]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/cfq-iosched.c
UBUNTU: Start new release
[mirror_ubuntu-artful-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include <linux/blk-cgroup.h>
18 #include "blk.h"
19
20 /*
21 * tunables
22 */
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const int cfq_slice_sync = HZ / 10;
31 static int cfq_slice_async = HZ / 25;
32 static const int cfq_slice_async_rq = 2;
33 static int cfq_slice_idle = HZ / 125;
34 static int cfq_group_idle = HZ / 125;
35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
37
38 /*
39 * offset from end of service tree
40 */
41 #define CFQ_IDLE_DELAY (HZ / 5)
42
43 /*
44 * below this threshold, we consider thinktime immediate
45 */
46 #define CFQ_MIN_TT (2)
47
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
51
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56
57 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
60
61 static struct kmem_cache *cfq_pool;
62
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
69
70 /* blkio-related constants */
71 #define CFQ_WEIGHT_LEGACY_MIN 10
72 #define CFQ_WEIGHT_LEGACY_DFL 500
73 #define CFQ_WEIGHT_LEGACY_MAX 1000
74
75 struct cfq_ttime {
76 unsigned long last_end_request;
77
78 unsigned long ttime_total;
79 unsigned long ttime_samples;
80 unsigned long ttime_mean;
81 };
82
83 /*
84 * Most of our rbtree usage is for sorting with min extraction, so
85 * if we cache the leftmost node we don't have to walk down the tree
86 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
87 * move this into the elevator for the rq sorting as well.
88 */
89 struct cfq_rb_root {
90 struct rb_root rb;
91 struct rb_node *left;
92 unsigned count;
93 u64 min_vdisktime;
94 struct cfq_ttime ttime;
95 };
96 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
97 .ttime = {.last_end_request = jiffies,},}
98
99 /*
100 * Per process-grouping structure
101 */
102 struct cfq_queue {
103 /* reference count */
104 int ref;
105 /* various state flags, see below */
106 unsigned int flags;
107 /* parent cfq_data */
108 struct cfq_data *cfqd;
109 /* service_tree member */
110 struct rb_node rb_node;
111 /* service_tree key */
112 unsigned long rb_key;
113 /* prio tree member */
114 struct rb_node p_node;
115 /* prio tree root we belong to, if any */
116 struct rb_root *p_root;
117 /* sorted list of pending requests */
118 struct rb_root sort_list;
119 /* if fifo isn't expired, next request to serve */
120 struct request *next_rq;
121 /* requests queued in sort_list */
122 int queued[2];
123 /* currently allocated requests */
124 int allocated[2];
125 /* fifo list of requests in sort_list */
126 struct list_head fifo;
127
128 /* time when queue got scheduled in to dispatch first request. */
129 unsigned long dispatch_start;
130 unsigned int allocated_slice;
131 unsigned int slice_dispatch;
132 /* time when first request from queue completed and slice started. */
133 unsigned long slice_start;
134 unsigned long slice_end;
135 long slice_resid;
136
137 /* pending priority requests */
138 int prio_pending;
139 /* number of requests that are on the dispatch list or inside driver */
140 int dispatched;
141
142 /* io prio of this group */
143 unsigned short ioprio, org_ioprio;
144 unsigned short ioprio_class;
145
146 pid_t pid;
147
148 u32 seek_history;
149 sector_t last_request_pos;
150
151 struct cfq_rb_root *service_tree;
152 struct cfq_queue *new_cfqq;
153 struct cfq_group *cfqg;
154 /* Number of sectors dispatched from queue in single dispatch round */
155 unsigned long nr_sectors;
156 };
157
158 /*
159 * First index in the service_trees.
160 * IDLE is handled separately, so it has negative index
161 */
162 enum wl_class_t {
163 BE_WORKLOAD = 0,
164 RT_WORKLOAD = 1,
165 IDLE_WORKLOAD = 2,
166 CFQ_PRIO_NR,
167 };
168
169 /*
170 * Second index in the service_trees.
171 */
172 enum wl_type_t {
173 ASYNC_WORKLOAD = 0,
174 SYNC_NOIDLE_WORKLOAD = 1,
175 SYNC_WORKLOAD = 2
176 };
177
178 struct cfqg_stats {
179 #ifdef CONFIG_CFQ_GROUP_IOSCHED
180 /* number of ios merged */
181 struct blkg_rwstat merged;
182 /* total time spent on device in ns, may not be accurate w/ queueing */
183 struct blkg_rwstat service_time;
184 /* total time spent waiting in scheduler queue in ns */
185 struct blkg_rwstat wait_time;
186 /* number of IOs queued up */
187 struct blkg_rwstat queued;
188 /* total disk time and nr sectors dispatched by this group */
189 struct blkg_stat time;
190 #ifdef CONFIG_DEBUG_BLK_CGROUP
191 /* time not charged to this cgroup */
192 struct blkg_stat unaccounted_time;
193 /* sum of number of ios queued across all samples */
194 struct blkg_stat avg_queue_size_sum;
195 /* count of samples taken for average */
196 struct blkg_stat avg_queue_size_samples;
197 /* how many times this group has been removed from service tree */
198 struct blkg_stat dequeue;
199 /* total time spent waiting for it to be assigned a timeslice. */
200 struct blkg_stat group_wait_time;
201 /* time spent idling for this blkcg_gq */
202 struct blkg_stat idle_time;
203 /* total time with empty current active q with other requests queued */
204 struct blkg_stat empty_time;
205 /* fields after this shouldn't be cleared on stat reset */
206 uint64_t start_group_wait_time;
207 uint64_t start_idle_time;
208 uint64_t start_empty_time;
209 uint16_t flags;
210 #endif /* CONFIG_DEBUG_BLK_CGROUP */
211 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
212 };
213
214 /* Per-cgroup data */
215 struct cfq_group_data {
216 /* must be the first member */
217 struct blkcg_policy_data cpd;
218
219 unsigned int weight;
220 unsigned int leaf_weight;
221 };
222
223 /* This is per cgroup per device grouping structure */
224 struct cfq_group {
225 /* must be the first member */
226 struct blkg_policy_data pd;
227
228 /* group service_tree member */
229 struct rb_node rb_node;
230
231 /* group service_tree key */
232 u64 vdisktime;
233
234 /*
235 * The number of active cfqgs and sum of their weights under this
236 * cfqg. This covers this cfqg's leaf_weight and all children's
237 * weights, but does not cover weights of further descendants.
238 *
239 * If a cfqg is on the service tree, it's active. An active cfqg
240 * also activates its parent and contributes to the children_weight
241 * of the parent.
242 */
243 int nr_active;
244 unsigned int children_weight;
245
246 /*
247 * vfraction is the fraction of vdisktime that the tasks in this
248 * cfqg are entitled to. This is determined by compounding the
249 * ratios walking up from this cfqg to the root.
250 *
251 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
252 * vfractions on a service tree is approximately 1. The sum may
253 * deviate a bit due to rounding errors and fluctuations caused by
254 * cfqgs entering and leaving the service tree.
255 */
256 unsigned int vfraction;
257
258 /*
259 * There are two weights - (internal) weight is the weight of this
260 * cfqg against the sibling cfqgs. leaf_weight is the wight of
261 * this cfqg against the child cfqgs. For the root cfqg, both
262 * weights are kept in sync for backward compatibility.
263 */
264 unsigned int weight;
265 unsigned int new_weight;
266 unsigned int dev_weight;
267
268 unsigned int leaf_weight;
269 unsigned int new_leaf_weight;
270 unsigned int dev_leaf_weight;
271
272 /* number of cfqq currently on this group */
273 int nr_cfqq;
274
275 /*
276 * Per group busy queues average. Useful for workload slice calc. We
277 * create the array for each prio class but at run time it is used
278 * only for RT and BE class and slot for IDLE class remains unused.
279 * This is primarily done to avoid confusion and a gcc warning.
280 */
281 unsigned int busy_queues_avg[CFQ_PRIO_NR];
282 /*
283 * rr lists of queues with requests. We maintain service trees for
284 * RT and BE classes. These trees are subdivided in subclasses
285 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
286 * class there is no subclassification and all the cfq queues go on
287 * a single tree service_tree_idle.
288 * Counts are embedded in the cfq_rb_root
289 */
290 struct cfq_rb_root service_trees[2][3];
291 struct cfq_rb_root service_tree_idle;
292
293 unsigned long saved_wl_slice;
294 enum wl_type_t saved_wl_type;
295 enum wl_class_t saved_wl_class;
296
297 /* number of requests that are on the dispatch list or inside driver */
298 int dispatched;
299 struct cfq_ttime ttime;
300 struct cfqg_stats stats; /* stats for this cfqg */
301
302 /* async queue for each priority case */
303 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
304 struct cfq_queue *async_idle_cfqq;
305
306 };
307
308 struct cfq_io_cq {
309 struct io_cq icq; /* must be the first member */
310 struct cfq_queue *cfqq[2];
311 struct cfq_ttime ttime;
312 int ioprio; /* the current ioprio */
313 #ifdef CONFIG_CFQ_GROUP_IOSCHED
314 uint64_t blkcg_serial_nr; /* the current blkcg serial */
315 #endif
316 };
317
318 /*
319 * Per block device queue structure
320 */
321 struct cfq_data {
322 struct request_queue *queue;
323 /* Root service tree for cfq_groups */
324 struct cfq_rb_root grp_service_tree;
325 struct cfq_group *root_group;
326
327 /*
328 * The priority currently being served
329 */
330 enum wl_class_t serving_wl_class;
331 enum wl_type_t serving_wl_type;
332 unsigned long workload_expires;
333 struct cfq_group *serving_group;
334
335 /*
336 * Each priority tree is sorted by next_request position. These
337 * trees are used when determining if two or more queues are
338 * interleaving requests (see cfq_close_cooperator).
339 */
340 struct rb_root prio_trees[CFQ_PRIO_LISTS];
341
342 unsigned int busy_queues;
343 unsigned int busy_sync_queues;
344
345 int rq_in_driver;
346 int rq_in_flight[2];
347
348 /*
349 * queue-depth detection
350 */
351 int rq_queued;
352 int hw_tag;
353 /*
354 * hw_tag can be
355 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
356 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
357 * 0 => no NCQ
358 */
359 int hw_tag_est_depth;
360 unsigned int hw_tag_samples;
361
362 /*
363 * idle window management
364 */
365 struct timer_list idle_slice_timer;
366 struct work_struct unplug_work;
367
368 struct cfq_queue *active_queue;
369 struct cfq_io_cq *active_cic;
370
371 sector_t last_position;
372
373 /*
374 * tunables, see top of file
375 */
376 unsigned int cfq_quantum;
377 unsigned int cfq_fifo_expire[2];
378 unsigned int cfq_back_penalty;
379 unsigned int cfq_back_max;
380 unsigned int cfq_slice[2];
381 unsigned int cfq_slice_async_rq;
382 unsigned int cfq_slice_idle;
383 unsigned int cfq_group_idle;
384 unsigned int cfq_latency;
385 unsigned int cfq_target_latency;
386
387 /*
388 * Fallback dummy cfqq for extreme OOM conditions
389 */
390 struct cfq_queue oom_cfqq;
391
392 unsigned long last_delayed_sync;
393 };
394
395 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
396 static void cfq_put_queue(struct cfq_queue *cfqq);
397
398 static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
399 enum wl_class_t class,
400 enum wl_type_t type)
401 {
402 if (!cfqg)
403 return NULL;
404
405 if (class == IDLE_WORKLOAD)
406 return &cfqg->service_tree_idle;
407
408 return &cfqg->service_trees[class][type];
409 }
410
411 enum cfqq_state_flags {
412 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
413 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
414 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
415 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
416 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
417 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
418 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
419 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
420 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
421 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
422 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
423 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
424 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
425 };
426
427 #define CFQ_CFQQ_FNS(name) \
428 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
429 { \
430 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
431 } \
432 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
433 { \
434 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
435 } \
436 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
437 { \
438 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
439 }
440
441 CFQ_CFQQ_FNS(on_rr);
442 CFQ_CFQQ_FNS(wait_request);
443 CFQ_CFQQ_FNS(must_dispatch);
444 CFQ_CFQQ_FNS(must_alloc_slice);
445 CFQ_CFQQ_FNS(fifo_expire);
446 CFQ_CFQQ_FNS(idle_window);
447 CFQ_CFQQ_FNS(prio_changed);
448 CFQ_CFQQ_FNS(slice_new);
449 CFQ_CFQQ_FNS(sync);
450 CFQ_CFQQ_FNS(coop);
451 CFQ_CFQQ_FNS(split_coop);
452 CFQ_CFQQ_FNS(deep);
453 CFQ_CFQQ_FNS(wait_busy);
454 #undef CFQ_CFQQ_FNS
455
456 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
457
458 /* cfqg stats flags */
459 enum cfqg_stats_flags {
460 CFQG_stats_waiting = 0,
461 CFQG_stats_idling,
462 CFQG_stats_empty,
463 };
464
465 #define CFQG_FLAG_FNS(name) \
466 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
467 { \
468 stats->flags |= (1 << CFQG_stats_##name); \
469 } \
470 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
471 { \
472 stats->flags &= ~(1 << CFQG_stats_##name); \
473 } \
474 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
475 { \
476 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
477 } \
478
479 CFQG_FLAG_FNS(waiting)
480 CFQG_FLAG_FNS(idling)
481 CFQG_FLAG_FNS(empty)
482 #undef CFQG_FLAG_FNS
483
484 /* This should be called with the queue_lock held. */
485 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
486 {
487 unsigned long long now;
488
489 if (!cfqg_stats_waiting(stats))
490 return;
491
492 now = sched_clock();
493 if (time_after64(now, stats->start_group_wait_time))
494 blkg_stat_add(&stats->group_wait_time,
495 now - stats->start_group_wait_time);
496 cfqg_stats_clear_waiting(stats);
497 }
498
499 /* This should be called with the queue_lock held. */
500 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
501 struct cfq_group *curr_cfqg)
502 {
503 struct cfqg_stats *stats = &cfqg->stats;
504
505 if (cfqg_stats_waiting(stats))
506 return;
507 if (cfqg == curr_cfqg)
508 return;
509 stats->start_group_wait_time = sched_clock();
510 cfqg_stats_mark_waiting(stats);
511 }
512
513 /* This should be called with the queue_lock held. */
514 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
515 {
516 unsigned long long now;
517
518 if (!cfqg_stats_empty(stats))
519 return;
520
521 now = sched_clock();
522 if (time_after64(now, stats->start_empty_time))
523 blkg_stat_add(&stats->empty_time,
524 now - stats->start_empty_time);
525 cfqg_stats_clear_empty(stats);
526 }
527
528 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
529 {
530 blkg_stat_add(&cfqg->stats.dequeue, 1);
531 }
532
533 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
534 {
535 struct cfqg_stats *stats = &cfqg->stats;
536
537 if (blkg_rwstat_total(&stats->queued))
538 return;
539
540 /*
541 * group is already marked empty. This can happen if cfqq got new
542 * request in parent group and moved to this group while being added
543 * to service tree. Just ignore the event and move on.
544 */
545 if (cfqg_stats_empty(stats))
546 return;
547
548 stats->start_empty_time = sched_clock();
549 cfqg_stats_mark_empty(stats);
550 }
551
552 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
553 {
554 struct cfqg_stats *stats = &cfqg->stats;
555
556 if (cfqg_stats_idling(stats)) {
557 unsigned long long now = sched_clock();
558
559 if (time_after64(now, stats->start_idle_time))
560 blkg_stat_add(&stats->idle_time,
561 now - stats->start_idle_time);
562 cfqg_stats_clear_idling(stats);
563 }
564 }
565
566 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
567 {
568 struct cfqg_stats *stats = &cfqg->stats;
569
570 BUG_ON(cfqg_stats_idling(stats));
571
572 stats->start_idle_time = sched_clock();
573 cfqg_stats_mark_idling(stats);
574 }
575
576 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
577 {
578 struct cfqg_stats *stats = &cfqg->stats;
579
580 blkg_stat_add(&stats->avg_queue_size_sum,
581 blkg_rwstat_total(&stats->queued));
582 blkg_stat_add(&stats->avg_queue_size_samples, 1);
583 cfqg_stats_update_group_wait_time(stats);
584 }
585
586 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
587
588 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
589 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
590 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
591 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
592 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
593 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
594 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
595
596 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
597
598 #ifdef CONFIG_CFQ_GROUP_IOSCHED
599
600 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
601 {
602 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
603 }
604
605 static struct cfq_group_data
606 *cpd_to_cfqgd(struct blkcg_policy_data *cpd)
607 {
608 return cpd ? container_of(cpd, struct cfq_group_data, cpd) : NULL;
609 }
610
611 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
612 {
613 return pd_to_blkg(&cfqg->pd);
614 }
615
616 static struct blkcg_policy blkcg_policy_cfq;
617
618 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
619 {
620 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
621 }
622
623 static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg)
624 {
625 return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq));
626 }
627
628 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
629 {
630 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
631
632 return pblkg ? blkg_to_cfqg(pblkg) : NULL;
633 }
634
635 static inline void cfqg_get(struct cfq_group *cfqg)
636 {
637 return blkg_get(cfqg_to_blkg(cfqg));
638 }
639
640 static inline void cfqg_put(struct cfq_group *cfqg)
641 {
642 return blkg_put(cfqg_to_blkg(cfqg));
643 }
644
645 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
646 char __pbuf[128]; \
647 \
648 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
649 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
650 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
651 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
652 __pbuf, ##args); \
653 } while (0)
654
655 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
656 char __pbuf[128]; \
657 \
658 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
659 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
660 } while (0)
661
662 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
663 struct cfq_group *curr_cfqg, int rw)
664 {
665 blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
666 cfqg_stats_end_empty_time(&cfqg->stats);
667 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
668 }
669
670 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
671 unsigned long time, unsigned long unaccounted_time)
672 {
673 blkg_stat_add(&cfqg->stats.time, time);
674 #ifdef CONFIG_DEBUG_BLK_CGROUP
675 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
676 #endif
677 }
678
679 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
680 {
681 blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
682 }
683
684 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
685 {
686 blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
687 }
688
689 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
690 uint64_t start_time, uint64_t io_start_time, int rw)
691 {
692 struct cfqg_stats *stats = &cfqg->stats;
693 unsigned long long now = sched_clock();
694
695 if (time_after64(now, io_start_time))
696 blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
697 if (time_after64(io_start_time, start_time))
698 blkg_rwstat_add(&stats->wait_time, rw,
699 io_start_time - start_time);
700 }
701
702 /* @stats = 0 */
703 static void cfqg_stats_reset(struct cfqg_stats *stats)
704 {
705 /* queued stats shouldn't be cleared */
706 blkg_rwstat_reset(&stats->merged);
707 blkg_rwstat_reset(&stats->service_time);
708 blkg_rwstat_reset(&stats->wait_time);
709 blkg_stat_reset(&stats->time);
710 #ifdef CONFIG_DEBUG_BLK_CGROUP
711 blkg_stat_reset(&stats->unaccounted_time);
712 blkg_stat_reset(&stats->avg_queue_size_sum);
713 blkg_stat_reset(&stats->avg_queue_size_samples);
714 blkg_stat_reset(&stats->dequeue);
715 blkg_stat_reset(&stats->group_wait_time);
716 blkg_stat_reset(&stats->idle_time);
717 blkg_stat_reset(&stats->empty_time);
718 #endif
719 }
720
721 /* @to += @from */
722 static void cfqg_stats_add_aux(struct cfqg_stats *to, struct cfqg_stats *from)
723 {
724 /* queued stats shouldn't be cleared */
725 blkg_rwstat_add_aux(&to->merged, &from->merged);
726 blkg_rwstat_add_aux(&to->service_time, &from->service_time);
727 blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
728 blkg_stat_add_aux(&from->time, &from->time);
729 #ifdef CONFIG_DEBUG_BLK_CGROUP
730 blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time);
731 blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
732 blkg_stat_add_aux(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
733 blkg_stat_add_aux(&to->dequeue, &from->dequeue);
734 blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
735 blkg_stat_add_aux(&to->idle_time, &from->idle_time);
736 blkg_stat_add_aux(&to->empty_time, &from->empty_time);
737 #endif
738 }
739
740 /*
741 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
742 * recursive stats can still account for the amount used by this cfqg after
743 * it's gone.
744 */
745 static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
746 {
747 struct cfq_group *parent = cfqg_parent(cfqg);
748
749 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
750
751 if (unlikely(!parent))
752 return;
753
754 cfqg_stats_add_aux(&parent->stats, &cfqg->stats);
755 cfqg_stats_reset(&cfqg->stats);
756 }
757
758 #else /* CONFIG_CFQ_GROUP_IOSCHED */
759
760 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
761 static inline void cfqg_get(struct cfq_group *cfqg) { }
762 static inline void cfqg_put(struct cfq_group *cfqg) { }
763
764 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
765 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
766 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
767 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
768 ##args)
769 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
770
771 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
772 struct cfq_group *curr_cfqg, int rw) { }
773 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
774 unsigned long time, unsigned long unaccounted_time) { }
775 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
776 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
777 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
778 uint64_t start_time, uint64_t io_start_time, int rw) { }
779
780 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
781
782 #define cfq_log(cfqd, fmt, args...) \
783 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
784
785 /* Traverses through cfq group service trees */
786 #define for_each_cfqg_st(cfqg, i, j, st) \
787 for (i = 0; i <= IDLE_WORKLOAD; i++) \
788 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
789 : &cfqg->service_tree_idle; \
790 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
791 (i == IDLE_WORKLOAD && j == 0); \
792 j++, st = i < IDLE_WORKLOAD ? \
793 &cfqg->service_trees[i][j]: NULL) \
794
795 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
796 struct cfq_ttime *ttime, bool group_idle)
797 {
798 unsigned long slice;
799 if (!sample_valid(ttime->ttime_samples))
800 return false;
801 if (group_idle)
802 slice = cfqd->cfq_group_idle;
803 else
804 slice = cfqd->cfq_slice_idle;
805 return ttime->ttime_mean > slice;
806 }
807
808 static inline bool iops_mode(struct cfq_data *cfqd)
809 {
810 /*
811 * If we are not idling on queues and it is a NCQ drive, parallel
812 * execution of requests is on and measuring time is not possible
813 * in most of the cases until and unless we drive shallower queue
814 * depths and that becomes a performance bottleneck. In such cases
815 * switch to start providing fairness in terms of number of IOs.
816 */
817 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
818 return true;
819 else
820 return false;
821 }
822
823 static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
824 {
825 if (cfq_class_idle(cfqq))
826 return IDLE_WORKLOAD;
827 if (cfq_class_rt(cfqq))
828 return RT_WORKLOAD;
829 return BE_WORKLOAD;
830 }
831
832
833 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
834 {
835 if (!cfq_cfqq_sync(cfqq))
836 return ASYNC_WORKLOAD;
837 if (!cfq_cfqq_idle_window(cfqq))
838 return SYNC_NOIDLE_WORKLOAD;
839 return SYNC_WORKLOAD;
840 }
841
842 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
843 struct cfq_data *cfqd,
844 struct cfq_group *cfqg)
845 {
846 if (wl_class == IDLE_WORKLOAD)
847 return cfqg->service_tree_idle.count;
848
849 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
850 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
851 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
852 }
853
854 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
855 struct cfq_group *cfqg)
856 {
857 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
858 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
859 }
860
861 static void cfq_dispatch_insert(struct request_queue *, struct request *);
862 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
863 struct cfq_io_cq *cic, struct bio *bio);
864
865 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
866 {
867 /* cic->icq is the first member, %NULL will convert to %NULL */
868 return container_of(icq, struct cfq_io_cq, icq);
869 }
870
871 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
872 struct io_context *ioc)
873 {
874 if (ioc)
875 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
876 return NULL;
877 }
878
879 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
880 {
881 return cic->cfqq[is_sync];
882 }
883
884 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
885 bool is_sync)
886 {
887 cic->cfqq[is_sync] = cfqq;
888 }
889
890 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
891 {
892 return cic->icq.q->elevator->elevator_data;
893 }
894
895 /*
896 * We regard a request as SYNC, if it's either a read or has the SYNC bit
897 * set (in which case it could also be direct WRITE).
898 */
899 static inline bool cfq_bio_sync(struct bio *bio)
900 {
901 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
902 }
903
904 /*
905 * scheduler run of queue, if there are requests pending and no one in the
906 * driver that will restart queueing
907 */
908 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
909 {
910 if (cfqd->busy_queues) {
911 cfq_log(cfqd, "schedule dispatch");
912 kblockd_schedule_work(&cfqd->unplug_work);
913 }
914 }
915
916 /*
917 * Scale schedule slice based on io priority. Use the sync time slice only
918 * if a queue is marked sync and has sync io queued. A sync queue with async
919 * io only, should not get full sync slice length.
920 */
921 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
922 unsigned short prio)
923 {
924 const int base_slice = cfqd->cfq_slice[sync];
925
926 WARN_ON(prio >= IOPRIO_BE_NR);
927
928 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
929 }
930
931 static inline int
932 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
933 {
934 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
935 }
936
937 /**
938 * cfqg_scale_charge - scale disk time charge according to cfqg weight
939 * @charge: disk time being charged
940 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
941 *
942 * Scale @charge according to @vfraction, which is in range (0, 1]. The
943 * scaling is inversely proportional.
944 *
945 * scaled = charge / vfraction
946 *
947 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
948 */
949 static inline u64 cfqg_scale_charge(unsigned long charge,
950 unsigned int vfraction)
951 {
952 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
953
954 /* charge / vfraction */
955 c <<= CFQ_SERVICE_SHIFT;
956 do_div(c, vfraction);
957 return c;
958 }
959
960 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
961 {
962 s64 delta = (s64)(vdisktime - min_vdisktime);
963 if (delta > 0)
964 min_vdisktime = vdisktime;
965
966 return min_vdisktime;
967 }
968
969 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
970 {
971 s64 delta = (s64)(vdisktime - min_vdisktime);
972 if (delta < 0)
973 min_vdisktime = vdisktime;
974
975 return min_vdisktime;
976 }
977
978 static void update_min_vdisktime(struct cfq_rb_root *st)
979 {
980 struct cfq_group *cfqg;
981
982 if (st->left) {
983 cfqg = rb_entry_cfqg(st->left);
984 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
985 cfqg->vdisktime);
986 }
987 }
988
989 /*
990 * get averaged number of queues of RT/BE priority.
991 * average is updated, with a formula that gives more weight to higher numbers,
992 * to quickly follows sudden increases and decrease slowly
993 */
994
995 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
996 struct cfq_group *cfqg, bool rt)
997 {
998 unsigned min_q, max_q;
999 unsigned mult = cfq_hist_divisor - 1;
1000 unsigned round = cfq_hist_divisor / 2;
1001 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1002
1003 min_q = min(cfqg->busy_queues_avg[rt], busy);
1004 max_q = max(cfqg->busy_queues_avg[rt], busy);
1005 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1006 cfq_hist_divisor;
1007 return cfqg->busy_queues_avg[rt];
1008 }
1009
1010 static inline unsigned
1011 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1012 {
1013 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1014 }
1015
1016 static inline unsigned
1017 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1018 {
1019 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
1020 if (cfqd->cfq_latency) {
1021 /*
1022 * interested queues (we consider only the ones with the same
1023 * priority class in the cfq group)
1024 */
1025 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1026 cfq_class_rt(cfqq));
1027 unsigned sync_slice = cfqd->cfq_slice[1];
1028 unsigned expect_latency = sync_slice * iq;
1029 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1030
1031 if (expect_latency > group_slice) {
1032 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
1033 /* scale low_slice according to IO priority
1034 * and sync vs async */
1035 unsigned low_slice =
1036 min(slice, base_low_slice * slice / sync_slice);
1037 /* the adapted slice value is scaled to fit all iqs
1038 * into the target latency */
1039 slice = max(slice * group_slice / expect_latency,
1040 low_slice);
1041 }
1042 }
1043 return slice;
1044 }
1045
1046 static inline void
1047 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1048 {
1049 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1050
1051 cfqq->slice_start = jiffies;
1052 cfqq->slice_end = jiffies + slice;
1053 cfqq->allocated_slice = slice;
1054 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
1055 }
1056
1057 /*
1058 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1059 * isn't valid until the first request from the dispatch is activated
1060 * and the slice time set.
1061 */
1062 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1063 {
1064 if (cfq_cfqq_slice_new(cfqq))
1065 return false;
1066 if (time_before(jiffies, cfqq->slice_end))
1067 return false;
1068
1069 return true;
1070 }
1071
1072 /*
1073 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1074 * We choose the request that is closest to the head right now. Distance
1075 * behind the head is penalized and only allowed to a certain extent.
1076 */
1077 static struct request *
1078 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1079 {
1080 sector_t s1, s2, d1 = 0, d2 = 0;
1081 unsigned long back_max;
1082 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1083 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1084 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1085
1086 if (rq1 == NULL || rq1 == rq2)
1087 return rq2;
1088 if (rq2 == NULL)
1089 return rq1;
1090
1091 if (rq_is_sync(rq1) != rq_is_sync(rq2))
1092 return rq_is_sync(rq1) ? rq1 : rq2;
1093
1094 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1095 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1096
1097 s1 = blk_rq_pos(rq1);
1098 s2 = blk_rq_pos(rq2);
1099
1100 /*
1101 * by definition, 1KiB is 2 sectors
1102 */
1103 back_max = cfqd->cfq_back_max * 2;
1104
1105 /*
1106 * Strict one way elevator _except_ in the case where we allow
1107 * short backward seeks which are biased as twice the cost of a
1108 * similar forward seek.
1109 */
1110 if (s1 >= last)
1111 d1 = s1 - last;
1112 else if (s1 + back_max >= last)
1113 d1 = (last - s1) * cfqd->cfq_back_penalty;
1114 else
1115 wrap |= CFQ_RQ1_WRAP;
1116
1117 if (s2 >= last)
1118 d2 = s2 - last;
1119 else if (s2 + back_max >= last)
1120 d2 = (last - s2) * cfqd->cfq_back_penalty;
1121 else
1122 wrap |= CFQ_RQ2_WRAP;
1123
1124 /* Found required data */
1125
1126 /*
1127 * By doing switch() on the bit mask "wrap" we avoid having to
1128 * check two variables for all permutations: --> faster!
1129 */
1130 switch (wrap) {
1131 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1132 if (d1 < d2)
1133 return rq1;
1134 else if (d2 < d1)
1135 return rq2;
1136 else {
1137 if (s1 >= s2)
1138 return rq1;
1139 else
1140 return rq2;
1141 }
1142
1143 case CFQ_RQ2_WRAP:
1144 return rq1;
1145 case CFQ_RQ1_WRAP:
1146 return rq2;
1147 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1148 default:
1149 /*
1150 * Since both rqs are wrapped,
1151 * start with the one that's further behind head
1152 * (--> only *one* back seek required),
1153 * since back seek takes more time than forward.
1154 */
1155 if (s1 <= s2)
1156 return rq1;
1157 else
1158 return rq2;
1159 }
1160 }
1161
1162 /*
1163 * The below is leftmost cache rbtree addon
1164 */
1165 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1166 {
1167 /* Service tree is empty */
1168 if (!root->count)
1169 return NULL;
1170
1171 if (!root->left)
1172 root->left = rb_first(&root->rb);
1173
1174 if (root->left)
1175 return rb_entry(root->left, struct cfq_queue, rb_node);
1176
1177 return NULL;
1178 }
1179
1180 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1181 {
1182 if (!root->left)
1183 root->left = rb_first(&root->rb);
1184
1185 if (root->left)
1186 return rb_entry_cfqg(root->left);
1187
1188 return NULL;
1189 }
1190
1191 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1192 {
1193 rb_erase(n, root);
1194 RB_CLEAR_NODE(n);
1195 }
1196
1197 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1198 {
1199 if (root->left == n)
1200 root->left = NULL;
1201 rb_erase_init(n, &root->rb);
1202 --root->count;
1203 }
1204
1205 /*
1206 * would be nice to take fifo expire time into account as well
1207 */
1208 static struct request *
1209 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1210 struct request *last)
1211 {
1212 struct rb_node *rbnext = rb_next(&last->rb_node);
1213 struct rb_node *rbprev = rb_prev(&last->rb_node);
1214 struct request *next = NULL, *prev = NULL;
1215
1216 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1217
1218 if (rbprev)
1219 prev = rb_entry_rq(rbprev);
1220
1221 if (rbnext)
1222 next = rb_entry_rq(rbnext);
1223 else {
1224 rbnext = rb_first(&cfqq->sort_list);
1225 if (rbnext && rbnext != &last->rb_node)
1226 next = rb_entry_rq(rbnext);
1227 }
1228
1229 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1230 }
1231
1232 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1233 struct cfq_queue *cfqq)
1234 {
1235 /*
1236 * just an approximation, should be ok.
1237 */
1238 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1239 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1240 }
1241
1242 static inline s64
1243 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1244 {
1245 return cfqg->vdisktime - st->min_vdisktime;
1246 }
1247
1248 static void
1249 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1250 {
1251 struct rb_node **node = &st->rb.rb_node;
1252 struct rb_node *parent = NULL;
1253 struct cfq_group *__cfqg;
1254 s64 key = cfqg_key(st, cfqg);
1255 int left = 1;
1256
1257 while (*node != NULL) {
1258 parent = *node;
1259 __cfqg = rb_entry_cfqg(parent);
1260
1261 if (key < cfqg_key(st, __cfqg))
1262 node = &parent->rb_left;
1263 else {
1264 node = &parent->rb_right;
1265 left = 0;
1266 }
1267 }
1268
1269 if (left)
1270 st->left = &cfqg->rb_node;
1271
1272 rb_link_node(&cfqg->rb_node, parent, node);
1273 rb_insert_color(&cfqg->rb_node, &st->rb);
1274 }
1275
1276 /*
1277 * This has to be called only on activation of cfqg
1278 */
1279 static void
1280 cfq_update_group_weight(struct cfq_group *cfqg)
1281 {
1282 if (cfqg->new_weight) {
1283 cfqg->weight = cfqg->new_weight;
1284 cfqg->new_weight = 0;
1285 }
1286 }
1287
1288 static void
1289 cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1290 {
1291 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1292
1293 if (cfqg->new_leaf_weight) {
1294 cfqg->leaf_weight = cfqg->new_leaf_weight;
1295 cfqg->new_leaf_weight = 0;
1296 }
1297 }
1298
1299 static void
1300 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1301 {
1302 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1303 struct cfq_group *pos = cfqg;
1304 struct cfq_group *parent;
1305 bool propagate;
1306
1307 /* add to the service tree */
1308 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1309
1310 /*
1311 * Update leaf_weight. We cannot update weight at this point
1312 * because cfqg might already have been activated and is
1313 * contributing its current weight to the parent's child_weight.
1314 */
1315 cfq_update_group_leaf_weight(cfqg);
1316 __cfq_group_service_tree_add(st, cfqg);
1317
1318 /*
1319 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1320 * entitled to. vfraction is calculated by walking the tree
1321 * towards the root calculating the fraction it has at each level.
1322 * The compounded ratio is how much vfraction @cfqg owns.
1323 *
1324 * Start with the proportion tasks in this cfqg has against active
1325 * children cfqgs - its leaf_weight against children_weight.
1326 */
1327 propagate = !pos->nr_active++;
1328 pos->children_weight += pos->leaf_weight;
1329 vfr = vfr * pos->leaf_weight / pos->children_weight;
1330
1331 /*
1332 * Compound ->weight walking up the tree. Both activation and
1333 * vfraction calculation are done in the same loop. Propagation
1334 * stops once an already activated node is met. vfraction
1335 * calculation should always continue to the root.
1336 */
1337 while ((parent = cfqg_parent(pos))) {
1338 if (propagate) {
1339 cfq_update_group_weight(pos);
1340 propagate = !parent->nr_active++;
1341 parent->children_weight += pos->weight;
1342 }
1343 vfr = vfr * pos->weight / parent->children_weight;
1344 pos = parent;
1345 }
1346
1347 cfqg->vfraction = max_t(unsigned, vfr, 1);
1348 }
1349
1350 static void
1351 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1352 {
1353 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1354 struct cfq_group *__cfqg;
1355 struct rb_node *n;
1356
1357 cfqg->nr_cfqq++;
1358 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1359 return;
1360
1361 /*
1362 * Currently put the group at the end. Later implement something
1363 * so that groups get lesser vtime based on their weights, so that
1364 * if group does not loose all if it was not continuously backlogged.
1365 */
1366 n = rb_last(&st->rb);
1367 if (n) {
1368 __cfqg = rb_entry_cfqg(n);
1369 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1370 } else
1371 cfqg->vdisktime = st->min_vdisktime;
1372 cfq_group_service_tree_add(st, cfqg);
1373 }
1374
1375 static void
1376 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1377 {
1378 struct cfq_group *pos = cfqg;
1379 bool propagate;
1380
1381 /*
1382 * Undo activation from cfq_group_service_tree_add(). Deactivate
1383 * @cfqg and propagate deactivation upwards.
1384 */
1385 propagate = !--pos->nr_active;
1386 pos->children_weight -= pos->leaf_weight;
1387
1388 while (propagate) {
1389 struct cfq_group *parent = cfqg_parent(pos);
1390
1391 /* @pos has 0 nr_active at this point */
1392 WARN_ON_ONCE(pos->children_weight);
1393 pos->vfraction = 0;
1394
1395 if (!parent)
1396 break;
1397
1398 propagate = !--parent->nr_active;
1399 parent->children_weight -= pos->weight;
1400 pos = parent;
1401 }
1402
1403 /* remove from the service tree */
1404 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1405 cfq_rb_erase(&cfqg->rb_node, st);
1406 }
1407
1408 static void
1409 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1410 {
1411 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1412
1413 BUG_ON(cfqg->nr_cfqq < 1);
1414 cfqg->nr_cfqq--;
1415
1416 /* If there are other cfq queues under this group, don't delete it */
1417 if (cfqg->nr_cfqq)
1418 return;
1419
1420 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1421 cfq_group_service_tree_del(st, cfqg);
1422 cfqg->saved_wl_slice = 0;
1423 cfqg_stats_update_dequeue(cfqg);
1424 }
1425
1426 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1427 unsigned int *unaccounted_time)
1428 {
1429 unsigned int slice_used;
1430
1431 /*
1432 * Queue got expired before even a single request completed or
1433 * got expired immediately after first request completion.
1434 */
1435 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1436 /*
1437 * Also charge the seek time incurred to the group, otherwise
1438 * if there are mutiple queues in the group, each can dispatch
1439 * a single request on seeky media and cause lots of seek time
1440 * and group will never know it.
1441 */
1442 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1443 1);
1444 } else {
1445 slice_used = jiffies - cfqq->slice_start;
1446 if (slice_used > cfqq->allocated_slice) {
1447 *unaccounted_time = slice_used - cfqq->allocated_slice;
1448 slice_used = cfqq->allocated_slice;
1449 }
1450 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1451 *unaccounted_time += cfqq->slice_start -
1452 cfqq->dispatch_start;
1453 }
1454
1455 return slice_used;
1456 }
1457
1458 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1459 struct cfq_queue *cfqq)
1460 {
1461 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1462 unsigned int used_sl, charge, unaccounted_sl = 0;
1463 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1464 - cfqg->service_tree_idle.count;
1465 unsigned int vfr;
1466
1467 BUG_ON(nr_sync < 0);
1468 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1469
1470 if (iops_mode(cfqd))
1471 charge = cfqq->slice_dispatch;
1472 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1473 charge = cfqq->allocated_slice;
1474
1475 /*
1476 * Can't update vdisktime while on service tree and cfqg->vfraction
1477 * is valid only while on it. Cache vfr, leave the service tree,
1478 * update vdisktime and go back on. The re-addition to the tree
1479 * will also update the weights as necessary.
1480 */
1481 vfr = cfqg->vfraction;
1482 cfq_group_service_tree_del(st, cfqg);
1483 cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1484 cfq_group_service_tree_add(st, cfqg);
1485
1486 /* This group is being expired. Save the context */
1487 if (time_after(cfqd->workload_expires, jiffies)) {
1488 cfqg->saved_wl_slice = cfqd->workload_expires
1489 - jiffies;
1490 cfqg->saved_wl_type = cfqd->serving_wl_type;
1491 cfqg->saved_wl_class = cfqd->serving_wl_class;
1492 } else
1493 cfqg->saved_wl_slice = 0;
1494
1495 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1496 st->min_vdisktime);
1497 cfq_log_cfqq(cfqq->cfqd, cfqq,
1498 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1499 used_sl, cfqq->slice_dispatch, charge,
1500 iops_mode(cfqd), cfqq->nr_sectors);
1501 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1502 cfqg_stats_set_start_empty_time(cfqg);
1503 }
1504
1505 /**
1506 * cfq_init_cfqg_base - initialize base part of a cfq_group
1507 * @cfqg: cfq_group to initialize
1508 *
1509 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1510 * is enabled or not.
1511 */
1512 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1513 {
1514 struct cfq_rb_root *st;
1515 int i, j;
1516
1517 for_each_cfqg_st(cfqg, i, j, st)
1518 *st = CFQ_RB_ROOT;
1519 RB_CLEAR_NODE(&cfqg->rb_node);
1520
1521 cfqg->ttime.last_end_request = jiffies;
1522 }
1523
1524 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1525 static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1526 bool on_dfl, bool reset_dev, bool is_leaf_weight);
1527
1528 static void cfqg_stats_exit(struct cfqg_stats *stats)
1529 {
1530 blkg_rwstat_exit(&stats->merged);
1531 blkg_rwstat_exit(&stats->service_time);
1532 blkg_rwstat_exit(&stats->wait_time);
1533 blkg_rwstat_exit(&stats->queued);
1534 blkg_stat_exit(&stats->time);
1535 #ifdef CONFIG_DEBUG_BLK_CGROUP
1536 blkg_stat_exit(&stats->unaccounted_time);
1537 blkg_stat_exit(&stats->avg_queue_size_sum);
1538 blkg_stat_exit(&stats->avg_queue_size_samples);
1539 blkg_stat_exit(&stats->dequeue);
1540 blkg_stat_exit(&stats->group_wait_time);
1541 blkg_stat_exit(&stats->idle_time);
1542 blkg_stat_exit(&stats->empty_time);
1543 #endif
1544 }
1545
1546 static int cfqg_stats_init(struct cfqg_stats *stats, gfp_t gfp)
1547 {
1548 if (blkg_rwstat_init(&stats->merged, gfp) ||
1549 blkg_rwstat_init(&stats->service_time, gfp) ||
1550 blkg_rwstat_init(&stats->wait_time, gfp) ||
1551 blkg_rwstat_init(&stats->queued, gfp) ||
1552 blkg_stat_init(&stats->time, gfp))
1553 goto err;
1554
1555 #ifdef CONFIG_DEBUG_BLK_CGROUP
1556 if (blkg_stat_init(&stats->unaccounted_time, gfp) ||
1557 blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
1558 blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
1559 blkg_stat_init(&stats->dequeue, gfp) ||
1560 blkg_stat_init(&stats->group_wait_time, gfp) ||
1561 blkg_stat_init(&stats->idle_time, gfp) ||
1562 blkg_stat_init(&stats->empty_time, gfp))
1563 goto err;
1564 #endif
1565 return 0;
1566 err:
1567 cfqg_stats_exit(stats);
1568 return -ENOMEM;
1569 }
1570
1571 static struct blkcg_policy_data *cfq_cpd_alloc(gfp_t gfp)
1572 {
1573 struct cfq_group_data *cgd;
1574
1575 cgd = kzalloc(sizeof(*cgd), gfp);
1576 if (!cgd)
1577 return NULL;
1578 return &cgd->cpd;
1579 }
1580
1581 static void cfq_cpd_init(struct blkcg_policy_data *cpd)
1582 {
1583 struct cfq_group_data *cgd = cpd_to_cfqgd(cpd);
1584 unsigned int weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ?
1585 CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1586
1587 if (cpd_to_blkcg(cpd) == &blkcg_root)
1588 weight *= 2;
1589
1590 cgd->weight = weight;
1591 cgd->leaf_weight = weight;
1592 }
1593
1594 static void cfq_cpd_free(struct blkcg_policy_data *cpd)
1595 {
1596 kfree(cpd_to_cfqgd(cpd));
1597 }
1598
1599 static void cfq_cpd_bind(struct blkcg_policy_data *cpd)
1600 {
1601 struct blkcg *blkcg = cpd_to_blkcg(cpd);
1602 bool on_dfl = cgroup_subsys_on_dfl(io_cgrp_subsys);
1603 unsigned int weight = on_dfl ? CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1604
1605 if (blkcg == &blkcg_root)
1606 weight *= 2;
1607
1608 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, false));
1609 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, true));
1610 }
1611
1612 static struct blkg_policy_data *cfq_pd_alloc(gfp_t gfp, int node)
1613 {
1614 struct cfq_group *cfqg;
1615
1616 cfqg = kzalloc_node(sizeof(*cfqg), gfp, node);
1617 if (!cfqg)
1618 return NULL;
1619
1620 cfq_init_cfqg_base(cfqg);
1621 if (cfqg_stats_init(&cfqg->stats, gfp)) {
1622 kfree(cfqg);
1623 return NULL;
1624 }
1625
1626 return &cfqg->pd;
1627 }
1628
1629 static void cfq_pd_init(struct blkg_policy_data *pd)
1630 {
1631 struct cfq_group *cfqg = pd_to_cfqg(pd);
1632 struct cfq_group_data *cgd = blkcg_to_cfqgd(pd->blkg->blkcg);
1633
1634 cfqg->weight = cgd->weight;
1635 cfqg->leaf_weight = cgd->leaf_weight;
1636 }
1637
1638 static void cfq_pd_offline(struct blkg_policy_data *pd)
1639 {
1640 struct cfq_group *cfqg = pd_to_cfqg(pd);
1641 int i;
1642
1643 for (i = 0; i < IOPRIO_BE_NR; i++) {
1644 if (cfqg->async_cfqq[0][i])
1645 cfq_put_queue(cfqg->async_cfqq[0][i]);
1646 if (cfqg->async_cfqq[1][i])
1647 cfq_put_queue(cfqg->async_cfqq[1][i]);
1648 }
1649
1650 if (cfqg->async_idle_cfqq)
1651 cfq_put_queue(cfqg->async_idle_cfqq);
1652
1653 /*
1654 * @blkg is going offline and will be ignored by
1655 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1656 * that they don't get lost. If IOs complete after this point, the
1657 * stats for them will be lost. Oh well...
1658 */
1659 cfqg_stats_xfer_dead(cfqg);
1660 }
1661
1662 static void cfq_pd_free(struct blkg_policy_data *pd)
1663 {
1664 struct cfq_group *cfqg = pd_to_cfqg(pd);
1665
1666 cfqg_stats_exit(&cfqg->stats);
1667 return kfree(cfqg);
1668 }
1669
1670 static void cfq_pd_reset_stats(struct blkg_policy_data *pd)
1671 {
1672 struct cfq_group *cfqg = pd_to_cfqg(pd);
1673
1674 cfqg_stats_reset(&cfqg->stats);
1675 }
1676
1677 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
1678 struct blkcg *blkcg)
1679 {
1680 struct blkcg_gq *blkg;
1681
1682 blkg = blkg_lookup(blkcg, cfqd->queue);
1683 if (likely(blkg))
1684 return blkg_to_cfqg(blkg);
1685 return NULL;
1686 }
1687
1688 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1689 {
1690 cfqq->cfqg = cfqg;
1691 /* cfqq reference on cfqg */
1692 cfqg_get(cfqg);
1693 }
1694
1695 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1696 struct blkg_policy_data *pd, int off)
1697 {
1698 struct cfq_group *cfqg = pd_to_cfqg(pd);
1699
1700 if (!cfqg->dev_weight)
1701 return 0;
1702 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1703 }
1704
1705 static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1706 {
1707 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1708 cfqg_prfill_weight_device, &blkcg_policy_cfq,
1709 0, false);
1710 return 0;
1711 }
1712
1713 static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1714 struct blkg_policy_data *pd, int off)
1715 {
1716 struct cfq_group *cfqg = pd_to_cfqg(pd);
1717
1718 if (!cfqg->dev_leaf_weight)
1719 return 0;
1720 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1721 }
1722
1723 static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1724 {
1725 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1726 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1727 0, false);
1728 return 0;
1729 }
1730
1731 static int cfq_print_weight(struct seq_file *sf, void *v)
1732 {
1733 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1734 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1735 unsigned int val = 0;
1736
1737 if (cgd)
1738 val = cgd->weight;
1739
1740 seq_printf(sf, "%u\n", val);
1741 return 0;
1742 }
1743
1744 static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1745 {
1746 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1747 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1748 unsigned int val = 0;
1749
1750 if (cgd)
1751 val = cgd->leaf_weight;
1752
1753 seq_printf(sf, "%u\n", val);
1754 return 0;
1755 }
1756
1757 static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1758 char *buf, size_t nbytes, loff_t off,
1759 bool on_dfl, bool is_leaf_weight)
1760 {
1761 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1762 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1763 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1764 struct blkg_conf_ctx ctx;
1765 struct cfq_group *cfqg;
1766 struct cfq_group_data *cfqgd;
1767 int ret;
1768 u64 v;
1769
1770 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1771 if (ret)
1772 return ret;
1773
1774 if (sscanf(ctx.body, "%llu", &v) == 1) {
1775 /* require "default" on dfl */
1776 ret = -ERANGE;
1777 if (!v && on_dfl)
1778 goto out_finish;
1779 } else if (!strcmp(strim(ctx.body), "default")) {
1780 v = 0;
1781 } else {
1782 ret = -EINVAL;
1783 goto out_finish;
1784 }
1785
1786 cfqg = blkg_to_cfqg(ctx.blkg);
1787 cfqgd = blkcg_to_cfqgd(blkcg);
1788
1789 ret = -ERANGE;
1790 if (!v || (v >= min && v <= max)) {
1791 if (!is_leaf_weight) {
1792 cfqg->dev_weight = v;
1793 cfqg->new_weight = v ?: cfqgd->weight;
1794 } else {
1795 cfqg->dev_leaf_weight = v;
1796 cfqg->new_leaf_weight = v ?: cfqgd->leaf_weight;
1797 }
1798 ret = 0;
1799 }
1800 out_finish:
1801 blkg_conf_finish(&ctx);
1802 return ret ?: nbytes;
1803 }
1804
1805 static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1806 char *buf, size_t nbytes, loff_t off)
1807 {
1808 return __cfqg_set_weight_device(of, buf, nbytes, off, false, false);
1809 }
1810
1811 static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1812 char *buf, size_t nbytes, loff_t off)
1813 {
1814 return __cfqg_set_weight_device(of, buf, nbytes, off, false, true);
1815 }
1816
1817 static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1818 bool on_dfl, bool reset_dev, bool is_leaf_weight)
1819 {
1820 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1821 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1822 struct blkcg *blkcg = css_to_blkcg(css);
1823 struct blkcg_gq *blkg;
1824 struct cfq_group_data *cfqgd;
1825 int ret = 0;
1826
1827 if (val < min || val > max)
1828 return -ERANGE;
1829
1830 spin_lock_irq(&blkcg->lock);
1831 cfqgd = blkcg_to_cfqgd(blkcg);
1832 if (!cfqgd) {
1833 ret = -EINVAL;
1834 goto out;
1835 }
1836
1837 if (!is_leaf_weight)
1838 cfqgd->weight = val;
1839 else
1840 cfqgd->leaf_weight = val;
1841
1842 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1843 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1844
1845 if (!cfqg)
1846 continue;
1847
1848 if (!is_leaf_weight) {
1849 if (reset_dev)
1850 cfqg->dev_weight = 0;
1851 if (!cfqg->dev_weight)
1852 cfqg->new_weight = cfqgd->weight;
1853 } else {
1854 if (reset_dev)
1855 cfqg->dev_leaf_weight = 0;
1856 if (!cfqg->dev_leaf_weight)
1857 cfqg->new_leaf_weight = cfqgd->leaf_weight;
1858 }
1859 }
1860
1861 out:
1862 spin_unlock_irq(&blkcg->lock);
1863 return ret;
1864 }
1865
1866 static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1867 u64 val)
1868 {
1869 return __cfq_set_weight(css, val, false, false, false);
1870 }
1871
1872 static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1873 struct cftype *cft, u64 val)
1874 {
1875 return __cfq_set_weight(css, val, false, false, true);
1876 }
1877
1878 static int cfqg_print_stat(struct seq_file *sf, void *v)
1879 {
1880 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1881 &blkcg_policy_cfq, seq_cft(sf)->private, false);
1882 return 0;
1883 }
1884
1885 static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1886 {
1887 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1888 &blkcg_policy_cfq, seq_cft(sf)->private, true);
1889 return 0;
1890 }
1891
1892 static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1893 struct blkg_policy_data *pd, int off)
1894 {
1895 u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd),
1896 &blkcg_policy_cfq, off);
1897 return __blkg_prfill_u64(sf, pd, sum);
1898 }
1899
1900 static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1901 struct blkg_policy_data *pd, int off)
1902 {
1903 struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd),
1904 &blkcg_policy_cfq, off);
1905 return __blkg_prfill_rwstat(sf, pd, &sum);
1906 }
1907
1908 static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1909 {
1910 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1911 cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1912 seq_cft(sf)->private, false);
1913 return 0;
1914 }
1915
1916 static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1917 {
1918 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1919 cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1920 seq_cft(sf)->private, true);
1921 return 0;
1922 }
1923
1924 static u64 cfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd,
1925 int off)
1926 {
1927 u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes);
1928
1929 return __blkg_prfill_u64(sf, pd, sum >> 9);
1930 }
1931
1932 static int cfqg_print_stat_sectors(struct seq_file *sf, void *v)
1933 {
1934 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1935 cfqg_prfill_sectors, &blkcg_policy_cfq, 0, false);
1936 return 0;
1937 }
1938
1939 static u64 cfqg_prfill_sectors_recursive(struct seq_file *sf,
1940 struct blkg_policy_data *pd, int off)
1941 {
1942 struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL,
1943 offsetof(struct blkcg_gq, stat_bytes));
1944 u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) +
1945 atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]);
1946
1947 return __blkg_prfill_u64(sf, pd, sum >> 9);
1948 }
1949
1950 static int cfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v)
1951 {
1952 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1953 cfqg_prfill_sectors_recursive, &blkcg_policy_cfq, 0,
1954 false);
1955 return 0;
1956 }
1957
1958 #ifdef CONFIG_DEBUG_BLK_CGROUP
1959 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1960 struct blkg_policy_data *pd, int off)
1961 {
1962 struct cfq_group *cfqg = pd_to_cfqg(pd);
1963 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1964 u64 v = 0;
1965
1966 if (samples) {
1967 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1968 v = div64_u64(v, samples);
1969 }
1970 __blkg_prfill_u64(sf, pd, v);
1971 return 0;
1972 }
1973
1974 /* print avg_queue_size */
1975 static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
1976 {
1977 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1978 cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
1979 0, false);
1980 return 0;
1981 }
1982 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1983
1984 static struct cftype cfq_blkcg_legacy_files[] = {
1985 /* on root, weight is mapped to leaf_weight */
1986 {
1987 .name = "weight_device",
1988 .flags = CFTYPE_ONLY_ON_ROOT,
1989 .seq_show = cfqg_print_leaf_weight_device,
1990 .write = cfqg_set_leaf_weight_device,
1991 },
1992 {
1993 .name = "weight",
1994 .flags = CFTYPE_ONLY_ON_ROOT,
1995 .seq_show = cfq_print_leaf_weight,
1996 .write_u64 = cfq_set_leaf_weight,
1997 },
1998
1999 /* no such mapping necessary for !roots */
2000 {
2001 .name = "weight_device",
2002 .flags = CFTYPE_NOT_ON_ROOT,
2003 .seq_show = cfqg_print_weight_device,
2004 .write = cfqg_set_weight_device,
2005 },
2006 {
2007 .name = "weight",
2008 .flags = CFTYPE_NOT_ON_ROOT,
2009 .seq_show = cfq_print_weight,
2010 .write_u64 = cfq_set_weight,
2011 },
2012
2013 {
2014 .name = "leaf_weight_device",
2015 .seq_show = cfqg_print_leaf_weight_device,
2016 .write = cfqg_set_leaf_weight_device,
2017 },
2018 {
2019 .name = "leaf_weight",
2020 .seq_show = cfq_print_leaf_weight,
2021 .write_u64 = cfq_set_leaf_weight,
2022 },
2023
2024 /* statistics, covers only the tasks in the cfqg */
2025 {
2026 .name = "time",
2027 .private = offsetof(struct cfq_group, stats.time),
2028 .seq_show = cfqg_print_stat,
2029 },
2030 {
2031 .name = "sectors",
2032 .seq_show = cfqg_print_stat_sectors,
2033 },
2034 {
2035 .name = "io_service_bytes",
2036 .private = (unsigned long)&blkcg_policy_cfq,
2037 .seq_show = blkg_print_stat_bytes,
2038 },
2039 {
2040 .name = "io_serviced",
2041 .private = (unsigned long)&blkcg_policy_cfq,
2042 .seq_show = blkg_print_stat_ios,
2043 },
2044 {
2045 .name = "io_service_time",
2046 .private = offsetof(struct cfq_group, stats.service_time),
2047 .seq_show = cfqg_print_rwstat,
2048 },
2049 {
2050 .name = "io_wait_time",
2051 .private = offsetof(struct cfq_group, stats.wait_time),
2052 .seq_show = cfqg_print_rwstat,
2053 },
2054 {
2055 .name = "io_merged",
2056 .private = offsetof(struct cfq_group, stats.merged),
2057 .seq_show = cfqg_print_rwstat,
2058 },
2059 {
2060 .name = "io_queued",
2061 .private = offsetof(struct cfq_group, stats.queued),
2062 .seq_show = cfqg_print_rwstat,
2063 },
2064
2065 /* the same statictics which cover the cfqg and its descendants */
2066 {
2067 .name = "time_recursive",
2068 .private = offsetof(struct cfq_group, stats.time),
2069 .seq_show = cfqg_print_stat_recursive,
2070 },
2071 {
2072 .name = "sectors_recursive",
2073 .seq_show = cfqg_print_stat_sectors_recursive,
2074 },
2075 {
2076 .name = "io_service_bytes_recursive",
2077 .private = (unsigned long)&blkcg_policy_cfq,
2078 .seq_show = blkg_print_stat_bytes_recursive,
2079 },
2080 {
2081 .name = "io_serviced_recursive",
2082 .private = (unsigned long)&blkcg_policy_cfq,
2083 .seq_show = blkg_print_stat_ios_recursive,
2084 },
2085 {
2086 .name = "io_service_time_recursive",
2087 .private = offsetof(struct cfq_group, stats.service_time),
2088 .seq_show = cfqg_print_rwstat_recursive,
2089 },
2090 {
2091 .name = "io_wait_time_recursive",
2092 .private = offsetof(struct cfq_group, stats.wait_time),
2093 .seq_show = cfqg_print_rwstat_recursive,
2094 },
2095 {
2096 .name = "io_merged_recursive",
2097 .private = offsetof(struct cfq_group, stats.merged),
2098 .seq_show = cfqg_print_rwstat_recursive,
2099 },
2100 {
2101 .name = "io_queued_recursive",
2102 .private = offsetof(struct cfq_group, stats.queued),
2103 .seq_show = cfqg_print_rwstat_recursive,
2104 },
2105 #ifdef CONFIG_DEBUG_BLK_CGROUP
2106 {
2107 .name = "avg_queue_size",
2108 .seq_show = cfqg_print_avg_queue_size,
2109 },
2110 {
2111 .name = "group_wait_time",
2112 .private = offsetof(struct cfq_group, stats.group_wait_time),
2113 .seq_show = cfqg_print_stat,
2114 },
2115 {
2116 .name = "idle_time",
2117 .private = offsetof(struct cfq_group, stats.idle_time),
2118 .seq_show = cfqg_print_stat,
2119 },
2120 {
2121 .name = "empty_time",
2122 .private = offsetof(struct cfq_group, stats.empty_time),
2123 .seq_show = cfqg_print_stat,
2124 },
2125 {
2126 .name = "dequeue",
2127 .private = offsetof(struct cfq_group, stats.dequeue),
2128 .seq_show = cfqg_print_stat,
2129 },
2130 {
2131 .name = "unaccounted_time",
2132 .private = offsetof(struct cfq_group, stats.unaccounted_time),
2133 .seq_show = cfqg_print_stat,
2134 },
2135 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2136 { } /* terminate */
2137 };
2138
2139 static int cfq_print_weight_on_dfl(struct seq_file *sf, void *v)
2140 {
2141 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2142 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
2143
2144 seq_printf(sf, "default %u\n", cgd->weight);
2145 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_weight_device,
2146 &blkcg_policy_cfq, 0, false);
2147 return 0;
2148 }
2149
2150 static ssize_t cfq_set_weight_on_dfl(struct kernfs_open_file *of,
2151 char *buf, size_t nbytes, loff_t off)
2152 {
2153 char *endp;
2154 int ret;
2155 u64 v;
2156
2157 buf = strim(buf);
2158
2159 /* "WEIGHT" or "default WEIGHT" sets the default weight */
2160 v = simple_strtoull(buf, &endp, 0);
2161 if (*endp == '\0' || sscanf(buf, "default %llu", &v) == 1) {
2162 ret = __cfq_set_weight(of_css(of), v, true, false, false);
2163 return ret ?: nbytes;
2164 }
2165
2166 /* "MAJ:MIN WEIGHT" */
2167 return __cfqg_set_weight_device(of, buf, nbytes, off, true, false);
2168 }
2169
2170 static struct cftype cfq_blkcg_files[] = {
2171 {
2172 .name = "weight",
2173 .flags = CFTYPE_NOT_ON_ROOT,
2174 .seq_show = cfq_print_weight_on_dfl,
2175 .write = cfq_set_weight_on_dfl,
2176 },
2177 { } /* terminate */
2178 };
2179
2180 #else /* GROUP_IOSCHED */
2181 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
2182 struct blkcg *blkcg)
2183 {
2184 return cfqd->root_group;
2185 }
2186
2187 static inline void
2188 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2189 cfqq->cfqg = cfqg;
2190 }
2191
2192 #endif /* GROUP_IOSCHED */
2193
2194 /*
2195 * The cfqd->service_trees holds all pending cfq_queue's that have
2196 * requests waiting to be processed. It is sorted in the order that
2197 * we will service the queues.
2198 */
2199 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2200 bool add_front)
2201 {
2202 struct rb_node **p, *parent;
2203 struct cfq_queue *__cfqq;
2204 unsigned long rb_key;
2205 struct cfq_rb_root *st;
2206 int left;
2207 int new_cfqq = 1;
2208
2209 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2210 if (cfq_class_idle(cfqq)) {
2211 rb_key = CFQ_IDLE_DELAY;
2212 parent = rb_last(&st->rb);
2213 if (parent && parent != &cfqq->rb_node) {
2214 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2215 rb_key += __cfqq->rb_key;
2216 } else
2217 rb_key += jiffies;
2218 } else if (!add_front) {
2219 /*
2220 * Get our rb key offset. Subtract any residual slice
2221 * value carried from last service. A negative resid
2222 * count indicates slice overrun, and this should position
2223 * the next service time further away in the tree.
2224 */
2225 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
2226 rb_key -= cfqq->slice_resid;
2227 cfqq->slice_resid = 0;
2228 } else {
2229 rb_key = -HZ;
2230 __cfqq = cfq_rb_first(st);
2231 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
2232 }
2233
2234 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2235 new_cfqq = 0;
2236 /*
2237 * same position, nothing more to do
2238 */
2239 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2240 return;
2241
2242 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2243 cfqq->service_tree = NULL;
2244 }
2245
2246 left = 1;
2247 parent = NULL;
2248 cfqq->service_tree = st;
2249 p = &st->rb.rb_node;
2250 while (*p) {
2251 parent = *p;
2252 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2253
2254 /*
2255 * sort by key, that represents service time.
2256 */
2257 if (time_before(rb_key, __cfqq->rb_key))
2258 p = &parent->rb_left;
2259 else {
2260 p = &parent->rb_right;
2261 left = 0;
2262 }
2263 }
2264
2265 if (left)
2266 st->left = &cfqq->rb_node;
2267
2268 cfqq->rb_key = rb_key;
2269 rb_link_node(&cfqq->rb_node, parent, p);
2270 rb_insert_color(&cfqq->rb_node, &st->rb);
2271 st->count++;
2272 if (add_front || !new_cfqq)
2273 return;
2274 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2275 }
2276
2277 static struct cfq_queue *
2278 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2279 sector_t sector, struct rb_node **ret_parent,
2280 struct rb_node ***rb_link)
2281 {
2282 struct rb_node **p, *parent;
2283 struct cfq_queue *cfqq = NULL;
2284
2285 parent = NULL;
2286 p = &root->rb_node;
2287 while (*p) {
2288 struct rb_node **n;
2289
2290 parent = *p;
2291 cfqq = rb_entry(parent, struct cfq_queue, p_node);
2292
2293 /*
2294 * Sort strictly based on sector. Smallest to the left,
2295 * largest to the right.
2296 */
2297 if (sector > blk_rq_pos(cfqq->next_rq))
2298 n = &(*p)->rb_right;
2299 else if (sector < blk_rq_pos(cfqq->next_rq))
2300 n = &(*p)->rb_left;
2301 else
2302 break;
2303 p = n;
2304 cfqq = NULL;
2305 }
2306
2307 *ret_parent = parent;
2308 if (rb_link)
2309 *rb_link = p;
2310 return cfqq;
2311 }
2312
2313 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2314 {
2315 struct rb_node **p, *parent;
2316 struct cfq_queue *__cfqq;
2317
2318 if (cfqq->p_root) {
2319 rb_erase(&cfqq->p_node, cfqq->p_root);
2320 cfqq->p_root = NULL;
2321 }
2322
2323 if (cfq_class_idle(cfqq))
2324 return;
2325 if (!cfqq->next_rq)
2326 return;
2327
2328 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2329 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2330 blk_rq_pos(cfqq->next_rq), &parent, &p);
2331 if (!__cfqq) {
2332 rb_link_node(&cfqq->p_node, parent, p);
2333 rb_insert_color(&cfqq->p_node, cfqq->p_root);
2334 } else
2335 cfqq->p_root = NULL;
2336 }
2337
2338 /*
2339 * Update cfqq's position in the service tree.
2340 */
2341 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2342 {
2343 /*
2344 * Resorting requires the cfqq to be on the RR list already.
2345 */
2346 if (cfq_cfqq_on_rr(cfqq)) {
2347 cfq_service_tree_add(cfqd, cfqq, 0);
2348 cfq_prio_tree_add(cfqd, cfqq);
2349 }
2350 }
2351
2352 /*
2353 * add to busy list of queues for service, trying to be fair in ordering
2354 * the pending list according to last request service
2355 */
2356 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2357 {
2358 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2359 BUG_ON(cfq_cfqq_on_rr(cfqq));
2360 cfq_mark_cfqq_on_rr(cfqq);
2361 cfqd->busy_queues++;
2362 if (cfq_cfqq_sync(cfqq))
2363 cfqd->busy_sync_queues++;
2364
2365 cfq_resort_rr_list(cfqd, cfqq);
2366 }
2367
2368 /*
2369 * Called when the cfqq no longer has requests pending, remove it from
2370 * the service tree.
2371 */
2372 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2373 {
2374 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2375 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2376 cfq_clear_cfqq_on_rr(cfqq);
2377
2378 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2379 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2380 cfqq->service_tree = NULL;
2381 }
2382 if (cfqq->p_root) {
2383 rb_erase(&cfqq->p_node, cfqq->p_root);
2384 cfqq->p_root = NULL;
2385 }
2386
2387 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2388 BUG_ON(!cfqd->busy_queues);
2389 cfqd->busy_queues--;
2390 if (cfq_cfqq_sync(cfqq))
2391 cfqd->busy_sync_queues--;
2392 }
2393
2394 /*
2395 * rb tree support functions
2396 */
2397 static void cfq_del_rq_rb(struct request *rq)
2398 {
2399 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2400 const int sync = rq_is_sync(rq);
2401
2402 BUG_ON(!cfqq->queued[sync]);
2403 cfqq->queued[sync]--;
2404
2405 elv_rb_del(&cfqq->sort_list, rq);
2406
2407 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2408 /*
2409 * Queue will be deleted from service tree when we actually
2410 * expire it later. Right now just remove it from prio tree
2411 * as it is empty.
2412 */
2413 if (cfqq->p_root) {
2414 rb_erase(&cfqq->p_node, cfqq->p_root);
2415 cfqq->p_root = NULL;
2416 }
2417 }
2418 }
2419
2420 static void cfq_add_rq_rb(struct request *rq)
2421 {
2422 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2423 struct cfq_data *cfqd = cfqq->cfqd;
2424 struct request *prev;
2425
2426 cfqq->queued[rq_is_sync(rq)]++;
2427
2428 elv_rb_add(&cfqq->sort_list, rq);
2429
2430 if (!cfq_cfqq_on_rr(cfqq))
2431 cfq_add_cfqq_rr(cfqd, cfqq);
2432
2433 /*
2434 * check if this request is a better next-serve candidate
2435 */
2436 prev = cfqq->next_rq;
2437 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2438
2439 /*
2440 * adjust priority tree position, if ->next_rq changes
2441 */
2442 if (prev != cfqq->next_rq)
2443 cfq_prio_tree_add(cfqd, cfqq);
2444
2445 BUG_ON(!cfqq->next_rq);
2446 }
2447
2448 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2449 {
2450 elv_rb_del(&cfqq->sort_list, rq);
2451 cfqq->queued[rq_is_sync(rq)]--;
2452 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2453 cfq_add_rq_rb(rq);
2454 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2455 rq->cmd_flags);
2456 }
2457
2458 static struct request *
2459 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2460 {
2461 struct task_struct *tsk = current;
2462 struct cfq_io_cq *cic;
2463 struct cfq_queue *cfqq;
2464
2465 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2466 if (!cic)
2467 return NULL;
2468
2469 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2470 if (cfqq)
2471 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2472
2473 return NULL;
2474 }
2475
2476 static void cfq_activate_request(struct request_queue *q, struct request *rq)
2477 {
2478 struct cfq_data *cfqd = q->elevator->elevator_data;
2479
2480 cfqd->rq_in_driver++;
2481 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2482 cfqd->rq_in_driver);
2483
2484 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2485 }
2486
2487 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2488 {
2489 struct cfq_data *cfqd = q->elevator->elevator_data;
2490
2491 WARN_ON(!cfqd->rq_in_driver);
2492 cfqd->rq_in_driver--;
2493 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2494 cfqd->rq_in_driver);
2495 }
2496
2497 static void cfq_remove_request(struct request *rq)
2498 {
2499 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2500
2501 if (cfqq->next_rq == rq)
2502 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2503
2504 list_del_init(&rq->queuelist);
2505 cfq_del_rq_rb(rq);
2506
2507 cfqq->cfqd->rq_queued--;
2508 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2509 if (rq->cmd_flags & REQ_PRIO) {
2510 WARN_ON(!cfqq->prio_pending);
2511 cfqq->prio_pending--;
2512 }
2513 }
2514
2515 static int cfq_merge(struct request_queue *q, struct request **req,
2516 struct bio *bio)
2517 {
2518 struct cfq_data *cfqd = q->elevator->elevator_data;
2519 struct request *__rq;
2520
2521 __rq = cfq_find_rq_fmerge(cfqd, bio);
2522 if (__rq && elv_rq_merge_ok(__rq, bio)) {
2523 *req = __rq;
2524 return ELEVATOR_FRONT_MERGE;
2525 }
2526
2527 return ELEVATOR_NO_MERGE;
2528 }
2529
2530 static void cfq_merged_request(struct request_queue *q, struct request *req,
2531 int type)
2532 {
2533 if (type == ELEVATOR_FRONT_MERGE) {
2534 struct cfq_queue *cfqq = RQ_CFQQ(req);
2535
2536 cfq_reposition_rq_rb(cfqq, req);
2537 }
2538 }
2539
2540 static void cfq_bio_merged(struct request_queue *q, struct request *req,
2541 struct bio *bio)
2542 {
2543 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
2544 }
2545
2546 static void
2547 cfq_merged_requests(struct request_queue *q, struct request *rq,
2548 struct request *next)
2549 {
2550 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2551 struct cfq_data *cfqd = q->elevator->elevator_data;
2552
2553 /*
2554 * reposition in fifo if next is older than rq
2555 */
2556 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2557 time_before(next->fifo_time, rq->fifo_time) &&
2558 cfqq == RQ_CFQQ(next)) {
2559 list_move(&rq->queuelist, &next->queuelist);
2560 rq->fifo_time = next->fifo_time;
2561 }
2562
2563 if (cfqq->next_rq == next)
2564 cfqq->next_rq = rq;
2565 cfq_remove_request(next);
2566 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2567
2568 cfqq = RQ_CFQQ(next);
2569 /*
2570 * all requests of this queue are merged to other queues, delete it
2571 * from the service tree. If it's the active_queue,
2572 * cfq_dispatch_requests() will choose to expire it or do idle
2573 */
2574 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2575 cfqq != cfqd->active_queue)
2576 cfq_del_cfqq_rr(cfqd, cfqq);
2577 }
2578
2579 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
2580 struct bio *bio)
2581 {
2582 struct cfq_data *cfqd = q->elevator->elevator_data;
2583 struct cfq_io_cq *cic;
2584 struct cfq_queue *cfqq;
2585
2586 /*
2587 * Disallow merge of a sync bio into an async request.
2588 */
2589 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2590 return false;
2591
2592 /*
2593 * Lookup the cfqq that this bio will be queued with and allow
2594 * merge only if rq is queued there.
2595 */
2596 cic = cfq_cic_lookup(cfqd, current->io_context);
2597 if (!cic)
2598 return false;
2599
2600 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2601 return cfqq == RQ_CFQQ(rq);
2602 }
2603
2604 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2605 {
2606 del_timer(&cfqd->idle_slice_timer);
2607 cfqg_stats_update_idle_time(cfqq->cfqg);
2608 }
2609
2610 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2611 struct cfq_queue *cfqq)
2612 {
2613 if (cfqq) {
2614 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2615 cfqd->serving_wl_class, cfqd->serving_wl_type);
2616 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2617 cfqq->slice_start = 0;
2618 cfqq->dispatch_start = jiffies;
2619 cfqq->allocated_slice = 0;
2620 cfqq->slice_end = 0;
2621 cfqq->slice_dispatch = 0;
2622 cfqq->nr_sectors = 0;
2623
2624 cfq_clear_cfqq_wait_request(cfqq);
2625 cfq_clear_cfqq_must_dispatch(cfqq);
2626 cfq_clear_cfqq_must_alloc_slice(cfqq);
2627 cfq_clear_cfqq_fifo_expire(cfqq);
2628 cfq_mark_cfqq_slice_new(cfqq);
2629
2630 cfq_del_timer(cfqd, cfqq);
2631 }
2632
2633 cfqd->active_queue = cfqq;
2634 }
2635
2636 /*
2637 * current cfqq expired its slice (or was too idle), select new one
2638 */
2639 static void
2640 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2641 bool timed_out)
2642 {
2643 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2644
2645 if (cfq_cfqq_wait_request(cfqq))
2646 cfq_del_timer(cfqd, cfqq);
2647
2648 cfq_clear_cfqq_wait_request(cfqq);
2649 cfq_clear_cfqq_wait_busy(cfqq);
2650
2651 /*
2652 * If this cfqq is shared between multiple processes, check to
2653 * make sure that those processes are still issuing I/Os within
2654 * the mean seek distance. If not, it may be time to break the
2655 * queues apart again.
2656 */
2657 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2658 cfq_mark_cfqq_split_coop(cfqq);
2659
2660 /*
2661 * store what was left of this slice, if the queue idled/timed out
2662 */
2663 if (timed_out) {
2664 if (cfq_cfqq_slice_new(cfqq))
2665 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2666 else
2667 cfqq->slice_resid = cfqq->slice_end - jiffies;
2668 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2669 }
2670
2671 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2672
2673 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2674 cfq_del_cfqq_rr(cfqd, cfqq);
2675
2676 cfq_resort_rr_list(cfqd, cfqq);
2677
2678 if (cfqq == cfqd->active_queue)
2679 cfqd->active_queue = NULL;
2680
2681 if (cfqd->active_cic) {
2682 put_io_context(cfqd->active_cic->icq.ioc);
2683 cfqd->active_cic = NULL;
2684 }
2685 }
2686
2687 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2688 {
2689 struct cfq_queue *cfqq = cfqd->active_queue;
2690
2691 if (cfqq)
2692 __cfq_slice_expired(cfqd, cfqq, timed_out);
2693 }
2694
2695 /*
2696 * Get next queue for service. Unless we have a queue preemption,
2697 * we'll simply select the first cfqq in the service tree.
2698 */
2699 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2700 {
2701 struct cfq_rb_root *st = st_for(cfqd->serving_group,
2702 cfqd->serving_wl_class, cfqd->serving_wl_type);
2703
2704 if (!cfqd->rq_queued)
2705 return NULL;
2706
2707 /* There is nothing to dispatch */
2708 if (!st)
2709 return NULL;
2710 if (RB_EMPTY_ROOT(&st->rb))
2711 return NULL;
2712 return cfq_rb_first(st);
2713 }
2714
2715 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2716 {
2717 struct cfq_group *cfqg;
2718 struct cfq_queue *cfqq;
2719 int i, j;
2720 struct cfq_rb_root *st;
2721
2722 if (!cfqd->rq_queued)
2723 return NULL;
2724
2725 cfqg = cfq_get_next_cfqg(cfqd);
2726 if (!cfqg)
2727 return NULL;
2728
2729 for_each_cfqg_st(cfqg, i, j, st)
2730 if ((cfqq = cfq_rb_first(st)) != NULL)
2731 return cfqq;
2732 return NULL;
2733 }
2734
2735 /*
2736 * Get and set a new active queue for service.
2737 */
2738 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2739 struct cfq_queue *cfqq)
2740 {
2741 if (!cfqq)
2742 cfqq = cfq_get_next_queue(cfqd);
2743
2744 __cfq_set_active_queue(cfqd, cfqq);
2745 return cfqq;
2746 }
2747
2748 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2749 struct request *rq)
2750 {
2751 if (blk_rq_pos(rq) >= cfqd->last_position)
2752 return blk_rq_pos(rq) - cfqd->last_position;
2753 else
2754 return cfqd->last_position - blk_rq_pos(rq);
2755 }
2756
2757 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2758 struct request *rq)
2759 {
2760 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2761 }
2762
2763 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2764 struct cfq_queue *cur_cfqq)
2765 {
2766 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2767 struct rb_node *parent, *node;
2768 struct cfq_queue *__cfqq;
2769 sector_t sector = cfqd->last_position;
2770
2771 if (RB_EMPTY_ROOT(root))
2772 return NULL;
2773
2774 /*
2775 * First, if we find a request starting at the end of the last
2776 * request, choose it.
2777 */
2778 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2779 if (__cfqq)
2780 return __cfqq;
2781
2782 /*
2783 * If the exact sector wasn't found, the parent of the NULL leaf
2784 * will contain the closest sector.
2785 */
2786 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2787 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2788 return __cfqq;
2789
2790 if (blk_rq_pos(__cfqq->next_rq) < sector)
2791 node = rb_next(&__cfqq->p_node);
2792 else
2793 node = rb_prev(&__cfqq->p_node);
2794 if (!node)
2795 return NULL;
2796
2797 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2798 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2799 return __cfqq;
2800
2801 return NULL;
2802 }
2803
2804 /*
2805 * cfqd - obvious
2806 * cur_cfqq - passed in so that we don't decide that the current queue is
2807 * closely cooperating with itself.
2808 *
2809 * So, basically we're assuming that that cur_cfqq has dispatched at least
2810 * one request, and that cfqd->last_position reflects a position on the disk
2811 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2812 * assumption.
2813 */
2814 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2815 struct cfq_queue *cur_cfqq)
2816 {
2817 struct cfq_queue *cfqq;
2818
2819 if (cfq_class_idle(cur_cfqq))
2820 return NULL;
2821 if (!cfq_cfqq_sync(cur_cfqq))
2822 return NULL;
2823 if (CFQQ_SEEKY(cur_cfqq))
2824 return NULL;
2825
2826 /*
2827 * Don't search priority tree if it's the only queue in the group.
2828 */
2829 if (cur_cfqq->cfqg->nr_cfqq == 1)
2830 return NULL;
2831
2832 /*
2833 * We should notice if some of the queues are cooperating, eg
2834 * working closely on the same area of the disk. In that case,
2835 * we can group them together and don't waste time idling.
2836 */
2837 cfqq = cfqq_close(cfqd, cur_cfqq);
2838 if (!cfqq)
2839 return NULL;
2840
2841 /* If new queue belongs to different cfq_group, don't choose it */
2842 if (cur_cfqq->cfqg != cfqq->cfqg)
2843 return NULL;
2844
2845 /*
2846 * It only makes sense to merge sync queues.
2847 */
2848 if (!cfq_cfqq_sync(cfqq))
2849 return NULL;
2850 if (CFQQ_SEEKY(cfqq))
2851 return NULL;
2852
2853 /*
2854 * Do not merge queues of different priority classes
2855 */
2856 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2857 return NULL;
2858
2859 return cfqq;
2860 }
2861
2862 /*
2863 * Determine whether we should enforce idle window for this queue.
2864 */
2865
2866 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2867 {
2868 enum wl_class_t wl_class = cfqq_class(cfqq);
2869 struct cfq_rb_root *st = cfqq->service_tree;
2870
2871 BUG_ON(!st);
2872 BUG_ON(!st->count);
2873
2874 if (!cfqd->cfq_slice_idle)
2875 return false;
2876
2877 /* We never do for idle class queues. */
2878 if (wl_class == IDLE_WORKLOAD)
2879 return false;
2880
2881 /* We do for queues that were marked with idle window flag. */
2882 if (cfq_cfqq_idle_window(cfqq) &&
2883 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2884 return true;
2885
2886 /*
2887 * Otherwise, we do only if they are the last ones
2888 * in their service tree.
2889 */
2890 if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2891 !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2892 return true;
2893 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2894 return false;
2895 }
2896
2897 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2898 {
2899 struct cfq_queue *cfqq = cfqd->active_queue;
2900 struct cfq_io_cq *cic;
2901 unsigned long sl, group_idle = 0;
2902
2903 /*
2904 * SSD device without seek penalty, disable idling. But only do so
2905 * for devices that support queuing, otherwise we still have a problem
2906 * with sync vs async workloads.
2907 */
2908 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2909 return;
2910
2911 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2912 WARN_ON(cfq_cfqq_slice_new(cfqq));
2913
2914 /*
2915 * idle is disabled, either manually or by past process history
2916 */
2917 if (!cfq_should_idle(cfqd, cfqq)) {
2918 /* no queue idling. Check for group idling */
2919 if (cfqd->cfq_group_idle)
2920 group_idle = cfqd->cfq_group_idle;
2921 else
2922 return;
2923 }
2924
2925 /*
2926 * still active requests from this queue, don't idle
2927 */
2928 if (cfqq->dispatched)
2929 return;
2930
2931 /*
2932 * task has exited, don't wait
2933 */
2934 cic = cfqd->active_cic;
2935 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2936 return;
2937
2938 /*
2939 * If our average think time is larger than the remaining time
2940 * slice, then don't idle. This avoids overrunning the allotted
2941 * time slice.
2942 */
2943 if (sample_valid(cic->ttime.ttime_samples) &&
2944 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2945 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2946 cic->ttime.ttime_mean);
2947 return;
2948 }
2949
2950 /* There are other queues in the group, don't do group idle */
2951 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2952 return;
2953
2954 cfq_mark_cfqq_wait_request(cfqq);
2955
2956 if (group_idle)
2957 sl = cfqd->cfq_group_idle;
2958 else
2959 sl = cfqd->cfq_slice_idle;
2960
2961 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2962 cfqg_stats_set_start_idle_time(cfqq->cfqg);
2963 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2964 group_idle ? 1 : 0);
2965 }
2966
2967 /*
2968 * Move request from internal lists to the request queue dispatch list.
2969 */
2970 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2971 {
2972 struct cfq_data *cfqd = q->elevator->elevator_data;
2973 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2974
2975 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2976
2977 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2978 cfq_remove_request(rq);
2979 cfqq->dispatched++;
2980 (RQ_CFQG(rq))->dispatched++;
2981 elv_dispatch_sort(q, rq);
2982
2983 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2984 cfqq->nr_sectors += blk_rq_sectors(rq);
2985 }
2986
2987 /*
2988 * return expired entry, or NULL to just start from scratch in rbtree
2989 */
2990 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2991 {
2992 struct request *rq = NULL;
2993
2994 if (cfq_cfqq_fifo_expire(cfqq))
2995 return NULL;
2996
2997 cfq_mark_cfqq_fifo_expire(cfqq);
2998
2999 if (list_empty(&cfqq->fifo))
3000 return NULL;
3001
3002 rq = rq_entry_fifo(cfqq->fifo.next);
3003 if (time_before(jiffies, rq->fifo_time))
3004 rq = NULL;
3005
3006 return rq;
3007 }
3008
3009 static inline int
3010 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3011 {
3012 const int base_rq = cfqd->cfq_slice_async_rq;
3013
3014 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
3015
3016 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
3017 }
3018
3019 /*
3020 * Must be called with the queue_lock held.
3021 */
3022 static int cfqq_process_refs(struct cfq_queue *cfqq)
3023 {
3024 int process_refs, io_refs;
3025
3026 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
3027 process_refs = cfqq->ref - io_refs;
3028 BUG_ON(process_refs < 0);
3029 return process_refs;
3030 }
3031
3032 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
3033 {
3034 int process_refs, new_process_refs;
3035 struct cfq_queue *__cfqq;
3036
3037 /*
3038 * If there are no process references on the new_cfqq, then it is
3039 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
3040 * chain may have dropped their last reference (not just their
3041 * last process reference).
3042 */
3043 if (!cfqq_process_refs(new_cfqq))
3044 return;
3045
3046 /* Avoid a circular list and skip interim queue merges */
3047 while ((__cfqq = new_cfqq->new_cfqq)) {
3048 if (__cfqq == cfqq)
3049 return;
3050 new_cfqq = __cfqq;
3051 }
3052
3053 process_refs = cfqq_process_refs(cfqq);
3054 new_process_refs = cfqq_process_refs(new_cfqq);
3055 /*
3056 * If the process for the cfqq has gone away, there is no
3057 * sense in merging the queues.
3058 */
3059 if (process_refs == 0 || new_process_refs == 0)
3060 return;
3061
3062 /*
3063 * Merge in the direction of the lesser amount of work.
3064 */
3065 if (new_process_refs >= process_refs) {
3066 cfqq->new_cfqq = new_cfqq;
3067 new_cfqq->ref += process_refs;
3068 } else {
3069 new_cfqq->new_cfqq = cfqq;
3070 cfqq->ref += new_process_refs;
3071 }
3072 }
3073
3074 static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
3075 struct cfq_group *cfqg, enum wl_class_t wl_class)
3076 {
3077 struct cfq_queue *queue;
3078 int i;
3079 bool key_valid = false;
3080 unsigned long lowest_key = 0;
3081 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
3082
3083 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
3084 /* select the one with lowest rb_key */
3085 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
3086 if (queue &&
3087 (!key_valid || time_before(queue->rb_key, lowest_key))) {
3088 lowest_key = queue->rb_key;
3089 cur_best = i;
3090 key_valid = true;
3091 }
3092 }
3093
3094 return cur_best;
3095 }
3096
3097 static void
3098 choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
3099 {
3100 unsigned slice;
3101 unsigned count;
3102 struct cfq_rb_root *st;
3103 unsigned group_slice;
3104 enum wl_class_t original_class = cfqd->serving_wl_class;
3105
3106 /* Choose next priority. RT > BE > IDLE */
3107 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
3108 cfqd->serving_wl_class = RT_WORKLOAD;
3109 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
3110 cfqd->serving_wl_class = BE_WORKLOAD;
3111 else {
3112 cfqd->serving_wl_class = IDLE_WORKLOAD;
3113 cfqd->workload_expires = jiffies + 1;
3114 return;
3115 }
3116
3117 if (original_class != cfqd->serving_wl_class)
3118 goto new_workload;
3119
3120 /*
3121 * For RT and BE, we have to choose also the type
3122 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3123 * expiration time
3124 */
3125 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3126 count = st->count;
3127
3128 /*
3129 * check workload expiration, and that we still have other queues ready
3130 */
3131 if (count && !time_after(jiffies, cfqd->workload_expires))
3132 return;
3133
3134 new_workload:
3135 /* otherwise select new workload type */
3136 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
3137 cfqd->serving_wl_class);
3138 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3139 count = st->count;
3140
3141 /*
3142 * the workload slice is computed as a fraction of target latency
3143 * proportional to the number of queues in that workload, over
3144 * all the queues in the same priority class
3145 */
3146 group_slice = cfq_group_slice(cfqd, cfqg);
3147
3148 slice = group_slice * count /
3149 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
3150 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
3151 cfqg));
3152
3153 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
3154 unsigned int tmp;
3155
3156 /*
3157 * Async queues are currently system wide. Just taking
3158 * proportion of queues with-in same group will lead to higher
3159 * async ratio system wide as generally root group is going
3160 * to have higher weight. A more accurate thing would be to
3161 * calculate system wide asnc/sync ratio.
3162 */
3163 tmp = cfqd->cfq_target_latency *
3164 cfqg_busy_async_queues(cfqd, cfqg);
3165 tmp = tmp/cfqd->busy_queues;
3166 slice = min_t(unsigned, slice, tmp);
3167
3168 /* async workload slice is scaled down according to
3169 * the sync/async slice ratio. */
3170 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
3171 } else
3172 /* sync workload slice is at least 2 * cfq_slice_idle */
3173 slice = max(slice, 2 * cfqd->cfq_slice_idle);
3174
3175 slice = max_t(unsigned, slice, CFQ_MIN_TT);
3176 cfq_log(cfqd, "workload slice:%d", slice);
3177 cfqd->workload_expires = jiffies + slice;
3178 }
3179
3180 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3181 {
3182 struct cfq_rb_root *st = &cfqd->grp_service_tree;
3183 struct cfq_group *cfqg;
3184
3185 if (RB_EMPTY_ROOT(&st->rb))
3186 return NULL;
3187 cfqg = cfq_rb_first_group(st);
3188 update_min_vdisktime(st);
3189 return cfqg;
3190 }
3191
3192 static void cfq_choose_cfqg(struct cfq_data *cfqd)
3193 {
3194 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3195
3196 cfqd->serving_group = cfqg;
3197
3198 /* Restore the workload type data */
3199 if (cfqg->saved_wl_slice) {
3200 cfqd->workload_expires = jiffies + cfqg->saved_wl_slice;
3201 cfqd->serving_wl_type = cfqg->saved_wl_type;
3202 cfqd->serving_wl_class = cfqg->saved_wl_class;
3203 } else
3204 cfqd->workload_expires = jiffies - 1;
3205
3206 choose_wl_class_and_type(cfqd, cfqg);
3207 }
3208
3209 /*
3210 * Select a queue for service. If we have a current active queue,
3211 * check whether to continue servicing it, or retrieve and set a new one.
3212 */
3213 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3214 {
3215 struct cfq_queue *cfqq, *new_cfqq = NULL;
3216
3217 cfqq = cfqd->active_queue;
3218 if (!cfqq)
3219 goto new_queue;
3220
3221 if (!cfqd->rq_queued)
3222 return NULL;
3223
3224 /*
3225 * We were waiting for group to get backlogged. Expire the queue
3226 */
3227 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3228 goto expire;
3229
3230 /*
3231 * The active queue has run out of time, expire it and select new.
3232 */
3233 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3234 /*
3235 * If slice had not expired at the completion of last request
3236 * we might not have turned on wait_busy flag. Don't expire
3237 * the queue yet. Allow the group to get backlogged.
3238 *
3239 * The very fact that we have used the slice, that means we
3240 * have been idling all along on this queue and it should be
3241 * ok to wait for this request to complete.
3242 */
3243 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3244 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3245 cfqq = NULL;
3246 goto keep_queue;
3247 } else
3248 goto check_group_idle;
3249 }
3250
3251 /*
3252 * The active queue has requests and isn't expired, allow it to
3253 * dispatch.
3254 */
3255 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3256 goto keep_queue;
3257
3258 /*
3259 * If another queue has a request waiting within our mean seek
3260 * distance, let it run. The expire code will check for close
3261 * cooperators and put the close queue at the front of the service
3262 * tree. If possible, merge the expiring queue with the new cfqq.
3263 */
3264 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3265 if (new_cfqq) {
3266 if (!cfqq->new_cfqq)
3267 cfq_setup_merge(cfqq, new_cfqq);
3268 goto expire;
3269 }
3270
3271 /*
3272 * No requests pending. If the active queue still has requests in
3273 * flight or is idling for a new request, allow either of these
3274 * conditions to happen (or time out) before selecting a new queue.
3275 */
3276 if (timer_pending(&cfqd->idle_slice_timer)) {
3277 cfqq = NULL;
3278 goto keep_queue;
3279 }
3280
3281 /*
3282 * This is a deep seek queue, but the device is much faster than
3283 * the queue can deliver, don't idle
3284 **/
3285 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3286 (cfq_cfqq_slice_new(cfqq) ||
3287 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
3288 cfq_clear_cfqq_deep(cfqq);
3289 cfq_clear_cfqq_idle_window(cfqq);
3290 }
3291
3292 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3293 cfqq = NULL;
3294 goto keep_queue;
3295 }
3296
3297 /*
3298 * If group idle is enabled and there are requests dispatched from
3299 * this group, wait for requests to complete.
3300 */
3301 check_group_idle:
3302 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3303 cfqq->cfqg->dispatched &&
3304 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3305 cfqq = NULL;
3306 goto keep_queue;
3307 }
3308
3309 expire:
3310 cfq_slice_expired(cfqd, 0);
3311 new_queue:
3312 /*
3313 * Current queue expired. Check if we have to switch to a new
3314 * service tree
3315 */
3316 if (!new_cfqq)
3317 cfq_choose_cfqg(cfqd);
3318
3319 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3320 keep_queue:
3321 return cfqq;
3322 }
3323
3324 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3325 {
3326 int dispatched = 0;
3327
3328 while (cfqq->next_rq) {
3329 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3330 dispatched++;
3331 }
3332
3333 BUG_ON(!list_empty(&cfqq->fifo));
3334
3335 /* By default cfqq is not expired if it is empty. Do it explicitly */
3336 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3337 return dispatched;
3338 }
3339
3340 /*
3341 * Drain our current requests. Used for barriers and when switching
3342 * io schedulers on-the-fly.
3343 */
3344 static int cfq_forced_dispatch(struct cfq_data *cfqd)
3345 {
3346 struct cfq_queue *cfqq;
3347 int dispatched = 0;
3348
3349 /* Expire the timeslice of the current active queue first */
3350 cfq_slice_expired(cfqd, 0);
3351 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3352 __cfq_set_active_queue(cfqd, cfqq);
3353 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3354 }
3355
3356 BUG_ON(cfqd->busy_queues);
3357
3358 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3359 return dispatched;
3360 }
3361
3362 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3363 struct cfq_queue *cfqq)
3364 {
3365 /* the queue hasn't finished any request, can't estimate */
3366 if (cfq_cfqq_slice_new(cfqq))
3367 return true;
3368 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
3369 cfqq->slice_end))
3370 return true;
3371
3372 return false;
3373 }
3374
3375 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3376 {
3377 unsigned int max_dispatch;
3378
3379 if (cfq_cfqq_must_dispatch(cfqq))
3380 return true;
3381
3382 /*
3383 * Drain async requests before we start sync IO
3384 */
3385 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3386 return false;
3387
3388 /*
3389 * If this is an async queue and we have sync IO in flight, let it wait
3390 */
3391 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3392 return false;
3393
3394 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3395 if (cfq_class_idle(cfqq))
3396 max_dispatch = 1;
3397
3398 /*
3399 * Does this cfqq already have too much IO in flight?
3400 */
3401 if (cfqq->dispatched >= max_dispatch) {
3402 bool promote_sync = false;
3403 /*
3404 * idle queue must always only have a single IO in flight
3405 */
3406 if (cfq_class_idle(cfqq))
3407 return false;
3408
3409 /*
3410 * If there is only one sync queue
3411 * we can ignore async queue here and give the sync
3412 * queue no dispatch limit. The reason is a sync queue can
3413 * preempt async queue, limiting the sync queue doesn't make
3414 * sense. This is useful for aiostress test.
3415 */
3416 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3417 promote_sync = true;
3418
3419 /*
3420 * We have other queues, don't allow more IO from this one
3421 */
3422 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3423 !promote_sync)
3424 return false;
3425
3426 /*
3427 * Sole queue user, no limit
3428 */
3429 if (cfqd->busy_queues == 1 || promote_sync)
3430 max_dispatch = -1;
3431 else
3432 /*
3433 * Normally we start throttling cfqq when cfq_quantum/2
3434 * requests have been dispatched. But we can drive
3435 * deeper queue depths at the beginning of slice
3436 * subjected to upper limit of cfq_quantum.
3437 * */
3438 max_dispatch = cfqd->cfq_quantum;
3439 }
3440
3441 /*
3442 * Async queues must wait a bit before being allowed dispatch.
3443 * We also ramp up the dispatch depth gradually for async IO,
3444 * based on the last sync IO we serviced
3445 */
3446 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3447 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
3448 unsigned int depth;
3449
3450 depth = last_sync / cfqd->cfq_slice[1];
3451 if (!depth && !cfqq->dispatched)
3452 depth = 1;
3453 if (depth < max_dispatch)
3454 max_dispatch = depth;
3455 }
3456
3457 /*
3458 * If we're below the current max, allow a dispatch
3459 */
3460 return cfqq->dispatched < max_dispatch;
3461 }
3462
3463 /*
3464 * Dispatch a request from cfqq, moving them to the request queue
3465 * dispatch list.
3466 */
3467 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3468 {
3469 struct request *rq;
3470
3471 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3472
3473 rq = cfq_check_fifo(cfqq);
3474 if (rq)
3475 cfq_mark_cfqq_must_dispatch(cfqq);
3476
3477 if (!cfq_may_dispatch(cfqd, cfqq))
3478 return false;
3479
3480 /*
3481 * follow expired path, else get first next available
3482 */
3483 if (!rq)
3484 rq = cfqq->next_rq;
3485 else
3486 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
3487
3488 /*
3489 * insert request into driver dispatch list
3490 */
3491 cfq_dispatch_insert(cfqd->queue, rq);
3492
3493 if (!cfqd->active_cic) {
3494 struct cfq_io_cq *cic = RQ_CIC(rq);
3495
3496 atomic_long_inc(&cic->icq.ioc->refcount);
3497 cfqd->active_cic = cic;
3498 }
3499
3500 return true;
3501 }
3502
3503 /*
3504 * Find the cfqq that we need to service and move a request from that to the
3505 * dispatch list
3506 */
3507 static int cfq_dispatch_requests(struct request_queue *q, int force)
3508 {
3509 struct cfq_data *cfqd = q->elevator->elevator_data;
3510 struct cfq_queue *cfqq;
3511
3512 if (!cfqd->busy_queues)
3513 return 0;
3514
3515 if (unlikely(force))
3516 return cfq_forced_dispatch(cfqd);
3517
3518 cfqq = cfq_select_queue(cfqd);
3519 if (!cfqq)
3520 return 0;
3521
3522 /*
3523 * Dispatch a request from this cfqq, if it is allowed
3524 */
3525 if (!cfq_dispatch_request(cfqd, cfqq))
3526 return 0;
3527
3528 cfqq->slice_dispatch++;
3529 cfq_clear_cfqq_must_dispatch(cfqq);
3530
3531 /*
3532 * expire an async queue immediately if it has used up its slice. idle
3533 * queue always expire after 1 dispatch round.
3534 */
3535 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3536 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3537 cfq_class_idle(cfqq))) {
3538 cfqq->slice_end = jiffies + 1;
3539 cfq_slice_expired(cfqd, 0);
3540 }
3541
3542 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3543 return 1;
3544 }
3545
3546 /*
3547 * task holds one reference to the queue, dropped when task exits. each rq
3548 * in-flight on this queue also holds a reference, dropped when rq is freed.
3549 *
3550 * Each cfq queue took a reference on the parent group. Drop it now.
3551 * queue lock must be held here.
3552 */
3553 static void cfq_put_queue(struct cfq_queue *cfqq)
3554 {
3555 struct cfq_data *cfqd = cfqq->cfqd;
3556 struct cfq_group *cfqg;
3557
3558 BUG_ON(cfqq->ref <= 0);
3559
3560 cfqq->ref--;
3561 if (cfqq->ref)
3562 return;
3563
3564 cfq_log_cfqq(cfqd, cfqq, "put_queue");
3565 BUG_ON(rb_first(&cfqq->sort_list));
3566 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3567 cfqg = cfqq->cfqg;
3568
3569 if (unlikely(cfqd->active_queue == cfqq)) {
3570 __cfq_slice_expired(cfqd, cfqq, 0);
3571 cfq_schedule_dispatch(cfqd);
3572 }
3573
3574 BUG_ON(cfq_cfqq_on_rr(cfqq));
3575 kmem_cache_free(cfq_pool, cfqq);
3576 cfqg_put(cfqg);
3577 }
3578
3579 static void cfq_put_cooperator(struct cfq_queue *cfqq)
3580 {
3581 struct cfq_queue *__cfqq, *next;
3582
3583 /*
3584 * If this queue was scheduled to merge with another queue, be
3585 * sure to drop the reference taken on that queue (and others in
3586 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3587 */
3588 __cfqq = cfqq->new_cfqq;
3589 while (__cfqq) {
3590 if (__cfqq == cfqq) {
3591 WARN(1, "cfqq->new_cfqq loop detected\n");
3592 break;
3593 }
3594 next = __cfqq->new_cfqq;
3595 cfq_put_queue(__cfqq);
3596 __cfqq = next;
3597 }
3598 }
3599
3600 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3601 {
3602 if (unlikely(cfqq == cfqd->active_queue)) {
3603 __cfq_slice_expired(cfqd, cfqq, 0);
3604 cfq_schedule_dispatch(cfqd);
3605 }
3606
3607 cfq_put_cooperator(cfqq);
3608
3609 cfq_put_queue(cfqq);
3610 }
3611
3612 static void cfq_init_icq(struct io_cq *icq)
3613 {
3614 struct cfq_io_cq *cic = icq_to_cic(icq);
3615
3616 cic->ttime.last_end_request = jiffies;
3617 }
3618
3619 static void cfq_exit_icq(struct io_cq *icq)
3620 {
3621 struct cfq_io_cq *cic = icq_to_cic(icq);
3622 struct cfq_data *cfqd = cic_to_cfqd(cic);
3623
3624 if (cic_to_cfqq(cic, false)) {
3625 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false));
3626 cic_set_cfqq(cic, NULL, false);
3627 }
3628
3629 if (cic_to_cfqq(cic, true)) {
3630 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true));
3631 cic_set_cfqq(cic, NULL, true);
3632 }
3633 }
3634
3635 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3636 {
3637 struct task_struct *tsk = current;
3638 int ioprio_class;
3639
3640 if (!cfq_cfqq_prio_changed(cfqq))
3641 return;
3642
3643 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3644 switch (ioprio_class) {
3645 default:
3646 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3647 case IOPRIO_CLASS_NONE:
3648 /*
3649 * no prio set, inherit CPU scheduling settings
3650 */
3651 cfqq->ioprio = task_nice_ioprio(tsk);
3652 cfqq->ioprio_class = task_nice_ioclass(tsk);
3653 break;
3654 case IOPRIO_CLASS_RT:
3655 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3656 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3657 break;
3658 case IOPRIO_CLASS_BE:
3659 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3660 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3661 break;
3662 case IOPRIO_CLASS_IDLE:
3663 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3664 cfqq->ioprio = 7;
3665 cfq_clear_cfqq_idle_window(cfqq);
3666 break;
3667 }
3668
3669 /*
3670 * keep track of original prio settings in case we have to temporarily
3671 * elevate the priority of this queue
3672 */
3673 cfqq->org_ioprio = cfqq->ioprio;
3674 cfq_clear_cfqq_prio_changed(cfqq);
3675 }
3676
3677 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3678 {
3679 int ioprio = cic->icq.ioc->ioprio;
3680 struct cfq_data *cfqd = cic_to_cfqd(cic);
3681 struct cfq_queue *cfqq;
3682
3683 /*
3684 * Check whether ioprio has changed. The condition may trigger
3685 * spuriously on a newly created cic but there's no harm.
3686 */
3687 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3688 return;
3689
3690 cfqq = cic_to_cfqq(cic, false);
3691 if (cfqq) {
3692 cfq_put_queue(cfqq);
3693 cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio);
3694 cic_set_cfqq(cic, cfqq, false);
3695 }
3696
3697 cfqq = cic_to_cfqq(cic, true);
3698 if (cfqq)
3699 cfq_mark_cfqq_prio_changed(cfqq);
3700
3701 cic->ioprio = ioprio;
3702 }
3703
3704 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3705 pid_t pid, bool is_sync)
3706 {
3707 RB_CLEAR_NODE(&cfqq->rb_node);
3708 RB_CLEAR_NODE(&cfqq->p_node);
3709 INIT_LIST_HEAD(&cfqq->fifo);
3710
3711 cfqq->ref = 0;
3712 cfqq->cfqd = cfqd;
3713
3714 cfq_mark_cfqq_prio_changed(cfqq);
3715
3716 if (is_sync) {
3717 if (!cfq_class_idle(cfqq))
3718 cfq_mark_cfqq_idle_window(cfqq);
3719 cfq_mark_cfqq_sync(cfqq);
3720 }
3721 cfqq->pid = pid;
3722 }
3723
3724 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3725 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3726 {
3727 struct cfq_data *cfqd = cic_to_cfqd(cic);
3728 struct cfq_queue *cfqq;
3729 uint64_t serial_nr;
3730
3731 rcu_read_lock();
3732 serial_nr = bio_blkcg(bio)->css.serial_nr;
3733 rcu_read_unlock();
3734
3735 /*
3736 * Check whether blkcg has changed. The condition may trigger
3737 * spuriously on a newly created cic but there's no harm.
3738 */
3739 if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr))
3740 return;
3741
3742 /*
3743 * Drop reference to queues. New queues will be assigned in new
3744 * group upon arrival of fresh requests.
3745 */
3746 cfqq = cic_to_cfqq(cic, false);
3747 if (cfqq) {
3748 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3749 cic_set_cfqq(cic, NULL, false);
3750 cfq_put_queue(cfqq);
3751 }
3752
3753 cfqq = cic_to_cfqq(cic, true);
3754 if (cfqq) {
3755 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3756 cic_set_cfqq(cic, NULL, true);
3757 cfq_put_queue(cfqq);
3758 }
3759
3760 cic->blkcg_serial_nr = serial_nr;
3761 }
3762 #else
3763 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3764 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3765
3766 static struct cfq_queue **
3767 cfq_async_queue_prio(struct cfq_group *cfqg, int ioprio_class, int ioprio)
3768 {
3769 switch (ioprio_class) {
3770 case IOPRIO_CLASS_RT:
3771 return &cfqg->async_cfqq[0][ioprio];
3772 case IOPRIO_CLASS_NONE:
3773 ioprio = IOPRIO_NORM;
3774 /* fall through */
3775 case IOPRIO_CLASS_BE:
3776 return &cfqg->async_cfqq[1][ioprio];
3777 case IOPRIO_CLASS_IDLE:
3778 return &cfqg->async_idle_cfqq;
3779 default:
3780 BUG();
3781 }
3782 }
3783
3784 static struct cfq_queue *
3785 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3786 struct bio *bio)
3787 {
3788 int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3789 int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3790 struct cfq_queue **async_cfqq = NULL;
3791 struct cfq_queue *cfqq;
3792 struct cfq_group *cfqg;
3793
3794 rcu_read_lock();
3795 cfqg = cfq_lookup_cfqg(cfqd, bio_blkcg(bio));
3796 if (!cfqg) {
3797 cfqq = &cfqd->oom_cfqq;
3798 goto out;
3799 }
3800
3801 if (!is_sync) {
3802 if (!ioprio_valid(cic->ioprio)) {
3803 struct task_struct *tsk = current;
3804 ioprio = task_nice_ioprio(tsk);
3805 ioprio_class = task_nice_ioclass(tsk);
3806 }
3807 async_cfqq = cfq_async_queue_prio(cfqg, ioprio_class, ioprio);
3808 cfqq = *async_cfqq;
3809 if (cfqq)
3810 goto out;
3811 }
3812
3813 cfqq = kmem_cache_alloc_node(cfq_pool, GFP_NOWAIT | __GFP_ZERO,
3814 cfqd->queue->node);
3815 if (!cfqq) {
3816 cfqq = &cfqd->oom_cfqq;
3817 goto out;
3818 }
3819
3820 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3821 cfq_init_prio_data(cfqq, cic);
3822 cfq_link_cfqq_cfqg(cfqq, cfqg);
3823 cfq_log_cfqq(cfqd, cfqq, "alloced");
3824
3825 if (async_cfqq) {
3826 /* a new async queue is created, pin and remember */
3827 cfqq->ref++;
3828 *async_cfqq = cfqq;
3829 }
3830 out:
3831 cfqq->ref++;
3832 rcu_read_unlock();
3833 return cfqq;
3834 }
3835
3836 static void
3837 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3838 {
3839 unsigned long elapsed = jiffies - ttime->last_end_request;
3840 elapsed = min(elapsed, 2UL * slice_idle);
3841
3842 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3843 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3844 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3845 }
3846
3847 static void
3848 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3849 struct cfq_io_cq *cic)
3850 {
3851 if (cfq_cfqq_sync(cfqq)) {
3852 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3853 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3854 cfqd->cfq_slice_idle);
3855 }
3856 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3857 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3858 #endif
3859 }
3860
3861 static void
3862 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3863 struct request *rq)
3864 {
3865 sector_t sdist = 0;
3866 sector_t n_sec = blk_rq_sectors(rq);
3867 if (cfqq->last_request_pos) {
3868 if (cfqq->last_request_pos < blk_rq_pos(rq))
3869 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3870 else
3871 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3872 }
3873
3874 cfqq->seek_history <<= 1;
3875 if (blk_queue_nonrot(cfqd->queue))
3876 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3877 else
3878 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3879 }
3880
3881 /*
3882 * Disable idle window if the process thinks too long or seeks so much that
3883 * it doesn't matter
3884 */
3885 static void
3886 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3887 struct cfq_io_cq *cic)
3888 {
3889 int old_idle, enable_idle;
3890
3891 /*
3892 * Don't idle for async or idle io prio class
3893 */
3894 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3895 return;
3896
3897 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3898
3899 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3900 cfq_mark_cfqq_deep(cfqq);
3901
3902 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3903 enable_idle = 0;
3904 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3905 !cfqd->cfq_slice_idle ||
3906 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3907 enable_idle = 0;
3908 else if (sample_valid(cic->ttime.ttime_samples)) {
3909 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3910 enable_idle = 0;
3911 else
3912 enable_idle = 1;
3913 }
3914
3915 if (old_idle != enable_idle) {
3916 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3917 if (enable_idle)
3918 cfq_mark_cfqq_idle_window(cfqq);
3919 else
3920 cfq_clear_cfqq_idle_window(cfqq);
3921 }
3922 }
3923
3924 /*
3925 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3926 * no or if we aren't sure, a 1 will cause a preempt.
3927 */
3928 static bool
3929 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3930 struct request *rq)
3931 {
3932 struct cfq_queue *cfqq;
3933
3934 cfqq = cfqd->active_queue;
3935 if (!cfqq)
3936 return false;
3937
3938 if (cfq_class_idle(new_cfqq))
3939 return false;
3940
3941 if (cfq_class_idle(cfqq))
3942 return true;
3943
3944 /*
3945 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3946 */
3947 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3948 return false;
3949
3950 /*
3951 * if the new request is sync, but the currently running queue is
3952 * not, let the sync request have priority.
3953 */
3954 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3955 return true;
3956
3957 if (new_cfqq->cfqg != cfqq->cfqg)
3958 return false;
3959
3960 if (cfq_slice_used(cfqq))
3961 return true;
3962
3963 /* Allow preemption only if we are idling on sync-noidle tree */
3964 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
3965 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3966 new_cfqq->service_tree->count == 2 &&
3967 RB_EMPTY_ROOT(&cfqq->sort_list))
3968 return true;
3969
3970 /*
3971 * So both queues are sync. Let the new request get disk time if
3972 * it's a metadata request and the current queue is doing regular IO.
3973 */
3974 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3975 return true;
3976
3977 /*
3978 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3979 */
3980 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3981 return true;
3982
3983 /* An idle queue should not be idle now for some reason */
3984 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3985 return true;
3986
3987 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3988 return false;
3989
3990 /*
3991 * if this request is as-good as one we would expect from the
3992 * current cfqq, let it preempt
3993 */
3994 if (cfq_rq_close(cfqd, cfqq, rq))
3995 return true;
3996
3997 return false;
3998 }
3999
4000 /*
4001 * cfqq preempts the active queue. if we allowed preempt with no slice left,
4002 * let it have half of its nominal slice.
4003 */
4004 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4005 {
4006 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
4007
4008 cfq_log_cfqq(cfqd, cfqq, "preempt");
4009 cfq_slice_expired(cfqd, 1);
4010
4011 /*
4012 * workload type is changed, don't save slice, otherwise preempt
4013 * doesn't happen
4014 */
4015 if (old_type != cfqq_type(cfqq))
4016 cfqq->cfqg->saved_wl_slice = 0;
4017
4018 /*
4019 * Put the new queue at the front of the of the current list,
4020 * so we know that it will be selected next.
4021 */
4022 BUG_ON(!cfq_cfqq_on_rr(cfqq));
4023
4024 cfq_service_tree_add(cfqd, cfqq, 1);
4025
4026 cfqq->slice_end = 0;
4027 cfq_mark_cfqq_slice_new(cfqq);
4028 }
4029
4030 /*
4031 * Called when a new fs request (rq) is added (to cfqq). Check if there's
4032 * something we should do about it
4033 */
4034 static void
4035 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
4036 struct request *rq)
4037 {
4038 struct cfq_io_cq *cic = RQ_CIC(rq);
4039
4040 cfqd->rq_queued++;
4041 if (rq->cmd_flags & REQ_PRIO)
4042 cfqq->prio_pending++;
4043
4044 cfq_update_io_thinktime(cfqd, cfqq, cic);
4045 cfq_update_io_seektime(cfqd, cfqq, rq);
4046 cfq_update_idle_window(cfqd, cfqq, cic);
4047
4048 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4049
4050 if (cfqq == cfqd->active_queue) {
4051 /*
4052 * Remember that we saw a request from this process, but
4053 * don't start queuing just yet. Otherwise we risk seeing lots
4054 * of tiny requests, because we disrupt the normal plugging
4055 * and merging. If the request is already larger than a single
4056 * page, let it rip immediately. For that case we assume that
4057 * merging is already done. Ditto for a busy system that
4058 * has other work pending, don't risk delaying until the
4059 * idle timer unplug to continue working.
4060 */
4061 if (cfq_cfqq_wait_request(cfqq)) {
4062 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
4063 cfqd->busy_queues > 1) {
4064 cfq_del_timer(cfqd, cfqq);
4065 cfq_clear_cfqq_wait_request(cfqq);
4066 __blk_run_queue(cfqd->queue);
4067 } else {
4068 cfqg_stats_update_idle_time(cfqq->cfqg);
4069 cfq_mark_cfqq_must_dispatch(cfqq);
4070 }
4071 }
4072 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
4073 /*
4074 * not the active queue - expire current slice if it is
4075 * idle and has expired it's mean thinktime or this new queue
4076 * has some old slice time left and is of higher priority or
4077 * this new queue is RT and the current one is BE
4078 */
4079 cfq_preempt_queue(cfqd, cfqq);
4080 __blk_run_queue(cfqd->queue);
4081 }
4082 }
4083
4084 static void cfq_insert_request(struct request_queue *q, struct request *rq)
4085 {
4086 struct cfq_data *cfqd = q->elevator->elevator_data;
4087 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4088
4089 cfq_log_cfqq(cfqd, cfqq, "insert_request");
4090 cfq_init_prio_data(cfqq, RQ_CIC(rq));
4091
4092 rq->fifo_time = jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
4093 list_add_tail(&rq->queuelist, &cfqq->fifo);
4094 cfq_add_rq_rb(rq);
4095 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
4096 rq->cmd_flags);
4097 cfq_rq_enqueued(cfqd, cfqq, rq);
4098 }
4099
4100 /*
4101 * Update hw_tag based on peak queue depth over 50 samples under
4102 * sufficient load.
4103 */
4104 static void cfq_update_hw_tag(struct cfq_data *cfqd)
4105 {
4106 struct cfq_queue *cfqq = cfqd->active_queue;
4107
4108 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
4109 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
4110
4111 if (cfqd->hw_tag == 1)
4112 return;
4113
4114 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
4115 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
4116 return;
4117
4118 /*
4119 * If active queue hasn't enough requests and can idle, cfq might not
4120 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4121 * case
4122 */
4123 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
4124 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
4125 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
4126 return;
4127
4128 if (cfqd->hw_tag_samples++ < 50)
4129 return;
4130
4131 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
4132 cfqd->hw_tag = 1;
4133 else
4134 cfqd->hw_tag = 0;
4135 }
4136
4137 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4138 {
4139 struct cfq_io_cq *cic = cfqd->active_cic;
4140
4141 /* If the queue already has requests, don't wait */
4142 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4143 return false;
4144
4145 /* If there are other queues in the group, don't wait */
4146 if (cfqq->cfqg->nr_cfqq > 1)
4147 return false;
4148
4149 /* the only queue in the group, but think time is big */
4150 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
4151 return false;
4152
4153 if (cfq_slice_used(cfqq))
4154 return true;
4155
4156 /* if slice left is less than think time, wait busy */
4157 if (cic && sample_valid(cic->ttime.ttime_samples)
4158 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
4159 return true;
4160
4161 /*
4162 * If think times is less than a jiffy than ttime_mean=0 and above
4163 * will not be true. It might happen that slice has not expired yet
4164 * but will expire soon (4-5 ns) during select_queue(). To cover the
4165 * case where think time is less than a jiffy, mark the queue wait
4166 * busy if only 1 jiffy is left in the slice.
4167 */
4168 if (cfqq->slice_end - jiffies == 1)
4169 return true;
4170
4171 return false;
4172 }
4173
4174 static void cfq_completed_request(struct request_queue *q, struct request *rq)
4175 {
4176 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4177 struct cfq_data *cfqd = cfqq->cfqd;
4178 const int sync = rq_is_sync(rq);
4179 unsigned long now;
4180
4181 now = jiffies;
4182 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
4183 !!(rq->cmd_flags & REQ_NOIDLE));
4184
4185 cfq_update_hw_tag(cfqd);
4186
4187 WARN_ON(!cfqd->rq_in_driver);
4188 WARN_ON(!cfqq->dispatched);
4189 cfqd->rq_in_driver--;
4190 cfqq->dispatched--;
4191 (RQ_CFQG(rq))->dispatched--;
4192 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4193 rq_io_start_time_ns(rq), rq->cmd_flags);
4194
4195 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4196
4197 if (sync) {
4198 struct cfq_rb_root *st;
4199
4200 RQ_CIC(rq)->ttime.last_end_request = now;
4201
4202 if (cfq_cfqq_on_rr(cfqq))
4203 st = cfqq->service_tree;
4204 else
4205 st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4206 cfqq_type(cfqq));
4207
4208 st->ttime.last_end_request = now;
4209 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
4210 cfqd->last_delayed_sync = now;
4211 }
4212
4213 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4214 cfqq->cfqg->ttime.last_end_request = now;
4215 #endif
4216
4217 /*
4218 * If this is the active queue, check if it needs to be expired,
4219 * or if we want to idle in case it has no pending requests.
4220 */
4221 if (cfqd->active_queue == cfqq) {
4222 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4223
4224 if (cfq_cfqq_slice_new(cfqq)) {
4225 cfq_set_prio_slice(cfqd, cfqq);
4226 cfq_clear_cfqq_slice_new(cfqq);
4227 }
4228
4229 /*
4230 * Should we wait for next request to come in before we expire
4231 * the queue.
4232 */
4233 if (cfq_should_wait_busy(cfqd, cfqq)) {
4234 unsigned long extend_sl = cfqd->cfq_slice_idle;
4235 if (!cfqd->cfq_slice_idle)
4236 extend_sl = cfqd->cfq_group_idle;
4237 cfqq->slice_end = jiffies + extend_sl;
4238 cfq_mark_cfqq_wait_busy(cfqq);
4239 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4240 }
4241
4242 /*
4243 * Idling is not enabled on:
4244 * - expired queues
4245 * - idle-priority queues
4246 * - async queues
4247 * - queues with still some requests queued
4248 * - when there is a close cooperator
4249 */
4250 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4251 cfq_slice_expired(cfqd, 1);
4252 else if (sync && cfqq_empty &&
4253 !cfq_close_cooperator(cfqd, cfqq)) {
4254 cfq_arm_slice_timer(cfqd);
4255 }
4256 }
4257
4258 if (!cfqd->rq_in_driver)
4259 cfq_schedule_dispatch(cfqd);
4260 }
4261
4262 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4263 {
4264 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4265 cfq_mark_cfqq_must_alloc_slice(cfqq);
4266 return ELV_MQUEUE_MUST;
4267 }
4268
4269 return ELV_MQUEUE_MAY;
4270 }
4271
4272 static int cfq_may_queue(struct request_queue *q, int rw)
4273 {
4274 struct cfq_data *cfqd = q->elevator->elevator_data;
4275 struct task_struct *tsk = current;
4276 struct cfq_io_cq *cic;
4277 struct cfq_queue *cfqq;
4278
4279 /*
4280 * don't force setup of a queue from here, as a call to may_queue
4281 * does not necessarily imply that a request actually will be queued.
4282 * so just lookup a possibly existing queue, or return 'may queue'
4283 * if that fails
4284 */
4285 cic = cfq_cic_lookup(cfqd, tsk->io_context);
4286 if (!cic)
4287 return ELV_MQUEUE_MAY;
4288
4289 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
4290 if (cfqq) {
4291 cfq_init_prio_data(cfqq, cic);
4292
4293 return __cfq_may_queue(cfqq);
4294 }
4295
4296 return ELV_MQUEUE_MAY;
4297 }
4298
4299 /*
4300 * queue lock held here
4301 */
4302 static void cfq_put_request(struct request *rq)
4303 {
4304 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4305
4306 if (cfqq) {
4307 const int rw = rq_data_dir(rq);
4308
4309 BUG_ON(!cfqq->allocated[rw]);
4310 cfqq->allocated[rw]--;
4311
4312 /* Put down rq reference on cfqg */
4313 cfqg_put(RQ_CFQG(rq));
4314 rq->elv.priv[0] = NULL;
4315 rq->elv.priv[1] = NULL;
4316
4317 cfq_put_queue(cfqq);
4318 }
4319 }
4320
4321 static struct cfq_queue *
4322 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4323 struct cfq_queue *cfqq)
4324 {
4325 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4326 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4327 cfq_mark_cfqq_coop(cfqq->new_cfqq);
4328 cfq_put_queue(cfqq);
4329 return cic_to_cfqq(cic, 1);
4330 }
4331
4332 /*
4333 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4334 * was the last process referring to said cfqq.
4335 */
4336 static struct cfq_queue *
4337 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4338 {
4339 if (cfqq_process_refs(cfqq) == 1) {
4340 cfqq->pid = current->pid;
4341 cfq_clear_cfqq_coop(cfqq);
4342 cfq_clear_cfqq_split_coop(cfqq);
4343 return cfqq;
4344 }
4345
4346 cic_set_cfqq(cic, NULL, 1);
4347
4348 cfq_put_cooperator(cfqq);
4349
4350 cfq_put_queue(cfqq);
4351 return NULL;
4352 }
4353 /*
4354 * Allocate cfq data structures associated with this request.
4355 */
4356 static int
4357 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4358 gfp_t gfp_mask)
4359 {
4360 struct cfq_data *cfqd = q->elevator->elevator_data;
4361 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4362 const int rw = rq_data_dir(rq);
4363 const bool is_sync = rq_is_sync(rq);
4364 struct cfq_queue *cfqq;
4365
4366 spin_lock_irq(q->queue_lock);
4367
4368 check_ioprio_changed(cic, bio);
4369 check_blkcg_changed(cic, bio);
4370 new_queue:
4371 cfqq = cic_to_cfqq(cic, is_sync);
4372 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4373 if (cfqq)
4374 cfq_put_queue(cfqq);
4375 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio);
4376 cic_set_cfqq(cic, cfqq, is_sync);
4377 } else {
4378 /*
4379 * If the queue was seeky for too long, break it apart.
4380 */
4381 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4382 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4383 cfqq = split_cfqq(cic, cfqq);
4384 if (!cfqq)
4385 goto new_queue;
4386 }
4387
4388 /*
4389 * Check to see if this queue is scheduled to merge with
4390 * another, closely cooperating queue. The merging of
4391 * queues happens here as it must be done in process context.
4392 * The reference on new_cfqq was taken in merge_cfqqs.
4393 */
4394 if (cfqq->new_cfqq)
4395 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4396 }
4397
4398 cfqq->allocated[rw]++;
4399
4400 cfqq->ref++;
4401 cfqg_get(cfqq->cfqg);
4402 rq->elv.priv[0] = cfqq;
4403 rq->elv.priv[1] = cfqq->cfqg;
4404 spin_unlock_irq(q->queue_lock);
4405 return 0;
4406 }
4407
4408 static void cfq_kick_queue(struct work_struct *work)
4409 {
4410 struct cfq_data *cfqd =
4411 container_of(work, struct cfq_data, unplug_work);
4412 struct request_queue *q = cfqd->queue;
4413
4414 spin_lock_irq(q->queue_lock);
4415 __blk_run_queue(cfqd->queue);
4416 spin_unlock_irq(q->queue_lock);
4417 }
4418
4419 /*
4420 * Timer running if the active_queue is currently idling inside its time slice
4421 */
4422 static void cfq_idle_slice_timer(unsigned long data)
4423 {
4424 struct cfq_data *cfqd = (struct cfq_data *) data;
4425 struct cfq_queue *cfqq;
4426 unsigned long flags;
4427 int timed_out = 1;
4428
4429 cfq_log(cfqd, "idle timer fired");
4430
4431 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4432
4433 cfqq = cfqd->active_queue;
4434 if (cfqq) {
4435 timed_out = 0;
4436
4437 /*
4438 * We saw a request before the queue expired, let it through
4439 */
4440 if (cfq_cfqq_must_dispatch(cfqq))
4441 goto out_kick;
4442
4443 /*
4444 * expired
4445 */
4446 if (cfq_slice_used(cfqq))
4447 goto expire;
4448
4449 /*
4450 * only expire and reinvoke request handler, if there are
4451 * other queues with pending requests
4452 */
4453 if (!cfqd->busy_queues)
4454 goto out_cont;
4455
4456 /*
4457 * not expired and it has a request pending, let it dispatch
4458 */
4459 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4460 goto out_kick;
4461
4462 /*
4463 * Queue depth flag is reset only when the idle didn't succeed
4464 */
4465 cfq_clear_cfqq_deep(cfqq);
4466 }
4467 expire:
4468 cfq_slice_expired(cfqd, timed_out);
4469 out_kick:
4470 cfq_schedule_dispatch(cfqd);
4471 out_cont:
4472 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4473 }
4474
4475 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4476 {
4477 del_timer_sync(&cfqd->idle_slice_timer);
4478 cancel_work_sync(&cfqd->unplug_work);
4479 }
4480
4481 static void cfq_exit_queue(struct elevator_queue *e)
4482 {
4483 struct cfq_data *cfqd = e->elevator_data;
4484 struct request_queue *q = cfqd->queue;
4485
4486 cfq_shutdown_timer_wq(cfqd);
4487
4488 spin_lock_irq(q->queue_lock);
4489
4490 if (cfqd->active_queue)
4491 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4492
4493 spin_unlock_irq(q->queue_lock);
4494
4495 cfq_shutdown_timer_wq(cfqd);
4496
4497 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4498 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4499 #else
4500 kfree(cfqd->root_group);
4501 #endif
4502 kfree(cfqd);
4503 }
4504
4505 static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4506 {
4507 struct cfq_data *cfqd;
4508 struct blkcg_gq *blkg __maybe_unused;
4509 int i, ret;
4510 struct elevator_queue *eq;
4511
4512 eq = elevator_alloc(q, e);
4513 if (!eq)
4514 return -ENOMEM;
4515
4516 cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4517 if (!cfqd) {
4518 kobject_put(&eq->kobj);
4519 return -ENOMEM;
4520 }
4521 eq->elevator_data = cfqd;
4522
4523 cfqd->queue = q;
4524 spin_lock_irq(q->queue_lock);
4525 q->elevator = eq;
4526 spin_unlock_irq(q->queue_lock);
4527
4528 /* Init root service tree */
4529 cfqd->grp_service_tree = CFQ_RB_ROOT;
4530
4531 /* Init root group and prefer root group over other groups by default */
4532 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4533 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4534 if (ret)
4535 goto out_free;
4536
4537 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4538 #else
4539 ret = -ENOMEM;
4540 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4541 GFP_KERNEL, cfqd->queue->node);
4542 if (!cfqd->root_group)
4543 goto out_free;
4544
4545 cfq_init_cfqg_base(cfqd->root_group);
4546 cfqd->root_group->weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4547 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4548 #endif
4549
4550 /*
4551 * Not strictly needed (since RB_ROOT just clears the node and we
4552 * zeroed cfqd on alloc), but better be safe in case someone decides
4553 * to add magic to the rb code
4554 */
4555 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4556 cfqd->prio_trees[i] = RB_ROOT;
4557
4558 /*
4559 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4560 * Grab a permanent reference to it, so that the normal code flow
4561 * will not attempt to free it. oom_cfqq is linked to root_group
4562 * but shouldn't hold a reference as it'll never be unlinked. Lose
4563 * the reference from linking right away.
4564 */
4565 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4566 cfqd->oom_cfqq.ref++;
4567
4568 spin_lock_irq(q->queue_lock);
4569 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4570 cfqg_put(cfqd->root_group);
4571 spin_unlock_irq(q->queue_lock);
4572
4573 init_timer(&cfqd->idle_slice_timer);
4574 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4575 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4576
4577 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4578
4579 cfqd->cfq_quantum = cfq_quantum;
4580 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4581 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4582 cfqd->cfq_back_max = cfq_back_max;
4583 cfqd->cfq_back_penalty = cfq_back_penalty;
4584 cfqd->cfq_slice[0] = cfq_slice_async;
4585 cfqd->cfq_slice[1] = cfq_slice_sync;
4586 cfqd->cfq_target_latency = cfq_target_latency;
4587 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4588 cfqd->cfq_slice_idle = cfq_slice_idle;
4589 cfqd->cfq_group_idle = cfq_group_idle;
4590 cfqd->cfq_latency = 1;
4591 cfqd->hw_tag = -1;
4592 /*
4593 * we optimistically start assuming sync ops weren't delayed in last
4594 * second, in order to have larger depth for async operations.
4595 */
4596 cfqd->last_delayed_sync = jiffies - HZ;
4597 return 0;
4598
4599 out_free:
4600 kfree(cfqd);
4601 kobject_put(&eq->kobj);
4602 return ret;
4603 }
4604
4605 static void cfq_registered_queue(struct request_queue *q)
4606 {
4607 struct elevator_queue *e = q->elevator;
4608 struct cfq_data *cfqd = e->elevator_data;
4609
4610 /*
4611 * Default to IOPS mode with no idling for SSDs
4612 */
4613 if (blk_queue_nonrot(q))
4614 cfqd->cfq_slice_idle = 0;
4615 }
4616
4617 /*
4618 * sysfs parts below -->
4619 */
4620 static ssize_t
4621 cfq_var_show(unsigned int var, char *page)
4622 {
4623 return sprintf(page, "%u\n", var);
4624 }
4625
4626 static ssize_t
4627 cfq_var_store(unsigned int *var, const char *page, size_t count)
4628 {
4629 char *p = (char *) page;
4630
4631 *var = simple_strtoul(p, &p, 10);
4632 return count;
4633 }
4634
4635 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4636 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4637 { \
4638 struct cfq_data *cfqd = e->elevator_data; \
4639 unsigned int __data = __VAR; \
4640 if (__CONV) \
4641 __data = jiffies_to_msecs(__data); \
4642 return cfq_var_show(__data, (page)); \
4643 }
4644 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4645 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4646 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4647 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4648 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4649 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4650 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4651 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4652 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4653 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4654 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4655 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4656 #undef SHOW_FUNCTION
4657
4658 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4659 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4660 { \
4661 struct cfq_data *cfqd = e->elevator_data; \
4662 unsigned int __data; \
4663 int ret = cfq_var_store(&__data, (page), count); \
4664 if (__data < (MIN)) \
4665 __data = (MIN); \
4666 else if (__data > (MAX)) \
4667 __data = (MAX); \
4668 if (__CONV) \
4669 *(__PTR) = msecs_to_jiffies(__data); \
4670 else \
4671 *(__PTR) = __data; \
4672 return ret; \
4673 }
4674 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4675 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4676 UINT_MAX, 1);
4677 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4678 UINT_MAX, 1);
4679 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4680 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4681 UINT_MAX, 0);
4682 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4683 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4684 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4685 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4686 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4687 UINT_MAX, 0);
4688 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4689 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4690 #undef STORE_FUNCTION
4691
4692 #define CFQ_ATTR(name) \
4693 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4694
4695 static struct elv_fs_entry cfq_attrs[] = {
4696 CFQ_ATTR(quantum),
4697 CFQ_ATTR(fifo_expire_sync),
4698 CFQ_ATTR(fifo_expire_async),
4699 CFQ_ATTR(back_seek_max),
4700 CFQ_ATTR(back_seek_penalty),
4701 CFQ_ATTR(slice_sync),
4702 CFQ_ATTR(slice_async),
4703 CFQ_ATTR(slice_async_rq),
4704 CFQ_ATTR(slice_idle),
4705 CFQ_ATTR(group_idle),
4706 CFQ_ATTR(low_latency),
4707 CFQ_ATTR(target_latency),
4708 __ATTR_NULL
4709 };
4710
4711 static struct elevator_type iosched_cfq = {
4712 .ops = {
4713 .elevator_merge_fn = cfq_merge,
4714 .elevator_merged_fn = cfq_merged_request,
4715 .elevator_merge_req_fn = cfq_merged_requests,
4716 .elevator_allow_merge_fn = cfq_allow_merge,
4717 .elevator_bio_merged_fn = cfq_bio_merged,
4718 .elevator_dispatch_fn = cfq_dispatch_requests,
4719 .elevator_add_req_fn = cfq_insert_request,
4720 .elevator_activate_req_fn = cfq_activate_request,
4721 .elevator_deactivate_req_fn = cfq_deactivate_request,
4722 .elevator_completed_req_fn = cfq_completed_request,
4723 .elevator_former_req_fn = elv_rb_former_request,
4724 .elevator_latter_req_fn = elv_rb_latter_request,
4725 .elevator_init_icq_fn = cfq_init_icq,
4726 .elevator_exit_icq_fn = cfq_exit_icq,
4727 .elevator_set_req_fn = cfq_set_request,
4728 .elevator_put_req_fn = cfq_put_request,
4729 .elevator_may_queue_fn = cfq_may_queue,
4730 .elevator_init_fn = cfq_init_queue,
4731 .elevator_exit_fn = cfq_exit_queue,
4732 .elevator_registered_fn = cfq_registered_queue,
4733 },
4734 .icq_size = sizeof(struct cfq_io_cq),
4735 .icq_align = __alignof__(struct cfq_io_cq),
4736 .elevator_attrs = cfq_attrs,
4737 .elevator_name = "cfq",
4738 .elevator_owner = THIS_MODULE,
4739 };
4740
4741 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4742 static struct blkcg_policy blkcg_policy_cfq = {
4743 .dfl_cftypes = cfq_blkcg_files,
4744 .legacy_cftypes = cfq_blkcg_legacy_files,
4745
4746 .cpd_alloc_fn = cfq_cpd_alloc,
4747 .cpd_init_fn = cfq_cpd_init,
4748 .cpd_free_fn = cfq_cpd_free,
4749 .cpd_bind_fn = cfq_cpd_bind,
4750
4751 .pd_alloc_fn = cfq_pd_alloc,
4752 .pd_init_fn = cfq_pd_init,
4753 .pd_offline_fn = cfq_pd_offline,
4754 .pd_free_fn = cfq_pd_free,
4755 .pd_reset_stats_fn = cfq_pd_reset_stats,
4756 };
4757 #endif
4758
4759 static int __init cfq_init(void)
4760 {
4761 int ret;
4762
4763 /*
4764 * could be 0 on HZ < 1000 setups
4765 */
4766 if (!cfq_slice_async)
4767 cfq_slice_async = 1;
4768 if (!cfq_slice_idle)
4769 cfq_slice_idle = 1;
4770
4771 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4772 if (!cfq_group_idle)
4773 cfq_group_idle = 1;
4774
4775 ret = blkcg_policy_register(&blkcg_policy_cfq);
4776 if (ret)
4777 return ret;
4778 #else
4779 cfq_group_idle = 0;
4780 #endif
4781
4782 ret = -ENOMEM;
4783 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4784 if (!cfq_pool)
4785 goto err_pol_unreg;
4786
4787 ret = elv_register(&iosched_cfq);
4788 if (ret)
4789 goto err_free_pool;
4790
4791 return 0;
4792
4793 err_free_pool:
4794 kmem_cache_destroy(cfq_pool);
4795 err_pol_unreg:
4796 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4797 blkcg_policy_unregister(&blkcg_policy_cfq);
4798 #endif
4799 return ret;
4800 }
4801
4802 static void __exit cfq_exit(void)
4803 {
4804 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4805 blkcg_policy_unregister(&blkcg_policy_cfq);
4806 #endif
4807 elv_unregister(&iosched_cfq);
4808 kmem_cache_destroy(cfq_pool);
4809 }
4810
4811 module_init(cfq_init);
4812 module_exit(cfq_exit);
4813
4814 MODULE_AUTHOR("Jens Axboe");
4815 MODULE_LICENSE("GPL");
4816 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");