]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/cfq-iosched.c
Merge branch 'for-2.6.22' of git://git.kernel.dk/data/git/linux-2.6-block
[mirror_ubuntu-artful-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14
15 /*
16 * tunables
17 */
18 static const int cfq_quantum = 4; /* max queue in one round of service */
19 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
20 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
21 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
22
23 static const int cfq_slice_sync = HZ / 10;
24 static int cfq_slice_async = HZ / 25;
25 static const int cfq_slice_async_rq = 2;
26 static int cfq_slice_idle = HZ / 125;
27
28 /*
29 * grace period before allowing idle class to get disk access
30 */
31 #define CFQ_IDLE_GRACE (HZ / 10)
32
33 /*
34 * below this threshold, we consider thinktime immediate
35 */
36 #define CFQ_MIN_TT (2)
37
38 #define CFQ_SLICE_SCALE (5)
39
40 #define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
41 #define RQ_CFQQ(rq) ((rq)->elevator_private2)
42
43 static struct kmem_cache *cfq_pool;
44 static struct kmem_cache *cfq_ioc_pool;
45
46 static DEFINE_PER_CPU(unsigned long, ioc_count);
47 static struct completion *ioc_gone;
48
49 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
50 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
51 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
52
53 #define ASYNC (0)
54 #define SYNC (1)
55
56 #define sample_valid(samples) ((samples) > 80)
57
58 /*
59 * Most of our rbtree usage is for sorting with min extraction, so
60 * if we cache the leftmost node we don't have to walk down the tree
61 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
62 * move this into the elevator for the rq sorting as well.
63 */
64 struct cfq_rb_root {
65 struct rb_root rb;
66 struct rb_node *left;
67 };
68 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
69
70 /*
71 * Per block device queue structure
72 */
73 struct cfq_data {
74 request_queue_t *queue;
75
76 /*
77 * rr list of queues with requests and the count of them
78 */
79 struct cfq_rb_root service_tree;
80 unsigned int busy_queues;
81
82 int rq_in_driver;
83 int sync_flight;
84 int hw_tag;
85
86 /*
87 * idle window management
88 */
89 struct timer_list idle_slice_timer;
90 struct work_struct unplug_work;
91
92 struct cfq_queue *active_queue;
93 struct cfq_io_context *active_cic;
94
95 struct timer_list idle_class_timer;
96
97 sector_t last_position;
98 unsigned long last_end_request;
99
100 /*
101 * tunables, see top of file
102 */
103 unsigned int cfq_quantum;
104 unsigned int cfq_fifo_expire[2];
105 unsigned int cfq_back_penalty;
106 unsigned int cfq_back_max;
107 unsigned int cfq_slice[2];
108 unsigned int cfq_slice_async_rq;
109 unsigned int cfq_slice_idle;
110
111 struct list_head cic_list;
112
113 sector_t new_seek_mean;
114 u64 new_seek_total;
115 };
116
117 /*
118 * Per process-grouping structure
119 */
120 struct cfq_queue {
121 /* reference count */
122 atomic_t ref;
123 /* parent cfq_data */
124 struct cfq_data *cfqd;
125 /* service_tree member */
126 struct rb_node rb_node;
127 /* service_tree key */
128 unsigned long rb_key;
129 /* sorted list of pending requests */
130 struct rb_root sort_list;
131 /* if fifo isn't expired, next request to serve */
132 struct request *next_rq;
133 /* requests queued in sort_list */
134 int queued[2];
135 /* currently allocated requests */
136 int allocated[2];
137 /* pending metadata requests */
138 int meta_pending;
139 /* fifo list of requests in sort_list */
140 struct list_head fifo;
141
142 unsigned long slice_end;
143 long slice_resid;
144
145 /* number of requests that are on the dispatch list or inside driver */
146 int dispatched;
147
148 /* io prio of this group */
149 unsigned short ioprio, org_ioprio;
150 unsigned short ioprio_class, org_ioprio_class;
151
152 /* various state flags, see below */
153 unsigned int flags;
154
155 sector_t last_request_pos;
156 };
157
158 enum cfqq_state_flags {
159 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
160 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
161 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
162 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
163 CFQ_CFQQ_FLAG_must_dispatch, /* must dispatch, even if expired */
164 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
165 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
166 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
167 CFQ_CFQQ_FLAG_queue_new, /* queue never been serviced */
168 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
169 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
170 };
171
172 #define CFQ_CFQQ_FNS(name) \
173 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
174 { \
175 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
176 } \
177 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
178 { \
179 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
180 } \
181 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
182 { \
183 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
184 }
185
186 CFQ_CFQQ_FNS(on_rr);
187 CFQ_CFQQ_FNS(wait_request);
188 CFQ_CFQQ_FNS(must_alloc);
189 CFQ_CFQQ_FNS(must_alloc_slice);
190 CFQ_CFQQ_FNS(must_dispatch);
191 CFQ_CFQQ_FNS(fifo_expire);
192 CFQ_CFQQ_FNS(idle_window);
193 CFQ_CFQQ_FNS(prio_changed);
194 CFQ_CFQQ_FNS(queue_new);
195 CFQ_CFQQ_FNS(slice_new);
196 CFQ_CFQQ_FNS(sync);
197 #undef CFQ_CFQQ_FNS
198
199 static void cfq_dispatch_insert(request_queue_t *, struct request *);
200 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
201 struct task_struct *, gfp_t);
202 static struct cfq_io_context *cfq_cic_rb_lookup(struct cfq_data *,
203 struct io_context *);
204
205 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
206 int is_sync)
207 {
208 return cic->cfqq[!!is_sync];
209 }
210
211 static inline void cic_set_cfqq(struct cfq_io_context *cic,
212 struct cfq_queue *cfqq, int is_sync)
213 {
214 cic->cfqq[!!is_sync] = cfqq;
215 }
216
217 /*
218 * We regard a request as SYNC, if it's either a read or has the SYNC bit
219 * set (in which case it could also be direct WRITE).
220 */
221 static inline int cfq_bio_sync(struct bio *bio)
222 {
223 if (bio_data_dir(bio) == READ || bio_sync(bio))
224 return 1;
225
226 return 0;
227 }
228
229 /*
230 * scheduler run of queue, if there are requests pending and no one in the
231 * driver that will restart queueing
232 */
233 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
234 {
235 if (cfqd->busy_queues)
236 kblockd_schedule_work(&cfqd->unplug_work);
237 }
238
239 static int cfq_queue_empty(request_queue_t *q)
240 {
241 struct cfq_data *cfqd = q->elevator->elevator_data;
242
243 return !cfqd->busy_queues;
244 }
245
246 /*
247 * Scale schedule slice based on io priority. Use the sync time slice only
248 * if a queue is marked sync and has sync io queued. A sync queue with async
249 * io only, should not get full sync slice length.
250 */
251 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
252 unsigned short prio)
253 {
254 const int base_slice = cfqd->cfq_slice[sync];
255
256 WARN_ON(prio >= IOPRIO_BE_NR);
257
258 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
259 }
260
261 static inline int
262 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
263 {
264 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
265 }
266
267 static inline void
268 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
269 {
270 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
271 }
272
273 /*
274 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
275 * isn't valid until the first request from the dispatch is activated
276 * and the slice time set.
277 */
278 static inline int cfq_slice_used(struct cfq_queue *cfqq)
279 {
280 if (cfq_cfqq_slice_new(cfqq))
281 return 0;
282 if (time_before(jiffies, cfqq->slice_end))
283 return 0;
284
285 return 1;
286 }
287
288 /*
289 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
290 * We choose the request that is closest to the head right now. Distance
291 * behind the head is penalized and only allowed to a certain extent.
292 */
293 static struct request *
294 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
295 {
296 sector_t last, s1, s2, d1 = 0, d2 = 0;
297 unsigned long back_max;
298 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
299 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
300 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
301
302 if (rq1 == NULL || rq1 == rq2)
303 return rq2;
304 if (rq2 == NULL)
305 return rq1;
306
307 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
308 return rq1;
309 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
310 return rq2;
311 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
312 return rq1;
313 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
314 return rq2;
315
316 s1 = rq1->sector;
317 s2 = rq2->sector;
318
319 last = cfqd->last_position;
320
321 /*
322 * by definition, 1KiB is 2 sectors
323 */
324 back_max = cfqd->cfq_back_max * 2;
325
326 /*
327 * Strict one way elevator _except_ in the case where we allow
328 * short backward seeks which are biased as twice the cost of a
329 * similar forward seek.
330 */
331 if (s1 >= last)
332 d1 = s1 - last;
333 else if (s1 + back_max >= last)
334 d1 = (last - s1) * cfqd->cfq_back_penalty;
335 else
336 wrap |= CFQ_RQ1_WRAP;
337
338 if (s2 >= last)
339 d2 = s2 - last;
340 else if (s2 + back_max >= last)
341 d2 = (last - s2) * cfqd->cfq_back_penalty;
342 else
343 wrap |= CFQ_RQ2_WRAP;
344
345 /* Found required data */
346
347 /*
348 * By doing switch() on the bit mask "wrap" we avoid having to
349 * check two variables for all permutations: --> faster!
350 */
351 switch (wrap) {
352 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
353 if (d1 < d2)
354 return rq1;
355 else if (d2 < d1)
356 return rq2;
357 else {
358 if (s1 >= s2)
359 return rq1;
360 else
361 return rq2;
362 }
363
364 case CFQ_RQ2_WRAP:
365 return rq1;
366 case CFQ_RQ1_WRAP:
367 return rq2;
368 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
369 default:
370 /*
371 * Since both rqs are wrapped,
372 * start with the one that's further behind head
373 * (--> only *one* back seek required),
374 * since back seek takes more time than forward.
375 */
376 if (s1 <= s2)
377 return rq1;
378 else
379 return rq2;
380 }
381 }
382
383 /*
384 * The below is leftmost cache rbtree addon
385 */
386 static struct rb_node *cfq_rb_first(struct cfq_rb_root *root)
387 {
388 if (!root->left)
389 root->left = rb_first(&root->rb);
390
391 return root->left;
392 }
393
394 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
395 {
396 if (root->left == n)
397 root->left = NULL;
398
399 rb_erase(n, &root->rb);
400 RB_CLEAR_NODE(n);
401 }
402
403 /*
404 * would be nice to take fifo expire time into account as well
405 */
406 static struct request *
407 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
408 struct request *last)
409 {
410 struct rb_node *rbnext = rb_next(&last->rb_node);
411 struct rb_node *rbprev = rb_prev(&last->rb_node);
412 struct request *next = NULL, *prev = NULL;
413
414 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
415
416 if (rbprev)
417 prev = rb_entry_rq(rbprev);
418
419 if (rbnext)
420 next = rb_entry_rq(rbnext);
421 else {
422 rbnext = rb_first(&cfqq->sort_list);
423 if (rbnext && rbnext != &last->rb_node)
424 next = rb_entry_rq(rbnext);
425 }
426
427 return cfq_choose_req(cfqd, next, prev);
428 }
429
430 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
431 struct cfq_queue *cfqq)
432 {
433 /*
434 * just an approximation, should be ok.
435 */
436 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
437 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
438 }
439
440 /*
441 * The cfqd->service_tree holds all pending cfq_queue's that have
442 * requests waiting to be processed. It is sorted in the order that
443 * we will service the queues.
444 */
445 static void cfq_service_tree_add(struct cfq_data *cfqd,
446 struct cfq_queue *cfqq, int add_front)
447 {
448 struct rb_node **p = &cfqd->service_tree.rb.rb_node;
449 struct rb_node *parent = NULL;
450 unsigned long rb_key;
451 int left;
452
453 if (!add_front) {
454 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
455 rb_key += cfqq->slice_resid;
456 cfqq->slice_resid = 0;
457 } else
458 rb_key = 0;
459
460 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
461 /*
462 * same position, nothing more to do
463 */
464 if (rb_key == cfqq->rb_key)
465 return;
466
467 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
468 }
469
470 left = 1;
471 while (*p) {
472 struct cfq_queue *__cfqq;
473 struct rb_node **n;
474
475 parent = *p;
476 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
477
478 /*
479 * sort RT queues first, we always want to give
480 * preference to them. IDLE queues goes to the back.
481 * after that, sort on the next service time.
482 */
483 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
484 n = &(*p)->rb_left;
485 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
486 n = &(*p)->rb_right;
487 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
488 n = &(*p)->rb_left;
489 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
490 n = &(*p)->rb_right;
491 else if (rb_key < __cfqq->rb_key)
492 n = &(*p)->rb_left;
493 else
494 n = &(*p)->rb_right;
495
496 if (n == &(*p)->rb_right)
497 left = 0;
498
499 p = n;
500 }
501
502 if (left)
503 cfqd->service_tree.left = &cfqq->rb_node;
504
505 cfqq->rb_key = rb_key;
506 rb_link_node(&cfqq->rb_node, parent, p);
507 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
508 }
509
510 /*
511 * Update cfqq's position in the service tree.
512 */
513 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
514 {
515 /*
516 * Resorting requires the cfqq to be on the RR list already.
517 */
518 if (cfq_cfqq_on_rr(cfqq))
519 cfq_service_tree_add(cfqd, cfqq, 0);
520 }
521
522 /*
523 * add to busy list of queues for service, trying to be fair in ordering
524 * the pending list according to last request service
525 */
526 static inline void
527 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
528 {
529 BUG_ON(cfq_cfqq_on_rr(cfqq));
530 cfq_mark_cfqq_on_rr(cfqq);
531 cfqd->busy_queues++;
532
533 cfq_resort_rr_list(cfqd, cfqq);
534 }
535
536 /*
537 * Called when the cfqq no longer has requests pending, remove it from
538 * the service tree.
539 */
540 static inline void
541 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
542 {
543 BUG_ON(!cfq_cfqq_on_rr(cfqq));
544 cfq_clear_cfqq_on_rr(cfqq);
545
546 if (!RB_EMPTY_NODE(&cfqq->rb_node))
547 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
548
549 BUG_ON(!cfqd->busy_queues);
550 cfqd->busy_queues--;
551 }
552
553 /*
554 * rb tree support functions
555 */
556 static inline void cfq_del_rq_rb(struct request *rq)
557 {
558 struct cfq_queue *cfqq = RQ_CFQQ(rq);
559 struct cfq_data *cfqd = cfqq->cfqd;
560 const int sync = rq_is_sync(rq);
561
562 BUG_ON(!cfqq->queued[sync]);
563 cfqq->queued[sync]--;
564
565 elv_rb_del(&cfqq->sort_list, rq);
566
567 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
568 cfq_del_cfqq_rr(cfqd, cfqq);
569 }
570
571 static void cfq_add_rq_rb(struct request *rq)
572 {
573 struct cfq_queue *cfqq = RQ_CFQQ(rq);
574 struct cfq_data *cfqd = cfqq->cfqd;
575 struct request *__alias;
576
577 cfqq->queued[rq_is_sync(rq)]++;
578
579 /*
580 * looks a little odd, but the first insert might return an alias.
581 * if that happens, put the alias on the dispatch list
582 */
583 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
584 cfq_dispatch_insert(cfqd->queue, __alias);
585
586 if (!cfq_cfqq_on_rr(cfqq))
587 cfq_add_cfqq_rr(cfqd, cfqq);
588
589 /*
590 * check if this request is a better next-serve candidate
591 */
592 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
593 BUG_ON(!cfqq->next_rq);
594 }
595
596 static inline void
597 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
598 {
599 elv_rb_del(&cfqq->sort_list, rq);
600 cfqq->queued[rq_is_sync(rq)]--;
601 cfq_add_rq_rb(rq);
602 }
603
604 static struct request *
605 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
606 {
607 struct task_struct *tsk = current;
608 struct cfq_io_context *cic;
609 struct cfq_queue *cfqq;
610
611 cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
612 if (!cic)
613 return NULL;
614
615 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
616 if (cfqq) {
617 sector_t sector = bio->bi_sector + bio_sectors(bio);
618
619 return elv_rb_find(&cfqq->sort_list, sector);
620 }
621
622 return NULL;
623 }
624
625 static void cfq_activate_request(request_queue_t *q, struct request *rq)
626 {
627 struct cfq_data *cfqd = q->elevator->elevator_data;
628
629 cfqd->rq_in_driver++;
630
631 /*
632 * If the depth is larger 1, it really could be queueing. But lets
633 * make the mark a little higher - idling could still be good for
634 * low queueing, and a low queueing number could also just indicate
635 * a SCSI mid layer like behaviour where limit+1 is often seen.
636 */
637 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
638 cfqd->hw_tag = 1;
639
640 cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
641 }
642
643 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
644 {
645 struct cfq_data *cfqd = q->elevator->elevator_data;
646
647 WARN_ON(!cfqd->rq_in_driver);
648 cfqd->rq_in_driver--;
649 }
650
651 static void cfq_remove_request(struct request *rq)
652 {
653 struct cfq_queue *cfqq = RQ_CFQQ(rq);
654
655 if (cfqq->next_rq == rq)
656 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
657
658 list_del_init(&rq->queuelist);
659 cfq_del_rq_rb(rq);
660
661 if (rq_is_meta(rq)) {
662 WARN_ON(!cfqq->meta_pending);
663 cfqq->meta_pending--;
664 }
665 }
666
667 static int cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
668 {
669 struct cfq_data *cfqd = q->elevator->elevator_data;
670 struct request *__rq;
671
672 __rq = cfq_find_rq_fmerge(cfqd, bio);
673 if (__rq && elv_rq_merge_ok(__rq, bio)) {
674 *req = __rq;
675 return ELEVATOR_FRONT_MERGE;
676 }
677
678 return ELEVATOR_NO_MERGE;
679 }
680
681 static void cfq_merged_request(request_queue_t *q, struct request *req,
682 int type)
683 {
684 if (type == ELEVATOR_FRONT_MERGE) {
685 struct cfq_queue *cfqq = RQ_CFQQ(req);
686
687 cfq_reposition_rq_rb(cfqq, req);
688 }
689 }
690
691 static void
692 cfq_merged_requests(request_queue_t *q, struct request *rq,
693 struct request *next)
694 {
695 /*
696 * reposition in fifo if next is older than rq
697 */
698 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
699 time_before(next->start_time, rq->start_time))
700 list_move(&rq->queuelist, &next->queuelist);
701
702 cfq_remove_request(next);
703 }
704
705 static int cfq_allow_merge(request_queue_t *q, struct request *rq,
706 struct bio *bio)
707 {
708 struct cfq_data *cfqd = q->elevator->elevator_data;
709 struct cfq_io_context *cic;
710 struct cfq_queue *cfqq;
711
712 /*
713 * Disallow merge of a sync bio into an async request.
714 */
715 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
716 return 0;
717
718 /*
719 * Lookup the cfqq that this bio will be queued with. Allow
720 * merge only if rq is queued there.
721 */
722 cic = cfq_cic_rb_lookup(cfqd, current->io_context);
723 if (!cic)
724 return 0;
725
726 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
727 if (cfqq == RQ_CFQQ(rq))
728 return 1;
729
730 return 0;
731 }
732
733 static inline void
734 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
735 {
736 if (cfqq) {
737 /*
738 * stop potential idle class queues waiting service
739 */
740 del_timer(&cfqd->idle_class_timer);
741
742 cfqq->slice_end = 0;
743 cfq_clear_cfqq_must_alloc_slice(cfqq);
744 cfq_clear_cfqq_fifo_expire(cfqq);
745 cfq_mark_cfqq_slice_new(cfqq);
746 cfq_clear_cfqq_queue_new(cfqq);
747 }
748
749 cfqd->active_queue = cfqq;
750 }
751
752 /*
753 * current cfqq expired its slice (or was too idle), select new one
754 */
755 static void
756 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
757 int timed_out)
758 {
759 if (cfq_cfqq_wait_request(cfqq))
760 del_timer(&cfqd->idle_slice_timer);
761
762 cfq_clear_cfqq_must_dispatch(cfqq);
763 cfq_clear_cfqq_wait_request(cfqq);
764
765 /*
766 * store what was left of this slice, if the queue idled/timed out
767 */
768 if (timed_out && !cfq_cfqq_slice_new(cfqq))
769 cfqq->slice_resid = cfqq->slice_end - jiffies;
770
771 cfq_resort_rr_list(cfqd, cfqq);
772
773 if (cfqq == cfqd->active_queue)
774 cfqd->active_queue = NULL;
775
776 if (cfqd->active_cic) {
777 put_io_context(cfqd->active_cic->ioc);
778 cfqd->active_cic = NULL;
779 }
780 }
781
782 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
783 {
784 struct cfq_queue *cfqq = cfqd->active_queue;
785
786 if (cfqq)
787 __cfq_slice_expired(cfqd, cfqq, timed_out);
788 }
789
790 /*
791 * Get next queue for service. Unless we have a queue preemption,
792 * we'll simply select the first cfqq in the service tree.
793 */
794 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
795 {
796 struct cfq_queue *cfqq;
797 struct rb_node *n;
798
799 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
800 return NULL;
801
802 n = cfq_rb_first(&cfqd->service_tree);
803 cfqq = rb_entry(n, struct cfq_queue, rb_node);
804
805 if (cfq_class_idle(cfqq)) {
806 unsigned long end;
807
808 /*
809 * if we have idle queues and no rt or be queues had
810 * pending requests, either allow immediate service if
811 * the grace period has passed or arm the idle grace
812 * timer
813 */
814 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
815 if (time_before(jiffies, end)) {
816 mod_timer(&cfqd->idle_class_timer, end);
817 cfqq = NULL;
818 }
819 }
820
821 return cfqq;
822 }
823
824 /*
825 * Get and set a new active queue for service.
826 */
827 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
828 {
829 struct cfq_queue *cfqq;
830
831 cfqq = cfq_get_next_queue(cfqd);
832 __cfq_set_active_queue(cfqd, cfqq);
833 return cfqq;
834 }
835
836 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
837 struct request *rq)
838 {
839 if (rq->sector >= cfqd->last_position)
840 return rq->sector - cfqd->last_position;
841 else
842 return cfqd->last_position - rq->sector;
843 }
844
845 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
846 {
847 struct cfq_io_context *cic = cfqd->active_cic;
848
849 if (!sample_valid(cic->seek_samples))
850 return 0;
851
852 return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
853 }
854
855 static int cfq_close_cooperator(struct cfq_data *cfq_data,
856 struct cfq_queue *cfqq)
857 {
858 /*
859 * We should notice if some of the queues are cooperating, eg
860 * working closely on the same area of the disk. In that case,
861 * we can group them together and don't waste time idling.
862 */
863 return 0;
864 }
865
866 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
867
868 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
869 {
870 struct cfq_queue *cfqq = cfqd->active_queue;
871 struct cfq_io_context *cic;
872 unsigned long sl;
873
874 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
875 WARN_ON(cfq_cfqq_slice_new(cfqq));
876
877 /*
878 * idle is disabled, either manually or by past process history
879 */
880 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
881 return;
882
883 /*
884 * task has exited, don't wait
885 */
886 cic = cfqd->active_cic;
887 if (!cic || !cic->ioc->task)
888 return;
889
890 /*
891 * See if this prio level has a good candidate
892 */
893 if (cfq_close_cooperator(cfqd, cfqq) &&
894 (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
895 return;
896
897 cfq_mark_cfqq_must_dispatch(cfqq);
898 cfq_mark_cfqq_wait_request(cfqq);
899
900 /*
901 * we don't want to idle for seeks, but we do want to allow
902 * fair distribution of slice time for a process doing back-to-back
903 * seeks. so allow a little bit of time for him to submit a new rq
904 */
905 sl = cfqd->cfq_slice_idle;
906 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
907 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
908
909 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
910 }
911
912 /*
913 * Move request from internal lists to the request queue dispatch list.
914 */
915 static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
916 {
917 struct cfq_data *cfqd = q->elevator->elevator_data;
918 struct cfq_queue *cfqq = RQ_CFQQ(rq);
919
920 cfq_remove_request(rq);
921 cfqq->dispatched++;
922 elv_dispatch_sort(q, rq);
923
924 if (cfq_cfqq_sync(cfqq))
925 cfqd->sync_flight++;
926 }
927
928 /*
929 * return expired entry, or NULL to just start from scratch in rbtree
930 */
931 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
932 {
933 struct cfq_data *cfqd = cfqq->cfqd;
934 struct request *rq;
935 int fifo;
936
937 if (cfq_cfqq_fifo_expire(cfqq))
938 return NULL;
939
940 cfq_mark_cfqq_fifo_expire(cfqq);
941
942 if (list_empty(&cfqq->fifo))
943 return NULL;
944
945 fifo = cfq_cfqq_sync(cfqq);
946 rq = rq_entry_fifo(cfqq->fifo.next);
947
948 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
949 return NULL;
950
951 return rq;
952 }
953
954 static inline int
955 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
956 {
957 const int base_rq = cfqd->cfq_slice_async_rq;
958
959 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
960
961 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
962 }
963
964 /*
965 * Select a queue for service. If we have a current active queue,
966 * check whether to continue servicing it, or retrieve and set a new one.
967 */
968 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
969 {
970 struct cfq_queue *cfqq;
971
972 cfqq = cfqd->active_queue;
973 if (!cfqq)
974 goto new_queue;
975
976 /*
977 * The active queue has run out of time, expire it and select new.
978 */
979 if (cfq_slice_used(cfqq))
980 goto expire;
981
982 /*
983 * The active queue has requests and isn't expired, allow it to
984 * dispatch.
985 */
986 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
987 goto keep_queue;
988
989 /*
990 * No requests pending. If the active queue still has requests in
991 * flight or is idling for a new request, allow either of these
992 * conditions to happen (or time out) before selecting a new queue.
993 */
994 if (timer_pending(&cfqd->idle_slice_timer) ||
995 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
996 cfqq = NULL;
997 goto keep_queue;
998 }
999
1000 expire:
1001 cfq_slice_expired(cfqd, 0);
1002 new_queue:
1003 cfqq = cfq_set_active_queue(cfqd);
1004 keep_queue:
1005 return cfqq;
1006 }
1007
1008 /*
1009 * Dispatch some requests from cfqq, moving them to the request queue
1010 * dispatch list.
1011 */
1012 static int
1013 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1014 int max_dispatch)
1015 {
1016 int dispatched = 0;
1017
1018 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1019
1020 do {
1021 struct request *rq;
1022
1023 /*
1024 * follow expired path, else get first next available
1025 */
1026 if ((rq = cfq_check_fifo(cfqq)) == NULL)
1027 rq = cfqq->next_rq;
1028
1029 /*
1030 * finally, insert request into driver dispatch list
1031 */
1032 cfq_dispatch_insert(cfqd->queue, rq);
1033
1034 dispatched++;
1035
1036 if (!cfqd->active_cic) {
1037 atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1038 cfqd->active_cic = RQ_CIC(rq);
1039 }
1040
1041 if (RB_EMPTY_ROOT(&cfqq->sort_list))
1042 break;
1043
1044 } while (dispatched < max_dispatch);
1045
1046 /*
1047 * expire an async queue immediately if it has used up its slice. idle
1048 * queue always expire after 1 dispatch round.
1049 */
1050 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1051 dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1052 cfq_class_idle(cfqq))) {
1053 cfqq->slice_end = jiffies + 1;
1054 cfq_slice_expired(cfqd, 0);
1055 }
1056
1057 return dispatched;
1058 }
1059
1060 static inline int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1061 {
1062 int dispatched = 0;
1063
1064 while (cfqq->next_rq) {
1065 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1066 dispatched++;
1067 }
1068
1069 BUG_ON(!list_empty(&cfqq->fifo));
1070 return dispatched;
1071 }
1072
1073 /*
1074 * Drain our current requests. Used for barriers and when switching
1075 * io schedulers on-the-fly.
1076 */
1077 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1078 {
1079 int dispatched = 0;
1080 struct rb_node *n;
1081
1082 while ((n = cfq_rb_first(&cfqd->service_tree)) != NULL) {
1083 struct cfq_queue *cfqq = rb_entry(n, struct cfq_queue, rb_node);
1084
1085 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1086 }
1087
1088 cfq_slice_expired(cfqd, 0);
1089
1090 BUG_ON(cfqd->busy_queues);
1091
1092 return dispatched;
1093 }
1094
1095 static int cfq_dispatch_requests(request_queue_t *q, int force)
1096 {
1097 struct cfq_data *cfqd = q->elevator->elevator_data;
1098 struct cfq_queue *cfqq;
1099 int dispatched;
1100
1101 if (!cfqd->busy_queues)
1102 return 0;
1103
1104 if (unlikely(force))
1105 return cfq_forced_dispatch(cfqd);
1106
1107 dispatched = 0;
1108 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1109 int max_dispatch;
1110
1111 max_dispatch = cfqd->cfq_quantum;
1112 if (cfq_class_idle(cfqq))
1113 max_dispatch = 1;
1114
1115 if (cfqq->dispatched >= max_dispatch) {
1116 if (cfqd->busy_queues > 1)
1117 break;
1118 if (cfqq->dispatched >= 4 * max_dispatch)
1119 break;
1120 }
1121
1122 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1123 break;
1124
1125 cfq_clear_cfqq_must_dispatch(cfqq);
1126 cfq_clear_cfqq_wait_request(cfqq);
1127 del_timer(&cfqd->idle_slice_timer);
1128
1129 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1130 }
1131
1132 return dispatched;
1133 }
1134
1135 /*
1136 * task holds one reference to the queue, dropped when task exits. each rq
1137 * in-flight on this queue also holds a reference, dropped when rq is freed.
1138 *
1139 * queue lock must be held here.
1140 */
1141 static void cfq_put_queue(struct cfq_queue *cfqq)
1142 {
1143 struct cfq_data *cfqd = cfqq->cfqd;
1144
1145 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1146
1147 if (!atomic_dec_and_test(&cfqq->ref))
1148 return;
1149
1150 BUG_ON(rb_first(&cfqq->sort_list));
1151 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1152 BUG_ON(cfq_cfqq_on_rr(cfqq));
1153
1154 if (unlikely(cfqd->active_queue == cfqq)) {
1155 __cfq_slice_expired(cfqd, cfqq, 0);
1156 cfq_schedule_dispatch(cfqd);
1157 }
1158
1159 kmem_cache_free(cfq_pool, cfqq);
1160 }
1161
1162 static void cfq_free_io_context(struct io_context *ioc)
1163 {
1164 struct cfq_io_context *__cic;
1165 struct rb_node *n;
1166 int freed = 0;
1167
1168 ioc->ioc_data = NULL;
1169
1170 while ((n = rb_first(&ioc->cic_root)) != NULL) {
1171 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1172 rb_erase(&__cic->rb_node, &ioc->cic_root);
1173 kmem_cache_free(cfq_ioc_pool, __cic);
1174 freed++;
1175 }
1176
1177 elv_ioc_count_mod(ioc_count, -freed);
1178
1179 if (ioc_gone && !elv_ioc_count_read(ioc_count))
1180 complete(ioc_gone);
1181 }
1182
1183 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1184 {
1185 if (unlikely(cfqq == cfqd->active_queue)) {
1186 __cfq_slice_expired(cfqd, cfqq, 0);
1187 cfq_schedule_dispatch(cfqd);
1188 }
1189
1190 cfq_put_queue(cfqq);
1191 }
1192
1193 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1194 struct cfq_io_context *cic)
1195 {
1196 list_del_init(&cic->queue_list);
1197 smp_wmb();
1198 cic->key = NULL;
1199
1200 if (cic->cfqq[ASYNC]) {
1201 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1202 cic->cfqq[ASYNC] = NULL;
1203 }
1204
1205 if (cic->cfqq[SYNC]) {
1206 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1207 cic->cfqq[SYNC] = NULL;
1208 }
1209 }
1210
1211 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1212 {
1213 struct cfq_data *cfqd = cic->key;
1214
1215 if (cfqd) {
1216 request_queue_t *q = cfqd->queue;
1217
1218 spin_lock_irq(q->queue_lock);
1219 __cfq_exit_single_io_context(cfqd, cic);
1220 spin_unlock_irq(q->queue_lock);
1221 }
1222 }
1223
1224 /*
1225 * The process that ioc belongs to has exited, we need to clean up
1226 * and put the internal structures we have that belongs to that process.
1227 */
1228 static void cfq_exit_io_context(struct io_context *ioc)
1229 {
1230 struct cfq_io_context *__cic;
1231 struct rb_node *n;
1232
1233 ioc->ioc_data = NULL;
1234
1235 /*
1236 * put the reference this task is holding to the various queues
1237 */
1238 n = rb_first(&ioc->cic_root);
1239 while (n != NULL) {
1240 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1241
1242 cfq_exit_single_io_context(__cic);
1243 n = rb_next(n);
1244 }
1245 }
1246
1247 static struct cfq_io_context *
1248 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1249 {
1250 struct cfq_io_context *cic;
1251
1252 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
1253 if (cic) {
1254 memset(cic, 0, sizeof(*cic));
1255 cic->last_end_request = jiffies;
1256 INIT_LIST_HEAD(&cic->queue_list);
1257 cic->dtor = cfq_free_io_context;
1258 cic->exit = cfq_exit_io_context;
1259 elv_ioc_count_inc(ioc_count);
1260 }
1261
1262 return cic;
1263 }
1264
1265 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1266 {
1267 struct task_struct *tsk = current;
1268 int ioprio_class;
1269
1270 if (!cfq_cfqq_prio_changed(cfqq))
1271 return;
1272
1273 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1274 switch (ioprio_class) {
1275 default:
1276 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1277 case IOPRIO_CLASS_NONE:
1278 /*
1279 * no prio set, place us in the middle of the BE classes
1280 */
1281 cfqq->ioprio = task_nice_ioprio(tsk);
1282 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1283 break;
1284 case IOPRIO_CLASS_RT:
1285 cfqq->ioprio = task_ioprio(tsk);
1286 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1287 break;
1288 case IOPRIO_CLASS_BE:
1289 cfqq->ioprio = task_ioprio(tsk);
1290 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1291 break;
1292 case IOPRIO_CLASS_IDLE:
1293 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1294 cfqq->ioprio = 7;
1295 cfq_clear_cfqq_idle_window(cfqq);
1296 break;
1297 }
1298
1299 /*
1300 * keep track of original prio settings in case we have to temporarily
1301 * elevate the priority of this queue
1302 */
1303 cfqq->org_ioprio = cfqq->ioprio;
1304 cfqq->org_ioprio_class = cfqq->ioprio_class;
1305 cfq_clear_cfqq_prio_changed(cfqq);
1306 }
1307
1308 static inline void changed_ioprio(struct cfq_io_context *cic)
1309 {
1310 struct cfq_data *cfqd = cic->key;
1311 struct cfq_queue *cfqq;
1312 unsigned long flags;
1313
1314 if (unlikely(!cfqd))
1315 return;
1316
1317 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1318
1319 cfqq = cic->cfqq[ASYNC];
1320 if (cfqq) {
1321 struct cfq_queue *new_cfqq;
1322 new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc->task,
1323 GFP_ATOMIC);
1324 if (new_cfqq) {
1325 cic->cfqq[ASYNC] = new_cfqq;
1326 cfq_put_queue(cfqq);
1327 }
1328 }
1329
1330 cfqq = cic->cfqq[SYNC];
1331 if (cfqq)
1332 cfq_mark_cfqq_prio_changed(cfqq);
1333
1334 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1335 }
1336
1337 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1338 {
1339 struct cfq_io_context *cic;
1340 struct rb_node *n;
1341
1342 ioc->ioprio_changed = 0;
1343
1344 n = rb_first(&ioc->cic_root);
1345 while (n != NULL) {
1346 cic = rb_entry(n, struct cfq_io_context, rb_node);
1347
1348 changed_ioprio(cic);
1349 n = rb_next(n);
1350 }
1351 }
1352
1353 static struct cfq_queue *
1354 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct task_struct *tsk,
1355 gfp_t gfp_mask)
1356 {
1357 struct cfq_queue *cfqq, *new_cfqq = NULL;
1358 struct cfq_io_context *cic;
1359
1360 retry:
1361 cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
1362 /* cic always exists here */
1363 cfqq = cic_to_cfqq(cic, is_sync);
1364
1365 if (!cfqq) {
1366 if (new_cfqq) {
1367 cfqq = new_cfqq;
1368 new_cfqq = NULL;
1369 } else if (gfp_mask & __GFP_WAIT) {
1370 /*
1371 * Inform the allocator of the fact that we will
1372 * just repeat this allocation if it fails, to allow
1373 * the allocator to do whatever it needs to attempt to
1374 * free memory.
1375 */
1376 spin_unlock_irq(cfqd->queue->queue_lock);
1377 new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
1378 spin_lock_irq(cfqd->queue->queue_lock);
1379 goto retry;
1380 } else {
1381 cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
1382 if (!cfqq)
1383 goto out;
1384 }
1385
1386 memset(cfqq, 0, sizeof(*cfqq));
1387
1388 RB_CLEAR_NODE(&cfqq->rb_node);
1389 INIT_LIST_HEAD(&cfqq->fifo);
1390
1391 atomic_set(&cfqq->ref, 0);
1392 cfqq->cfqd = cfqd;
1393
1394 if (is_sync) {
1395 cfq_mark_cfqq_idle_window(cfqq);
1396 cfq_mark_cfqq_sync(cfqq);
1397 }
1398
1399 cfq_mark_cfqq_prio_changed(cfqq);
1400 cfq_mark_cfqq_queue_new(cfqq);
1401
1402 cfq_init_prio_data(cfqq);
1403 }
1404
1405 if (new_cfqq)
1406 kmem_cache_free(cfq_pool, new_cfqq);
1407
1408 atomic_inc(&cfqq->ref);
1409 out:
1410 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1411 return cfqq;
1412 }
1413
1414 /*
1415 * We drop cfq io contexts lazily, so we may find a dead one.
1416 */
1417 static void
1418 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1419 {
1420 WARN_ON(!list_empty(&cic->queue_list));
1421
1422 if (ioc->ioc_data == cic)
1423 ioc->ioc_data = NULL;
1424
1425 rb_erase(&cic->rb_node, &ioc->cic_root);
1426 kmem_cache_free(cfq_ioc_pool, cic);
1427 elv_ioc_count_dec(ioc_count);
1428 }
1429
1430 static struct cfq_io_context *
1431 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1432 {
1433 struct rb_node *n;
1434 struct cfq_io_context *cic;
1435 void *k, *key = cfqd;
1436
1437 if (unlikely(!ioc))
1438 return NULL;
1439
1440 /*
1441 * we maintain a last-hit cache, to avoid browsing over the tree
1442 */
1443 cic = ioc->ioc_data;
1444 if (cic && cic->key == cfqd)
1445 return cic;
1446
1447 restart:
1448 n = ioc->cic_root.rb_node;
1449 while (n) {
1450 cic = rb_entry(n, struct cfq_io_context, rb_node);
1451 /* ->key must be copied to avoid race with cfq_exit_queue() */
1452 k = cic->key;
1453 if (unlikely(!k)) {
1454 cfq_drop_dead_cic(ioc, cic);
1455 goto restart;
1456 }
1457
1458 if (key < k)
1459 n = n->rb_left;
1460 else if (key > k)
1461 n = n->rb_right;
1462 else {
1463 ioc->ioc_data = cic;
1464 return cic;
1465 }
1466 }
1467
1468 return NULL;
1469 }
1470
1471 static inline void
1472 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1473 struct cfq_io_context *cic)
1474 {
1475 struct rb_node **p;
1476 struct rb_node *parent;
1477 struct cfq_io_context *__cic;
1478 unsigned long flags;
1479 void *k;
1480
1481 cic->ioc = ioc;
1482 cic->key = cfqd;
1483
1484 restart:
1485 parent = NULL;
1486 p = &ioc->cic_root.rb_node;
1487 while (*p) {
1488 parent = *p;
1489 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1490 /* ->key must be copied to avoid race with cfq_exit_queue() */
1491 k = __cic->key;
1492 if (unlikely(!k)) {
1493 cfq_drop_dead_cic(ioc, __cic);
1494 goto restart;
1495 }
1496
1497 if (cic->key < k)
1498 p = &(*p)->rb_left;
1499 else if (cic->key > k)
1500 p = &(*p)->rb_right;
1501 else
1502 BUG();
1503 }
1504
1505 rb_link_node(&cic->rb_node, parent, p);
1506 rb_insert_color(&cic->rb_node, &ioc->cic_root);
1507
1508 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1509 list_add(&cic->queue_list, &cfqd->cic_list);
1510 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1511 }
1512
1513 /*
1514 * Setup general io context and cfq io context. There can be several cfq
1515 * io contexts per general io context, if this process is doing io to more
1516 * than one device managed by cfq.
1517 */
1518 static struct cfq_io_context *
1519 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1520 {
1521 struct io_context *ioc = NULL;
1522 struct cfq_io_context *cic;
1523
1524 might_sleep_if(gfp_mask & __GFP_WAIT);
1525
1526 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1527 if (!ioc)
1528 return NULL;
1529
1530 cic = cfq_cic_rb_lookup(cfqd, ioc);
1531 if (cic)
1532 goto out;
1533
1534 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1535 if (cic == NULL)
1536 goto err;
1537
1538 cfq_cic_link(cfqd, ioc, cic);
1539 out:
1540 smp_read_barrier_depends();
1541 if (unlikely(ioc->ioprio_changed))
1542 cfq_ioc_set_ioprio(ioc);
1543
1544 return cic;
1545 err:
1546 put_io_context(ioc);
1547 return NULL;
1548 }
1549
1550 static void
1551 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1552 {
1553 unsigned long elapsed = jiffies - cic->last_end_request;
1554 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1555
1556 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1557 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1558 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1559 }
1560
1561 static void
1562 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1563 struct request *rq)
1564 {
1565 sector_t sdist;
1566 u64 total;
1567
1568 if (cic->last_request_pos < rq->sector)
1569 sdist = rq->sector - cic->last_request_pos;
1570 else
1571 sdist = cic->last_request_pos - rq->sector;
1572
1573 if (!cic->seek_samples) {
1574 cfqd->new_seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1575 cfqd->new_seek_mean = cfqd->new_seek_total / 256;
1576 }
1577
1578 /*
1579 * Don't allow the seek distance to get too large from the
1580 * odd fragment, pagein, etc
1581 */
1582 if (cic->seek_samples <= 60) /* second&third seek */
1583 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1584 else
1585 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1586
1587 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1588 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1589 total = cic->seek_total + (cic->seek_samples/2);
1590 do_div(total, cic->seek_samples);
1591 cic->seek_mean = (sector_t)total;
1592 }
1593
1594 /*
1595 * Disable idle window if the process thinks too long or seeks so much that
1596 * it doesn't matter
1597 */
1598 static void
1599 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1600 struct cfq_io_context *cic)
1601 {
1602 int enable_idle;
1603
1604 if (!cfq_cfqq_sync(cfqq))
1605 return;
1606
1607 enable_idle = cfq_cfqq_idle_window(cfqq);
1608
1609 if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1610 (cfqd->hw_tag && CIC_SEEKY(cic)))
1611 enable_idle = 0;
1612 else if (sample_valid(cic->ttime_samples)) {
1613 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1614 enable_idle = 0;
1615 else
1616 enable_idle = 1;
1617 }
1618
1619 if (enable_idle)
1620 cfq_mark_cfqq_idle_window(cfqq);
1621 else
1622 cfq_clear_cfqq_idle_window(cfqq);
1623 }
1624
1625 /*
1626 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1627 * no or if we aren't sure, a 1 will cause a preempt.
1628 */
1629 static int
1630 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1631 struct request *rq)
1632 {
1633 struct cfq_queue *cfqq;
1634
1635 cfqq = cfqd->active_queue;
1636 if (!cfqq)
1637 return 0;
1638
1639 if (cfq_slice_used(cfqq))
1640 return 1;
1641
1642 if (cfq_class_idle(new_cfqq))
1643 return 0;
1644
1645 if (cfq_class_idle(cfqq))
1646 return 1;
1647
1648 /*
1649 * if the new request is sync, but the currently running queue is
1650 * not, let the sync request have priority.
1651 */
1652 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1653 return 1;
1654
1655 /*
1656 * So both queues are sync. Let the new request get disk time if
1657 * it's a metadata request and the current queue is doing regular IO.
1658 */
1659 if (rq_is_meta(rq) && !cfqq->meta_pending)
1660 return 1;
1661
1662 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1663 return 0;
1664
1665 /*
1666 * if this request is as-good as one we would expect from the
1667 * current cfqq, let it preempt
1668 */
1669 if (cfq_rq_close(cfqd, rq))
1670 return 1;
1671
1672 return 0;
1673 }
1674
1675 /*
1676 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1677 * let it have half of its nominal slice.
1678 */
1679 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1680 {
1681 cfq_slice_expired(cfqd, 1);
1682
1683 /*
1684 * Put the new queue at the front of the of the current list,
1685 * so we know that it will be selected next.
1686 */
1687 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1688
1689 cfq_service_tree_add(cfqd, cfqq, 1);
1690
1691 cfqq->slice_end = 0;
1692 cfq_mark_cfqq_slice_new(cfqq);
1693 }
1694
1695 /*
1696 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1697 * something we should do about it
1698 */
1699 static void
1700 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1701 struct request *rq)
1702 {
1703 struct cfq_io_context *cic = RQ_CIC(rq);
1704
1705 if (rq_is_meta(rq))
1706 cfqq->meta_pending++;
1707
1708 cfq_update_io_thinktime(cfqd, cic);
1709 cfq_update_io_seektime(cfqd, cic, rq);
1710 cfq_update_idle_window(cfqd, cfqq, cic);
1711
1712 cic->last_request_pos = rq->sector + rq->nr_sectors;
1713 cfqq->last_request_pos = cic->last_request_pos;
1714
1715 if (cfqq == cfqd->active_queue) {
1716 /*
1717 * if we are waiting for a request for this queue, let it rip
1718 * immediately and flag that we must not expire this queue
1719 * just now
1720 */
1721 if (cfq_cfqq_wait_request(cfqq)) {
1722 cfq_mark_cfqq_must_dispatch(cfqq);
1723 del_timer(&cfqd->idle_slice_timer);
1724 blk_start_queueing(cfqd->queue);
1725 }
1726 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1727 /*
1728 * not the active queue - expire current slice if it is
1729 * idle and has expired it's mean thinktime or this new queue
1730 * has some old slice time left and is of higher priority
1731 */
1732 cfq_preempt_queue(cfqd, cfqq);
1733 cfq_mark_cfqq_must_dispatch(cfqq);
1734 blk_start_queueing(cfqd->queue);
1735 }
1736 }
1737
1738 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1739 {
1740 struct cfq_data *cfqd = q->elevator->elevator_data;
1741 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1742
1743 cfq_init_prio_data(cfqq);
1744
1745 cfq_add_rq_rb(rq);
1746
1747 list_add_tail(&rq->queuelist, &cfqq->fifo);
1748
1749 cfq_rq_enqueued(cfqd, cfqq, rq);
1750 }
1751
1752 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1753 {
1754 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1755 struct cfq_data *cfqd = cfqq->cfqd;
1756 const int sync = rq_is_sync(rq);
1757 unsigned long now;
1758
1759 now = jiffies;
1760
1761 WARN_ON(!cfqd->rq_in_driver);
1762 WARN_ON(!cfqq->dispatched);
1763 cfqd->rq_in_driver--;
1764 cfqq->dispatched--;
1765
1766 if (cfq_cfqq_sync(cfqq))
1767 cfqd->sync_flight--;
1768
1769 if (!cfq_class_idle(cfqq))
1770 cfqd->last_end_request = now;
1771
1772 if (sync)
1773 RQ_CIC(rq)->last_end_request = now;
1774
1775 /*
1776 * If this is the active queue, check if it needs to be expired,
1777 * or if we want to idle in case it has no pending requests.
1778 */
1779 if (cfqd->active_queue == cfqq) {
1780 if (cfq_cfqq_slice_new(cfqq)) {
1781 cfq_set_prio_slice(cfqd, cfqq);
1782 cfq_clear_cfqq_slice_new(cfqq);
1783 }
1784 if (cfq_slice_used(cfqq))
1785 cfq_slice_expired(cfqd, 1);
1786 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1787 cfq_arm_slice_timer(cfqd);
1788 }
1789
1790 if (!cfqd->rq_in_driver)
1791 cfq_schedule_dispatch(cfqd);
1792 }
1793
1794 /*
1795 * we temporarily boost lower priority queues if they are holding fs exclusive
1796 * resources. they are boosted to normal prio (CLASS_BE/4)
1797 */
1798 static void cfq_prio_boost(struct cfq_queue *cfqq)
1799 {
1800 if (has_fs_excl()) {
1801 /*
1802 * boost idle prio on transactions that would lock out other
1803 * users of the filesystem
1804 */
1805 if (cfq_class_idle(cfqq))
1806 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1807 if (cfqq->ioprio > IOPRIO_NORM)
1808 cfqq->ioprio = IOPRIO_NORM;
1809 } else {
1810 /*
1811 * check if we need to unboost the queue
1812 */
1813 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1814 cfqq->ioprio_class = cfqq->org_ioprio_class;
1815 if (cfqq->ioprio != cfqq->org_ioprio)
1816 cfqq->ioprio = cfqq->org_ioprio;
1817 }
1818 }
1819
1820 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1821 {
1822 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1823 !cfq_cfqq_must_alloc_slice(cfqq)) {
1824 cfq_mark_cfqq_must_alloc_slice(cfqq);
1825 return ELV_MQUEUE_MUST;
1826 }
1827
1828 return ELV_MQUEUE_MAY;
1829 }
1830
1831 static int cfq_may_queue(request_queue_t *q, int rw)
1832 {
1833 struct cfq_data *cfqd = q->elevator->elevator_data;
1834 struct task_struct *tsk = current;
1835 struct cfq_io_context *cic;
1836 struct cfq_queue *cfqq;
1837
1838 /*
1839 * don't force setup of a queue from here, as a call to may_queue
1840 * does not necessarily imply that a request actually will be queued.
1841 * so just lookup a possibly existing queue, or return 'may queue'
1842 * if that fails
1843 */
1844 cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
1845 if (!cic)
1846 return ELV_MQUEUE_MAY;
1847
1848 cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
1849 if (cfqq) {
1850 cfq_init_prio_data(cfqq);
1851 cfq_prio_boost(cfqq);
1852
1853 return __cfq_may_queue(cfqq);
1854 }
1855
1856 return ELV_MQUEUE_MAY;
1857 }
1858
1859 /*
1860 * queue lock held here
1861 */
1862 static void cfq_put_request(struct request *rq)
1863 {
1864 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1865
1866 if (cfqq) {
1867 const int rw = rq_data_dir(rq);
1868
1869 BUG_ON(!cfqq->allocated[rw]);
1870 cfqq->allocated[rw]--;
1871
1872 put_io_context(RQ_CIC(rq)->ioc);
1873
1874 rq->elevator_private = NULL;
1875 rq->elevator_private2 = NULL;
1876
1877 cfq_put_queue(cfqq);
1878 }
1879 }
1880
1881 /*
1882 * Allocate cfq data structures associated with this request.
1883 */
1884 static int
1885 cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1886 {
1887 struct cfq_data *cfqd = q->elevator->elevator_data;
1888 struct task_struct *tsk = current;
1889 struct cfq_io_context *cic;
1890 const int rw = rq_data_dir(rq);
1891 const int is_sync = rq_is_sync(rq);
1892 struct cfq_queue *cfqq;
1893 unsigned long flags;
1894
1895 might_sleep_if(gfp_mask & __GFP_WAIT);
1896
1897 cic = cfq_get_io_context(cfqd, gfp_mask);
1898
1899 spin_lock_irqsave(q->queue_lock, flags);
1900
1901 if (!cic)
1902 goto queue_fail;
1903
1904 cfqq = cic_to_cfqq(cic, is_sync);
1905 if (!cfqq) {
1906 cfqq = cfq_get_queue(cfqd, is_sync, tsk, gfp_mask);
1907
1908 if (!cfqq)
1909 goto queue_fail;
1910
1911 cic_set_cfqq(cic, cfqq, is_sync);
1912 }
1913
1914 cfqq->allocated[rw]++;
1915 cfq_clear_cfqq_must_alloc(cfqq);
1916 atomic_inc(&cfqq->ref);
1917
1918 spin_unlock_irqrestore(q->queue_lock, flags);
1919
1920 rq->elevator_private = cic;
1921 rq->elevator_private2 = cfqq;
1922 return 0;
1923
1924 queue_fail:
1925 if (cic)
1926 put_io_context(cic->ioc);
1927
1928 cfq_schedule_dispatch(cfqd);
1929 spin_unlock_irqrestore(q->queue_lock, flags);
1930 return 1;
1931 }
1932
1933 static void cfq_kick_queue(struct work_struct *work)
1934 {
1935 struct cfq_data *cfqd =
1936 container_of(work, struct cfq_data, unplug_work);
1937 request_queue_t *q = cfqd->queue;
1938 unsigned long flags;
1939
1940 spin_lock_irqsave(q->queue_lock, flags);
1941 blk_start_queueing(q);
1942 spin_unlock_irqrestore(q->queue_lock, flags);
1943 }
1944
1945 /*
1946 * Timer running if the active_queue is currently idling inside its time slice
1947 */
1948 static void cfq_idle_slice_timer(unsigned long data)
1949 {
1950 struct cfq_data *cfqd = (struct cfq_data *) data;
1951 struct cfq_queue *cfqq;
1952 unsigned long flags;
1953 int timed_out = 1;
1954
1955 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1956
1957 if ((cfqq = cfqd->active_queue) != NULL) {
1958 timed_out = 0;
1959
1960 /*
1961 * expired
1962 */
1963 if (cfq_slice_used(cfqq))
1964 goto expire;
1965
1966 /*
1967 * only expire and reinvoke request handler, if there are
1968 * other queues with pending requests
1969 */
1970 if (!cfqd->busy_queues)
1971 goto out_cont;
1972
1973 /*
1974 * not expired and it has a request pending, let it dispatch
1975 */
1976 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
1977 cfq_mark_cfqq_must_dispatch(cfqq);
1978 goto out_kick;
1979 }
1980 }
1981 expire:
1982 cfq_slice_expired(cfqd, timed_out);
1983 out_kick:
1984 cfq_schedule_dispatch(cfqd);
1985 out_cont:
1986 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1987 }
1988
1989 /*
1990 * Timer running if an idle class queue is waiting for service
1991 */
1992 static void cfq_idle_class_timer(unsigned long data)
1993 {
1994 struct cfq_data *cfqd = (struct cfq_data *) data;
1995 unsigned long flags, end;
1996
1997 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1998
1999 /*
2000 * race with a non-idle queue, reset timer
2001 */
2002 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2003 if (!time_after_eq(jiffies, end))
2004 mod_timer(&cfqd->idle_class_timer, end);
2005 else
2006 cfq_schedule_dispatch(cfqd);
2007
2008 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2009 }
2010
2011 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2012 {
2013 del_timer_sync(&cfqd->idle_slice_timer);
2014 del_timer_sync(&cfqd->idle_class_timer);
2015 blk_sync_queue(cfqd->queue);
2016 }
2017
2018 static void cfq_exit_queue(elevator_t *e)
2019 {
2020 struct cfq_data *cfqd = e->elevator_data;
2021 request_queue_t *q = cfqd->queue;
2022
2023 cfq_shutdown_timer_wq(cfqd);
2024
2025 spin_lock_irq(q->queue_lock);
2026
2027 if (cfqd->active_queue)
2028 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2029
2030 while (!list_empty(&cfqd->cic_list)) {
2031 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2032 struct cfq_io_context,
2033 queue_list);
2034
2035 __cfq_exit_single_io_context(cfqd, cic);
2036 }
2037
2038 spin_unlock_irq(q->queue_lock);
2039
2040 cfq_shutdown_timer_wq(cfqd);
2041
2042 kfree(cfqd);
2043 }
2044
2045 static void *cfq_init_queue(request_queue_t *q)
2046 {
2047 struct cfq_data *cfqd;
2048
2049 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
2050 if (!cfqd)
2051 return NULL;
2052
2053 memset(cfqd, 0, sizeof(*cfqd));
2054
2055 cfqd->service_tree = CFQ_RB_ROOT;
2056 INIT_LIST_HEAD(&cfqd->cic_list);
2057
2058 cfqd->queue = q;
2059
2060 init_timer(&cfqd->idle_slice_timer);
2061 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2062 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2063
2064 init_timer(&cfqd->idle_class_timer);
2065 cfqd->idle_class_timer.function = cfq_idle_class_timer;
2066 cfqd->idle_class_timer.data = (unsigned long) cfqd;
2067
2068 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2069
2070 cfqd->cfq_quantum = cfq_quantum;
2071 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2072 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2073 cfqd->cfq_back_max = cfq_back_max;
2074 cfqd->cfq_back_penalty = cfq_back_penalty;
2075 cfqd->cfq_slice[0] = cfq_slice_async;
2076 cfqd->cfq_slice[1] = cfq_slice_sync;
2077 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2078 cfqd->cfq_slice_idle = cfq_slice_idle;
2079
2080 return cfqd;
2081 }
2082
2083 static void cfq_slab_kill(void)
2084 {
2085 if (cfq_pool)
2086 kmem_cache_destroy(cfq_pool);
2087 if (cfq_ioc_pool)
2088 kmem_cache_destroy(cfq_ioc_pool);
2089 }
2090
2091 static int __init cfq_slab_setup(void)
2092 {
2093 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2094 if (!cfq_pool)
2095 goto fail;
2096
2097 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2098 if (!cfq_ioc_pool)
2099 goto fail;
2100
2101 return 0;
2102 fail:
2103 cfq_slab_kill();
2104 return -ENOMEM;
2105 }
2106
2107 /*
2108 * sysfs parts below -->
2109 */
2110 static ssize_t
2111 cfq_var_show(unsigned int var, char *page)
2112 {
2113 return sprintf(page, "%d\n", var);
2114 }
2115
2116 static ssize_t
2117 cfq_var_store(unsigned int *var, const char *page, size_t count)
2118 {
2119 char *p = (char *) page;
2120
2121 *var = simple_strtoul(p, &p, 10);
2122 return count;
2123 }
2124
2125 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2126 static ssize_t __FUNC(elevator_t *e, char *page) \
2127 { \
2128 struct cfq_data *cfqd = e->elevator_data; \
2129 unsigned int __data = __VAR; \
2130 if (__CONV) \
2131 __data = jiffies_to_msecs(__data); \
2132 return cfq_var_show(__data, (page)); \
2133 }
2134 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2135 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2136 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2137 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2138 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2139 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2140 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2141 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2142 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2143 #undef SHOW_FUNCTION
2144
2145 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2146 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2147 { \
2148 struct cfq_data *cfqd = e->elevator_data; \
2149 unsigned int __data; \
2150 int ret = cfq_var_store(&__data, (page), count); \
2151 if (__data < (MIN)) \
2152 __data = (MIN); \
2153 else if (__data > (MAX)) \
2154 __data = (MAX); \
2155 if (__CONV) \
2156 *(__PTR) = msecs_to_jiffies(__data); \
2157 else \
2158 *(__PTR) = __data; \
2159 return ret; \
2160 }
2161 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2162 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2163 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2164 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2165 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2166 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2167 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2168 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2169 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2170 #undef STORE_FUNCTION
2171
2172 #define CFQ_ATTR(name) \
2173 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2174
2175 static struct elv_fs_entry cfq_attrs[] = {
2176 CFQ_ATTR(quantum),
2177 CFQ_ATTR(fifo_expire_sync),
2178 CFQ_ATTR(fifo_expire_async),
2179 CFQ_ATTR(back_seek_max),
2180 CFQ_ATTR(back_seek_penalty),
2181 CFQ_ATTR(slice_sync),
2182 CFQ_ATTR(slice_async),
2183 CFQ_ATTR(slice_async_rq),
2184 CFQ_ATTR(slice_idle),
2185 __ATTR_NULL
2186 };
2187
2188 static struct elevator_type iosched_cfq = {
2189 .ops = {
2190 .elevator_merge_fn = cfq_merge,
2191 .elevator_merged_fn = cfq_merged_request,
2192 .elevator_merge_req_fn = cfq_merged_requests,
2193 .elevator_allow_merge_fn = cfq_allow_merge,
2194 .elevator_dispatch_fn = cfq_dispatch_requests,
2195 .elevator_add_req_fn = cfq_insert_request,
2196 .elevator_activate_req_fn = cfq_activate_request,
2197 .elevator_deactivate_req_fn = cfq_deactivate_request,
2198 .elevator_queue_empty_fn = cfq_queue_empty,
2199 .elevator_completed_req_fn = cfq_completed_request,
2200 .elevator_former_req_fn = elv_rb_former_request,
2201 .elevator_latter_req_fn = elv_rb_latter_request,
2202 .elevator_set_req_fn = cfq_set_request,
2203 .elevator_put_req_fn = cfq_put_request,
2204 .elevator_may_queue_fn = cfq_may_queue,
2205 .elevator_init_fn = cfq_init_queue,
2206 .elevator_exit_fn = cfq_exit_queue,
2207 .trim = cfq_free_io_context,
2208 },
2209 .elevator_attrs = cfq_attrs,
2210 .elevator_name = "cfq",
2211 .elevator_owner = THIS_MODULE,
2212 };
2213
2214 static int __init cfq_init(void)
2215 {
2216 int ret;
2217
2218 /*
2219 * could be 0 on HZ < 1000 setups
2220 */
2221 if (!cfq_slice_async)
2222 cfq_slice_async = 1;
2223 if (!cfq_slice_idle)
2224 cfq_slice_idle = 1;
2225
2226 if (cfq_slab_setup())
2227 return -ENOMEM;
2228
2229 ret = elv_register(&iosched_cfq);
2230 if (ret)
2231 cfq_slab_kill();
2232
2233 return ret;
2234 }
2235
2236 static void __exit cfq_exit(void)
2237 {
2238 DECLARE_COMPLETION_ONSTACK(all_gone);
2239 elv_unregister(&iosched_cfq);
2240 ioc_gone = &all_gone;
2241 /* ioc_gone's update must be visible before reading ioc_count */
2242 smp_wmb();
2243 if (elv_ioc_count_read(ioc_count))
2244 wait_for_completion(ioc_gone);
2245 synchronize_rcu();
2246 cfq_slab_kill();
2247 }
2248
2249 module_init(cfq_init);
2250 module_exit(cfq_exit);
2251
2252 MODULE_AUTHOR("Jens Axboe");
2253 MODULE_LICENSE("GPL");
2254 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");