_time, gfp) ||
1580 blkg_rwstat_init(&stats->queued, gfp) ||
1581 blkg_stat_init(&stats->time, gfp))
1582 goto err;
1583
1584 #ifdef CONFIG_DEBUG_BLK_CGROUP
1585 if (blkg_stat_init(&stats->unaccounted_time, gfp) ||
1586 blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
1587 blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
1588 blkg_stat_init(&stats->dequeue, gfp) ||
1589 blkg_stat_init(&stats->group_wait_time, gfp) ||
1590 blkg_stat_init(&stats->idle_time, gfp) ||
1591 blkg_stat_init(&stats->empty_time, gfp))
1592 goto err;
1593 #endif
1594 return 0;
1595 err:
1596 cfqg_stats_exit(stats);
1597 return -ENOMEM;
1598 }
1599
1600 static struct blkcg_policy_data *cfq_cpd_alloc(gfp_t gfp)
1601 {
1602 struct cfq_group_data *cgd;
1603
1604 cgd = kzalloc(sizeof(*cgd), gfp);
1605 if (!cgd)
1606 return NULL;
1607 return &cgd->cpd;
1608 }
1609
1610 static void cfq_cpd_init(struct blkcg_policy_data *cpd)
1611 {
1612 struct cfq_group_data *cgd = cpd_to_cfqgd(cpd);
1613 unsigned int weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ?
1614 CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1615
1616 if (cpd_to_blkcg(cpd) == &blkcg_root)
1617 weight *= 2;
1618
1619 cgd->weight = weight;
1620 cgd->leaf_weight = weight;
1621 }
1622
1623 static void cfq_cpd_free(struct blkcg_policy_data *cpd)
1624 {
1625 kfree(cpd_to_cfqgd(cpd));
1626 }
1627
1628 static void cfq_cpd_bind(struct blkcg_policy_data *cpd)
1629 {
1630 struct blkcg *blkcg = cpd_to_blkcg(cpd);
1631 bool on_dfl = cgroup_subsys_on_dfl(io_cgrp_subsys);
1632 unsigned int weight = on_dfl ? CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1633
1634 if (blkcg == &blkcg_root)
1635 weight *= 2;
1636
1637 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, false));
1638 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, true));
1639 }
1640
1641 static struct blkg_policy_data *cfq_pd_alloc(gfp_t gfp, int node)
1642 {
1643 struct cfq_group *cfqg;
1644
1645 cfqg = kzalloc_node(sizeof(*cfqg), gfp, node);
1646 if (!cfqg)
1647 return NULL;
1648
1649 cfq_init_cfqg_base(cfqg);
1650 if (cfqg_stats_init(&cfqg->stats, gfp)) {
1651 kfree(cfqg);
1652 return NULL;
1653 }
1654
1655 return &cfqg->pd;
1656 }
1657
1658 static void cfq_pd_init(struct blkg_policy_data *pd)
1659 {
1660 struct cfq_group *cfqg = pd_to_cfqg(pd);
1661 struct cfq_group_data *cgd = blkcg_to_cfqgd(pd->blkg->blkcg);
1662
1663 cfqg->weight = cgd->weight;
1664 cfqg->leaf_weight = cgd->leaf_weight;
1665 }
1666
1667 static void cfq_pd_offline(struct blkg_policy_data *pd)
1668 {
1669 struct cfq_group *cfqg = pd_to_cfqg(pd);
1670 int i;
1671
1672 for (i = 0; i < IOPRIO_BE_NR; i++) {
1673 if (cfqg->async_cfqq[0][i])
1674 cfq_put_queue(cfqg->async_cfqq[0][i]);
1675 if (cfqg->async_cfqq[1][i])
1676 cfq_put_queue(cfqg->async_cfqq[1][i]);
1677 }
1678
1679 if (cfqg->async_idle_cfqq)
1680 cfq_put_queue(cfqg->async_idle_cfqq);
1681
1682 /*
1683 * @blkg is going offline and will be ignored by
1684 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1685 * that they don't get lost. If IOs complete after this point, the
1686 * stats for them will be lost. Oh well...
1687 */
1688 cfqg_stats_xfer_dead(cfqg);
1689 }
1690
1691 static void cfq_pd_free(struct blkg_policy_data *pd)
1692 {
1693 struct cfq_group *cfqg = pd_to_cfqg(pd);
1694
1695 cfqg_stats_exit(&cfqg->stats);
1696 return kfree(cfqg);
1697 }
1698
1699 static void cfq_pd_reset_stats(struct blkg_policy_data *pd)
1700 {
1701 struct cfq_group *cfqg = pd_to_cfqg(pd);
1702
1703 cfqg_stats_reset(&cfqg->stats);
1704 }
1705
1706 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
1707 struct blkcg *blkcg)
1708 {
1709 struct blkcg_gq *blkg;
1710
1711 blkg = blkg_lookup(blkcg, cfqd->queue);
1712 if (likely(blkg))
1713 return blkg_to_cfqg(blkg);
1714 return NULL;
1715 }
1716
1717 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1718 {
1719 cfqq->cfqg = cfqg;
1720 /* cfqq reference on cfqg */
1721 cfqg_get(cfqg);
1722 }
1723
1724 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1725 struct blkg_policy_data *pd, int off)
1726 {
1727 struct cfq_group *cfqg = pd_to_cfqg(pd);
1728
1729 if (!cfqg->dev_weight)
1730 return 0;
1731 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1732 }
1733
1734 static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1735 {
1736 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1737 cfqg_prfill_weight_device, &blkcg_policy_cfq,
1738 0, false);
1739 return 0;
1740 }
1741
1742 static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1743 struct blkg_policy_data *pd, int off)
1744 {
1745 struct cfq_group *cfqg = pd_to_cfqg(pd);
1746
1747 if (!cfqg->dev_leaf_weight)
1748 return 0;
1749 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1750 }
1751
1752 static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1753 {
1754 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1755 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1756 0, false);
1757 return 0;
1758 }
1759
1760 static int cfq_print_weight(struct seq_file *sf, void *v)
1761 {
1762 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1763 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1764 unsigned int val = 0;
1765
1766 if (cgd)
1767 val = cgd->weight;
1768
1769 seq_printf(sf, "%u\n", val);
1770 return 0;
1771 }
1772
1773 static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1774 {
1775 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1776 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1777 unsigned int val = 0;
1778
1779 if (cgd)
1780 val = cgd->leaf_weight;
1781
1782 seq_printf(sf, "%u\n", val);
1783 return 0;
1784 }
1785
1786 static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1787 char *buf, size_t nbytes, loff_t off,
1788 bool on_dfl, bool is_leaf_weight)
1789 {
1790 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1791 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1792 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1793 struct blkg_conf_ctx ctx;
1794 struct cfq_group *cfqg;
1795 struct cfq_group_data *cfqgd;
1796 int ret;
1797 u64 v;
1798
1799 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1800 if (ret)
1801 return ret;
1802
1803 if (sscanf(ctx.body, "%llu", &v) == 1) {
1804 /* require "default" on dfl */
1805 ret = -ERANGE;
1806 if (!v && on_dfl)
1807 goto out_finish;
1808 } else if (!strcmp(strim(ctx.body), "default")) {
1809 v = 0;
1810 } else {
1811 ret = -EINVAL;
1812 goto out_finish;
1813 }
1814
1815 cfqg = blkg_to_cfqg(ctx.blkg);
1816 cfqgd = blkcg_to_cfqgd(blkcg);
1817
1818 ret = -ERANGE;
1819 if (!v || (v >= min && v <= max)) {
1820 if (!is_leaf_weight) {
1821 cfqg->dev_weight = v;
1822 cfqg->new_weight = v ?: cfqgd->weight;
1823 } else {
1824 cfqg->dev_leaf_weight = v;
1825 cfqg->new_leaf_weight = v ?: cfqgd->leaf_weight;
1826 }
1827 ret = 0;
1828 }
1829 out_finish:
1830 blkg_conf_finish(&ctx);
1831 return ret ?: nbytes;
1832 }
1833
1834 static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1835 char *buf, size_t nbytes, loff_t off)
1836 {
1837 return __cfqg_set_weight_device(of, buf, nbytes, off, false, false);
1838 }
1839
1840 static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1841 char *buf, size_t nbytes, loff_t off)
1842 {
1843 return __cfqg_set_weight_device(of, buf, nbytes, off, false, true);
1844 }
1845
1846 static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1847 bool on_dfl, bool reset_dev, bool is_leaf_weight)
1848 {
1849 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1850 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1851 struct blkcg *blkcg = css_to_blkcg(css);
1852 struct blkcg_gq *blkg;
1853 struct cfq_group_data *cfqgd;
1854 int ret = 0;
1855
1856 if (val < min || val > max)
1857 return -ERANGE;
1858
1859 spin_lock_irq(&blkcg->lock);
1860 cfqgd = blkcg_to_cfqgd(blkcg);
1861 if (!cfqgd) {
1862 ret = -EINVAL;
1863 goto out;
1864 }
1865
1866 if (!is_leaf_weight)
1867 cfqgd->weight = val;
1868 else
1869 cfqgd->leaf_weight = val;
1870
1871 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1872 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1873
1874 if (!cfqg)
1875 continue;
1876
1877 if (!is_leaf_weight) {
1878 if (reset_dev)
1879 cfqg->dev_weight = 0;
1880 if (!cfqg->dev_weight)
1881 cfqg->new_weight = cfqgd->weight;
1882 } else {
1883 if (reset_dev)
1884 cfqg->dev_leaf_weight = 0;
1885 if (!cfqg->dev_leaf_weight)
1886 cfqg->new_leaf_weight = cfqgd->leaf_weight;
1887 }
1888 }
1889
1890 out:
1891 spin_unlock_irq(&blkcg->lock);
1892 return ret;
1893 }
1894
1895 static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1896 u64 val)
1897 {
1898 return __cfq_set_weight(css, val, false, false, false);
1899 }
1900
1901 static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1902 struct cftype *cft, u64 val)
1903 {
1904 return __cfq_set_weight(css, val, false, false, true);
1905 }
1906
1907 static int cfqg_print_stat(struct seq_file *sf, void *v)
1908 {
1909 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1910 &blkcg_policy_cfq, seq_cft(sf)->private, false);
1911 return 0;
1912 }
1913
1914 static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1915 {
1916 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1917 &blkcg_policy_cfq, seq_cft(sf)->private, true);
1918 return 0;
1919 }
1920
1921 static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1922 struct blkg_policy_data *pd, int off)
1923 {
1924 u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd),
1925 &blkcg_policy_cfq, off);
1926 return __blkg_prfill_u64(sf, pd, sum);
1927 }
1928
1929 static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1930 struct blkg_policy_data *pd, int off)
1931 {
1932 struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd),
1933 &blkcg_policy_cfq, off);
1934 return __blkg_prfill_rwstat(sf, pd, &sum);
1935 }
1936
1937 static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1938 {
1939 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1940 cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1941 seq_cft(sf)->private, false);
1942 return 0;
1943 }
1944
1945 static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1946 {
1947 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1948 cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1949 seq_cft(sf)->private, true);
1950 return 0;
1951 }
1952
1953 static u64 cfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd,
1954 int off)
1955 {
1956 u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes);
1957
1958 return __blkg_prfill_u64(sf, pd, sum >> 9);
1959 }
1960
1961 static int cfqg_print_stat_sectors(struct seq_file *sf, void *v)
1962 {
1963 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1964 cfqg_prfill_sectors, &blkcg_policy_cfq, 0, false);
1965 return 0;
1966 }
1967
1968 static u64 cfqg_prfill_sectors_recursive(struct seq_file *sf,
1969 struct blkg_policy_data *pd, int off)
1970 {
1971 struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL,
1972 offsetof(struct blkcg_gq, stat_bytes));
1973 u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) +
1974 atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]);
1975
1976 return __blkg_prfill_u64(sf, pd, sum >> 9);
1977 }
1978
1979 static int cfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v)
1980 {
1981 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1982 cfqg_prfill_sectors_recursive, &blkcg_policy_cfq, 0,
1983 false);
1984 return 0;
1985 }
1986
1987 #ifdef CONFIG_DEBUG_BLK_CGROUP
1988 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1989 struct blkg_policy_data *pd, int off)
1990 {
1991 struct cfq_group *cfqg = pd_to_cfqg(pd);
1992 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1993 u64 v = 0;
1994
1995 if (samples) {
1996 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1997 v = div64_u64(v, samples);
1998 }
1999 __blkg_prfill_u64(sf, pd, v);
2000 return 0;
2001 }
2002
2003 /* print avg_queue_size */
2004 static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
2005 {
2006 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
2007 cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
2008 0, false);
2009 return 0;
2010 }
2011 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2012
2013 static struct cftype cfq_blkcg_legacy_files[] = {
2014 /* on root, weight is mapped to leaf_weight */
2015 {
2016 .name = "weight_device",
2017 .flags = CFTYPE_ONLY_ON_ROOT,
2018 .seq_show = cfqg_print_leaf_weight_device,
2019 .write = cfqg_set_leaf_weight_device,
2020 },
2021 {
2022 .name = "weight",
2023 .flags = CFTYPE_ONLY_ON_ROOT,
2024 .seq_show = cfq_print_leaf_weight,
2025 .write_u64 = cfq_set_leaf_weight,
2026 },
2027
2028 /* no such mapping necessary for !roots */
2029 {
2030 .name = "weight_device",
2031 .flags = CFTYPE_NOT_ON_ROOT,
2032 .seq_show = cfqg_print_weight_device,
2033 .write = cfqg_set_weight_device,
2034 },
2035 {
2036 .name = "weight",
2037 .flags = CFTYPE_NOT_ON_ROOT,
2038 .seq_show = cfq_print_weight,
2039 .write_u64 = cfq_set_weight,
2040 },
2041
2042 {
2043 .name = "leaf_weight_device",
2044 .seq_show = cfqg_print_leaf_weight_device,
2045 .write = cfqg_set_leaf_weight_device,
2046 },
2047 {
2048 .name = "leaf_weight",
2049 .seq_show = cfq_print_leaf_weight,
2050 .write_u64 = cfq_set_leaf_weight,
2051 },
2052
2053 /* statistics, covers only the tasks in the cfqg */
2054 {
2055 .name = "time",
2056 .private = offsetof(struct cfq_group, stats.time),
2057 .seq_show = cfqg_print_stat,
2058 },
2059 {
2060 .name = "sectors",
2061 .seq_show = cfqg_print_stat_sectors,
2062 },
2063 {
2064 .name = "io_service_bytes",
2065 .private = (unsigned long)&blkcg_policy_cfq,
2066 .seq_show = blkg_print_stat_bytes,
2067 },
2068 {
2069 .name = "io_serviced",
2070 .private = (unsigned long)&blkcg_policy_cfq,
2071 .seq_show = blkg_print_stat_ios,
2072 },
2073 {
2074 .name = "io_service_time",
2075 .private = offsetof(struct cfq_group, stats.service_time),
2076 .seq_show = cfqg_print_rwstat,
2077 },
2078 {
2079 .name = "io_wait_time",
2080 .private = offsetof(struct cfq_group, stats.wait_time),
2081 .seq_show = cfqg_print_rwstat,
2082 },
2083 {
2084 .name = "io_merged",
2085 .private = offsetof(struct cfq_group, stats.merged),
2086 .seq_show = cfqg_print_rwstat,
2087 },
2088 {
2089 .name = "io_queued",
2090 .private = offsetof(struct cfq_group, stats.queued),
2091 .seq_show = cfqg_print_rwstat,
2092 },
2093
2094 /* the same statictics which cover the cfqg and its descendants */
2095 {
2096 .name = "time_recursive",
2097 .private = offsetof(struct cfq_group, stats.time),
2098 .seq_show = cfqg_print_stat_recursive,
2099 },
2100 {
2101 .name = "sectors_recursive",
2102 .seq_show = cfqg_print_stat_sectors_recursive,
2103 },
2104 {
2105 .name = "io_service_bytes_recursive",
2106 .private = (unsigned long)&blkcg_policy_cfq,
2107 .seq_show = blkg_print_stat_bytes_recursive,
2108 },
2109 {
2110 .name = "io_serviced_recursive",
2111 .private = (unsigned long)&blkcg_policy_cfq,
2112 .seq_show = blkg_print_stat_ios_recursive,
2113 },
2114 {
2115 .name = "io_service_time_recursive",
2116 .private = offsetof(struct cfq_group, stats.service_time),
2117 .seq_show = cfqg_print_rwstat_recursive,
2118 },
2119 {
2120 .name = "io_wait_time_recursive",
2121 .private = offsetof(struct cfq_group, stats.wait_time),
2122 .seq_show = cfqg_print_rwstat_recursive,
2123 },
2124 {
2125 .name = "io_merged_recursive",
2126 .private = offsetof(struct cfq_group, stats.merged),
2127 .seq_show = cfqg_print_rwstat_recursive,
2128 },
2129 {
2130 .name = "io_queued_recursive",
2131 .private = offsetof(struct cfq_group, stats.queued),
2132 .seq_show = cfqg_print_rwstat_recursive,
2133 },
2134 #ifdef CONFIG_DEBUG_BLK_CGROUP
2135 {
2136 .name = "avg_queue_size",
2137 .seq_show = cfqg_print_avg_queue_size,
2138 },
2139 {
2140 .name = "group_wait_time",
2141 .private = offsetof(struct cfq_group, stats.group_wait_time),
2142 .seq_show = cfqg_print_stat,
2143 },
2144 {
2145 .name = "idle_time",
2146 .private = offsetof(struct cfq_group, stats.idle_time),
2147 .seq_show = cfqg_print_stat,
2148 },
2149 {
2150 .name = "empty_time",
2151 .private = offsetof(struct cfq_group, stats.empty_time),
2152 .seq_show = cfqg_print_stat,
2153 },
2154 {
2155 .name = "dequeue",
2156 .private = offsetof(struct cfq_group, stats.dequeue),
2157 .seq_show = cfqg_print_stat,
2158 },
2159 {
2160 .name = "unaccounted_time",
2161 .private = offsetof(struct cfq_group, stats.unaccounted_time),
2162 .seq_show = cfqg_print_stat,
2163 },
2164 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2165 { } /* terminate */
2166 };
2167
2168 static int cfq_print_weight_on_dfl(struct seq_file *sf, void *v)
2169 {
2170 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2171 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
2172
2173 seq_printf(sf, "default %u\n", cgd->weight);
2174 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_weight_device,
2175 &blkcg_policy_cfq, 0, false);
2176 return 0;
2177 }
2178
2179 static ssize_t cfq_set_weight_on_dfl(struct kernfs_open_file *of,
2180 char *buf, size_t nbytes, loff_t off)
2181 {
2182 char *endp;
2183 int ret;
2184 u64 v;
2185
2186 buf = strim(buf);
2187
2188 /* "WEIGHT" or "default WEIGHT" sets the default weight */
2189 v = simple_strtoull(buf, &endp, 0);
2190 if (*endp == '\0' || sscanf(buf, "default %llu", &v) == 1) {
2191 ret = __cfq_set_weight(of_css(of), v, true, false, false);
2192 return ret ?: nbytes;
2193 }
2194
2195 /* "MAJ:MIN WEIGHT" */
2196 return __cfqg_set_weight_device(of, buf, nbytes, off, true, false);
2197 }
2198
2199 static struct cftype cfq_blkcg_files[] = {
2200 {
2201 .name = "weight",
2202 .flags = CFTYPE_NOT_ON_ROOT,
2203 .seq_show = cfq_print_weight_on_dfl,
2204 .write = cfq_set_weight_on_dfl,
2205 },
2206 { } /* terminate */
2207 };
2208
2209 #else /* GROUP_IOSCHED */
2210 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
2211 struct blkcg *blkcg)
2212 {
2213 return cfqd->root_group;
2214 }
2215
2216 static inline void
2217 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2218 cfqq->cfqg = cfqg;
2219 }
2220
2221 #endif /* GROUP_IOSCHED */
2222
2223 /*
2224 * The cfqd->service_trees holds all pending cfq_queue's that have
2225 * requests waiting to be processed. It is sorted in the order that
2226 * we will service the queues.
2227 */
2228 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2229 bool add_front)
2230 {
2231 struct rb_node **p, *parent;
2232 struct cfq_queue *__cfqq;
2233 u64 rb_key;
2234 struct cfq_rb_root *st;
2235 int left;
2236 int new_cfqq = 1;
2237 u64 now = ktime_get_ns();
2238
2239 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2240 if (cfq_class_idle(cfqq)) {
2241 rb_key = CFQ_IDLE_DELAY;
2242 parent = rb_last(&st->rb);
2243 if (parent && parent != &cfqq->rb_node) {
2244 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2245 rb_key += __cfqq->rb_key;
2246 } else
2247 rb_key += now;
2248 } else if (!add_front) {
2249 /*
2250 * Get our rb key offset. Subtract any residual slice
2251 * value carried from last service. A negative resid
2252 * count indicates slice overrun, and this should position
2253 * the next service time further away in the tree.
2254 */
2255 rb_key = cfq_slice_offset(cfqd, cfqq) + now;
2256 rb_key -= cfqq->slice_resid;
2257 cfqq->slice_resid = 0;
2258 } else {
2259 rb_key = -NSEC_PER_SEC;
2260 __cfqq = cfq_rb_first(st);
2261 rb_key += __cfqq ? __cfqq->rb_key : now;
2262 }
2263
2264 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2265 new_cfqq = 0;
2266 /*
2267 * same position, nothing more to do
2268 */
2269 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2270 return;
2271
2272 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2273 cfqq->service_tree = NULL;
2274 }
2275
2276 left = 1;
2277 parent = NULL;
2278 cfqq->service_tree = st;
2279 p = &st->rb.rb_node;
2280 while (*p) {
2281 parent = *p;
2282 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2283
2284 /*
2285 * sort by key, that represents service time.
2286 */
2287 if (rb_key < __cfqq->rb_key)
2288 p = &parent->rb_left;
2289 else {
2290 p = &parent->rb_right;
2291 left = 0;
2292 }
2293 }
2294
2295 if (left)
2296 st->left = &cfqq->rb_node;
2297
2298 cfqq->rb_key = rb_key;
2299 rb_link_node(&cfqq->rb_node, parent, p);
2300 rb_insert_color(&cfqq->rb_node, &st->rb);
2301 st->count++;
2302 if (add_front || !new_cfqq)
2303 return;
2304 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2305 }
2306
2307 static struct cfq_queue *
2308 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2309 sector_t sector, struct rb_node **ret_parent,
2310 struct rb_node ***rb_link)
2311 {
2312 struct rb_node **p, *parent;
2313 struct cfq_queue *cfqq = NULL;
2314
2315 parent = NULL;
2316 p = &root->rb_node;
2317 while (*p) {
2318 struct rb_node **n;
2319
2320 parent = *p;
2321 cfqq = rb_entry(parent, struct cfq_queue, p_node);
2322
2323 /*
2324 * Sort strictly based on sector. Smallest to the left,
2325 * largest to the right.
2326 */
2327 if (sector > blk_rq_pos(cfqq->next_rq))
2328 n = &(*p)->rb_right;
2329 else if (sector < blk_rq_pos(cfqq->next_rq))
2330 n = &(*p)->rb_left;
2331 else
2332 break;
2333 p = n;
2334 cfqq = NULL;
2335 }
2336
2337 *ret_parent = parent;
2338 if (rb_link)
2339 *rb_link = p;
2340 return cfqq;
2341 }
2342
2343 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2344 {
2345 struct rb_node **p, *parent;
2346 struct cfq_queue *__cfqq;
2347
2348 if (cfqq->p_root) {
2349 rb_erase(&cfqq->p_node, cfqq->p_root);
2350 cfqq->p_root = NULL;
2351 }
2352
2353 if (cfq_class_idle(cfqq))
2354 return;
2355 if (!cfqq->next_rq)
2356 return;
2357
2358 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2359 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2360 blk_rq_pos(cfqq->next_rq), &parent, &p);
2361 if (!__cfqq) {
2362 rb_link_node(&cfqq->p_node, parent, p);
2363 rb_insert_color(&cfqq->p_node, cfqq->p_root);
2364 } else
2365 cfqq->p_root = NULL;
2366 }
2367
2368 /*
2369 * Update cfqq's position in the service tree.
2370 */
2371 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2372 {
2373 /*
2374 * Resorting requires the cfqq to be on the RR list already.
2375 */
2376 if (cfq_cfqq_on_rr(cfqq)) {
2377 cfq_service_tree_add(cfqd, cfqq, 0);
2378 cfq_prio_tree_add(cfqd, cfqq);
2379 }
2380 }
2381
2382 /*
2383 * add to busy list of queues for service, trying to be fair in ordering
2384 * the pending list according to last request service
2385 */
2386 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2387 {
2388 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2389 BUG_ON(cfq_cfqq_on_rr(cfqq));
2390 cfq_mark_cfqq_on_rr(cfqq);
2391 cfqd->busy_queues++;
2392 if (cfq_cfqq_sync(cfqq))
2393 cfqd->busy_sync_queues++;
2394
2395 cfq_resort_rr_list(cfqd, cfqq);
2396 }
2397
2398 /*
2399 * Called when the cfqq no longer has requests pending, remove it from
2400 * the service tree.
2401 */
2402 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2403 {
2404 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2405 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2406 cfq_clear_cfqq_on_rr(cfqq);
2407
2408 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2409 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2410 cfqq->service_tree = NULL;
2411 }
2412 if (cfqq->p_root) {
2413 rb_erase(&cfqq->p_node, cfqq->p_root);
2414 cfqq->p_root = NULL;
2415 }
2416
2417 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2418 BUG_ON(!cfqd->busy_queues);
2419 cfqd->busy_queues--;
2420 if (cfq_cfqq_sync(cfqq))
2421 cfqd->busy_sync_queues--;
2422 }
2423
2424 /*
2425 * rb tree support functions
2426 */
2427 static void cfq_del_rq_rb(struct request *rq)
2428 {
2429 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2430 const int sync = rq_is_sync(rq);
2431
2432 BUG_ON(!cfqq->queued[sync]);
2433 cfqq->queued[sync]--;
2434
2435 elv_rb_del(&cfqq->sort_list, rq);
2436
2437 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2438 /*
2439 * Queue will be deleted from service tree when we actually
2440 * expire it later. Right now just remove it from prio tree
2441 * as it is empty.
2442 */
2443 if (cfqq->p_root) {
2444 rb_erase(&cfqq->p_node, cfqq->p_root);
2445 cfqq->p_root = NULL;
2446 }
2447 }
2448 }
2449
2450 static void cfq_add_rq_rb(struct request *rq)
2451 {
2452 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2453 struct cfq_data *cfqd = cfqq->cfqd;
2454 struct request *prev;
2455
2456 cfqq->queued[rq_is_sync(rq)]++;
2457
2458 elv_rb_add(&cfqq->sort_list, rq);
2459
2460 if (!cfq_cfqq_on_rr(cfqq))
2461 cfq_add_cfqq_rr(cfqd, cfqq);
2462
2463 /*
2464 * check if this request is a better next-serve candidate
2465 */
2466 prev = cfqq->next_rq;
2467 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2468
2469 /*
2470 * adjust priority tree position, if ->next_rq changes
2471 */
2472 if (prev != cfqq->next_rq)
2473 cfq_prio_tree_add(cfqd, cfqq);
2474
2475 BUG_ON(!cfqq->next_rq);
2476 }
2477
2478 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2479 {
2480 elv_rb_del(&cfqq->sort_list, rq);
2481 cfqq->queued[rq_is_sync(rq)]--;
2482 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2483 cfq_add_rq_rb(rq);
2484 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2485 rq->cmd_flags);
2486 }
2487
2488 static struct request *
2489 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2490 {
2491 struct task_struct *tsk = current;
2492 struct cfq_io_cq *cic;
2493 struct cfq_queue *cfqq;
2494
2495 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2496 if (!cic)
2497 return NULL;
2498
2499 cfqq = cic_to_cfqq(cic, op_is_sync(bio->bi_opf));
2500 if (cfqq)
2501 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2502
2503 return NULL;
2504 }
2505
2506 static void cfq_activate_request(struct request_queue *q, struct request *rq)
2507 {
2508 struct cfq_data *cfqd = q->elevator->elevator_data;
2509
2510 cfqd->rq_in_driver++;
2511 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2512 cfqd->rq_in_driver);
2513
2514 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2515 }
2516
2517 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2518 {
2519 struct cfq_data *cfqd = q->elevator->elevator_data;
2520
2521 WARN_ON(!cfqd->rq_in_driver);
2522 cfqd->rq_in_driver--;
2523 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2524 cfqd->rq_in_driver);
2525 }
2526
2527 static void cfq_remove_request(struct request *rq)
2528 {
2529 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2530
2531 if (cfqq->next_rq == rq)
2532 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2533
2534 list_del_init(&rq->queuelist);
2535 cfq_del_rq_rb(rq);
2536
2537 cfqq->cfqd->rq_queued--;
2538 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2539 if (rq->cmd_flags & REQ_PRIO) {
2540 WARN_ON(!cfqq->prio_pending);
2541 cfqq->prio_pending--;
2542 }
2543 }
2544
2545 static enum elv_merge cfq_merge(struct request_queue *q, struct request **req,
2546 struct bio *bio)
2547 {
2548 struct cfq_data *cfqd = q->elevator->elevator_data;
2549 struct request *__rq;
2550
2551 __rq = cfq_find_rq_fmerge(cfqd, bio);
2552 if (__rq && elv_bio_merge_ok(__rq, bio)) {
2553 *req = __rq;
2554 return ELEVATOR_FRONT_MERGE;
2555 }
2556
2557 return ELEVATOR_NO_MERGE;
2558 }
2559
2560 static void cfq_merged_request(struct request_queue *q, struct request *req,
2561 enum elv_merge type)
2562 {
2563 if (type == ELEVATOR_FRONT_MERGE) {
2564 struct cfq_queue *cfqq = RQ_CFQQ(req);
2565
2566 cfq_reposition_rq_rb(cfqq, req);
2567 }
2568 }
2569
2570 static void cfq_bio_merged(struct request_queue *q, struct request *req,
2571 struct bio *bio)
2572 {
2573 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_opf);
2574 }
2575
2576 static void
2577 cfq_merged_requests(struct request_queue *q, struct request *rq,
2578 struct request *next)
2579 {
2580 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2581 struct cfq_data *cfqd = q->elevator->elevator_data;
2582
2583 /*
2584 * reposition in fifo if next is older than rq
2585 */
2586 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2587 next->fifo_time < rq->fifo_time &&
2588 cfqq == RQ_CFQQ(next)) {
2589 list_move(&rq->queuelist, &next->queuelist);
2590 rq->fifo_time = next->fifo_time;
2591 }
2592
2593 if (cfqq->next_rq == next)
2594 cfqq->next_rq = rq;
2595 cfq_remove_request(next);
2596 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2597
2598 cfqq = RQ_CFQQ(next);
2599 /*
2600 * all requests of this queue are merged to other queues, delete it
2601 * from the service tree. If it's the active_queue,
2602 * cfq_dispatch_requests() will choose to expire it or do idle
2603 */
2604 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2605 cfqq != cfqd->active_queue)
2606 cfq_del_cfqq_rr(cfqd, cfqq);
2607 }
2608
2609 static int cfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2610 struct bio *bio)
2611 {
2612 struct cfq_data *cfqd = q->elevator->elevator_data;
2613 bool is_sync = op_is_sync(bio->bi_opf);
2614 struct cfq_io_cq *cic;
2615 struct cfq_queue *cfqq;
2616
2617 /*
2618 * Disallow merge of a sync bio into an async request.
2619 */
2620 if (is_sync && !rq_is_sync(rq))
2621 return false;
2622
2623 /*
2624 * Lookup the cfqq that this bio will be queued with and allow
2625 * merge only if rq is queued there.
2626 */
2627 cic = cfq_cic_lookup(cfqd, current->io_context);
2628 if (!cic)
2629 return false;
2630
2631 cfqq = cic_to_cfqq(cic, is_sync);
2632 return cfqq == RQ_CFQQ(rq);
2633 }
2634
2635 static int cfq_allow_rq_merge(struct request_queue *q, struct request *rq,
2636 struct request *next)
2637 {
2638 return RQ_CFQQ(rq) == RQ_CFQQ(next);
2639 }
2640
2641 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2642 {
2643 hrtimer_try_to_cancel(&cfqd->idle_slice_timer);
2644 cfqg_stats_update_idle_time(cfqq->cfqg);
2645 }
2646
2647 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2648 struct cfq_queue *cfqq)
2649 {
2650 if (cfqq) {
2651 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2652 cfqd->serving_wl_class, cfqd->serving_wl_type);
2653 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2654 cfqq->slice_start = 0;
2655 cfqq->dispatch_start = ktime_get_ns();
2656 cfqq->allocated_slice = 0;
2657 cfqq->slice_end = 0;
2658 cfqq->slice_dispatch = 0;
2659 cfqq->nr_sectors = 0;
2660
2661 cfq_clear_cfqq_wait_request(cfqq);
2662 cfq_clear_cfqq_must_dispatch(cfqq);
2663 cfq_clear_cfqq_must_alloc_slice(cfqq);
2664 cfq_clear_cfqq_fifo_expire(cfqq);
2665 cfq_mark_cfqq_slice_new(cfqq);
2666
2667 cfq_del_timer(cfqd, cfqq);
2668 }
2669
2670 cfqd->active_queue = cfqq;
2671 }
2672
2673 /*
2674 * current cfqq expired its slice (or was too idle), select new one
2675 */
2676 static void
2677 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2678 bool timed_out)
2679 {
2680 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2681
2682 if (cfq_cfqq_wait_request(cfqq))
2683 cfq_del_timer(cfqd, cfqq);
2684
2685 cfq_clear_cfqq_wait_request(cfqq);
2686 cfq_clear_cfqq_wait_busy(cfqq);
2687
2688 /*
2689 * If this cfqq is shared between multiple processes, check to
2690 * make sure that those processes are still issuing I/Os within
2691 * the mean seek distance. If not, it may be time to break the
2692 * queues apart again.
2693 */
2694 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2695 cfq_mark_cfqq_split_coop(cfqq);
2696
2697 /*
2698 * store what was left of this slice, if the queue idled/timed out
2699 */
2700 if (timed_out) {
2701 if (cfq_cfqq_slice_new(cfqq))
2702 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2703 else
2704 cfqq->slice_resid = cfqq->slice_end - ktime_get_ns();
2705 cfq_log_cfqq(cfqd, cfqq, "resid=%lld", cfqq->slice_resid);
2706 }
2707
2708 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2709
2710 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2711 cfq_del_cfqq_rr(cfqd, cfqq);
2712
2713 cfq_resort_rr_list(cfqd, cfqq);
2714
2715 if (cfqq == cfqd->active_queue)
2716 cfqd->active_queue = NULL;
2717
2718 if (cfqd->active_cic) {
2719 put_io_context(cfqd->active_cic->icq.ioc);
2720 cfqd->active_cic = NULL;
2721 }
2722 }
2723
2724 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2725 {
2726 struct cfq_queue *cfqq = cfqd->active_queue;
2727
2728 if (cfqq)
2729 __cfq_slice_expired(cfqd, cfqq, timed_out);
2730 }
2731
2732 /*
2733 * Get next queue for service. Unless we have a queue preemption,
2734 * we'll simply select the first cfqq in the service tree.
2735 */
2736 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2737 {
2738 struct cfq_rb_root *st = st_for(cfqd->serving_group,
2739 cfqd->serving_wl_class, cfqd->serving_wl_type);
2740
2741 if (!cfqd->rq_queued)
2742 return NULL;
2743
2744 /* There is nothing to dispatch */
2745 if (!st)
2746 return NULL;
2747 if (RB_EMPTY_ROOT(&st->rb))
2748 return NULL;
2749 return cfq_rb_first(st);
2750 }
2751
2752 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2753 {
2754 struct cfq_group *cfqg;
2755 struct cfq_queue *cfqq;
2756 int i, j;
2757 struct cfq_rb_root *st;
2758
2759 if (!cfqd->rq_queued)
2760 return NULL;
2761
2762 cfqg = cfq_get_next_cfqg(cfqd);
2763 if (!cfqg)
2764 return NULL;
2765
2766 for_each_cfqg_st(cfqg, i, j, st) {
2767 cfqq = cfq_rb_first(st);
2768 if (cfqq)
2769 return cfqq;
2770 }
2771 return NULL;
2772 }
2773
2774 /*
2775 * Get and set a new active queue for service.
2776 */
2777 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2778 struct cfq_queue *cfqq)
2779 {
2780 if (!cfqq)
2781 cfqq = cfq_get_next_queue(cfqd);
2782
2783 __cfq_set_active_queue(cfqd, cfqq);
2784 return cfqq;
2785 }
2786
2787 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2788 struct request *rq)
2789 {
2790 if (blk_rq_pos(rq) >= cfqd->last_position)
2791 return blk_rq_pos(rq) - cfqd->last_position;
2792 else
2793 return cfqd->last_position - blk_rq_pos(rq);
2794 }
2795
2796 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2797 struct request *rq)
2798 {
2799 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2800 }
2801
2802 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2803 struct cfq_queue *cur_cfqq)
2804 {
2805 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2806 struct rb_node *parent, *node;
2807 struct cfq_queue *__cfqq;
2808 sector_t sector = cfqd->last_position;
2809
2810 if (RB_EMPTY_ROOT(root))
2811 return NULL;
2812
2813 /*
2814 * First, if we find a request starting at the end of the last
2815 * request, choose it.
2816 */
2817 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2818 if (__cfqq)
2819 return __cfqq;
2820
2821 /*
2822 * If the exact sector wasn't found, the parent of the NULL leaf
2823 * will contain the closest sector.
2824 */
2825 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2826 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2827 return __cfqq;
2828
2829 if (blk_rq_pos(__cfqq->next_rq) < sector)
2830 node = rb_next(&__cfqq->p_node);
2831 else
2832 node = rb_prev(&__cfqq->p_node);
2833 if (!node)
2834 return NULL;
2835
2836 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2837 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2838 return __cfqq;
2839
2840 return NULL;
2841 }
2842
2843 /*
2844 * cfqd - obvious
2845 * cur_cfqq - passed in so that we don't decide that the current queue is
2846 * closely cooperating with itself.
2847 *
2848 * So, basically we're assuming that that cur_cfqq has dispatched at least
2849 * one request, and that cfqd->last_position reflects a position on the disk
2850 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2851 * assumption.
2852 */
2853 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2854 struct cfq_queue *cur_cfqq)
2855 {
2856 struct cfq_queue *cfqq;
2857
2858 if (cfq_class_idle(cur_cfqq))
2859 return NULL;
2860 if (!cfq_cfqq_sync(cur_cfqq))
2861 return NULL;
2862 if (CFQQ_SEEKY(cur_cfqq))
2863 return NULL;
2864
2865 /*
2866 * Don't search priority tree if it's the only queue in the group.
2867 */
2868 if (cur_cfqq->cfqg->nr_cfqq == 1)
2869 return NULL;
2870
2871 /*
2872 * We should notice if some of the queues are cooperating, eg
2873 * working closely on the same area of the disk. In that case,
2874 * we can group them together and don't waste time idling.
2875 */
2876 cfqq = cfqq_close(cfqd, cur_cfqq);
2877 if (!cfqq)
2878 return NULL;
2879
2880 /* If new queue belongs to different cfq_group, don't choose it */
2881 if (cur_cfqq->cfqg != cfqq->cfqg)
2882 return NULL;
2883
2884 /*
2885 * It only makes sense to merge sync queues.
2886 */
2887 if (!cfq_cfqq_sync(cfqq))
2888 return NULL;
2889 if (CFQQ_SEEKY(cfqq))
2890 return NULL;
2891
2892 /*
2893 * Do not merge queues of different priority classes
2894 */
2895 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2896 return NULL;
2897
2898 return cfqq;
2899 }
2900
2901 /*
2902 * Determine whether we should enforce idle window for this queue.
2903 */
2904
2905 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2906 {
2907 enum wl_class_t wl_class = cfqq_class(cfqq);
2908 struct cfq_rb_root *st = cfqq->service_tree;
2909
2910 BUG_ON(!st);
2911 BUG_ON(!st->count);
2912
2913 if (!cfqd->cfq_slice_idle)
2914 return false;
2915
2916 /* We never do for idle class queues. */
2917 if (wl_class == IDLE_WORKLOAD)
2918 return false;
2919
2920 /* We do for queues that were marked with idle window flag. */
2921 if (cfq_cfqq_idle_window(cfqq) &&
2922 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2923 return true;
2924
2925 /*
2926 * Otherwise, we do only if they are the last ones
2927 * in their service tree.
2928 */
2929 if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2930 !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2931 return true;
2932 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2933 return false;
2934 }
2935
2936 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2937 {
2938 struct cfq_queue *cfqq = cfqd->active_queue;
2939 struct cfq_rb_root *st = cfqq->service_tree;
2940 struct cfq_io_cq *cic;
2941 u64 sl, group_idle = 0;
2942 u64 now = ktime_get_ns();
2943
2944 /*
2945 * SSD device without seek penalty, disable idling. But only do so
2946 * for devices that support queuing, otherwise we still have a problem
2947 * with sync vs async workloads.
2948 */
2949 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2950 return;
2951
2952 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2953 WARN_ON(cfq_cfqq_slice_new(cfqq));
2954
2955 /*
2956 * idle is disabled, either manually or by past process history
2957 */
2958 if (!cfq_should_idle(cfqd, cfqq)) {
2959 /* no queue idling. Check for group idling */
2960 if (cfqd->cfq_group_idle)
2961 group_idle = cfqd->cfq_group_idle;
2962 else
2963 return;
2964 }
2965
2966 /*
2967 * still active requests from this queue, don't idle
2968 */
2969 if (cfqq->dispatched)
2970 return;
2971
2972 /*
2973 * task has exited, don't wait
2974 */
2975 cic = cfqd->active_cic;
2976 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2977 return;
2978
2979 /*
2980 * If our average think time is larger than the remaining time
2981 * slice, then don't idle. This avoids overrunning the allotted
2982 * time slice.
2983 */
2984 if (sample_valid(cic->ttime.ttime_samples) &&
2985 (cfqq->slice_end - now < cic->ttime.ttime_mean)) {
2986 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%llu",
2987 cic->ttime.ttime_mean);
2988 return;
2989 }
2990
2991 /*
2992 * There are other queues in the group or this is the only group and
2993 * it has too big thinktime, don't do group idle.
2994 */
2995 if (group_idle &&
2996 (cfqq->cfqg->nr_cfqq > 1 ||
2997 cfq_io_thinktime_big(cfqd, &st->ttime, true)))
2998 return;
2999
3000 cfq_mark_cfqq_wait_request(cfqq);
3001
3002 if (group_idle)
3003 sl = cfqd->cfq_group_idle;
3004 else
3005 sl = cfqd->cfq_slice_idle;
3006
3007 hrtimer_start(&cfqd->idle_slice_timer, ns_to_ktime(sl),
3008 HRTIMER_MODE_REL);
3009 cfqg_stats_set_start_idle_time(cfqq->cfqg);
3010 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %llu group_idle: %d", sl,
3011 group_idle ? 1 : 0);
3012 }
3013
3014 /*
3015 * Move request from internal lists to the request queue dispatch list.
3016 */
3017 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
3018 {
3019 struct cfq_data *cfqd = q->elevator->elevator_data;
3020 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3021
3022 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
3023
3024 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
3025 cfq_remove_request(rq);
3026 cfqq->dispatched++;
3027 (RQ_CFQG(rq))->dispatched++;
3028 elv_dispatch_sort(q, rq);
3029
3030 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
3031 cfqq->nr_sectors += blk_rq_sectors(rq);
3032 }
3033
3034 /*
3035 * return expired entry, or NULL to just start from scratch in rbtree
3036 */
3037 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
3038 {
3039 struct request *rq = NULL;
3040
3041 if (cfq_cfqq_fifo_expire(cfqq))
3042 return NULL;
3043
3044 cfq_mark_cfqq_fifo_expire(cfqq);
3045
3046 if (list_empty(&cfqq->fifo))
3047 return NULL;
3048
3049 rq = rq_entry_fifo(cfqq->fifo.next);
3050 if (ktime_get_ns() < rq->fifo_time)
3051 rq = NULL;
3052
3053 return rq;
3054 }
3055
3056 static inline int
3057 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3058 {
3059 const int base_rq = cfqd->cfq_slice_async_rq;
3060
3061 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
3062
3063 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
3064 }
3065
3066 /*
3067 * Must be called with the queue_lock held.
3068 */
3069 static int cfqq_process_refs(struct cfq_queue *cfqq)
3070 {
3071 int process_refs, io_refs;
3072
3073 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
3074 process_refs = cfqq->ref - io_refs;
3075 BUG_ON(process_refs < 0);
3076 return process_refs;
3077 }
3078
3079 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
3080 {
3081 int process_refs, new_process_refs;
3082 struct cfq_queue *__cfqq;
3083
3084 /*
3085 * If there are no process references on the new_cfqq, then it is
3086 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
3087 * chain may have dropped their last reference (not just their
3088 * last process reference).
3089 */
3090 if (!cfqq_process_refs(new_cfqq))
3091 return;
3092
3093 /* Avoid a circular list and skip interim queue merges */
3094 while ((__cfqq = new_cfqq->new_cfqq)) {
3095 if (__cfqq == cfqq)
3096 return;
3097 new_cfqq = __cfqq;
3098 }
3099
3100 process_refs = cfqq_process_refs(cfqq);
3101 new_process_refs = cfqq_process_refs(new_cfqq);
3102 /*
3103 * If the process for the cfqq has gone away, there is no
3104 * sense in merging the queues.
3105 */
3106 if (process_refs == 0 || new_process_refs == 0)
3107 return;
3108
3109 /*
3110 * Merge in the direction of the lesser amount of work.
3111 */
3112 if (new_process_refs >= process_refs) {
3113 cfqq->new_cfqq = new_cfqq;
3114 new_cfqq->ref += process_refs;
3115 } else {
3116 new_cfqq->new_cfqq = cfqq;
3117 cfqq->ref += new_process_refs;
3118 }
3119 }
3120
3121 static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
3122 struct cfq_group *cfqg, enum wl_class_t wl_class)
3123 {
3124 struct cfq_queue *queue;
3125 int i;
3126 bool key_valid = false;
3127 u64 lowest_key = 0;
3128 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
3129
3130 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
3131 /* select the one with lowest rb_key */
3132 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
3133 if (queue &&
3134 (!key_valid || queue->rb_key < lowest_key)) {
3135 lowest_key = queue->rb_key;
3136 cur_best = i;
3137 key_valid = true;
3138 }
3139 }
3140
3141 return cur_best;
3142 }
3143
3144 static void
3145 choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
3146 {
3147 u64 slice;
3148 unsigned count;
3149 struct cfq_rb_root *st;
3150 u64 group_slice;
3151 enum wl_class_t original_class = cfqd->serving_wl_class;
3152 u64 now = ktime_get_ns();
3153
3154 /* Choose next priority. RT > BE > IDLE */
3155 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
3156 cfqd->serving_wl_class = RT_WORKLOAD;
3157 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
3158 cfqd->serving_wl_class = BE_WORKLOAD;
3159 else {
3160 cfqd->serving_wl_class = IDLE_WORKLOAD;
3161 cfqd->workload_expires = now + jiffies_to_nsecs(1);
3162 return;
3163 }
3164
3165 if (original_class != cfqd->serving_wl_class)
3166 goto new_workload;
3167
3168 /*
3169 * For RT and BE, we have to choose also the type
3170 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3171 * expiration time
3172 */
3173 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3174 count = st->count;
3175
3176 /*
3177 * check workload expiration, and that we still have other queues ready
3178 */
3179 if (count && !(now > cfqd->workload_expires))
3180 return;
3181
3182 new_workload:
3183 /* otherwise select new workload type */
3184 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
3185 cfqd->serving_wl_class);
3186 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3187 count = st->count;
3188
3189 /*
3190 * the workload slice is computed as a fraction of target latency
3191 * proportional to the number of queues in that workload, over
3192 * all the queues in the same priority class
3193 */
3194 group_slice = cfq_group_slice(cfqd, cfqg);
3195
3196 slice = div_u64(group_slice * count,
3197 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
3198 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
3199 cfqg)));
3200
3201 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
3202 u64 tmp;
3203
3204 /*
3205 * Async queues are currently system wide. Just taking
3206 * proportion of queues with-in same group will lead to higher
3207 * async ratio system wide as generally root group is going
3208 * to have higher weight. A more accurate thing would be to
3209 * calculate system wide asnc/sync ratio.
3210 */
3211 tmp = cfqd->cfq_target_latency *
3212 cfqg_busy_async_queues(cfqd, cfqg);
3213 tmp = div_u64(tmp, cfqd->busy_queues);
3214 slice = min_t(u64, slice, tmp);
3215
3216 /* async workload slice is scaled down according to
3217 * the sync/async slice ratio. */
3218 slice = div64_u64(slice*cfqd->cfq_slice[0], cfqd->cfq_slice[1]);
3219 } else
3220 /* sync workload slice is at least 2 * cfq_slice_idle */
3221 slice = max(slice, 2 * cfqd->cfq_slice_idle);
3222
3223 slice = max_t(u64, slice, CFQ_MIN_TT);
3224 cfq_log(cfqd, "workload slice:%llu", slice);
3225 cfqd->workload_expires = now + slice;
3226 }
3227
3228 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3229 {
3230 struct cfq_rb_root *st = &cfqd->grp_service_tree;
3231 struct cfq_group *cfqg;
3232
3233 if (RB_EMPTY_ROOT(&st->rb))
3234 return NULL;
3235 cfqg = cfq_rb_first_group(st);
3236 update_min_vdisktime(st);
3237 return cfqg;
3238 }
3239
3240 static void cfq_choose_cfqg(struct cfq_data *cfqd)
3241 {
3242 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3243 u64 now = ktime_get_ns();
3244
3245 cfqd->serving_group = cfqg;
3246
3247 /* Restore the workload type data */
3248 if (cfqg->saved_wl_slice) {
3249 cfqd->workload_expires = now + cfqg->saved_wl_slice;
3250 cfqd->serving_wl_type = cfqg->saved_wl_type;
3251 cfqd->serving_wl_class = cfqg->saved_wl_class;
3252 } else
3253 cfqd->workload_expires = now - 1;
3254
3255 choose_wl_class_and_type(cfqd, cfqg);
3256 }
3257
3258 /*
3259 * Select a queue for service. If we have a current active queue,
3260 * check whether to continue servicing it, or retrieve and set a new one.
3261 */
3262 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3263 {
3264 struct cfq_queue *cfqq, *new_cfqq = NULL;
3265 u64 now = ktime_get_ns();
3266
3267 cfqq = cfqd->active_queue;
3268 if (!cfqq)
3269 goto new_queue;
3270
3271 if (!cfqd->rq_queued)
3272 return NULL;
3273
3274 /*
3275 * We were waiting for group to get backlogged. Expire the queue
3276 */
3277 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3278 goto expire;
3279
3280 /*
3281 * The active queue has run out of time, expire it and select new.
3282 */
3283 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3284 /*
3285 * If slice had not expired at the completion of last request
3286 * we might not have turned on wait_busy flag. Don't expire
3287 * the queue yet. Allow the group to get backlogged.
3288 *
3289 * The very fact that we have used the slice, that means we
3290 * have been idling all along on this queue and it should be
3291 * ok to wait for this request to complete.
3292 */
3293 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3294 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3295 cfqq = NULL;
3296 goto keep_queue;
3297 } else
3298 goto check_group_idle;
3299 }
3300
3301 /*
3302 * The active queue has requests and isn't expired, allow it to
3303 * dispatch.
3304 */
3305 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3306 goto keep_queue;
3307
3308 /*
3309 * If another queue has a request waiting within our mean seek
3310 * distance, let it run. The expire code will check for close
3311 * cooperators and put the close queue at the front of the service
3312 * tree. If possible, merge the expiring queue with the new cfqq.
3313 */
3314 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3315 if (new_cfqq) {
3316 if (!cfqq->new_cfqq)
3317 cfq_setup_merge(cfqq, new_cfqq);
3318 goto expire;
3319 }
3320
3321 /*
3322 * No requests pending. If the active queue still has requests in
3323 * flight or is idling for a new request, allow either of these
3324 * conditions to happen (or time out) before selecting a new queue.
3325 */
3326 if (hrtimer_active(&cfqd->idle_slice_timer)) {
3327 cfqq = NULL;
3328 goto keep_queue;
3329 }
3330
3331 /*
3332 * This is a deep seek queue, but the device is much faster than
3333 * the queue can deliver, don't idle
3334 **/
3335 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3336 (cfq_cfqq_slice_new(cfqq) ||
3337 (cfqq->slice_end - now > now - cfqq->slice_start))) {
3338 cfq_clear_cfqq_deep(cfqq);
3339 cfq_clear_cfqq_idle_window(cfqq);
3340 }
3341
3342 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3343 cfqq = NULL;
3344 goto keep_queue;
3345 }
3346
3347 /*
3348 * If group idle is enabled and there are requests dispatched from
3349 * this group, wait for requests to complete.
3350 */
3351 check_group_idle:
3352 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3353 cfqq->cfqg->dispatched &&
3354 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3355 cfqq = NULL;
3356 goto keep_queue;
3357 }
3358
3359 expire:
3360 cfq_slice_expired(cfqd, 0);
3361 new_queue:
3362 /*
3363 * Current queue expired. Check if we have to switch to a new
3364 * service tree
3365 */
3366 if (!new_cfqq)
3367 cfq_choose_cfqg(cfqd);
3368
3369 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3370 keep_queue:
3371 return cfqq;
3372 }
3373
3374 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3375 {
3376 int dispatched = 0;
3377
3378 while (cfqq->next_rq) {
3379 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3380 dispatched++;
3381 }
3382
3383 BUG_ON(!list_empty(&cfqq->fifo));
3384
3385 /* By default cfqq is not expired if it is empty. Do it explicitly */
3386 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3387 return dispatched;
3388 }
3389
3390 /*
3391 * Drain our current requests. Used for barriers and when switching
3392 * io schedulers on-the-fly.
3393 */
3394 static int cfq_forced_dispatch(struct cfq_data *cfqd)
3395 {
3396 struct cfq_queue *cfqq;
3397 int dispatched = 0;
3398
3399 /* Expire the timeslice of the current active queue first */
3400 cfq_slice_expired(cfqd, 0);
3401 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3402 __cfq_set_active_queue(cfqd, cfqq);
3403 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3404 }
3405
3406 BUG_ON(cfqd->busy_queues);
3407
3408 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3409 return dispatched;
3410 }
3411
3412 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3413 struct cfq_queue *cfqq)
3414 {
3415 u64 now = ktime_get_ns();
3416
3417 /* the queue hasn't finished any request, can't estimate */
3418 if (cfq_cfqq_slice_new(cfqq))
3419 return true;
3420 if (now + cfqd->cfq_slice_idle * cfqq->dispatched > cfqq->slice_end)
3421 return true;
3422
3423 return false;
3424 }
3425
3426 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3427 {
3428 unsigned int max_dispatch;
3429
3430 if (cfq_cfqq_must_dispatch(cfqq))
3431 return true;
3432
3433 /*
3434 * Drain async requests before we start sync IO
3435 */
3436 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3437 return false;
3438
3439 /*
3440 * If this is an async queue and we have sync IO in flight, let it wait
3441 */
3442 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3443 return false;
3444
3445 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3446 if (cfq_class_idle(cfqq))
3447 max_dispatch = 1;
3448
3449 /*
3450 * Does this cfqq already have too much IO in flight?
3451 */
3452 if (cfqq->dispatched >= max_dispatch) {
3453 bool promote_sync = false;
3454 /*
3455 * idle queue must always only have a single IO in flight
3456 */
3457 if (cfq_class_idle(cfqq))
3458 return false;
3459
3460 /*
3461 * If there is only one sync queue
3462 * we can ignore async queue here and give the sync
3463 * queue no dispatch limit. The reason is a sync queue can
3464 * preempt async queue, limiting the sync queue doesn't make
3465 * sense. This is useful for aiostress test.
3466 */
3467 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3468 promote_sync = true;
3469
3470 /*
3471 * We have other queues, don't allow more IO from this one
3472 */
3473 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3474 !promote_sync)
3475 return false;
3476
3477 /*
3478 * Sole queue user, no limit
3479 */
3480 if (cfqd->busy_queues == 1 || promote_sync)
3481 max_dispatch = -1;
3482 else
3483 /*
3484 * Normally we start throttling cfqq when cfq_quantum/2
3485 * requests have been dispatched. But we can drive
3486 * deeper queue depths at the beginning of slice
3487 * subjected to upper limit of cfq_quantum.
3488 * */
3489 max_dispatch = cfqd->cfq_quantum;
3490 }
3491
3492 /*
3493 * Async queues must wait a bit before being allowed dispatch.
3494 * We also ramp up the dispatch depth gradually for async IO,
3495 * based on the last sync IO we serviced
3496 */
3497 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3498 u64 last_sync = ktime_get_ns() - cfqd->last_delayed_sync;
3499 unsigned int depth;
3500
3501 depth = div64_u64(last_sync, cfqd->cfq_slice[1]);
3502 if (!depth && !cfqq->dispatched)
3503 depth = 1;
3504 if (depth < max_dispatch)
3505 max_dispatch = depth;
3506 }
3507
3508 /*
3509 * If we're below the current max, allow a dispatch
3510 */
3511 return cfqq->dispatched < max_dispatch;
3512 }
3513
3514 /*
3515 * Dispatch a request from cfqq, moving them to the request queue
3516 * dispatch list.
3517 */
3518 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3519 {
3520 struct request *rq;
3521
3522 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3523
3524 rq = cfq_check_fifo(cfqq);
3525 if (rq)
3526 cfq_mark_cfqq_must_dispatch(cfqq);
3527
3528 if (!cfq_may_dispatch(cfqd, cfqq))
3529 return false;
3530
3531 /*
3532 * follow expired path, else get first next available
3533 */
3534 if (!rq)
3535 rq = cfqq->next_rq;
3536 else
3537 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
3538
3539 /*
3540 * insert request into driver dispatch list
3541 */
3542 cfq_dispatch_insert(cfqd->queue, rq);
3543
3544 if (!cfqd->active_cic) {
3545 struct cfq_io_cq *cic = RQ_CIC(rq);
3546
3547 atomic_long_inc(&cic->icq.ioc->refcount);
3548 cfqd->active_cic = cic;
3549 }
3550
3551 return true;
3552 }
3553
3554 /*
3555 * Find the cfqq that we need to service and move a request from that to the
3556 * dispatch list
3557 */
3558 static int cfq_dispatch_requests(struct request_queue *q, int force)
3559 {
3560 struct cfq_data *cfqd = q->elevator->elevator_data;
3561 struct cfq_queue *cfqq;
3562
3563 if (!cfqd->busy_queues)
3564 return 0;
3565
3566 if (unlikely(force))
3567 return cfq_forced_dispatch(cfqd);
3568
3569 cfqq = cfq_select_queue(cfqd);
3570 if (!cfqq)
3571 return 0;
3572
3573 /*
3574 * Dispatch a request from this cfqq, if it is allowed
3575 */
3576 if (!cfq_dispatch_request(cfqd, cfqq))
3577 return 0;
3578
3579 cfqq->slice_dispatch++;
3580 cfq_clear_cfqq_must_dispatch(cfqq);
3581
3582 /*
3583 * expire an async queue immediately if it has used up its slice. idle
3584 * queue always expire after 1 dispatch round.
3585 */
3586 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3587 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3588 cfq_class_idle(cfqq))) {
3589 cfqq->slice_end = ktime_get_ns() + 1;
3590 cfq_slice_expired(cfqd, 0);
3591 }
3592
3593 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3594 return 1;
3595 }
3596
3597 /*
3598 * task holds one reference to the queue, dropped when task exits. each rq
3599 * in-flight on this queue also holds a reference, dropped when rq is freed.
3600 *
3601 * Each cfq queue took a reference on the parent group. Drop it now.
3602 * queue lock must be held here.
3603 */
3604 static void cfq_put_queue(struct cfq_queue *cfqq)
3605 {
3606 struct cfq_data *cfqd = cfqq->cfqd;
3607 struct cfq_group *cfqg;
3608
3609 BUG_ON(cfqq->ref <= 0);
3610
3611 cfqq->ref--;
3612 if (cfqq->ref)
3613 return;
3614
3615 cfq_log_cfqq(cfqd, cfqq, "put_queue");
3616 BUG_ON(rb_first(&cfqq->sort_list));
3617 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3618 cfqg = cfqq->cfqg;
3619
3620 if (unlikely(cfqd->active_queue == cfqq)) {
3621 __cfq_slice_expired(cfqd, cfqq, 0);
3622 cfq_schedule_dispatch(cfqd);
3623 }
3624
3625 BUG_ON(cfq_cfqq_on_rr(cfqq));
3626 kmem_cache_free(cfq_pool, cfqq);
3627 cfqg_put(cfqg);
3628 }
3629
3630 static void cfq_put_cooperator(struct cfq_queue *cfqq)
3631 {
3632 struct cfq_queue *__cfqq, *next;
3633
3634 /*
3635 * If this queue was scheduled to merge with another queue, be
3636 * sure to drop the reference taken on that queue (and others in
3637 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3638 */
3639 __cfqq = cfqq->new_cfqq;
3640 while (__cfqq) {
3641 if (__cfqq == cfqq) {
3642 WARN(1, "cfqq->new_cfqq loop detected\n");
3643 break;
3644 }
3645 next = __cfqq->new_cfqq;
3646 cfq_put_queue(__cfqq);
3647 __cfqq = next;
3648 }
3649 }
3650
3651 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3652 {
3653 if (unlikely(cfqq == cfqd->active_queue)) {
3654 __cfq_slice_expired(cfqd, cfqq, 0);
3655 cfq_schedule_dispatch(cfqd);
3656 }
3657
3658 cfq_put_cooperator(cfqq);
3659
3660 cfq_put_queue(cfqq);
3661 }
3662
3663 static void cfq_init_icq(struct io_cq *icq)
3664 {
3665 struct cfq_io_cq *cic = icq_to_cic(icq);
3666
3667 cic->ttime.last_end_request = ktime_get_ns();
3668 }
3669
3670 static void cfq_exit_icq(struct io_cq *icq)
3671 {
3672 struct cfq_io_cq *cic = icq_to_cic(icq);
3673 struct cfq_data *cfqd = cic_to_cfqd(cic);
3674
3675 if (cic_to_cfqq(cic, false)) {
3676 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false));
3677 cic_set_cfqq(cic, NULL, false);
3678 }
3679
3680 if (cic_to_cfqq(cic, true)) {
3681 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true));
3682 cic_set_cfqq(cic, NULL, true);
3683 }
3684 }
3685
3686 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3687 {
3688 struct task_struct *tsk = current;
3689 int ioprio_class;
3690
3691 if (!cfq_cfqq_prio_changed(cfqq))
3692 return;
3693
3694 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3695 switch (ioprio_class) {
3696 default:
3697 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3698 case IOPRIO_CLASS_NONE:
3699 /*
3700 * no prio set, inherit CPU scheduling settings
3701 */
3702 cfqq->ioprio = task_nice_ioprio(tsk);
3703 cfqq->ioprio_class = task_nice_ioclass(tsk);
3704 break;
3705 case IOPRIO_CLASS_RT:
3706 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3707 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3708 break;
3709 case IOPRIO_CLASS_BE:
3710 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3711 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3712 break;
3713 case IOPRIO_CLASS_IDLE:
3714 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3715 cfqq->ioprio = 7;
3716 cfq_clear_cfqq_idle_window(cfqq);
3717 break;
3718 }
3719
3720 /*
3721 * keep track of original prio settings in case we have to temporarily
3722 * elevate the priority of this queue
3723 */
3724 cfqq->org_ioprio = cfqq->ioprio;
3725 cfqq->org_ioprio_class = cfqq->ioprio_class;
3726 cfq_clear_cfqq_prio_changed(cfqq);
3727 }
3728
3729 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3730 {
3731 int ioprio = cic->icq.ioc->ioprio;
3732 struct cfq_data *cfqd = cic_to_cfqd(cic);
3733 struct cfq_queue *cfqq;
3734
3735 /*
3736 * Check whether ioprio has changed. The condition may trigger
3737 * spuriously on a newly created cic but there's no harm.
3738 */
3739 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3740 return;
3741
3742 cfqq = cic_to_cfqq(cic, false);
3743 if (cfqq) {
3744 cfq_put_queue(cfqq);
3745 cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio);
3746 cic_set_cfqq(cic, cfqq, false);
3747 }
3748
3749 cfqq = cic_to_cfqq(cic, true);
3750 if (cfqq)
3751 cfq_mark_cfqq_prio_changed(cfqq);
3752
3753 cic->ioprio = ioprio;
3754 }
3755
3756 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3757 pid_t pid, bool is_sync)
3758 {
3759 RB_CLEAR_NODE(&cfqq->rb_node);
3760 RB_CLEAR_NODE(&cfqq->p_node);
3761 INIT_LIST_HEAD(&cfqq->fifo);
3762
3763 cfqq->ref = 0;
3764 cfqq->cfqd = cfqd;
3765
3766 cfq_mark_cfqq_prio_changed(cfqq);
3767
3768 if (is_sync) {
3769 if (!cfq_class_idle(cfqq))
3770 cfq_mark_cfqq_idle_window(cfqq);
3771 cfq_mark_cfqq_sync(cfqq);
3772 }
3773 cfqq->pid = pid;
3774 }
3775
3776 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3777 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3778 {
3779 struct cfq_data *cfqd = cic_to_cfqd(cic);
3780 struct cfq_queue *cfqq;
3781 uint64_t serial_nr;
3782
3783 rcu_read_lock();
3784 serial_nr = bio_blkcg(bio)->css.serial_nr;
3785 rcu_read_unlock();
3786
3787 /*
3788 * Check whether blkcg has changed. The condition may trigger
3789 * spuriously on a newly created cic but there's no harm.
3790 */
3791 if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr))
3792 return;
3793
3794 /*
3795 * Drop reference to queues. New queues will be assigned in new
3796 * group upon arrival of fresh requests.
3797 */
3798 cfqq = cic_to_cfqq(cic, false);
3799 if (cfqq) {
3800 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3801 cic_set_cfqq(cic, NULL, false);
3802 cfq_put_queue(cfqq);
3803 }
3804
3805 cfqq = cic_to_cfqq(cic, true);
3806 if (cfqq) {
3807 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3808 cic_set_cfqq(cic, NULL, true);
3809 cfq_put_queue(cfqq);
3810 }
3811
3812 cic->blkcg_serial_nr = serial_nr;
3813 }
3814 #else
3815 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3816 {
3817 }
3818 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3819
3820 static struct cfq_queue **
3821 cfq_async_queue_prio(struct cfq_group *cfqg, int ioprio_class, int ioprio)
3822 {
3823 switch (ioprio_class) {
3824 case IOPRIO_CLASS_RT:
3825 return &cfqg->async_cfqq[0][ioprio];
3826 case IOPRIO_CLASS_NONE:
3827 ioprio = IOPRIO_NORM;
3828 /* fall through */
3829 case IOPRIO_CLASS_BE:
3830 return &cfqg->async_cfqq[1][ioprio];
3831 case IOPRIO_CLASS_IDLE:
3832 return &cfqg->async_idle_cfqq;
3833 default:
3834 BUG();
3835 }
3836 }
3837
3838 static struct cfq_queue *
3839 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3840 struct bio *bio)
3841 {
3842 int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3843 int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3844 struct cfq_queue **async_cfqq = NULL;
3845 struct cfq_queue *cfqq;
3846 struct cfq_group *cfqg;
3847
3848 rcu_read_lock();
3849 cfqg = cfq_lookup_cfqg(cfqd, bio_blkcg(bio));
3850 if (!cfqg) {
3851 cfqq = &cfqd->oom_cfqq;
3852 goto out;
3853 }
3854
3855 if (!is_sync) {
3856 if (!ioprio_valid(cic->ioprio)) {
3857 struct task_struct *tsk = current;
3858 ioprio = task_nice_ioprio(tsk);
3859 ioprio_class = task_nice_ioclass(tsk);
3860 }
3861 async_cfqq = cfq_async_queue_prio(cfqg, ioprio_class, ioprio);
3862 cfqq = *async_cfqq;
3863 if (cfqq)
3864 goto out;
3865 }
3866
3867 cfqq = kmem_cache_alloc_node(cfq_pool,
3868 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
3869 cfqd->queue->node);
3870 if (!cfqq) {
3871 cfqq = &cfqd->oom_cfqq;
3872 goto out;
3873 }
3874
3875 /* cfq_init_cfqq() assumes cfqq->ioprio_class is initialized. */
3876 cfqq->ioprio_class = IOPRIO_CLASS_NONE;
3877 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3878 cfq_init_prio_data(cfqq, cic);
3879 cfq_link_cfqq_cfqg(cfqq, cfqg);
3880 cfq_log_cfqq(cfqd, cfqq, "alloced");
3881
3882 if (async_cfqq) {
3883 /* a new async queue is created, pin and remember */
3884 cfqq->ref++;
3885 *async_cfqq = cfqq;
3886 }
3887 out:
3888 cfqq->ref++;
3889 rcu_read_unlock();
3890 return cfqq;
3891 }
3892
3893 static void
3894 __cfq_update_io_thinktime(struct cfq_ttime *ttime, u64 slice_idle)
3895 {
3896 u64 elapsed = ktime_get_ns() - ttime->last_end_request;
3897 elapsed = min(elapsed, 2UL * slice_idle);
3898
3899 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3900 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
3901 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
3902 ttime->ttime_samples);
3903 }
3904
3905 static void
3906 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3907 struct cfq_io_cq *cic)
3908 {
3909 if (cfq_cfqq_sync(cfqq)) {
3910 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3911 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3912 cfqd->cfq_slice_idle);
3913 }
3914 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3915 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3916 #endif
3917 }
3918
3919 static void
3920 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3921 struct request *rq)
3922 {
3923 sector_t sdist = 0;
3924 sector_t n_sec = blk_rq_sectors(rq);
3925 if (cfqq->last_request_pos) {
3926 if (cfqq->last_request_pos < blk_rq_pos(rq))
3927 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3928 else
3929 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3930 }
3931
3932 cfqq->seek_history <<= 1;
3933 if (blk_queue_nonrot(cfqd->queue))
3934 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3935 else
3936 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3937 }
3938
3939 static inline bool req_noidle(struct request *req)
3940 {
3941 return req_op(req) == REQ_OP_WRITE &&
3942 (req->cmd_flags & (REQ_SYNC | REQ_IDLE)) == REQ_SYNC;
3943 }
3944
3945 /*
3946 * Disable idle window if the process thinks too long or seeks so much that
3947 * it doesn't matter
3948 */
3949 static void
3950 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3951 struct cfq_io_cq *cic)
3952 {
3953 int old_idle, enable_idle;
3954
3955 /*
3956 * Don't idle for async or idle io prio class
3957 */
3958 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3959 return;
3960
3961 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3962
3963 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3964 cfq_mark_cfqq_deep(cfqq);
3965
3966 if (cfqq->next_rq && req_noidle(cfqq->next_rq))
3967 enable_idle = 0;
3968 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3969 !cfqd->cfq_slice_idle ||
3970 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3971 enable_idle = 0;
3972 else if (sample_valid(cic->ttime.ttime_samples)) {
3973 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3974 enable_idle = 0;
3975 else
3976 enable_idle = 1;
3977 }
3978
3979 if (old_idle != enable_idle) {
3980 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3981 if (enable_idle)
3982 cfq_mark_cfqq_idle_window(cfqq);
3983 else
3984 cfq_clear_cfqq_idle_window(cfqq);
3985 }
3986 }
3987
3988 /*
3989 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3990 * no or if we aren't sure, a 1 will cause a preempt.
3991 */
3992 static bool
3993 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3994 struct request *rq)
3995 {
3996 struct cfq_queue *cfqq;
3997
3998 cfqq = cfqd->active_queue;
3999 if (!cfqq)
4000 return false;
4001
4002 if (cfq_class_idle(new_cfqq))
4003 return false;
4004
4005 if (cfq_class_idle(cfqq))
4006 return true;
4007
4008 /*
4009 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
4010 */
4011 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
4012 return false;
4013
4014 /*
4015 * if the new request is sync, but the currently running queue is
4016 * not, let the sync request have priority.
4017 */
4018 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
4019 return true;
4020
4021 /*
4022 * Treat ancestors of current cgroup the same way as current cgroup.
4023 * For anybody else we disallow preemption to guarantee service
4024 * fairness among cgroups.
4025 */
4026 if (!cfqg_is_descendant(cfqq->cfqg, new_cfqq->cfqg))
4027 return false;
4028
4029 if (cfq_slice_used(cfqq))
4030 return true;
4031
4032 /*
4033 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
4034 */
4035 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
4036 return true;
4037
4038 WARN_ON_ONCE(cfqq->ioprio_class != new_cfqq->ioprio_class);
4039 /* Allow preemption only if we are idling on sync-noidle tree */
4040 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
4041 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
4042 RB_EMPTY_ROOT(&cfqq->sort_list))
4043 return true;
4044
4045 /*
4046 * So both queues are sync. Let the new request get disk time if
4047 * it's a metadata request and the current queue is doing regular IO.
4048 */
4049 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
4050 return true;
4051
4052 /* An idle queue should not be idle now for some reason */
4053 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
4054 return true;
4055
4056 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
4057 return false;
4058
4059 /*
4060 * if this request is as-good as one we would expect from the
4061 * current cfqq, let it preempt
4062 */
4063 if (cfq_rq_close(cfqd, cfqq, rq))
4064 return true;
4065
4066 return false;
4067 }
4068
4069 /*
4070 * cfqq preempts the active queue. if we allowed preempt with no slice left,
4071 * let it have half of its nominal slice.
4072 */
4073 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4074 {
4075 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
4076
4077 cfq_log_cfqq(cfqd, cfqq, "preempt");
4078 cfq_slice_expired(cfqd, 1);
4079
4080 /*
4081 * workload type is changed, don't save slice, otherwise preempt
4082 * doesn't happen
4083 */
4084 if (old_type != cfqq_type(cfqq))
4085 cfqq->cfqg->saved_wl_slice = 0;
4086
4087 /*
4088 * Put the new queue at the front of the of the current list,
4089 * so we know that it will be selected next.
4090 */
4091 BUG_ON(!cfq_cfqq_on_rr(cfqq));
4092
4093 cfq_service_tree_add(cfqd, cfqq, 1);
4094
4095 cfqq->slice_end = 0;
4096 cfq_mark_cfqq_slice_new(cfqq);
4097 }
4098
4099 /*
4100 * Called when a new fs request (rq) is added (to cfqq). Check if there's
4101 * something we should do about it
4102 */
4103 static void
4104 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
4105 struct request *rq)
4106 {
4107 struct cfq_io_cq *cic = RQ_CIC(rq);
4108
4109 cfqd->rq_queued++;
4110 if (rq->cmd_flags & REQ_PRIO)
4111 cfqq->prio_pending++;
4112
4113 cfq_update_io_thinktime(cfqd, cfqq, cic);
4114 cfq_update_io_seektime(cfqd, cfqq, rq);
4115 cfq_update_idle_window(cfqd, cfqq, cic);
4116
4117 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4118
4119 if (cfqq == cfqd->active_queue) {
4120 /*
4121 * Remember that we saw a request from this process, but
4122 * don't start queuing just yet. Otherwise we risk seeing lots
4123 * of tiny requests, because we disrupt the normal plugging
4124 * and merging. If the request is already larger than a single
4125 * page, let it rip immediately. For that case we assume that
4126 * merging is already done. Ditto for a busy system that
4127 * has other work pending, don't risk delaying until the
4128 * idle timer unplug to continue working.
4129 */
4130 if (cfq_cfqq_wait_request(cfqq)) {
4131 if (blk_rq_bytes(rq) > PAGE_SIZE ||
4132 cfqd->busy_queues > 1) {
4133 cfq_del_timer(cfqd, cfqq);
4134 cfq_clear_cfqq_wait_request(cfqq);
4135 __blk_run_queue(cfqd->queue);
4136 } else {
4137 cfqg_stats_update_idle_time(cfqq->cfqg);
4138 cfq_mark_cfqq_must_dispatch(cfqq);
4139 }
4140 }
4141 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
4142 /*
4143 * not the active queue - expire current slice if it is
4144 * idle and has expired it's mean thinktime or this new queue
4145 * has some old slice time left and is of higher priority or
4146 * this new queue is RT and the current one is BE
4147 */
4148 cfq_preempt_queue(cfqd, cfqq);
4149 __blk_run_queue(cfqd->queue);
4150 }
4151 }
4152
4153 static void cfq_insert_request(struct request_queue *q, struct request *rq)
4154 {
4155 struct cfq_data *cfqd = q->elevator->elevator_data;
4156 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4157
4158 cfq_log_cfqq(cfqd, cfqq, "insert_request");
4159 cfq_init_prio_data(cfqq, RQ_CIC(rq));
4160
4161 rq->fifo_time = ktime_get_ns() + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
4162 list_add_tail(&rq->queuelist, &cfqq->fifo);
4163 cfq_add_rq_rb(rq);
4164 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
4165 rq->cmd_flags);
4166 cfq_rq_enqueued(cfqd, cfqq, rq);
4167 }
4168
4169 /*
4170 * Update hw_tag based on peak queue depth over 50 samples under
4171 * sufficient load.
4172 */
4173 static void cfq_update_hw_tag(struct cfq_data *cfqd)
4174 {
4175 struct cfq_queue *cfqq = cfqd->active_queue;
4176
4177 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
4178 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
4179
4180 if (cfqd->hw_tag == 1)
4181 return;
4182
4183 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
4184 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
4185 return;
4186
4187 /*
4188 * If active queue hasn't enough requests and can idle, cfq might not
4189 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4190 * case
4191 */
4192 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
4193 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
4194 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
4195 return;
4196
4197 if (cfqd->hw_tag_samples++ < 50)
4198 return;
4199
4200 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
4201 cfqd->hw_tag = 1;
4202 else
4203 cfqd->hw_tag = 0;
4204 }
4205
4206 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4207 {
4208 struct cfq_io_cq *cic = cfqd->active_cic;
4209 u64 now = ktime_get_ns();
4210
4211 /* If the queue already has requests, don't wait */
4212 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4213 return false;
4214
4215 /* If there are other queues in the group, don't wait */
4216 if (cfqq->cfqg->nr_cfqq > 1)
4217 return false;
4218
4219 /* the only queue in the group, but think time is big */
4220 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
4221 return false;
4222
4223 if (cfq_slice_used(cfqq))
4224 return true;
4225
4226 /* if slice left is less than think time, wait busy */
4227 if (cic && sample_valid(cic->ttime.ttime_samples)
4228 && (cfqq->slice_end - now < cic->ttime.ttime_mean))
4229 return true;
4230
4231 /*
4232 * If think times is less than a jiffy than ttime_mean=0 and above
4233 * will not be true. It might happen that slice has not expired yet
4234 * but will expire soon (4-5 ns) during select_queue(). To cover the
4235 * case where think time is less than a jiffy, mark the queue wait
4236 * busy if only 1 jiffy is left in the slice.
4237 */
4238 if (cfqq->slice_end - now <= jiffies_to_nsecs(1))
4239 return true;
4240
4241 return false;
4242 }
4243
4244 static void cfq_completed_request(struct request_queue *q, struct request *rq)
4245 {
4246 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4247 struct cfq_data *cfqd = cfqq->cfqd;
4248 const int sync = rq_is_sync(rq);
4249 u64 now = ktime_get_ns();
4250
4251 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", req_noidle(rq));
4252
4253 cfq_update_hw_tag(cfqd);
4254
4255 WARN_ON(!cfqd->rq_in_driver);
4256 WARN_ON(!cfqq->dispatched);
4257 cfqd->rq_in_driver--;
4258 cfqq->dispatched--;
4259 (RQ_CFQG(rq))->dispatched--;
4260 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4261 rq_io_start_time_ns(rq), rq->cmd_flags);
4262
4263 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4264
4265 if (sync) {
4266 struct cfq_rb_root *st;
4267
4268 RQ_CIC(rq)->ttime.last_end_request = now;
4269
4270 if (cfq_cfqq_on_rr(cfqq))
4271 st = cfqq->service_tree;
4272 else
4273 st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4274 cfqq_type(cfqq));
4275
4276 st->ttime.last_end_request = now;
4277 /*
4278 * We have to do this check in jiffies since start_time is in
4279 * jiffies and it is not trivial to convert to ns. If
4280 * cfq_fifo_expire[1] ever comes close to 1 jiffie, this test
4281 * will become problematic but so far we are fine (the default
4282 * is 128 ms).
4283 */
4284 if (!time_after(rq->start_time +
4285 nsecs_to_jiffies(cfqd->cfq_fifo_expire[1]),
4286 jiffies))
4287 cfqd->last_delayed_sync = now;
4288 }
4289
4290 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4291 cfqq->cfqg->ttime.last_end_request = now;
4292 #endif
4293
4294 /*
4295 * If this is the active queue, check if it needs to be expired,
4296 * or if we want to idle in case it has no pending requests.
4297 */
4298 if (cfqd->active_queue == cfqq) {
4299 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4300
4301 if (cfq_cfqq_slice_new(cfqq)) {
4302 cfq_set_prio_slice(cfqd, cfqq);
4303 cfq_clear_cfqq_slice_new(cfqq);
4304 }
4305
4306 /*
4307 * Should we wait for next request to come in before we expire
4308 * the queue.
4309 */
4310 if (cfq_should_wait_busy(cfqd, cfqq)) {
4311 u64 extend_sl = cfqd->cfq_slice_idle;
4312 if (!cfqd->cfq_slice_idle)
4313 extend_sl = cfqd->cfq_group_idle;
4314 cfqq->slice_end = now + extend_sl;
4315 cfq_mark_cfqq_wait_busy(cfqq);
4316 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4317 }
4318
4319 /*
4320 * Idling is not enabled on:
4321 * - expired queues
4322 * - idle-priority queues
4323 * - async queues
4324 * - queues with still some requests queued
4325 * - when there is a close cooperator
4326 */
4327 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4328 cfq_slice_expired(cfqd, 1);
4329 else if (sync && cfqq_empty &&
4330 !cfq_close_cooperator(cfqd, cfqq)) {
4331 cfq_arm_slice_timer(cfqd);
4332 }
4333 }
4334
4335 if (!cfqd->rq_in_driver)
4336 cfq_schedule_dispatch(cfqd);
4337 }
4338
4339 static void cfqq_boost_on_prio(struct cfq_queue *cfqq, unsigned int op)
4340 {
4341 /*
4342 * If REQ_PRIO is set, boost class and prio level, if it's below
4343 * BE/NORM. If prio is not set, restore the potentially boosted
4344 * class/prio level.
4345 */
4346 if (!(op & REQ_PRIO)) {
4347 cfqq->ioprio_class = cfqq->org_ioprio_class;
4348 cfqq->ioprio = cfqq->org_ioprio;
4349 } else {
4350 if (cfq_class_idle(cfqq))
4351 cfqq->ioprio_class = IOPRIO_CLASS_BE;
4352 if (cfqq->ioprio > IOPRIO_NORM)
4353 cfqq->ioprio = IOPRIO_NORM;
4354 }
4355 }
4356
4357 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4358 {
4359 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4360 cfq_mark_cfqq_must_alloc_slice(cfqq);
4361 return ELV_MQUEUE_MUST;
4362 }
4363
4364 return ELV_MQUEUE_MAY;
4365 }
4366
4367 static int cfq_may_queue(struct request_queue *q, unsigned int op)
4368 {
4369 struct cfq_data *cfqd = q->elevator->elevator_data;
4370 struct task_struct *tsk = current;
4371 struct cfq_io_cq *cic;
4372 struct cfq_queue *cfqq;
4373
4374 /*
4375 * don't force setup of a queue from here, as a call to may_queue
4376 * does not necessarily imply that a request actually will be queued.
4377 * so just lookup a possibly existing queue, or return 'may queue'
4378 * if that fails
4379 */
4380 cic = cfq_cic_lookup(cfqd, tsk->io_context);
4381 if (!cic)
4382 return ELV_MQUEUE_MAY;
4383
4384 cfqq = cic_to_cfqq(cic, op_is_sync(op));
4385 if (cfqq) {
4386 cfq_init_prio_data(cfqq, cic);
4387 cfqq_boost_on_prio(cfqq, op);
4388
4389 return __cfq_may_queue(cfqq);
4390 }
4391
4392 return ELV_MQUEUE_MAY;
4393 }
4394
4395 /*
4396 * queue lock held here
4397 */
4398 static void cfq_put_request(struct request *rq)
4399 {
4400 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4401
4402 if (cfqq) {
4403 const int rw = rq_data_dir(rq);
4404
4405 BUG_ON(!cfqq->allocated[rw]);
4406 cfqq->allocated[rw]--;
4407
4408 /* Put down rq reference on cfqg */
4409 cfqg_put(RQ_CFQG(rq));
4410 rq->elv.priv[0] = NULL;
4411 rq->elv.priv[1] = NULL;
4412
4413 cfq_put_queue(cfqq);
4414 }
4415 }
4416
4417 static struct cfq_queue *
4418 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4419 struct cfq_queue *cfqq)
4420 {
4421 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4422 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4423 cfq_mark_cfqq_coop(cfqq->new_cfqq);
4424 cfq_put_queue(cfqq);
4425 return cic_to_cfqq(cic, 1);
4426 }
4427
4428 /*
4429 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4430 * was the last process referring to said cfqq.
4431 */
4432 static struct cfq_queue *
4433 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4434 {
4435 if (cfqq_process_refs(cfqq) == 1) {
4436 cfqq->pid = current->pid;
4437 cfq_clear_cfqq_coop(cfqq);
4438 cfq_clear_cfqq_split_coop(cfqq);
4439 return cfqq;
4440 }
4441
4442 cic_set_cfqq(cic, NULL, 1);
4443
4444 cfq_put_cooperator(cfqq);
4445
4446 cfq_put_queue(cfqq);
4447 return NULL;
4448 }
4449 /*
4450 * Allocate cfq data structures associated with this request.
4451 */
4452 static int
4453 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4454 gfp_t gfp_mask)
4455 {
4456 struct cfq_data *cfqd = q->elevator->elevator_data;
4457 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4458 const int rw = rq_data_dir(rq);
4459 const bool is_sync = rq_is_sync(rq);
4460 struct cfq_queue *cfqq;
4461
4462 spin_lock_irq(q->queue_lock);
4463
4464 check_ioprio_changed(cic, bio);
4465 check_blkcg_changed(cic, bio);
4466 new_queue:
4467 cfqq = cic_to_cfqq(cic, is_sync);
4468 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4469 if (cfqq)
4470 cfq_put_queue(cfqq);
4471 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio);
4472 cic_set_cfqq(cic, cfqq, is_sync);
4473 } else {
4474 /*
4475 * If the queue was seeky for too long, break it apart.
4476 */
4477 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4478 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4479 cfqq = split_cfqq(cic, cfqq);
4480 if (!cfqq)
4481 goto new_queue;
4482 }
4483
4484 /*
4485 * Check to see if this queue is scheduled to merge with
4486 * another, closely cooperating queue. The merging of
4487 * queues happens here as it must be done in process context.
4488 * The reference on new_cfqq was taken in merge_cfqqs.
4489 */
4490 if (cfqq->new_cfqq)
4491 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4492 }
4493
4494 cfqq->allocated[rw]++;
4495
4496 cfqq->ref++;
4497 cfqg_get(cfqq->cfqg);
4498 rq->elv.priv[0] = cfqq;
4499 rq->elv.priv[1] = cfqq->cfqg;
4500 spin_unlock_irq(q->queue_lock);
4501
4502 return 0;
4503 }
4504
4505 static void cfq_kick_queue(struct work_struct *work)
4506 {
4507 struct cfq_data *cfqd =
4508 container_of(work, struct cfq_data, unplug_work);
4509 struct request_queue *q = cfqd->queue;
4510
4511 spin_lock_irq(q->queue_lock);
4512 __blk_run_queue(cfqd->queue);
4513 spin_unlock_irq(q->queue_lock);
4514 }
4515
4516 /*
4517 * Timer running if the active_queue is currently idling inside its time slice
4518 */
4519 static enum hrtimer_restart cfq_idle_slice_timer(struct hrtimer *timer)
4520 {
4521 struct cfq_data *cfqd = container_of(timer, struct cfq_data,
4522 idle_slice_timer);
4523 struct cfq_queue *cfqq;
4524 unsigned long flags;
4525 int timed_out = 1;
4526
4527 cfq_log(cfqd, "idle timer fired");
4528
4529 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4530
4531 cfqq = cfqd->active_queue;
4532 if (cfqq) {
4533 timed_out = 0;
4534
4535 /*
4536 * We saw a request before the queue expired, let it through
4537 */
4538 if (cfq_cfqq_must_dispatch(cfqq))
4539 goto out_kick;
4540
4541 /*
4542 * expired
4543 */
4544 if (cfq_slice_used(cfqq))
4545 goto expire;
4546
4547 /*
4548 * only expire and reinvoke request handler, if there are
4549 * other queues with pending requests
4550 */
4551 if (!cfqd->busy_queues)
4552 goto out_cont;
4553
4554 /*
4555 * not expired and it has a request pending, let it dispatch
4556 */
4557 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4558 goto out_kick;
4559
4560 /*
4561 * Queue depth flag is reset only when the idle didn't succeed
4562 */
4563 cfq_clear_cfqq_deep(cfqq);
4564 }
4565 expire:
4566 cfq_slice_expired(cfqd, timed_out);
4567 out_kick:
4568 cfq_schedule_dispatch(cfqd);
4569 out_cont:
4570 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4571 return HRTIMER_NORESTART;
4572 }
4573
4574 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4575 {
4576 hrtimer_cancel(&cfqd->idle_slice_timer);
4577 cancel_work_sync(&cfqd->unplug_work);
4578 }
4579
4580 static void cfq_exit_queue(struct elevator_queue *e)
4581 {
4582 struct cfq_data *cfqd = e->elevator_data;
4583 struct request_queue *q = cfqd->queue;
4584
4585 cfq_shutdown_timer_wq(cfqd);
4586
4587 spin_lock_irq(q->queue_lock);
4588
4589 if (cfqd->active_queue)
4590 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4591
4592 spin_unlock_irq(q->queue_lock);
4593
4594 cfq_shutdown_timer_wq(cfqd);
4595
4596 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4597 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4598 #else
4599 kfree(cfqd->root_group);
4600 #endif
4601 kfree(cfqd);
4602 }
4603
4604 static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4605 {
4606 struct cfq_data *cfqd;
4607 struct blkcg_gq *blkg __maybe_unused;
4608 int i, ret;
4609 struct elevator_queue *eq;
4610
4611 eq = elevator_alloc(q, e);
4612 if (!eq)
4613 return -ENOMEM;
4614
4615 cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4616 if (!cfqd) {
4617 kobject_put(&eq->kobj);
4618 return -ENOMEM;
4619 }
4620 eq->elevator_data = cfqd;
4621
4622 cfqd->queue = q;
4623 spin_lock_irq(q->queue_lock);
4624 q->elevator = eq;
4625 spin_unlock_irq(q->queue_lock);
4626
4627 /* Init root service tree */
4628 cfqd->grp_service_tree = CFQ_RB_ROOT;
4629
4630 /* Init root group and prefer root group over other groups by default */
4631 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4632 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4633 if (ret)
4634 goto out_free;
4635
4636 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4637 #else
4638 ret = -ENOMEM;
4639 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4640 GFP_KERNEL, cfqd->queue->node);
4641 if (!cfqd->root_group)
4642 goto out_free;
4643
4644 cfq_init_cfqg_base(cfqd->root_group);
4645 cfqd->root_group->weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4646 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4647 #endif
4648
4649 /*
4650 * Not strictly needed (since RB_ROOT just clears the node and we
4651 * zeroed cfqd on alloc), but better be safe in case someone decides
4652 * to add magic to the rb code
4653 */
4654 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4655 cfqd->prio_trees[i] = RB_ROOT;
4656
4657 /*
4658 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4659 * Grab a permanent reference to it, so that the normal code flow
4660 * will not attempt to free it. oom_cfqq is linked to root_group
4661 * but shouldn't hold a reference as it'll never be unlinked. Lose
4662 * the reference from linking right away.
4663 */
4664 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4665 cfqd->oom_cfqq.ref++;
4666
4667 spin_lock_irq(q->queue_lock);
4668 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4669 cfqg_put(cfqd->root_group);
4670 spin_unlock_irq(q->queue_lock);
4671
4672 hrtimer_init(&cfqd->idle_slice_timer, CLOCK_MONOTONIC,
4673 HRTIMER_MODE_REL);
4674 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4675
4676 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4677
4678 cfqd->cfq_quantum = cfq_quantum;
4679 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4680 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4681 cfqd->cfq_back_max = cfq_back_max;
4682 cfqd->cfq_back_penalty = cfq_back_penalty;
4683 cfqd->cfq_slice[0] = cfq_slice_async;
4684 cfqd->cfq_slice[1] = cfq_slice_sync;
4685 cfqd->cfq_target_latency = cfq_target_latency;
4686 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4687 cfqd->cfq_slice_idle = cfq_slice_idle;
4688 cfqd->cfq_group_idle = cfq_group_idle;
4689 cfqd->cfq_latency = 1;
4690 cfqd->hw_tag = -1;
4691 /*
4692 * we optimistically start assuming sync ops weren't delayed in last
4693 * second, in order to have larger depth for async operations.
4694 */
4695 cfqd->last_delayed_sync = ktime_get_ns() - NSEC_PER_SEC;
4696 return 0;
4697
4698 out_free:
4699 kfree(cfqd);
4700 kobject_put(&eq->kobj);
4701 return ret;
4702 }
4703
4704 static void cfq_registered_queue(struct request_queue *q)
4705 {
4706 struct elevator_queue *e = q->elevator;
4707 struct cfq_data *cfqd = e->elevator_data;
4708
4709 /*
4710 * Default to IOPS mode with no idling for SSDs
4711 */
4712 if (blk_queue_nonrot(q))
4713 cfqd->cfq_slice_idle = 0;
4714 wbt_disable_default(q);
4715 }
4716
4717 /*
4718 * sysfs parts below -->
4719 */
4720 static ssize_t
4721 cfq_var_show(unsigned int var, char *page)
4722 {
4723 return sprintf(page, "%u\n", var);
4724 }
4725
4726 static ssize_t
4727 cfq_var_store(unsigned int *var, const char *page, size_t count)
4728 {
4729 char *p = (char *) page;
4730
4731 *var = simple_strtoul(p, &p, 10);
4732 return count;
4733 }
4734
4735 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4736 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4737 { \
4738 struct cfq_data *cfqd = e->elevator_data; \
4739 u64 __data = __VAR; \
4740 if (__CONV) \
4741 __data = div_u64(__data, NSEC_PER_MSEC); \
4742 return cfq_var_show(__data, (page)); \
4743 }
4744 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4745 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4746 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4747 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4748 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4749 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4750 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4751 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4752 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4753 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4754 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4755 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4756 #undef SHOW_FUNCTION
4757
4758 #define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
4759 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4760 { \
4761 struct cfq_data *cfqd = e->elevator_data; \
4762 u64 __data = __VAR; \
4763 __data = div_u64(__data, NSEC_PER_USEC); \
4764 return cfq_var_show(__data, (page)); \
4765 }
4766 USEC_SHOW_FUNCTION(cfq_slice_idle_us_show, cfqd->cfq_slice_idle);
4767 USEC_SHOW_FUNCTION(cfq_group_idle_us_show, cfqd->cfq_group_idle);
4768 USEC_SHOW_FUNCTION(cfq_slice_sync_us_show, cfqd->cfq_slice[1]);
4769 USEC_SHOW_FUNCTION(cfq_slice_async_us_show, cfqd->cfq_slice[0]);
4770 USEC_SHOW_FUNCTION(cfq_target_latency_us_show, cfqd->cfq_target_latency);
4771 #undef USEC_SHOW_FUNCTION
4772
4773 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4774 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4775 { \
4776 struct cfq_data *cfqd = e->elevator_data; \
4777 unsigned int __data; \
4778 int ret = cfq_var_store(&__data, (page), count); \
4779 if (__data < (MIN)) \
4780 __data = (MIN); \
4781 else if (__data > (MAX)) \
4782 __data = (MAX); \
4783 if (__CONV) \
4784 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
4785 else \
4786 *(__PTR) = __data; \
4787 return ret; \
4788 }
4789 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4790 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4791 UINT_MAX, 1);
4792 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4793 UINT_MAX, 1);
4794 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4795 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4796 UINT_MAX, 0);
4797 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4798 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4799 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4800 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4801 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4802 UINT_MAX, 0);
4803 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4804 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4805 #undef STORE_FUNCTION
4806
4807 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
4808 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4809 { \
4810 struct cfq_data *cfqd = e->elevator_data; \
4811 unsigned int __data; \
4812 int ret = cfq_var_store(&__data, (page), count); \
4813 if (__data < (MIN)) \
4814 __data = (MIN); \
4815 else if (__data > (MAX)) \
4816 __data = (MAX); \
4817 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
4818 return ret; \
4819 }
4820 USEC_STORE_FUNCTION(cfq_slice_idle_us_store, &cfqd->cfq_slice_idle, 0, UINT_MAX);
4821 USEC_STORE_FUNCTION(cfq_group_idle_us_store, &cfqd->cfq_group_idle, 0, UINT_MAX);
4822 USEC_STORE_FUNCTION(cfq_slice_sync_us_store, &cfqd->cfq_slice[1], 1, UINT_MAX);
4823 USEC_STORE_FUNCTION(cfq_slice_async_us_store, &cfqd->cfq_slice[0], 1, UINT_MAX);
4824 USEC_STORE_FUNCTION(cfq_target_latency_us_store, &cfqd->cfq_target_latency, 1, UINT_MAX);
4825 #undef USEC_STORE_FUNCTION
4826
4827 #define CFQ_ATTR(name) \
4828 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4829
4830 static struct elv_fs_entry cfq_attrs[] = {
4831 CFQ_ATTR(quantum),
4832 CFQ_ATTR(fifo_expire_sync),
4833 CFQ_ATTR(fifo_expire_async),
4834 CFQ_ATTR(back_seek_max),
4835 CFQ_ATTR(back_seek_penalty),
4836 CFQ_ATTR(slice_sync),
4837 CFQ_ATTR(slice_sync_us),
4838 CFQ_ATTR(slice_async),
4839 CFQ_ATTR(slice_async_us),
4840 CFQ_ATTR(slice_async_rq),
4841 CFQ_ATTR(slice_idle),
4842 CFQ_ATTR(slice_idle_us),
4843 CFQ_ATTR(group_idle),
4844 CFQ_ATTR(group_idle_us),
4845 CFQ_ATTR(low_latency),
4846 CFQ_ATTR(target_latency),
4847 CFQ_ATTR(target_latency_us),
4848 __ATTR_NULL
4849 };
4850
4851 static struct elevator_type iosched_cfq = {
4852 .ops.sq = {
4853 .elevator_merge_fn = cfq_merge,
4854 .elevator_merged_fn = cfq_merged_request,
4855 .elevator_merge_req_fn = cfq_merged_requests,
4856 .elevator_allow_bio_merge_fn = cfq_allow_bio_merge,
4857 .elevator_allow_rq_merge_fn = cfq_allow_rq_merge,
4858 .elevator_bio_merged_fn = cfq_bio_merged,
4859 .elevator_dispatch_fn = cfq_dispatch_requests,
4860 .elevator_add_req_fn = cfq_insert_request,
4861 .elevator_activate_req_fn = cfq_activate_request,
4862 .elevator_deactivate_req_fn = cfq_deactivate_request,
4863 .elevator_completed_req_fn = cfq_completed_request,
4864 .elevator_former_req_fn = elv_rb_former_request,
4865 .elevator_latter_req_fn = elv_rb_latter_request,
4866 .elevator_init_icq_fn = cfq_init_icq,
4867 .elevator_exit_icq_fn = cfq_exit_icq,
4868 .elevator_set_req_fn = cfq_set_request,
4869 .elevator_put_req_fn = cfq_put_request,
4870 .elevator_may_queue_fn = cfq_may_queue,
4871 .elevator_init_fn = cfq_init_queue,
4872 .elevator_exit_fn = cfq_exit_queue,
4873 .elevator_registered_fn = cfq_registered_queue,
4874 },
4875 .icq_size = sizeof(struct cfq_io_cq),
4876 .icq_align = __alignof__(struct cfq_io_cq),
4877 .elevator_attrs = cfq_attrs,
4878 .elevator_name = "cfq",
4879 .elevator_owner = THIS_MODULE,
4880 };
4881
4882 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4883 static struct blkcg_policy blkcg_policy_cfq = {
4884 .dfl_cftypes = cfq_blkcg_files,
4885 .legacy_cftypes = cfq_blkcg_legacy_files,
4886
4887 .cpd_alloc_fn = cfq_cpd_alloc,
4888 .cpd_init_fn = cfq_cpd_init,
4889 .cpd_free_fn = cfq_cpd_free,
4890 .cpd_bind_fn = cfq_cpd_bind,
4891
4892 .pd_alloc_fn = cfq_pd_alloc,
4893 .pd_init_fn = cfq_pd_init,
4894 .pd_offline_fn = cfq_pd_offline,
4895 .pd_free_fn = cfq_pd_free,
4896 .pd_reset_stats_fn = cfq_pd_reset_stats,
4897 };
4898 #endif
4899
4900 static int __init cfq_init(void)
4901 {
4902 int ret;
4903
4904 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4905 ret = blkcg_policy_register(&blkcg_policy_cfq);
4906 if (ret)
4907 return ret;
4908 #else
4909 cfq_group_idle = 0;
4910 #endif
4911
4912 ret = -ENOMEM;
4913 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4914 if (!cfq_pool)
4915 goto err_pol_unreg;
4916
4917 ret = elv_register(&iosched_cfq);
4918 if (ret)
4919 goto err_free_pool;
4920
4921 return 0;
4922
4923 err_free_pool:
4924 kmem_cache_destroy(cfq_pool);
4925 err_pol_unreg:
4926 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4927 blkcg_policy_unregister(&blkcg_policy_cfq);
4928 #endif
4929 return ret;
4930 }
4931
4932 static void __exit cfq_exit(void)
4933 {
4934 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4935 blkcg_policy_unregister(&blkcg_policy_cfq);
4936 #endif
4937 elv_unregister(&iosched_cfq);
4938 kmem_cache_destroy(cfq_pool);
4939 }
4940
4941 module_init(cfq_init);
4942 module_exit(cfq_exit);
4943
4944 MODULE_AUTHOR("Jens Axboe");
4945 MODULE_LICENSE("GPL");
4946 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");