]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/cfq-iosched.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-artful-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk-cgroup.h"
18
19 /*
20 * tunables
21 */
22 /* max queue in one round of service */
23 static const int cfq_quantum = 8;
24 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max = 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty = 2;
29 static const int cfq_slice_sync = HZ / 10;
30 static int cfq_slice_async = HZ / 25;
31 static const int cfq_slice_async_rq = 2;
32 static int cfq_slice_idle = HZ / 125;
33 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
34 static const int cfq_hist_divisor = 4;
35
36 /*
37 * offset from end of service tree
38 */
39 #define CFQ_IDLE_DELAY (HZ / 5)
40
41 /*
42 * below this threshold, we consider thinktime immediate
43 */
44 #define CFQ_MIN_TT (2)
45
46 #define CFQ_SLICE_SCALE (5)
47 #define CFQ_HW_QUEUE_MIN (5)
48 #define CFQ_SERVICE_SHIFT 12
49
50 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
51 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
52 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
53
54 #define RQ_CIC(rq) \
55 ((struct cfq_io_context *) (rq)->elevator_private)
56 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
57
58 static struct kmem_cache *cfq_pool;
59 static struct kmem_cache *cfq_ioc_pool;
60
61 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
62 static struct completion *ioc_gone;
63 static DEFINE_SPINLOCK(ioc_gone_lock);
64
65 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
66 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
67 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
68
69 #define sample_valid(samples) ((samples) > 80)
70 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
71
72 /*
73 * Most of our rbtree usage is for sorting with min extraction, so
74 * if we cache the leftmost node we don't have to walk down the tree
75 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
76 * move this into the elevator for the rq sorting as well.
77 */
78 struct cfq_rb_root {
79 struct rb_root rb;
80 struct rb_node *left;
81 unsigned count;
82 unsigned total_weight;
83 u64 min_vdisktime;
84 struct rb_node *active;
85 };
86 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
87 .count = 0, .min_vdisktime = 0, }
88
89 /*
90 * Per process-grouping structure
91 */
92 struct cfq_queue {
93 /* reference count */
94 atomic_t ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
117
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
120 unsigned int allocated_slice;
121 unsigned int slice_dispatch;
122 /* time when first request from queue completed and slice started. */
123 unsigned long slice_start;
124 unsigned long slice_end;
125 long slice_resid;
126
127 /* pending metadata requests */
128 int meta_pending;
129 /* number of requests that are on the dispatch list or inside driver */
130 int dispatched;
131
132 /* io prio of this group */
133 unsigned short ioprio, org_ioprio;
134 unsigned short ioprio_class, org_ioprio_class;
135
136 pid_t pid;
137
138 u32 seek_history;
139 sector_t last_request_pos;
140
141 struct cfq_rb_root *service_tree;
142 struct cfq_queue *new_cfqq;
143 struct cfq_group *cfqg;
144 struct cfq_group *orig_cfqg;
145 /* Sectors dispatched in current dispatch round */
146 unsigned long nr_sectors;
147 };
148
149 /*
150 * First index in the service_trees.
151 * IDLE is handled separately, so it has negative index
152 */
153 enum wl_prio_t {
154 BE_WORKLOAD = 0,
155 RT_WORKLOAD = 1,
156 IDLE_WORKLOAD = 2,
157 };
158
159 /*
160 * Second index in the service_trees.
161 */
162 enum wl_type_t {
163 ASYNC_WORKLOAD = 0,
164 SYNC_NOIDLE_WORKLOAD = 1,
165 SYNC_WORKLOAD = 2
166 };
167
168 /* This is per cgroup per device grouping structure */
169 struct cfq_group {
170 /* group service_tree member */
171 struct rb_node rb_node;
172
173 /* group service_tree key */
174 u64 vdisktime;
175 unsigned int weight;
176 bool on_st;
177
178 /* number of cfqq currently on this group */
179 int nr_cfqq;
180
181 /* Per group busy queus average. Useful for workload slice calc. */
182 unsigned int busy_queues_avg[2];
183 /*
184 * rr lists of queues with requests, onle rr for each priority class.
185 * Counts are embedded in the cfq_rb_root
186 */
187 struct cfq_rb_root service_trees[2][3];
188 struct cfq_rb_root service_tree_idle;
189
190 unsigned long saved_workload_slice;
191 enum wl_type_t saved_workload;
192 enum wl_prio_t saved_serving_prio;
193 struct blkio_group blkg;
194 #ifdef CONFIG_CFQ_GROUP_IOSCHED
195 struct hlist_node cfqd_node;
196 atomic_t ref;
197 #endif
198 };
199
200 /*
201 * Per block device queue structure
202 */
203 struct cfq_data {
204 struct request_queue *queue;
205 /* Root service tree for cfq_groups */
206 struct cfq_rb_root grp_service_tree;
207 struct cfq_group root_group;
208
209 /*
210 * The priority currently being served
211 */
212 enum wl_prio_t serving_prio;
213 enum wl_type_t serving_type;
214 unsigned long workload_expires;
215 struct cfq_group *serving_group;
216 bool noidle_tree_requires_idle;
217
218 /*
219 * Each priority tree is sorted by next_request position. These
220 * trees are used when determining if two or more queues are
221 * interleaving requests (see cfq_close_cooperator).
222 */
223 struct rb_root prio_trees[CFQ_PRIO_LISTS];
224
225 unsigned int busy_queues;
226
227 int rq_in_driver;
228 int rq_in_flight[2];
229
230 /*
231 * queue-depth detection
232 */
233 int rq_queued;
234 int hw_tag;
235 /*
236 * hw_tag can be
237 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
238 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
239 * 0 => no NCQ
240 */
241 int hw_tag_est_depth;
242 unsigned int hw_tag_samples;
243
244 /*
245 * idle window management
246 */
247 struct timer_list idle_slice_timer;
248 struct work_struct unplug_work;
249
250 struct cfq_queue *active_queue;
251 struct cfq_io_context *active_cic;
252
253 /*
254 * async queue for each priority case
255 */
256 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
257 struct cfq_queue *async_idle_cfqq;
258
259 sector_t last_position;
260
261 /*
262 * tunables, see top of file
263 */
264 unsigned int cfq_quantum;
265 unsigned int cfq_fifo_expire[2];
266 unsigned int cfq_back_penalty;
267 unsigned int cfq_back_max;
268 unsigned int cfq_slice[2];
269 unsigned int cfq_slice_async_rq;
270 unsigned int cfq_slice_idle;
271 unsigned int cfq_latency;
272 unsigned int cfq_group_isolation;
273
274 struct list_head cic_list;
275
276 /*
277 * Fallback dummy cfqq for extreme OOM conditions
278 */
279 struct cfq_queue oom_cfqq;
280
281 unsigned long last_delayed_sync;
282
283 /* List of cfq groups being managed on this device*/
284 struct hlist_head cfqg_list;
285 struct rcu_head rcu;
286 };
287
288 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
289
290 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
291 enum wl_prio_t prio,
292 enum wl_type_t type)
293 {
294 if (!cfqg)
295 return NULL;
296
297 if (prio == IDLE_WORKLOAD)
298 return &cfqg->service_tree_idle;
299
300 return &cfqg->service_trees[prio][type];
301 }
302
303 enum cfqq_state_flags {
304 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
305 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
306 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
307 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
308 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
309 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
310 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
311 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
312 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
313 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
314 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
315 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
316 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
317 };
318
319 #define CFQ_CFQQ_FNS(name) \
320 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
321 { \
322 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
323 } \
324 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
325 { \
326 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
327 } \
328 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
329 { \
330 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
331 }
332
333 CFQ_CFQQ_FNS(on_rr);
334 CFQ_CFQQ_FNS(wait_request);
335 CFQ_CFQQ_FNS(must_dispatch);
336 CFQ_CFQQ_FNS(must_alloc_slice);
337 CFQ_CFQQ_FNS(fifo_expire);
338 CFQ_CFQQ_FNS(idle_window);
339 CFQ_CFQQ_FNS(prio_changed);
340 CFQ_CFQQ_FNS(slice_new);
341 CFQ_CFQQ_FNS(sync);
342 CFQ_CFQQ_FNS(coop);
343 CFQ_CFQQ_FNS(split_coop);
344 CFQ_CFQQ_FNS(deep);
345 CFQ_CFQQ_FNS(wait_busy);
346 #undef CFQ_CFQQ_FNS
347
348 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
349 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
350 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
351 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
352 blkg_path(&(cfqq)->cfqg->blkg), ##args);
353
354 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
355 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
356 blkg_path(&(cfqg)->blkg), ##args); \
357
358 #else
359 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
360 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
361 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
362 #endif
363 #define cfq_log(cfqd, fmt, args...) \
364 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
365
366 /* Traverses through cfq group service trees */
367 #define for_each_cfqg_st(cfqg, i, j, st) \
368 for (i = 0; i <= IDLE_WORKLOAD; i++) \
369 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
370 : &cfqg->service_tree_idle; \
371 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
372 (i == IDLE_WORKLOAD && j == 0); \
373 j++, st = i < IDLE_WORKLOAD ? \
374 &cfqg->service_trees[i][j]: NULL) \
375
376
377 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
378 {
379 if (cfq_class_idle(cfqq))
380 return IDLE_WORKLOAD;
381 if (cfq_class_rt(cfqq))
382 return RT_WORKLOAD;
383 return BE_WORKLOAD;
384 }
385
386
387 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
388 {
389 if (!cfq_cfqq_sync(cfqq))
390 return ASYNC_WORKLOAD;
391 if (!cfq_cfqq_idle_window(cfqq))
392 return SYNC_NOIDLE_WORKLOAD;
393 return SYNC_WORKLOAD;
394 }
395
396 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
397 struct cfq_data *cfqd,
398 struct cfq_group *cfqg)
399 {
400 if (wl == IDLE_WORKLOAD)
401 return cfqg->service_tree_idle.count;
402
403 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
404 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
405 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
406 }
407
408 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
409 struct cfq_group *cfqg)
410 {
411 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
412 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
413 }
414
415 static void cfq_dispatch_insert(struct request_queue *, struct request *);
416 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
417 struct io_context *, gfp_t);
418 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
419 struct io_context *);
420
421 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
422 bool is_sync)
423 {
424 return cic->cfqq[is_sync];
425 }
426
427 static inline void cic_set_cfqq(struct cfq_io_context *cic,
428 struct cfq_queue *cfqq, bool is_sync)
429 {
430 cic->cfqq[is_sync] = cfqq;
431 }
432
433 /*
434 * We regard a request as SYNC, if it's either a read or has the SYNC bit
435 * set (in which case it could also be direct WRITE).
436 */
437 static inline bool cfq_bio_sync(struct bio *bio)
438 {
439 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
440 }
441
442 /*
443 * scheduler run of queue, if there are requests pending and no one in the
444 * driver that will restart queueing
445 */
446 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
447 {
448 if (cfqd->busy_queues) {
449 cfq_log(cfqd, "schedule dispatch");
450 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
451 }
452 }
453
454 static int cfq_queue_empty(struct request_queue *q)
455 {
456 struct cfq_data *cfqd = q->elevator->elevator_data;
457
458 return !cfqd->rq_queued;
459 }
460
461 /*
462 * Scale schedule slice based on io priority. Use the sync time slice only
463 * if a queue is marked sync and has sync io queued. A sync queue with async
464 * io only, should not get full sync slice length.
465 */
466 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
467 unsigned short prio)
468 {
469 const int base_slice = cfqd->cfq_slice[sync];
470
471 WARN_ON(prio >= IOPRIO_BE_NR);
472
473 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
474 }
475
476 static inline int
477 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
478 {
479 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
480 }
481
482 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
483 {
484 u64 d = delta << CFQ_SERVICE_SHIFT;
485
486 d = d * BLKIO_WEIGHT_DEFAULT;
487 do_div(d, cfqg->weight);
488 return d;
489 }
490
491 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
492 {
493 s64 delta = (s64)(vdisktime - min_vdisktime);
494 if (delta > 0)
495 min_vdisktime = vdisktime;
496
497 return min_vdisktime;
498 }
499
500 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
501 {
502 s64 delta = (s64)(vdisktime - min_vdisktime);
503 if (delta < 0)
504 min_vdisktime = vdisktime;
505
506 return min_vdisktime;
507 }
508
509 static void update_min_vdisktime(struct cfq_rb_root *st)
510 {
511 u64 vdisktime = st->min_vdisktime;
512 struct cfq_group *cfqg;
513
514 if (st->active) {
515 cfqg = rb_entry_cfqg(st->active);
516 vdisktime = cfqg->vdisktime;
517 }
518
519 if (st->left) {
520 cfqg = rb_entry_cfqg(st->left);
521 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
522 }
523
524 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
525 }
526
527 /*
528 * get averaged number of queues of RT/BE priority.
529 * average is updated, with a formula that gives more weight to higher numbers,
530 * to quickly follows sudden increases and decrease slowly
531 */
532
533 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
534 struct cfq_group *cfqg, bool rt)
535 {
536 unsigned min_q, max_q;
537 unsigned mult = cfq_hist_divisor - 1;
538 unsigned round = cfq_hist_divisor / 2;
539 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
540
541 min_q = min(cfqg->busy_queues_avg[rt], busy);
542 max_q = max(cfqg->busy_queues_avg[rt], busy);
543 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
544 cfq_hist_divisor;
545 return cfqg->busy_queues_avg[rt];
546 }
547
548 static inline unsigned
549 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
550 {
551 struct cfq_rb_root *st = &cfqd->grp_service_tree;
552
553 return cfq_target_latency * cfqg->weight / st->total_weight;
554 }
555
556 static inline void
557 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
558 {
559 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
560 if (cfqd->cfq_latency) {
561 /*
562 * interested queues (we consider only the ones with the same
563 * priority class in the cfq group)
564 */
565 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
566 cfq_class_rt(cfqq));
567 unsigned sync_slice = cfqd->cfq_slice[1];
568 unsigned expect_latency = sync_slice * iq;
569 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
570
571 if (expect_latency > group_slice) {
572 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
573 /* scale low_slice according to IO priority
574 * and sync vs async */
575 unsigned low_slice =
576 min(slice, base_low_slice * slice / sync_slice);
577 /* the adapted slice value is scaled to fit all iqs
578 * into the target latency */
579 slice = max(slice * group_slice / expect_latency,
580 low_slice);
581 }
582 }
583 cfqq->slice_start = jiffies;
584 cfqq->slice_end = jiffies + slice;
585 cfqq->allocated_slice = slice;
586 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
587 }
588
589 /*
590 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
591 * isn't valid until the first request from the dispatch is activated
592 * and the slice time set.
593 */
594 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
595 {
596 if (cfq_cfqq_slice_new(cfqq))
597 return 0;
598 if (time_before(jiffies, cfqq->slice_end))
599 return 0;
600
601 return 1;
602 }
603
604 /*
605 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
606 * We choose the request that is closest to the head right now. Distance
607 * behind the head is penalized and only allowed to a certain extent.
608 */
609 static struct request *
610 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
611 {
612 sector_t s1, s2, d1 = 0, d2 = 0;
613 unsigned long back_max;
614 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
615 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
616 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
617
618 if (rq1 == NULL || rq1 == rq2)
619 return rq2;
620 if (rq2 == NULL)
621 return rq1;
622
623 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
624 return rq1;
625 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
626 return rq2;
627 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
628 return rq1;
629 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
630 return rq2;
631
632 s1 = blk_rq_pos(rq1);
633 s2 = blk_rq_pos(rq2);
634
635 /*
636 * by definition, 1KiB is 2 sectors
637 */
638 back_max = cfqd->cfq_back_max * 2;
639
640 /*
641 * Strict one way elevator _except_ in the case where we allow
642 * short backward seeks which are biased as twice the cost of a
643 * similar forward seek.
644 */
645 if (s1 >= last)
646 d1 = s1 - last;
647 else if (s1 + back_max >= last)
648 d1 = (last - s1) * cfqd->cfq_back_penalty;
649 else
650 wrap |= CFQ_RQ1_WRAP;
651
652 if (s2 >= last)
653 d2 = s2 - last;
654 else if (s2 + back_max >= last)
655 d2 = (last - s2) * cfqd->cfq_back_penalty;
656 else
657 wrap |= CFQ_RQ2_WRAP;
658
659 /* Found required data */
660
661 /*
662 * By doing switch() on the bit mask "wrap" we avoid having to
663 * check two variables for all permutations: --> faster!
664 */
665 switch (wrap) {
666 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
667 if (d1 < d2)
668 return rq1;
669 else if (d2 < d1)
670 return rq2;
671 else {
672 if (s1 >= s2)
673 return rq1;
674 else
675 return rq2;
676 }
677
678 case CFQ_RQ2_WRAP:
679 return rq1;
680 case CFQ_RQ1_WRAP:
681 return rq2;
682 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
683 default:
684 /*
685 * Since both rqs are wrapped,
686 * start with the one that's further behind head
687 * (--> only *one* back seek required),
688 * since back seek takes more time than forward.
689 */
690 if (s1 <= s2)
691 return rq1;
692 else
693 return rq2;
694 }
695 }
696
697 /*
698 * The below is leftmost cache rbtree addon
699 */
700 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
701 {
702 /* Service tree is empty */
703 if (!root->count)
704 return NULL;
705
706 if (!root->left)
707 root->left = rb_first(&root->rb);
708
709 if (root->left)
710 return rb_entry(root->left, struct cfq_queue, rb_node);
711
712 return NULL;
713 }
714
715 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
716 {
717 if (!root->left)
718 root->left = rb_first(&root->rb);
719
720 if (root->left)
721 return rb_entry_cfqg(root->left);
722
723 return NULL;
724 }
725
726 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
727 {
728 rb_erase(n, root);
729 RB_CLEAR_NODE(n);
730 }
731
732 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
733 {
734 if (root->left == n)
735 root->left = NULL;
736 rb_erase_init(n, &root->rb);
737 --root->count;
738 }
739
740 /*
741 * would be nice to take fifo expire time into account as well
742 */
743 static struct request *
744 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
745 struct request *last)
746 {
747 struct rb_node *rbnext = rb_next(&last->rb_node);
748 struct rb_node *rbprev = rb_prev(&last->rb_node);
749 struct request *next = NULL, *prev = NULL;
750
751 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
752
753 if (rbprev)
754 prev = rb_entry_rq(rbprev);
755
756 if (rbnext)
757 next = rb_entry_rq(rbnext);
758 else {
759 rbnext = rb_first(&cfqq->sort_list);
760 if (rbnext && rbnext != &last->rb_node)
761 next = rb_entry_rq(rbnext);
762 }
763
764 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
765 }
766
767 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
768 struct cfq_queue *cfqq)
769 {
770 /*
771 * just an approximation, should be ok.
772 */
773 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
774 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
775 }
776
777 static inline s64
778 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
779 {
780 return cfqg->vdisktime - st->min_vdisktime;
781 }
782
783 static void
784 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
785 {
786 struct rb_node **node = &st->rb.rb_node;
787 struct rb_node *parent = NULL;
788 struct cfq_group *__cfqg;
789 s64 key = cfqg_key(st, cfqg);
790 int left = 1;
791
792 while (*node != NULL) {
793 parent = *node;
794 __cfqg = rb_entry_cfqg(parent);
795
796 if (key < cfqg_key(st, __cfqg))
797 node = &parent->rb_left;
798 else {
799 node = &parent->rb_right;
800 left = 0;
801 }
802 }
803
804 if (left)
805 st->left = &cfqg->rb_node;
806
807 rb_link_node(&cfqg->rb_node, parent, node);
808 rb_insert_color(&cfqg->rb_node, &st->rb);
809 }
810
811 static void
812 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
813 {
814 struct cfq_rb_root *st = &cfqd->grp_service_tree;
815 struct cfq_group *__cfqg;
816 struct rb_node *n;
817
818 cfqg->nr_cfqq++;
819 if (cfqg->on_st)
820 return;
821
822 /*
823 * Currently put the group at the end. Later implement something
824 * so that groups get lesser vtime based on their weights, so that
825 * if group does not loose all if it was not continously backlogged.
826 */
827 n = rb_last(&st->rb);
828 if (n) {
829 __cfqg = rb_entry_cfqg(n);
830 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
831 } else
832 cfqg->vdisktime = st->min_vdisktime;
833
834 __cfq_group_service_tree_add(st, cfqg);
835 cfqg->on_st = true;
836 st->total_weight += cfqg->weight;
837 }
838
839 static void
840 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
841 {
842 struct cfq_rb_root *st = &cfqd->grp_service_tree;
843
844 if (st->active == &cfqg->rb_node)
845 st->active = NULL;
846
847 BUG_ON(cfqg->nr_cfqq < 1);
848 cfqg->nr_cfqq--;
849
850 /* If there are other cfq queues under this group, don't delete it */
851 if (cfqg->nr_cfqq)
852 return;
853
854 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
855 cfqg->on_st = false;
856 st->total_weight -= cfqg->weight;
857 if (!RB_EMPTY_NODE(&cfqg->rb_node))
858 cfq_rb_erase(&cfqg->rb_node, st);
859 cfqg->saved_workload_slice = 0;
860 blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
861 }
862
863 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
864 {
865 unsigned int slice_used;
866
867 /*
868 * Queue got expired before even a single request completed or
869 * got expired immediately after first request completion.
870 */
871 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
872 /*
873 * Also charge the seek time incurred to the group, otherwise
874 * if there are mutiple queues in the group, each can dispatch
875 * a single request on seeky media and cause lots of seek time
876 * and group will never know it.
877 */
878 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
879 1);
880 } else {
881 slice_used = jiffies - cfqq->slice_start;
882 if (slice_used > cfqq->allocated_slice)
883 slice_used = cfqq->allocated_slice;
884 }
885
886 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
887 cfqq->nr_sectors);
888 return slice_used;
889 }
890
891 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
892 struct cfq_queue *cfqq)
893 {
894 struct cfq_rb_root *st = &cfqd->grp_service_tree;
895 unsigned int used_sl, charge_sl;
896 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
897 - cfqg->service_tree_idle.count;
898
899 BUG_ON(nr_sync < 0);
900 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
901
902 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
903 charge_sl = cfqq->allocated_slice;
904
905 /* Can't update vdisktime while group is on service tree */
906 cfq_rb_erase(&cfqg->rb_node, st);
907 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
908 __cfq_group_service_tree_add(st, cfqg);
909
910 /* This group is being expired. Save the context */
911 if (time_after(cfqd->workload_expires, jiffies)) {
912 cfqg->saved_workload_slice = cfqd->workload_expires
913 - jiffies;
914 cfqg->saved_workload = cfqd->serving_type;
915 cfqg->saved_serving_prio = cfqd->serving_prio;
916 } else
917 cfqg->saved_workload_slice = 0;
918
919 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
920 st->min_vdisktime);
921 blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
922 cfqq->nr_sectors);
923 }
924
925 #ifdef CONFIG_CFQ_GROUP_IOSCHED
926 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
927 {
928 if (blkg)
929 return container_of(blkg, struct cfq_group, blkg);
930 return NULL;
931 }
932
933 void
934 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
935 {
936 cfqg_of_blkg(blkg)->weight = weight;
937 }
938
939 static struct cfq_group *
940 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
941 {
942 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
943 struct cfq_group *cfqg = NULL;
944 void *key = cfqd;
945 int i, j;
946 struct cfq_rb_root *st;
947 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
948 unsigned int major, minor;
949
950 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
951 if (cfqg || !create)
952 goto done;
953
954 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
955 if (!cfqg)
956 goto done;
957
958 cfqg->weight = blkcg->weight;
959 for_each_cfqg_st(cfqg, i, j, st)
960 *st = CFQ_RB_ROOT;
961 RB_CLEAR_NODE(&cfqg->rb_node);
962
963 /*
964 * Take the initial reference that will be released on destroy
965 * This can be thought of a joint reference by cgroup and
966 * elevator which will be dropped by either elevator exit
967 * or cgroup deletion path depending on who is exiting first.
968 */
969 atomic_set(&cfqg->ref, 1);
970
971 /* Add group onto cgroup list */
972 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
973 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
974 MKDEV(major, minor));
975
976 /* Add group on cfqd list */
977 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
978
979 done:
980 return cfqg;
981 }
982
983 /*
984 * Search for the cfq group current task belongs to. If create = 1, then also
985 * create the cfq group if it does not exist. request_queue lock must be held.
986 */
987 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
988 {
989 struct cgroup *cgroup;
990 struct cfq_group *cfqg = NULL;
991
992 rcu_read_lock();
993 cgroup = task_cgroup(current, blkio_subsys_id);
994 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
995 if (!cfqg && create)
996 cfqg = &cfqd->root_group;
997 rcu_read_unlock();
998 return cfqg;
999 }
1000
1001 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1002 {
1003 /* Currently, all async queues are mapped to root group */
1004 if (!cfq_cfqq_sync(cfqq))
1005 cfqg = &cfqq->cfqd->root_group;
1006
1007 cfqq->cfqg = cfqg;
1008 /* cfqq reference on cfqg */
1009 atomic_inc(&cfqq->cfqg->ref);
1010 }
1011
1012 static void cfq_put_cfqg(struct cfq_group *cfqg)
1013 {
1014 struct cfq_rb_root *st;
1015 int i, j;
1016
1017 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1018 if (!atomic_dec_and_test(&cfqg->ref))
1019 return;
1020 for_each_cfqg_st(cfqg, i, j, st)
1021 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1022 kfree(cfqg);
1023 }
1024
1025 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1026 {
1027 /* Something wrong if we are trying to remove same group twice */
1028 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1029
1030 hlist_del_init(&cfqg->cfqd_node);
1031
1032 /*
1033 * Put the reference taken at the time of creation so that when all
1034 * queues are gone, group can be destroyed.
1035 */
1036 cfq_put_cfqg(cfqg);
1037 }
1038
1039 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1040 {
1041 struct hlist_node *pos, *n;
1042 struct cfq_group *cfqg;
1043
1044 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1045 /*
1046 * If cgroup removal path got to blk_group first and removed
1047 * it from cgroup list, then it will take care of destroying
1048 * cfqg also.
1049 */
1050 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1051 cfq_destroy_cfqg(cfqd, cfqg);
1052 }
1053 }
1054
1055 /*
1056 * Blk cgroup controller notification saying that blkio_group object is being
1057 * delinked as associated cgroup object is going away. That also means that
1058 * no new IO will come in this group. So get rid of this group as soon as
1059 * any pending IO in the group is finished.
1060 *
1061 * This function is called under rcu_read_lock(). key is the rcu protected
1062 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1063 * read lock.
1064 *
1065 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1066 * it should not be NULL as even if elevator was exiting, cgroup deltion
1067 * path got to it first.
1068 */
1069 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1070 {
1071 unsigned long flags;
1072 struct cfq_data *cfqd = key;
1073
1074 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1075 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1076 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1077 }
1078
1079 #else /* GROUP_IOSCHED */
1080 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1081 {
1082 return &cfqd->root_group;
1083 }
1084 static inline void
1085 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1086 cfqq->cfqg = cfqg;
1087 }
1088
1089 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1090 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1091
1092 #endif /* GROUP_IOSCHED */
1093
1094 /*
1095 * The cfqd->service_trees holds all pending cfq_queue's that have
1096 * requests waiting to be processed. It is sorted in the order that
1097 * we will service the queues.
1098 */
1099 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1100 bool add_front)
1101 {
1102 struct rb_node **p, *parent;
1103 struct cfq_queue *__cfqq;
1104 unsigned long rb_key;
1105 struct cfq_rb_root *service_tree;
1106 int left;
1107 int new_cfqq = 1;
1108 int group_changed = 0;
1109
1110 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1111 if (!cfqd->cfq_group_isolation
1112 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1113 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1114 /* Move this cfq to root group */
1115 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1116 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1117 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1118 cfqq->orig_cfqg = cfqq->cfqg;
1119 cfqq->cfqg = &cfqd->root_group;
1120 atomic_inc(&cfqd->root_group.ref);
1121 group_changed = 1;
1122 } else if (!cfqd->cfq_group_isolation
1123 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1124 /* cfqq is sequential now needs to go to its original group */
1125 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1126 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1127 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1128 cfq_put_cfqg(cfqq->cfqg);
1129 cfqq->cfqg = cfqq->orig_cfqg;
1130 cfqq->orig_cfqg = NULL;
1131 group_changed = 1;
1132 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1133 }
1134 #endif
1135
1136 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1137 cfqq_type(cfqq));
1138 if (cfq_class_idle(cfqq)) {
1139 rb_key = CFQ_IDLE_DELAY;
1140 parent = rb_last(&service_tree->rb);
1141 if (parent && parent != &cfqq->rb_node) {
1142 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1143 rb_key += __cfqq->rb_key;
1144 } else
1145 rb_key += jiffies;
1146 } else if (!add_front) {
1147 /*
1148 * Get our rb key offset. Subtract any residual slice
1149 * value carried from last service. A negative resid
1150 * count indicates slice overrun, and this should position
1151 * the next service time further away in the tree.
1152 */
1153 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1154 rb_key -= cfqq->slice_resid;
1155 cfqq->slice_resid = 0;
1156 } else {
1157 rb_key = -HZ;
1158 __cfqq = cfq_rb_first(service_tree);
1159 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1160 }
1161
1162 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1163 new_cfqq = 0;
1164 /*
1165 * same position, nothing more to do
1166 */
1167 if (rb_key == cfqq->rb_key &&
1168 cfqq->service_tree == service_tree)
1169 return;
1170
1171 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1172 cfqq->service_tree = NULL;
1173 }
1174
1175 left = 1;
1176 parent = NULL;
1177 cfqq->service_tree = service_tree;
1178 p = &service_tree->rb.rb_node;
1179 while (*p) {
1180 struct rb_node **n;
1181
1182 parent = *p;
1183 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1184
1185 /*
1186 * sort by key, that represents service time.
1187 */
1188 if (time_before(rb_key, __cfqq->rb_key))
1189 n = &(*p)->rb_left;
1190 else {
1191 n = &(*p)->rb_right;
1192 left = 0;
1193 }
1194
1195 p = n;
1196 }
1197
1198 if (left)
1199 service_tree->left = &cfqq->rb_node;
1200
1201 cfqq->rb_key = rb_key;
1202 rb_link_node(&cfqq->rb_node, parent, p);
1203 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1204 service_tree->count++;
1205 if ((add_front || !new_cfqq) && !group_changed)
1206 return;
1207 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1208 }
1209
1210 static struct cfq_queue *
1211 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1212 sector_t sector, struct rb_node **ret_parent,
1213 struct rb_node ***rb_link)
1214 {
1215 struct rb_node **p, *parent;
1216 struct cfq_queue *cfqq = NULL;
1217
1218 parent = NULL;
1219 p = &root->rb_node;
1220 while (*p) {
1221 struct rb_node **n;
1222
1223 parent = *p;
1224 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1225
1226 /*
1227 * Sort strictly based on sector. Smallest to the left,
1228 * largest to the right.
1229 */
1230 if (sector > blk_rq_pos(cfqq->next_rq))
1231 n = &(*p)->rb_right;
1232 else if (sector < blk_rq_pos(cfqq->next_rq))
1233 n = &(*p)->rb_left;
1234 else
1235 break;
1236 p = n;
1237 cfqq = NULL;
1238 }
1239
1240 *ret_parent = parent;
1241 if (rb_link)
1242 *rb_link = p;
1243 return cfqq;
1244 }
1245
1246 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1247 {
1248 struct rb_node **p, *parent;
1249 struct cfq_queue *__cfqq;
1250
1251 if (cfqq->p_root) {
1252 rb_erase(&cfqq->p_node, cfqq->p_root);
1253 cfqq->p_root = NULL;
1254 }
1255
1256 if (cfq_class_idle(cfqq))
1257 return;
1258 if (!cfqq->next_rq)
1259 return;
1260
1261 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1262 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1263 blk_rq_pos(cfqq->next_rq), &parent, &p);
1264 if (!__cfqq) {
1265 rb_link_node(&cfqq->p_node, parent, p);
1266 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1267 } else
1268 cfqq->p_root = NULL;
1269 }
1270
1271 /*
1272 * Update cfqq's position in the service tree.
1273 */
1274 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1275 {
1276 /*
1277 * Resorting requires the cfqq to be on the RR list already.
1278 */
1279 if (cfq_cfqq_on_rr(cfqq)) {
1280 cfq_service_tree_add(cfqd, cfqq, 0);
1281 cfq_prio_tree_add(cfqd, cfqq);
1282 }
1283 }
1284
1285 /*
1286 * add to busy list of queues for service, trying to be fair in ordering
1287 * the pending list according to last request service
1288 */
1289 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1290 {
1291 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1292 BUG_ON(cfq_cfqq_on_rr(cfqq));
1293 cfq_mark_cfqq_on_rr(cfqq);
1294 cfqd->busy_queues++;
1295
1296 cfq_resort_rr_list(cfqd, cfqq);
1297 }
1298
1299 /*
1300 * Called when the cfqq no longer has requests pending, remove it from
1301 * the service tree.
1302 */
1303 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1304 {
1305 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1306 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1307 cfq_clear_cfqq_on_rr(cfqq);
1308
1309 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1310 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1311 cfqq->service_tree = NULL;
1312 }
1313 if (cfqq->p_root) {
1314 rb_erase(&cfqq->p_node, cfqq->p_root);
1315 cfqq->p_root = NULL;
1316 }
1317
1318 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1319 BUG_ON(!cfqd->busy_queues);
1320 cfqd->busy_queues--;
1321 }
1322
1323 /*
1324 * rb tree support functions
1325 */
1326 static void cfq_del_rq_rb(struct request *rq)
1327 {
1328 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1329 const int sync = rq_is_sync(rq);
1330
1331 BUG_ON(!cfqq->queued[sync]);
1332 cfqq->queued[sync]--;
1333
1334 elv_rb_del(&cfqq->sort_list, rq);
1335
1336 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1337 /*
1338 * Queue will be deleted from service tree when we actually
1339 * expire it later. Right now just remove it from prio tree
1340 * as it is empty.
1341 */
1342 if (cfqq->p_root) {
1343 rb_erase(&cfqq->p_node, cfqq->p_root);
1344 cfqq->p_root = NULL;
1345 }
1346 }
1347 }
1348
1349 static void cfq_add_rq_rb(struct request *rq)
1350 {
1351 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1352 struct cfq_data *cfqd = cfqq->cfqd;
1353 struct request *__alias, *prev;
1354
1355 cfqq->queued[rq_is_sync(rq)]++;
1356
1357 /*
1358 * looks a little odd, but the first insert might return an alias.
1359 * if that happens, put the alias on the dispatch list
1360 */
1361 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1362 cfq_dispatch_insert(cfqd->queue, __alias);
1363
1364 if (!cfq_cfqq_on_rr(cfqq))
1365 cfq_add_cfqq_rr(cfqd, cfqq);
1366
1367 /*
1368 * check if this request is a better next-serve candidate
1369 */
1370 prev = cfqq->next_rq;
1371 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1372
1373 /*
1374 * adjust priority tree position, if ->next_rq changes
1375 */
1376 if (prev != cfqq->next_rq)
1377 cfq_prio_tree_add(cfqd, cfqq);
1378
1379 BUG_ON(!cfqq->next_rq);
1380 }
1381
1382 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1383 {
1384 elv_rb_del(&cfqq->sort_list, rq);
1385 cfqq->queued[rq_is_sync(rq)]--;
1386 cfq_add_rq_rb(rq);
1387 }
1388
1389 static struct request *
1390 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1391 {
1392 struct task_struct *tsk = current;
1393 struct cfq_io_context *cic;
1394 struct cfq_queue *cfqq;
1395
1396 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1397 if (!cic)
1398 return NULL;
1399
1400 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1401 if (cfqq) {
1402 sector_t sector = bio->bi_sector + bio_sectors(bio);
1403
1404 return elv_rb_find(&cfqq->sort_list, sector);
1405 }
1406
1407 return NULL;
1408 }
1409
1410 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1411 {
1412 struct cfq_data *cfqd = q->elevator->elevator_data;
1413
1414 cfqd->rq_in_driver++;
1415 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1416 cfqd->rq_in_driver);
1417
1418 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1419 }
1420
1421 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1422 {
1423 struct cfq_data *cfqd = q->elevator->elevator_data;
1424
1425 WARN_ON(!cfqd->rq_in_driver);
1426 cfqd->rq_in_driver--;
1427 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1428 cfqd->rq_in_driver);
1429 }
1430
1431 static void cfq_remove_request(struct request *rq)
1432 {
1433 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1434
1435 if (cfqq->next_rq == rq)
1436 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1437
1438 list_del_init(&rq->queuelist);
1439 cfq_del_rq_rb(rq);
1440
1441 cfqq->cfqd->rq_queued--;
1442 if (rq_is_meta(rq)) {
1443 WARN_ON(!cfqq->meta_pending);
1444 cfqq->meta_pending--;
1445 }
1446 }
1447
1448 static int cfq_merge(struct request_queue *q, struct request **req,
1449 struct bio *bio)
1450 {
1451 struct cfq_data *cfqd = q->elevator->elevator_data;
1452 struct request *__rq;
1453
1454 __rq = cfq_find_rq_fmerge(cfqd, bio);
1455 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1456 *req = __rq;
1457 return ELEVATOR_FRONT_MERGE;
1458 }
1459
1460 return ELEVATOR_NO_MERGE;
1461 }
1462
1463 static void cfq_merged_request(struct request_queue *q, struct request *req,
1464 int type)
1465 {
1466 if (type == ELEVATOR_FRONT_MERGE) {
1467 struct cfq_queue *cfqq = RQ_CFQQ(req);
1468
1469 cfq_reposition_rq_rb(cfqq, req);
1470 }
1471 }
1472
1473 static void
1474 cfq_merged_requests(struct request_queue *q, struct request *rq,
1475 struct request *next)
1476 {
1477 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1478 /*
1479 * reposition in fifo if next is older than rq
1480 */
1481 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1482 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1483 list_move(&rq->queuelist, &next->queuelist);
1484 rq_set_fifo_time(rq, rq_fifo_time(next));
1485 }
1486
1487 if (cfqq->next_rq == next)
1488 cfqq->next_rq = rq;
1489 cfq_remove_request(next);
1490 }
1491
1492 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1493 struct bio *bio)
1494 {
1495 struct cfq_data *cfqd = q->elevator->elevator_data;
1496 struct cfq_io_context *cic;
1497 struct cfq_queue *cfqq;
1498
1499 /*
1500 * Disallow merge of a sync bio into an async request.
1501 */
1502 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1503 return false;
1504
1505 /*
1506 * Lookup the cfqq that this bio will be queued with. Allow
1507 * merge only if rq is queued there.
1508 */
1509 cic = cfq_cic_lookup(cfqd, current->io_context);
1510 if (!cic)
1511 return false;
1512
1513 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1514 return cfqq == RQ_CFQQ(rq);
1515 }
1516
1517 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1518 struct cfq_queue *cfqq)
1519 {
1520 if (cfqq) {
1521 cfq_log_cfqq(cfqd, cfqq, "set_active");
1522 cfqq->slice_start = 0;
1523 cfqq->dispatch_start = jiffies;
1524 cfqq->allocated_slice = 0;
1525 cfqq->slice_end = 0;
1526 cfqq->slice_dispatch = 0;
1527 cfqq->nr_sectors = 0;
1528
1529 cfq_clear_cfqq_wait_request(cfqq);
1530 cfq_clear_cfqq_must_dispatch(cfqq);
1531 cfq_clear_cfqq_must_alloc_slice(cfqq);
1532 cfq_clear_cfqq_fifo_expire(cfqq);
1533 cfq_mark_cfqq_slice_new(cfqq);
1534
1535 del_timer(&cfqd->idle_slice_timer);
1536 }
1537
1538 cfqd->active_queue = cfqq;
1539 }
1540
1541 /*
1542 * current cfqq expired its slice (or was too idle), select new one
1543 */
1544 static void
1545 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1546 bool timed_out)
1547 {
1548 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1549
1550 if (cfq_cfqq_wait_request(cfqq))
1551 del_timer(&cfqd->idle_slice_timer);
1552
1553 cfq_clear_cfqq_wait_request(cfqq);
1554 cfq_clear_cfqq_wait_busy(cfqq);
1555
1556 /*
1557 * If this cfqq is shared between multiple processes, check to
1558 * make sure that those processes are still issuing I/Os within
1559 * the mean seek distance. If not, it may be time to break the
1560 * queues apart again.
1561 */
1562 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1563 cfq_mark_cfqq_split_coop(cfqq);
1564
1565 /*
1566 * store what was left of this slice, if the queue idled/timed out
1567 */
1568 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1569 cfqq->slice_resid = cfqq->slice_end - jiffies;
1570 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1571 }
1572
1573 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1574
1575 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1576 cfq_del_cfqq_rr(cfqd, cfqq);
1577
1578 cfq_resort_rr_list(cfqd, cfqq);
1579
1580 if (cfqq == cfqd->active_queue)
1581 cfqd->active_queue = NULL;
1582
1583 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1584 cfqd->grp_service_tree.active = NULL;
1585
1586 if (cfqd->active_cic) {
1587 put_io_context(cfqd->active_cic->ioc);
1588 cfqd->active_cic = NULL;
1589 }
1590 }
1591
1592 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1593 {
1594 struct cfq_queue *cfqq = cfqd->active_queue;
1595
1596 if (cfqq)
1597 __cfq_slice_expired(cfqd, cfqq, timed_out);
1598 }
1599
1600 /*
1601 * Get next queue for service. Unless we have a queue preemption,
1602 * we'll simply select the first cfqq in the service tree.
1603 */
1604 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1605 {
1606 struct cfq_rb_root *service_tree =
1607 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1608 cfqd->serving_type);
1609
1610 if (!cfqd->rq_queued)
1611 return NULL;
1612
1613 /* There is nothing to dispatch */
1614 if (!service_tree)
1615 return NULL;
1616 if (RB_EMPTY_ROOT(&service_tree->rb))
1617 return NULL;
1618 return cfq_rb_first(service_tree);
1619 }
1620
1621 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1622 {
1623 struct cfq_group *cfqg;
1624 struct cfq_queue *cfqq;
1625 int i, j;
1626 struct cfq_rb_root *st;
1627
1628 if (!cfqd->rq_queued)
1629 return NULL;
1630
1631 cfqg = cfq_get_next_cfqg(cfqd);
1632 if (!cfqg)
1633 return NULL;
1634
1635 for_each_cfqg_st(cfqg, i, j, st)
1636 if ((cfqq = cfq_rb_first(st)) != NULL)
1637 return cfqq;
1638 return NULL;
1639 }
1640
1641 /*
1642 * Get and set a new active queue for service.
1643 */
1644 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1645 struct cfq_queue *cfqq)
1646 {
1647 if (!cfqq)
1648 cfqq = cfq_get_next_queue(cfqd);
1649
1650 __cfq_set_active_queue(cfqd, cfqq);
1651 return cfqq;
1652 }
1653
1654 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1655 struct request *rq)
1656 {
1657 if (blk_rq_pos(rq) >= cfqd->last_position)
1658 return blk_rq_pos(rq) - cfqd->last_position;
1659 else
1660 return cfqd->last_position - blk_rq_pos(rq);
1661 }
1662
1663 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1664 struct request *rq, bool for_preempt)
1665 {
1666 return cfq_dist_from_last(cfqd, rq) <= CFQQ_SEEK_THR;
1667 }
1668
1669 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1670 struct cfq_queue *cur_cfqq)
1671 {
1672 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1673 struct rb_node *parent, *node;
1674 struct cfq_queue *__cfqq;
1675 sector_t sector = cfqd->last_position;
1676
1677 if (RB_EMPTY_ROOT(root))
1678 return NULL;
1679
1680 /*
1681 * First, if we find a request starting at the end of the last
1682 * request, choose it.
1683 */
1684 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1685 if (__cfqq)
1686 return __cfqq;
1687
1688 /*
1689 * If the exact sector wasn't found, the parent of the NULL leaf
1690 * will contain the closest sector.
1691 */
1692 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1693 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
1694 return __cfqq;
1695
1696 if (blk_rq_pos(__cfqq->next_rq) < sector)
1697 node = rb_next(&__cfqq->p_node);
1698 else
1699 node = rb_prev(&__cfqq->p_node);
1700 if (!node)
1701 return NULL;
1702
1703 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1704 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
1705 return __cfqq;
1706
1707 return NULL;
1708 }
1709
1710 /*
1711 * cfqd - obvious
1712 * cur_cfqq - passed in so that we don't decide that the current queue is
1713 * closely cooperating with itself.
1714 *
1715 * So, basically we're assuming that that cur_cfqq has dispatched at least
1716 * one request, and that cfqd->last_position reflects a position on the disk
1717 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1718 * assumption.
1719 */
1720 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1721 struct cfq_queue *cur_cfqq)
1722 {
1723 struct cfq_queue *cfqq;
1724
1725 if (!cfq_cfqq_sync(cur_cfqq))
1726 return NULL;
1727 if (CFQQ_SEEKY(cur_cfqq))
1728 return NULL;
1729
1730 /*
1731 * Don't search priority tree if it's the only queue in the group.
1732 */
1733 if (cur_cfqq->cfqg->nr_cfqq == 1)
1734 return NULL;
1735
1736 /*
1737 * We should notice if some of the queues are cooperating, eg
1738 * working closely on the same area of the disk. In that case,
1739 * we can group them together and don't waste time idling.
1740 */
1741 cfqq = cfqq_close(cfqd, cur_cfqq);
1742 if (!cfqq)
1743 return NULL;
1744
1745 /* If new queue belongs to different cfq_group, don't choose it */
1746 if (cur_cfqq->cfqg != cfqq->cfqg)
1747 return NULL;
1748
1749 /*
1750 * It only makes sense to merge sync queues.
1751 */
1752 if (!cfq_cfqq_sync(cfqq))
1753 return NULL;
1754 if (CFQQ_SEEKY(cfqq))
1755 return NULL;
1756
1757 /*
1758 * Do not merge queues of different priority classes
1759 */
1760 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1761 return NULL;
1762
1763 return cfqq;
1764 }
1765
1766 /*
1767 * Determine whether we should enforce idle window for this queue.
1768 */
1769
1770 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1771 {
1772 enum wl_prio_t prio = cfqq_prio(cfqq);
1773 struct cfq_rb_root *service_tree = cfqq->service_tree;
1774
1775 BUG_ON(!service_tree);
1776 BUG_ON(!service_tree->count);
1777
1778 /* We never do for idle class queues. */
1779 if (prio == IDLE_WORKLOAD)
1780 return false;
1781
1782 /* We do for queues that were marked with idle window flag. */
1783 if (cfq_cfqq_idle_window(cfqq) &&
1784 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1785 return true;
1786
1787 /*
1788 * Otherwise, we do only if they are the last ones
1789 * in their service tree.
1790 */
1791 return service_tree->count == 1 && cfq_cfqq_sync(cfqq);
1792 }
1793
1794 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1795 {
1796 struct cfq_queue *cfqq = cfqd->active_queue;
1797 struct cfq_io_context *cic;
1798 unsigned long sl;
1799
1800 /*
1801 * SSD device without seek penalty, disable idling. But only do so
1802 * for devices that support queuing, otherwise we still have a problem
1803 * with sync vs async workloads.
1804 */
1805 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1806 return;
1807
1808 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1809 WARN_ON(cfq_cfqq_slice_new(cfqq));
1810
1811 /*
1812 * idle is disabled, either manually or by past process history
1813 */
1814 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1815 return;
1816
1817 /*
1818 * still active requests from this queue, don't idle
1819 */
1820 if (cfqq->dispatched)
1821 return;
1822
1823 /*
1824 * task has exited, don't wait
1825 */
1826 cic = cfqd->active_cic;
1827 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1828 return;
1829
1830 /*
1831 * If our average think time is larger than the remaining time
1832 * slice, then don't idle. This avoids overrunning the allotted
1833 * time slice.
1834 */
1835 if (sample_valid(cic->ttime_samples) &&
1836 (cfqq->slice_end - jiffies < cic->ttime_mean))
1837 return;
1838
1839 cfq_mark_cfqq_wait_request(cfqq);
1840
1841 sl = cfqd->cfq_slice_idle;
1842
1843 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1844 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1845 }
1846
1847 /*
1848 * Move request from internal lists to the request queue dispatch list.
1849 */
1850 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1851 {
1852 struct cfq_data *cfqd = q->elevator->elevator_data;
1853 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1854
1855 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1856
1857 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1858 cfq_remove_request(rq);
1859 cfqq->dispatched++;
1860 elv_dispatch_sort(q, rq);
1861
1862 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1863 cfqq->nr_sectors += blk_rq_sectors(rq);
1864 }
1865
1866 /*
1867 * return expired entry, or NULL to just start from scratch in rbtree
1868 */
1869 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1870 {
1871 struct request *rq = NULL;
1872
1873 if (cfq_cfqq_fifo_expire(cfqq))
1874 return NULL;
1875
1876 cfq_mark_cfqq_fifo_expire(cfqq);
1877
1878 if (list_empty(&cfqq->fifo))
1879 return NULL;
1880
1881 rq = rq_entry_fifo(cfqq->fifo.next);
1882 if (time_before(jiffies, rq_fifo_time(rq)))
1883 rq = NULL;
1884
1885 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1886 return rq;
1887 }
1888
1889 static inline int
1890 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1891 {
1892 const int base_rq = cfqd->cfq_slice_async_rq;
1893
1894 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1895
1896 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1897 }
1898
1899 /*
1900 * Must be called with the queue_lock held.
1901 */
1902 static int cfqq_process_refs(struct cfq_queue *cfqq)
1903 {
1904 int process_refs, io_refs;
1905
1906 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1907 process_refs = atomic_read(&cfqq->ref) - io_refs;
1908 BUG_ON(process_refs < 0);
1909 return process_refs;
1910 }
1911
1912 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1913 {
1914 int process_refs, new_process_refs;
1915 struct cfq_queue *__cfqq;
1916
1917 /* Avoid a circular list and skip interim queue merges */
1918 while ((__cfqq = new_cfqq->new_cfqq)) {
1919 if (__cfqq == cfqq)
1920 return;
1921 new_cfqq = __cfqq;
1922 }
1923
1924 process_refs = cfqq_process_refs(cfqq);
1925 /*
1926 * If the process for the cfqq has gone away, there is no
1927 * sense in merging the queues.
1928 */
1929 if (process_refs == 0)
1930 return;
1931
1932 /*
1933 * Merge in the direction of the lesser amount of work.
1934 */
1935 new_process_refs = cfqq_process_refs(new_cfqq);
1936 if (new_process_refs >= process_refs) {
1937 cfqq->new_cfqq = new_cfqq;
1938 atomic_add(process_refs, &new_cfqq->ref);
1939 } else {
1940 new_cfqq->new_cfqq = cfqq;
1941 atomic_add(new_process_refs, &cfqq->ref);
1942 }
1943 }
1944
1945 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1946 struct cfq_group *cfqg, enum wl_prio_t prio)
1947 {
1948 struct cfq_queue *queue;
1949 int i;
1950 bool key_valid = false;
1951 unsigned long lowest_key = 0;
1952 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1953
1954 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
1955 /* select the one with lowest rb_key */
1956 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
1957 if (queue &&
1958 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1959 lowest_key = queue->rb_key;
1960 cur_best = i;
1961 key_valid = true;
1962 }
1963 }
1964
1965 return cur_best;
1966 }
1967
1968 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1969 {
1970 unsigned slice;
1971 unsigned count;
1972 struct cfq_rb_root *st;
1973 unsigned group_slice;
1974
1975 if (!cfqg) {
1976 cfqd->serving_prio = IDLE_WORKLOAD;
1977 cfqd->workload_expires = jiffies + 1;
1978 return;
1979 }
1980
1981 /* Choose next priority. RT > BE > IDLE */
1982 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1983 cfqd->serving_prio = RT_WORKLOAD;
1984 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
1985 cfqd->serving_prio = BE_WORKLOAD;
1986 else {
1987 cfqd->serving_prio = IDLE_WORKLOAD;
1988 cfqd->workload_expires = jiffies + 1;
1989 return;
1990 }
1991
1992 /*
1993 * For RT and BE, we have to choose also the type
1994 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1995 * expiration time
1996 */
1997 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
1998 count = st->count;
1999
2000 /*
2001 * check workload expiration, and that we still have other queues ready
2002 */
2003 if (count && !time_after(jiffies, cfqd->workload_expires))
2004 return;
2005
2006 /* otherwise select new workload type */
2007 cfqd->serving_type =
2008 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2009 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2010 count = st->count;
2011
2012 /*
2013 * the workload slice is computed as a fraction of target latency
2014 * proportional to the number of queues in that workload, over
2015 * all the queues in the same priority class
2016 */
2017 group_slice = cfq_group_slice(cfqd, cfqg);
2018
2019 slice = group_slice * count /
2020 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2021 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2022
2023 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2024 unsigned int tmp;
2025
2026 /*
2027 * Async queues are currently system wide. Just taking
2028 * proportion of queues with-in same group will lead to higher
2029 * async ratio system wide as generally root group is going
2030 * to have higher weight. A more accurate thing would be to
2031 * calculate system wide asnc/sync ratio.
2032 */
2033 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2034 tmp = tmp/cfqd->busy_queues;
2035 slice = min_t(unsigned, slice, tmp);
2036
2037 /* async workload slice is scaled down according to
2038 * the sync/async slice ratio. */
2039 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2040 } else
2041 /* sync workload slice is at least 2 * cfq_slice_idle */
2042 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2043
2044 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2045 cfqd->workload_expires = jiffies + slice;
2046 cfqd->noidle_tree_requires_idle = false;
2047 }
2048
2049 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2050 {
2051 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2052 struct cfq_group *cfqg;
2053
2054 if (RB_EMPTY_ROOT(&st->rb))
2055 return NULL;
2056 cfqg = cfq_rb_first_group(st);
2057 st->active = &cfqg->rb_node;
2058 update_min_vdisktime(st);
2059 return cfqg;
2060 }
2061
2062 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2063 {
2064 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2065
2066 cfqd->serving_group = cfqg;
2067
2068 /* Restore the workload type data */
2069 if (cfqg->saved_workload_slice) {
2070 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2071 cfqd->serving_type = cfqg->saved_workload;
2072 cfqd->serving_prio = cfqg->saved_serving_prio;
2073 } else
2074 cfqd->workload_expires = jiffies - 1;
2075
2076 choose_service_tree(cfqd, cfqg);
2077 }
2078
2079 /*
2080 * Select a queue for service. If we have a current active queue,
2081 * check whether to continue servicing it, or retrieve and set a new one.
2082 */
2083 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2084 {
2085 struct cfq_queue *cfqq, *new_cfqq = NULL;
2086
2087 cfqq = cfqd->active_queue;
2088 if (!cfqq)
2089 goto new_queue;
2090
2091 if (!cfqd->rq_queued)
2092 return NULL;
2093
2094 /*
2095 * We were waiting for group to get backlogged. Expire the queue
2096 */
2097 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2098 goto expire;
2099
2100 /*
2101 * The active queue has run out of time, expire it and select new.
2102 */
2103 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2104 /*
2105 * If slice had not expired at the completion of last request
2106 * we might not have turned on wait_busy flag. Don't expire
2107 * the queue yet. Allow the group to get backlogged.
2108 *
2109 * The very fact that we have used the slice, that means we
2110 * have been idling all along on this queue and it should be
2111 * ok to wait for this request to complete.
2112 */
2113 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2114 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2115 cfqq = NULL;
2116 goto keep_queue;
2117 } else
2118 goto expire;
2119 }
2120
2121 /*
2122 * The active queue has requests and isn't expired, allow it to
2123 * dispatch.
2124 */
2125 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2126 goto keep_queue;
2127
2128 /*
2129 * If another queue has a request waiting within our mean seek
2130 * distance, let it run. The expire code will check for close
2131 * cooperators and put the close queue at the front of the service
2132 * tree. If possible, merge the expiring queue with the new cfqq.
2133 */
2134 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2135 if (new_cfqq) {
2136 if (!cfqq->new_cfqq)
2137 cfq_setup_merge(cfqq, new_cfqq);
2138 goto expire;
2139 }
2140
2141 /*
2142 * No requests pending. If the active queue still has requests in
2143 * flight or is idling for a new request, allow either of these
2144 * conditions to happen (or time out) before selecting a new queue.
2145 */
2146 if (timer_pending(&cfqd->idle_slice_timer) ||
2147 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2148 cfqq = NULL;
2149 goto keep_queue;
2150 }
2151
2152 expire:
2153 cfq_slice_expired(cfqd, 0);
2154 new_queue:
2155 /*
2156 * Current queue expired. Check if we have to switch to a new
2157 * service tree
2158 */
2159 if (!new_cfqq)
2160 cfq_choose_cfqg(cfqd);
2161
2162 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2163 keep_queue:
2164 return cfqq;
2165 }
2166
2167 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2168 {
2169 int dispatched = 0;
2170
2171 while (cfqq->next_rq) {
2172 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2173 dispatched++;
2174 }
2175
2176 BUG_ON(!list_empty(&cfqq->fifo));
2177
2178 /* By default cfqq is not expired if it is empty. Do it explicitly */
2179 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2180 return dispatched;
2181 }
2182
2183 /*
2184 * Drain our current requests. Used for barriers and when switching
2185 * io schedulers on-the-fly.
2186 */
2187 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2188 {
2189 struct cfq_queue *cfqq;
2190 int dispatched = 0;
2191
2192 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2193 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2194
2195 cfq_slice_expired(cfqd, 0);
2196 BUG_ON(cfqd->busy_queues);
2197
2198 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2199 return dispatched;
2200 }
2201
2202 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2203 struct cfq_queue *cfqq)
2204 {
2205 /* the queue hasn't finished any request, can't estimate */
2206 if (cfq_cfqq_slice_new(cfqq))
2207 return 1;
2208 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2209 cfqq->slice_end))
2210 return 1;
2211
2212 return 0;
2213 }
2214
2215 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2216 {
2217 unsigned int max_dispatch;
2218
2219 /*
2220 * Drain async requests before we start sync IO
2221 */
2222 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2223 return false;
2224
2225 /*
2226 * If this is an async queue and we have sync IO in flight, let it wait
2227 */
2228 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2229 return false;
2230
2231 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2232 if (cfq_class_idle(cfqq))
2233 max_dispatch = 1;
2234
2235 /*
2236 * Does this cfqq already have too much IO in flight?
2237 */
2238 if (cfqq->dispatched >= max_dispatch) {
2239 /*
2240 * idle queue must always only have a single IO in flight
2241 */
2242 if (cfq_class_idle(cfqq))
2243 return false;
2244
2245 /*
2246 * We have other queues, don't allow more IO from this one
2247 */
2248 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2249 return false;
2250
2251 /*
2252 * Sole queue user, no limit
2253 */
2254 if (cfqd->busy_queues == 1)
2255 max_dispatch = -1;
2256 else
2257 /*
2258 * Normally we start throttling cfqq when cfq_quantum/2
2259 * requests have been dispatched. But we can drive
2260 * deeper queue depths at the beginning of slice
2261 * subjected to upper limit of cfq_quantum.
2262 * */
2263 max_dispatch = cfqd->cfq_quantum;
2264 }
2265
2266 /*
2267 * Async queues must wait a bit before being allowed dispatch.
2268 * We also ramp up the dispatch depth gradually for async IO,
2269 * based on the last sync IO we serviced
2270 */
2271 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2272 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2273 unsigned int depth;
2274
2275 depth = last_sync / cfqd->cfq_slice[1];
2276 if (!depth && !cfqq->dispatched)
2277 depth = 1;
2278 if (depth < max_dispatch)
2279 max_dispatch = depth;
2280 }
2281
2282 /*
2283 * If we're below the current max, allow a dispatch
2284 */
2285 return cfqq->dispatched < max_dispatch;
2286 }
2287
2288 /*
2289 * Dispatch a request from cfqq, moving them to the request queue
2290 * dispatch list.
2291 */
2292 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2293 {
2294 struct request *rq;
2295
2296 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2297
2298 if (!cfq_may_dispatch(cfqd, cfqq))
2299 return false;
2300
2301 /*
2302 * follow expired path, else get first next available
2303 */
2304 rq = cfq_check_fifo(cfqq);
2305 if (!rq)
2306 rq = cfqq->next_rq;
2307
2308 /*
2309 * insert request into driver dispatch list
2310 */
2311 cfq_dispatch_insert(cfqd->queue, rq);
2312
2313 if (!cfqd->active_cic) {
2314 struct cfq_io_context *cic = RQ_CIC(rq);
2315
2316 atomic_long_inc(&cic->ioc->refcount);
2317 cfqd->active_cic = cic;
2318 }
2319
2320 return true;
2321 }
2322
2323 /*
2324 * Find the cfqq that we need to service and move a request from that to the
2325 * dispatch list
2326 */
2327 static int cfq_dispatch_requests(struct request_queue *q, int force)
2328 {
2329 struct cfq_data *cfqd = q->elevator->elevator_data;
2330 struct cfq_queue *cfqq;
2331
2332 if (!cfqd->busy_queues)
2333 return 0;
2334
2335 if (unlikely(force))
2336 return cfq_forced_dispatch(cfqd);
2337
2338 cfqq = cfq_select_queue(cfqd);
2339 if (!cfqq)
2340 return 0;
2341
2342 /*
2343 * Dispatch a request from this cfqq, if it is allowed
2344 */
2345 if (!cfq_dispatch_request(cfqd, cfqq))
2346 return 0;
2347
2348 cfqq->slice_dispatch++;
2349 cfq_clear_cfqq_must_dispatch(cfqq);
2350
2351 /*
2352 * expire an async queue immediately if it has used up its slice. idle
2353 * queue always expire after 1 dispatch round.
2354 */
2355 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2356 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2357 cfq_class_idle(cfqq))) {
2358 cfqq->slice_end = jiffies + 1;
2359 cfq_slice_expired(cfqd, 0);
2360 }
2361
2362 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2363 return 1;
2364 }
2365
2366 /*
2367 * task holds one reference to the queue, dropped when task exits. each rq
2368 * in-flight on this queue also holds a reference, dropped when rq is freed.
2369 *
2370 * Each cfq queue took a reference on the parent group. Drop it now.
2371 * queue lock must be held here.
2372 */
2373 static void cfq_put_queue(struct cfq_queue *cfqq)
2374 {
2375 struct cfq_data *cfqd = cfqq->cfqd;
2376 struct cfq_group *cfqg, *orig_cfqg;
2377
2378 BUG_ON(atomic_read(&cfqq->ref) <= 0);
2379
2380 if (!atomic_dec_and_test(&cfqq->ref))
2381 return;
2382
2383 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2384 BUG_ON(rb_first(&cfqq->sort_list));
2385 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2386 cfqg = cfqq->cfqg;
2387 orig_cfqg = cfqq->orig_cfqg;
2388
2389 if (unlikely(cfqd->active_queue == cfqq)) {
2390 __cfq_slice_expired(cfqd, cfqq, 0);
2391 cfq_schedule_dispatch(cfqd);
2392 }
2393
2394 BUG_ON(cfq_cfqq_on_rr(cfqq));
2395 kmem_cache_free(cfq_pool, cfqq);
2396 cfq_put_cfqg(cfqg);
2397 if (orig_cfqg)
2398 cfq_put_cfqg(orig_cfqg);
2399 }
2400
2401 /*
2402 * Must always be called with the rcu_read_lock() held
2403 */
2404 static void
2405 __call_for_each_cic(struct io_context *ioc,
2406 void (*func)(struct io_context *, struct cfq_io_context *))
2407 {
2408 struct cfq_io_context *cic;
2409 struct hlist_node *n;
2410
2411 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2412 func(ioc, cic);
2413 }
2414
2415 /*
2416 * Call func for each cic attached to this ioc.
2417 */
2418 static void
2419 call_for_each_cic(struct io_context *ioc,
2420 void (*func)(struct io_context *, struct cfq_io_context *))
2421 {
2422 rcu_read_lock();
2423 __call_for_each_cic(ioc, func);
2424 rcu_read_unlock();
2425 }
2426
2427 static void cfq_cic_free_rcu(struct rcu_head *head)
2428 {
2429 struct cfq_io_context *cic;
2430
2431 cic = container_of(head, struct cfq_io_context, rcu_head);
2432
2433 kmem_cache_free(cfq_ioc_pool, cic);
2434 elv_ioc_count_dec(cfq_ioc_count);
2435
2436 if (ioc_gone) {
2437 /*
2438 * CFQ scheduler is exiting, grab exit lock and check
2439 * the pending io context count. If it hits zero,
2440 * complete ioc_gone and set it back to NULL
2441 */
2442 spin_lock(&ioc_gone_lock);
2443 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2444 complete(ioc_gone);
2445 ioc_gone = NULL;
2446 }
2447 spin_unlock(&ioc_gone_lock);
2448 }
2449 }
2450
2451 static void cfq_cic_free(struct cfq_io_context *cic)
2452 {
2453 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2454 }
2455
2456 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2457 {
2458 unsigned long flags;
2459
2460 BUG_ON(!cic->dead_key);
2461
2462 spin_lock_irqsave(&ioc->lock, flags);
2463 radix_tree_delete(&ioc->radix_root, cic->dead_key);
2464 hlist_del_rcu(&cic->cic_list);
2465 spin_unlock_irqrestore(&ioc->lock, flags);
2466
2467 cfq_cic_free(cic);
2468 }
2469
2470 /*
2471 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2472 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2473 * and ->trim() which is called with the task lock held
2474 */
2475 static void cfq_free_io_context(struct io_context *ioc)
2476 {
2477 /*
2478 * ioc->refcount is zero here, or we are called from elv_unregister(),
2479 * so no more cic's are allowed to be linked into this ioc. So it
2480 * should be ok to iterate over the known list, we will see all cic's
2481 * since no new ones are added.
2482 */
2483 __call_for_each_cic(ioc, cic_free_func);
2484 }
2485
2486 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2487 {
2488 struct cfq_queue *__cfqq, *next;
2489
2490 if (unlikely(cfqq == cfqd->active_queue)) {
2491 __cfq_slice_expired(cfqd, cfqq, 0);
2492 cfq_schedule_dispatch(cfqd);
2493 }
2494
2495 /*
2496 * If this queue was scheduled to merge with another queue, be
2497 * sure to drop the reference taken on that queue (and others in
2498 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2499 */
2500 __cfqq = cfqq->new_cfqq;
2501 while (__cfqq) {
2502 if (__cfqq == cfqq) {
2503 WARN(1, "cfqq->new_cfqq loop detected\n");
2504 break;
2505 }
2506 next = __cfqq->new_cfqq;
2507 cfq_put_queue(__cfqq);
2508 __cfqq = next;
2509 }
2510
2511 cfq_put_queue(cfqq);
2512 }
2513
2514 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2515 struct cfq_io_context *cic)
2516 {
2517 struct io_context *ioc = cic->ioc;
2518
2519 list_del_init(&cic->queue_list);
2520
2521 /*
2522 * Make sure key == NULL is seen for dead queues
2523 */
2524 smp_wmb();
2525 cic->dead_key = (unsigned long) cic->key;
2526 cic->key = NULL;
2527
2528 if (ioc->ioc_data == cic)
2529 rcu_assign_pointer(ioc->ioc_data, NULL);
2530
2531 if (cic->cfqq[BLK_RW_ASYNC]) {
2532 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2533 cic->cfqq[BLK_RW_ASYNC] = NULL;
2534 }
2535
2536 if (cic->cfqq[BLK_RW_SYNC]) {
2537 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2538 cic->cfqq[BLK_RW_SYNC] = NULL;
2539 }
2540 }
2541
2542 static void cfq_exit_single_io_context(struct io_context *ioc,
2543 struct cfq_io_context *cic)
2544 {
2545 struct cfq_data *cfqd = cic->key;
2546
2547 if (cfqd) {
2548 struct request_queue *q = cfqd->queue;
2549 unsigned long flags;
2550
2551 spin_lock_irqsave(q->queue_lock, flags);
2552
2553 /*
2554 * Ensure we get a fresh copy of the ->key to prevent
2555 * race between exiting task and queue
2556 */
2557 smp_read_barrier_depends();
2558 if (cic->key)
2559 __cfq_exit_single_io_context(cfqd, cic);
2560
2561 spin_unlock_irqrestore(q->queue_lock, flags);
2562 }
2563 }
2564
2565 /*
2566 * The process that ioc belongs to has exited, we need to clean up
2567 * and put the internal structures we have that belongs to that process.
2568 */
2569 static void cfq_exit_io_context(struct io_context *ioc)
2570 {
2571 call_for_each_cic(ioc, cfq_exit_single_io_context);
2572 }
2573
2574 static struct cfq_io_context *
2575 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2576 {
2577 struct cfq_io_context *cic;
2578
2579 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2580 cfqd->queue->node);
2581 if (cic) {
2582 cic->last_end_request = jiffies;
2583 INIT_LIST_HEAD(&cic->queue_list);
2584 INIT_HLIST_NODE(&cic->cic_list);
2585 cic->dtor = cfq_free_io_context;
2586 cic->exit = cfq_exit_io_context;
2587 elv_ioc_count_inc(cfq_ioc_count);
2588 }
2589
2590 return cic;
2591 }
2592
2593 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2594 {
2595 struct task_struct *tsk = current;
2596 int ioprio_class;
2597
2598 if (!cfq_cfqq_prio_changed(cfqq))
2599 return;
2600
2601 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2602 switch (ioprio_class) {
2603 default:
2604 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2605 case IOPRIO_CLASS_NONE:
2606 /*
2607 * no prio set, inherit CPU scheduling settings
2608 */
2609 cfqq->ioprio = task_nice_ioprio(tsk);
2610 cfqq->ioprio_class = task_nice_ioclass(tsk);
2611 break;
2612 case IOPRIO_CLASS_RT:
2613 cfqq->ioprio = task_ioprio(ioc);
2614 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2615 break;
2616 case IOPRIO_CLASS_BE:
2617 cfqq->ioprio = task_ioprio(ioc);
2618 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2619 break;
2620 case IOPRIO_CLASS_IDLE:
2621 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2622 cfqq->ioprio = 7;
2623 cfq_clear_cfqq_idle_window(cfqq);
2624 break;
2625 }
2626
2627 /*
2628 * keep track of original prio settings in case we have to temporarily
2629 * elevate the priority of this queue
2630 */
2631 cfqq->org_ioprio = cfqq->ioprio;
2632 cfqq->org_ioprio_class = cfqq->ioprio_class;
2633 cfq_clear_cfqq_prio_changed(cfqq);
2634 }
2635
2636 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2637 {
2638 struct cfq_data *cfqd = cic->key;
2639 struct cfq_queue *cfqq;
2640 unsigned long flags;
2641
2642 if (unlikely(!cfqd))
2643 return;
2644
2645 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2646
2647 cfqq = cic->cfqq[BLK_RW_ASYNC];
2648 if (cfqq) {
2649 struct cfq_queue *new_cfqq;
2650 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2651 GFP_ATOMIC);
2652 if (new_cfqq) {
2653 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2654 cfq_put_queue(cfqq);
2655 }
2656 }
2657
2658 cfqq = cic->cfqq[BLK_RW_SYNC];
2659 if (cfqq)
2660 cfq_mark_cfqq_prio_changed(cfqq);
2661
2662 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2663 }
2664
2665 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2666 {
2667 call_for_each_cic(ioc, changed_ioprio);
2668 ioc->ioprio_changed = 0;
2669 }
2670
2671 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2672 pid_t pid, bool is_sync)
2673 {
2674 RB_CLEAR_NODE(&cfqq->rb_node);
2675 RB_CLEAR_NODE(&cfqq->p_node);
2676 INIT_LIST_HEAD(&cfqq->fifo);
2677
2678 atomic_set(&cfqq->ref, 0);
2679 cfqq->cfqd = cfqd;
2680
2681 cfq_mark_cfqq_prio_changed(cfqq);
2682
2683 if (is_sync) {
2684 if (!cfq_class_idle(cfqq))
2685 cfq_mark_cfqq_idle_window(cfqq);
2686 cfq_mark_cfqq_sync(cfqq);
2687 }
2688 cfqq->pid = pid;
2689 }
2690
2691 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2692 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2693 {
2694 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2695 struct cfq_data *cfqd = cic->key;
2696 unsigned long flags;
2697 struct request_queue *q;
2698
2699 if (unlikely(!cfqd))
2700 return;
2701
2702 q = cfqd->queue;
2703
2704 spin_lock_irqsave(q->queue_lock, flags);
2705
2706 if (sync_cfqq) {
2707 /*
2708 * Drop reference to sync queue. A new sync queue will be
2709 * assigned in new group upon arrival of a fresh request.
2710 */
2711 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2712 cic_set_cfqq(cic, NULL, 1);
2713 cfq_put_queue(sync_cfqq);
2714 }
2715
2716 spin_unlock_irqrestore(q->queue_lock, flags);
2717 }
2718
2719 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2720 {
2721 call_for_each_cic(ioc, changed_cgroup);
2722 ioc->cgroup_changed = 0;
2723 }
2724 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2725
2726 static struct cfq_queue *
2727 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2728 struct io_context *ioc, gfp_t gfp_mask)
2729 {
2730 struct cfq_queue *cfqq, *new_cfqq = NULL;
2731 struct cfq_io_context *cic;
2732 struct cfq_group *cfqg;
2733
2734 retry:
2735 cfqg = cfq_get_cfqg(cfqd, 1);
2736 cic = cfq_cic_lookup(cfqd, ioc);
2737 /* cic always exists here */
2738 cfqq = cic_to_cfqq(cic, is_sync);
2739
2740 /*
2741 * Always try a new alloc if we fell back to the OOM cfqq
2742 * originally, since it should just be a temporary situation.
2743 */
2744 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2745 cfqq = NULL;
2746 if (new_cfqq) {
2747 cfqq = new_cfqq;
2748 new_cfqq = NULL;
2749 } else if (gfp_mask & __GFP_WAIT) {
2750 spin_unlock_irq(cfqd->queue->queue_lock);
2751 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2752 gfp_mask | __GFP_ZERO,
2753 cfqd->queue->node);
2754 spin_lock_irq(cfqd->queue->queue_lock);
2755 if (new_cfqq)
2756 goto retry;
2757 } else {
2758 cfqq = kmem_cache_alloc_node(cfq_pool,
2759 gfp_mask | __GFP_ZERO,
2760 cfqd->queue->node);
2761 }
2762
2763 if (cfqq) {
2764 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2765 cfq_init_prio_data(cfqq, ioc);
2766 cfq_link_cfqq_cfqg(cfqq, cfqg);
2767 cfq_log_cfqq(cfqd, cfqq, "alloced");
2768 } else
2769 cfqq = &cfqd->oom_cfqq;
2770 }
2771
2772 if (new_cfqq)
2773 kmem_cache_free(cfq_pool, new_cfqq);
2774
2775 return cfqq;
2776 }
2777
2778 static struct cfq_queue **
2779 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2780 {
2781 switch (ioprio_class) {
2782 case IOPRIO_CLASS_RT:
2783 return &cfqd->async_cfqq[0][ioprio];
2784 case IOPRIO_CLASS_BE:
2785 return &cfqd->async_cfqq[1][ioprio];
2786 case IOPRIO_CLASS_IDLE:
2787 return &cfqd->async_idle_cfqq;
2788 default:
2789 BUG();
2790 }
2791 }
2792
2793 static struct cfq_queue *
2794 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2795 gfp_t gfp_mask)
2796 {
2797 const int ioprio = task_ioprio(ioc);
2798 const int ioprio_class = task_ioprio_class(ioc);
2799 struct cfq_queue **async_cfqq = NULL;
2800 struct cfq_queue *cfqq = NULL;
2801
2802 if (!is_sync) {
2803 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2804 cfqq = *async_cfqq;
2805 }
2806
2807 if (!cfqq)
2808 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2809
2810 /*
2811 * pin the queue now that it's allocated, scheduler exit will prune it
2812 */
2813 if (!is_sync && !(*async_cfqq)) {
2814 atomic_inc(&cfqq->ref);
2815 *async_cfqq = cfqq;
2816 }
2817
2818 atomic_inc(&cfqq->ref);
2819 return cfqq;
2820 }
2821
2822 /*
2823 * We drop cfq io contexts lazily, so we may find a dead one.
2824 */
2825 static void
2826 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2827 struct cfq_io_context *cic)
2828 {
2829 unsigned long flags;
2830
2831 WARN_ON(!list_empty(&cic->queue_list));
2832
2833 spin_lock_irqsave(&ioc->lock, flags);
2834
2835 BUG_ON(ioc->ioc_data == cic);
2836
2837 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2838 hlist_del_rcu(&cic->cic_list);
2839 spin_unlock_irqrestore(&ioc->lock, flags);
2840
2841 cfq_cic_free(cic);
2842 }
2843
2844 static struct cfq_io_context *
2845 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2846 {
2847 struct cfq_io_context *cic;
2848 unsigned long flags;
2849 void *k;
2850
2851 if (unlikely(!ioc))
2852 return NULL;
2853
2854 rcu_read_lock();
2855
2856 /*
2857 * we maintain a last-hit cache, to avoid browsing over the tree
2858 */
2859 cic = rcu_dereference(ioc->ioc_data);
2860 if (cic && cic->key == cfqd) {
2861 rcu_read_unlock();
2862 return cic;
2863 }
2864
2865 do {
2866 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2867 rcu_read_unlock();
2868 if (!cic)
2869 break;
2870 /* ->key must be copied to avoid race with cfq_exit_queue() */
2871 k = cic->key;
2872 if (unlikely(!k)) {
2873 cfq_drop_dead_cic(cfqd, ioc, cic);
2874 rcu_read_lock();
2875 continue;
2876 }
2877
2878 spin_lock_irqsave(&ioc->lock, flags);
2879 rcu_assign_pointer(ioc->ioc_data, cic);
2880 spin_unlock_irqrestore(&ioc->lock, flags);
2881 break;
2882 } while (1);
2883
2884 return cic;
2885 }
2886
2887 /*
2888 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2889 * the process specific cfq io context when entered from the block layer.
2890 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2891 */
2892 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2893 struct cfq_io_context *cic, gfp_t gfp_mask)
2894 {
2895 unsigned long flags;
2896 int ret;
2897
2898 ret = radix_tree_preload(gfp_mask);
2899 if (!ret) {
2900 cic->ioc = ioc;
2901 cic->key = cfqd;
2902
2903 spin_lock_irqsave(&ioc->lock, flags);
2904 ret = radix_tree_insert(&ioc->radix_root,
2905 (unsigned long) cfqd, cic);
2906 if (!ret)
2907 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2908 spin_unlock_irqrestore(&ioc->lock, flags);
2909
2910 radix_tree_preload_end();
2911
2912 if (!ret) {
2913 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2914 list_add(&cic->queue_list, &cfqd->cic_list);
2915 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2916 }
2917 }
2918
2919 if (ret)
2920 printk(KERN_ERR "cfq: cic link failed!\n");
2921
2922 return ret;
2923 }
2924
2925 /*
2926 * Setup general io context and cfq io context. There can be several cfq
2927 * io contexts per general io context, if this process is doing io to more
2928 * than one device managed by cfq.
2929 */
2930 static struct cfq_io_context *
2931 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2932 {
2933 struct io_context *ioc = NULL;
2934 struct cfq_io_context *cic;
2935
2936 might_sleep_if(gfp_mask & __GFP_WAIT);
2937
2938 ioc = get_io_context(gfp_mask, cfqd->queue->node);
2939 if (!ioc)
2940 return NULL;
2941
2942 cic = cfq_cic_lookup(cfqd, ioc);
2943 if (cic)
2944 goto out;
2945
2946 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2947 if (cic == NULL)
2948 goto err;
2949
2950 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2951 goto err_free;
2952
2953 out:
2954 smp_read_barrier_depends();
2955 if (unlikely(ioc->ioprio_changed))
2956 cfq_ioc_set_ioprio(ioc);
2957
2958 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2959 if (unlikely(ioc->cgroup_changed))
2960 cfq_ioc_set_cgroup(ioc);
2961 #endif
2962 return cic;
2963 err_free:
2964 cfq_cic_free(cic);
2965 err:
2966 put_io_context(ioc);
2967 return NULL;
2968 }
2969
2970 static void
2971 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2972 {
2973 unsigned long elapsed = jiffies - cic->last_end_request;
2974 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2975
2976 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2977 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2978 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2979 }
2980
2981 static void
2982 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2983 struct request *rq)
2984 {
2985 sector_t sdist = 0;
2986 sector_t n_sec = blk_rq_sectors(rq);
2987 if (cfqq->last_request_pos) {
2988 if (cfqq->last_request_pos < blk_rq_pos(rq))
2989 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2990 else
2991 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2992 }
2993
2994 cfqq->seek_history <<= 1;
2995 if (blk_queue_nonrot(cfqd->queue))
2996 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
2997 else
2998 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
2999 }
3000
3001 /*
3002 * Disable idle window if the process thinks too long or seeks so much that
3003 * it doesn't matter
3004 */
3005 static void
3006 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3007 struct cfq_io_context *cic)
3008 {
3009 int old_idle, enable_idle;
3010
3011 /*
3012 * Don't idle for async or idle io prio class
3013 */
3014 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3015 return;
3016
3017 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3018
3019 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3020 cfq_mark_cfqq_deep(cfqq);
3021
3022 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3023 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3024 enable_idle = 0;
3025 else if (sample_valid(cic->ttime_samples)) {
3026 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3027 enable_idle = 0;
3028 else
3029 enable_idle = 1;
3030 }
3031
3032 if (old_idle != enable_idle) {
3033 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3034 if (enable_idle)
3035 cfq_mark_cfqq_idle_window(cfqq);
3036 else
3037 cfq_clear_cfqq_idle_window(cfqq);
3038 }
3039 }
3040
3041 /*
3042 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3043 * no or if we aren't sure, a 1 will cause a preempt.
3044 */
3045 static bool
3046 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3047 struct request *rq)
3048 {
3049 struct cfq_queue *cfqq;
3050
3051 cfqq = cfqd->active_queue;
3052 if (!cfqq)
3053 return false;
3054
3055 if (cfq_class_idle(new_cfqq))
3056 return false;
3057
3058 if (cfq_class_idle(cfqq))
3059 return true;
3060
3061 /*
3062 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3063 */
3064 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3065 return false;
3066
3067 /*
3068 * if the new request is sync, but the currently running queue is
3069 * not, let the sync request have priority.
3070 */
3071 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3072 return true;
3073
3074 if (new_cfqq->cfqg != cfqq->cfqg)
3075 return false;
3076
3077 if (cfq_slice_used(cfqq))
3078 return true;
3079
3080 /* Allow preemption only if we are idling on sync-noidle tree */
3081 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3082 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3083 new_cfqq->service_tree->count == 2 &&
3084 RB_EMPTY_ROOT(&cfqq->sort_list))
3085 return true;
3086
3087 /*
3088 * So both queues are sync. Let the new request get disk time if
3089 * it's a metadata request and the current queue is doing regular IO.
3090 */
3091 if (rq_is_meta(rq) && !cfqq->meta_pending)
3092 return true;
3093
3094 /*
3095 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3096 */
3097 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3098 return true;
3099
3100 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3101 return false;
3102
3103 /*
3104 * if this request is as-good as one we would expect from the
3105 * current cfqq, let it preempt
3106 */
3107 if (cfq_rq_close(cfqd, cfqq, rq, true))
3108 return true;
3109
3110 return false;
3111 }
3112
3113 /*
3114 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3115 * let it have half of its nominal slice.
3116 */
3117 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3118 {
3119 cfq_log_cfqq(cfqd, cfqq, "preempt");
3120 cfq_slice_expired(cfqd, 1);
3121
3122 /*
3123 * Put the new queue at the front of the of the current list,
3124 * so we know that it will be selected next.
3125 */
3126 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3127
3128 cfq_service_tree_add(cfqd, cfqq, 1);
3129
3130 cfqq->slice_end = 0;
3131 cfq_mark_cfqq_slice_new(cfqq);
3132 }
3133
3134 /*
3135 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3136 * something we should do about it
3137 */
3138 static void
3139 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3140 struct request *rq)
3141 {
3142 struct cfq_io_context *cic = RQ_CIC(rq);
3143
3144 cfqd->rq_queued++;
3145 if (rq_is_meta(rq))
3146 cfqq->meta_pending++;
3147
3148 cfq_update_io_thinktime(cfqd, cic);
3149 cfq_update_io_seektime(cfqd, cfqq, rq);
3150 cfq_update_idle_window(cfqd, cfqq, cic);
3151
3152 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3153
3154 if (cfqq == cfqd->active_queue) {
3155 /*
3156 * Remember that we saw a request from this process, but
3157 * don't start queuing just yet. Otherwise we risk seeing lots
3158 * of tiny requests, because we disrupt the normal plugging
3159 * and merging. If the request is already larger than a single
3160 * page, let it rip immediately. For that case we assume that
3161 * merging is already done. Ditto for a busy system that
3162 * has other work pending, don't risk delaying until the
3163 * idle timer unplug to continue working.
3164 */
3165 if (cfq_cfqq_wait_request(cfqq)) {
3166 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3167 cfqd->busy_queues > 1) {
3168 del_timer(&cfqd->idle_slice_timer);
3169 cfq_clear_cfqq_wait_request(cfqq);
3170 __blk_run_queue(cfqd->queue);
3171 } else
3172 cfq_mark_cfqq_must_dispatch(cfqq);
3173 }
3174 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3175 /*
3176 * not the active queue - expire current slice if it is
3177 * idle and has expired it's mean thinktime or this new queue
3178 * has some old slice time left and is of higher priority or
3179 * this new queue is RT and the current one is BE
3180 */
3181 cfq_preempt_queue(cfqd, cfqq);
3182 __blk_run_queue(cfqd->queue);
3183 }
3184 }
3185
3186 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3187 {
3188 struct cfq_data *cfqd = q->elevator->elevator_data;
3189 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3190
3191 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3192 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3193
3194 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3195 list_add_tail(&rq->queuelist, &cfqq->fifo);
3196 cfq_add_rq_rb(rq);
3197
3198 cfq_rq_enqueued(cfqd, cfqq, rq);
3199 }
3200
3201 /*
3202 * Update hw_tag based on peak queue depth over 50 samples under
3203 * sufficient load.
3204 */
3205 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3206 {
3207 struct cfq_queue *cfqq = cfqd->active_queue;
3208
3209 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3210 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3211
3212 if (cfqd->hw_tag == 1)
3213 return;
3214
3215 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3216 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3217 return;
3218
3219 /*
3220 * If active queue hasn't enough requests and can idle, cfq might not
3221 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3222 * case
3223 */
3224 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3225 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3226 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3227 return;
3228
3229 if (cfqd->hw_tag_samples++ < 50)
3230 return;
3231
3232 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3233 cfqd->hw_tag = 1;
3234 else
3235 cfqd->hw_tag = 0;
3236 }
3237
3238 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3239 {
3240 struct cfq_io_context *cic = cfqd->active_cic;
3241
3242 /* If there are other queues in the group, don't wait */
3243 if (cfqq->cfqg->nr_cfqq > 1)
3244 return false;
3245
3246 if (cfq_slice_used(cfqq))
3247 return true;
3248
3249 /* if slice left is less than think time, wait busy */
3250 if (cic && sample_valid(cic->ttime_samples)
3251 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3252 return true;
3253
3254 /*
3255 * If think times is less than a jiffy than ttime_mean=0 and above
3256 * will not be true. It might happen that slice has not expired yet
3257 * but will expire soon (4-5 ns) during select_queue(). To cover the
3258 * case where think time is less than a jiffy, mark the queue wait
3259 * busy if only 1 jiffy is left in the slice.
3260 */
3261 if (cfqq->slice_end - jiffies == 1)
3262 return true;
3263
3264 return false;
3265 }
3266
3267 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3268 {
3269 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3270 struct cfq_data *cfqd = cfqq->cfqd;
3271 const int sync = rq_is_sync(rq);
3272 unsigned long now;
3273
3274 now = jiffies;
3275 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3276
3277 cfq_update_hw_tag(cfqd);
3278
3279 WARN_ON(!cfqd->rq_in_driver);
3280 WARN_ON(!cfqq->dispatched);
3281 cfqd->rq_in_driver--;
3282 cfqq->dispatched--;
3283
3284 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3285
3286 if (sync) {
3287 RQ_CIC(rq)->last_end_request = now;
3288 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3289 cfqd->last_delayed_sync = now;
3290 }
3291
3292 /*
3293 * If this is the active queue, check if it needs to be expired,
3294 * or if we want to idle in case it has no pending requests.
3295 */
3296 if (cfqd->active_queue == cfqq) {
3297 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3298
3299 if (cfq_cfqq_slice_new(cfqq)) {
3300 cfq_set_prio_slice(cfqd, cfqq);
3301 cfq_clear_cfqq_slice_new(cfqq);
3302 }
3303
3304 /*
3305 * Should we wait for next request to come in before we expire
3306 * the queue.
3307 */
3308 if (cfq_should_wait_busy(cfqd, cfqq)) {
3309 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3310 cfq_mark_cfqq_wait_busy(cfqq);
3311 }
3312
3313 /*
3314 * Idling is not enabled on:
3315 * - expired queues
3316 * - idle-priority queues
3317 * - async queues
3318 * - queues with still some requests queued
3319 * - when there is a close cooperator
3320 */
3321 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3322 cfq_slice_expired(cfqd, 1);
3323 else if (sync && cfqq_empty &&
3324 !cfq_close_cooperator(cfqd, cfqq)) {
3325 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3326 /*
3327 * Idling is enabled for SYNC_WORKLOAD.
3328 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3329 * only if we processed at least one !rq_noidle request
3330 */
3331 if (cfqd->serving_type == SYNC_WORKLOAD
3332 || cfqd->noidle_tree_requires_idle
3333 || cfqq->cfqg->nr_cfqq == 1)
3334 cfq_arm_slice_timer(cfqd);
3335 }
3336 }
3337
3338 if (!cfqd->rq_in_driver)
3339 cfq_schedule_dispatch(cfqd);
3340 }
3341
3342 /*
3343 * we temporarily boost lower priority queues if they are holding fs exclusive
3344 * resources. they are boosted to normal prio (CLASS_BE/4)
3345 */
3346 static void cfq_prio_boost(struct cfq_queue *cfqq)
3347 {
3348 if (has_fs_excl()) {
3349 /*
3350 * boost idle prio on transactions that would lock out other
3351 * users of the filesystem
3352 */
3353 if (cfq_class_idle(cfqq))
3354 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3355 if (cfqq->ioprio > IOPRIO_NORM)
3356 cfqq->ioprio = IOPRIO_NORM;
3357 } else {
3358 /*
3359 * unboost the queue (if needed)
3360 */
3361 cfqq->ioprio_class = cfqq->org_ioprio_class;
3362 cfqq->ioprio = cfqq->org_ioprio;
3363 }
3364 }
3365
3366 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3367 {
3368 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3369 cfq_mark_cfqq_must_alloc_slice(cfqq);
3370 return ELV_MQUEUE_MUST;
3371 }
3372
3373 return ELV_MQUEUE_MAY;
3374 }
3375
3376 static int cfq_may_queue(struct request_queue *q, int rw)
3377 {
3378 struct cfq_data *cfqd = q->elevator->elevator_data;
3379 struct task_struct *tsk = current;
3380 struct cfq_io_context *cic;
3381 struct cfq_queue *cfqq;
3382
3383 /*
3384 * don't force setup of a queue from here, as a call to may_queue
3385 * does not necessarily imply that a request actually will be queued.
3386 * so just lookup a possibly existing queue, or return 'may queue'
3387 * if that fails
3388 */
3389 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3390 if (!cic)
3391 return ELV_MQUEUE_MAY;
3392
3393 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3394 if (cfqq) {
3395 cfq_init_prio_data(cfqq, cic->ioc);
3396 cfq_prio_boost(cfqq);
3397
3398 return __cfq_may_queue(cfqq);
3399 }
3400
3401 return ELV_MQUEUE_MAY;
3402 }
3403
3404 /*
3405 * queue lock held here
3406 */
3407 static void cfq_put_request(struct request *rq)
3408 {
3409 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3410
3411 if (cfqq) {
3412 const int rw = rq_data_dir(rq);
3413
3414 BUG_ON(!cfqq->allocated[rw]);
3415 cfqq->allocated[rw]--;
3416
3417 put_io_context(RQ_CIC(rq)->ioc);
3418
3419 rq->elevator_private = NULL;
3420 rq->elevator_private2 = NULL;
3421
3422 cfq_put_queue(cfqq);
3423 }
3424 }
3425
3426 static struct cfq_queue *
3427 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3428 struct cfq_queue *cfqq)
3429 {
3430 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3431 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3432 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3433 cfq_put_queue(cfqq);
3434 return cic_to_cfqq(cic, 1);
3435 }
3436
3437 /*
3438 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3439 * was the last process referring to said cfqq.
3440 */
3441 static struct cfq_queue *
3442 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3443 {
3444 if (cfqq_process_refs(cfqq) == 1) {
3445 cfqq->pid = current->pid;
3446 cfq_clear_cfqq_coop(cfqq);
3447 cfq_clear_cfqq_split_coop(cfqq);
3448 return cfqq;
3449 }
3450
3451 cic_set_cfqq(cic, NULL, 1);
3452 cfq_put_queue(cfqq);
3453 return NULL;
3454 }
3455 /*
3456 * Allocate cfq data structures associated with this request.
3457 */
3458 static int
3459 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3460 {
3461 struct cfq_data *cfqd = q->elevator->elevator_data;
3462 struct cfq_io_context *cic;
3463 const int rw = rq_data_dir(rq);
3464 const bool is_sync = rq_is_sync(rq);
3465 struct cfq_queue *cfqq;
3466 unsigned long flags;
3467
3468 might_sleep_if(gfp_mask & __GFP_WAIT);
3469
3470 cic = cfq_get_io_context(cfqd, gfp_mask);
3471
3472 spin_lock_irqsave(q->queue_lock, flags);
3473
3474 if (!cic)
3475 goto queue_fail;
3476
3477 new_queue:
3478 cfqq = cic_to_cfqq(cic, is_sync);
3479 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3480 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3481 cic_set_cfqq(cic, cfqq, is_sync);
3482 } else {
3483 /*
3484 * If the queue was seeky for too long, break it apart.
3485 */
3486 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3487 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3488 cfqq = split_cfqq(cic, cfqq);
3489 if (!cfqq)
3490 goto new_queue;
3491 }
3492
3493 /*
3494 * Check to see if this queue is scheduled to merge with
3495 * another, closely cooperating queue. The merging of
3496 * queues happens here as it must be done in process context.
3497 * The reference on new_cfqq was taken in merge_cfqqs.
3498 */
3499 if (cfqq->new_cfqq)
3500 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3501 }
3502
3503 cfqq->allocated[rw]++;
3504 atomic_inc(&cfqq->ref);
3505
3506 spin_unlock_irqrestore(q->queue_lock, flags);
3507
3508 rq->elevator_private = cic;
3509 rq->elevator_private2 = cfqq;
3510 return 0;
3511
3512 queue_fail:
3513 if (cic)
3514 put_io_context(cic->ioc);
3515
3516 cfq_schedule_dispatch(cfqd);
3517 spin_unlock_irqrestore(q->queue_lock, flags);
3518 cfq_log(cfqd, "set_request fail");
3519 return 1;
3520 }
3521
3522 static void cfq_kick_queue(struct work_struct *work)
3523 {
3524 struct cfq_data *cfqd =
3525 container_of(work, struct cfq_data, unplug_work);
3526 struct request_queue *q = cfqd->queue;
3527
3528 spin_lock_irq(q->queue_lock);
3529 __blk_run_queue(cfqd->queue);
3530 spin_unlock_irq(q->queue_lock);
3531 }
3532
3533 /*
3534 * Timer running if the active_queue is currently idling inside its time slice
3535 */
3536 static void cfq_idle_slice_timer(unsigned long data)
3537 {
3538 struct cfq_data *cfqd = (struct cfq_data *) data;
3539 struct cfq_queue *cfqq;
3540 unsigned long flags;
3541 int timed_out = 1;
3542
3543 cfq_log(cfqd, "idle timer fired");
3544
3545 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3546
3547 cfqq = cfqd->active_queue;
3548 if (cfqq) {
3549 timed_out = 0;
3550
3551 /*
3552 * We saw a request before the queue expired, let it through
3553 */
3554 if (cfq_cfqq_must_dispatch(cfqq))
3555 goto out_kick;
3556
3557 /*
3558 * expired
3559 */
3560 if (cfq_slice_used(cfqq))
3561 goto expire;
3562
3563 /*
3564 * only expire and reinvoke request handler, if there are
3565 * other queues with pending requests
3566 */
3567 if (!cfqd->busy_queues)
3568 goto out_cont;
3569
3570 /*
3571 * not expired and it has a request pending, let it dispatch
3572 */
3573 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3574 goto out_kick;
3575
3576 /*
3577 * Queue depth flag is reset only when the idle didn't succeed
3578 */
3579 cfq_clear_cfqq_deep(cfqq);
3580 }
3581 expire:
3582 cfq_slice_expired(cfqd, timed_out);
3583 out_kick:
3584 cfq_schedule_dispatch(cfqd);
3585 out_cont:
3586 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3587 }
3588
3589 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3590 {
3591 del_timer_sync(&cfqd->idle_slice_timer);
3592 cancel_work_sync(&cfqd->unplug_work);
3593 }
3594
3595 static void cfq_put_async_queues(struct cfq_data *cfqd)
3596 {
3597 int i;
3598
3599 for (i = 0; i < IOPRIO_BE_NR; i++) {
3600 if (cfqd->async_cfqq[0][i])
3601 cfq_put_queue(cfqd->async_cfqq[0][i]);
3602 if (cfqd->async_cfqq[1][i])
3603 cfq_put_queue(cfqd->async_cfqq[1][i]);
3604 }
3605
3606 if (cfqd->async_idle_cfqq)
3607 cfq_put_queue(cfqd->async_idle_cfqq);
3608 }
3609
3610 static void cfq_cfqd_free(struct rcu_head *head)
3611 {
3612 kfree(container_of(head, struct cfq_data, rcu));
3613 }
3614
3615 static void cfq_exit_queue(struct elevator_queue *e)
3616 {
3617 struct cfq_data *cfqd = e->elevator_data;
3618 struct request_queue *q = cfqd->queue;
3619
3620 cfq_shutdown_timer_wq(cfqd);
3621
3622 spin_lock_irq(q->queue_lock);
3623
3624 if (cfqd->active_queue)
3625 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3626
3627 while (!list_empty(&cfqd->cic_list)) {
3628 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3629 struct cfq_io_context,
3630 queue_list);
3631
3632 __cfq_exit_single_io_context(cfqd, cic);
3633 }
3634
3635 cfq_put_async_queues(cfqd);
3636 cfq_release_cfq_groups(cfqd);
3637 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3638
3639 spin_unlock_irq(q->queue_lock);
3640
3641 cfq_shutdown_timer_wq(cfqd);
3642
3643 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3644 call_rcu(&cfqd->rcu, cfq_cfqd_free);
3645 }
3646
3647 static void *cfq_init_queue(struct request_queue *q)
3648 {
3649 struct cfq_data *cfqd;
3650 int i, j;
3651 struct cfq_group *cfqg;
3652 struct cfq_rb_root *st;
3653
3654 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3655 if (!cfqd)
3656 return NULL;
3657
3658 /* Init root service tree */
3659 cfqd->grp_service_tree = CFQ_RB_ROOT;
3660
3661 /* Init root group */
3662 cfqg = &cfqd->root_group;
3663 for_each_cfqg_st(cfqg, i, j, st)
3664 *st = CFQ_RB_ROOT;
3665 RB_CLEAR_NODE(&cfqg->rb_node);
3666
3667 /* Give preference to root group over other groups */
3668 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3669
3670 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3671 /*
3672 * Take a reference to root group which we never drop. This is just
3673 * to make sure that cfq_put_cfqg() does not try to kfree root group
3674 */
3675 atomic_set(&cfqg->ref, 1);
3676 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3677 0);
3678 #endif
3679 /*
3680 * Not strictly needed (since RB_ROOT just clears the node and we
3681 * zeroed cfqd on alloc), but better be safe in case someone decides
3682 * to add magic to the rb code
3683 */
3684 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3685 cfqd->prio_trees[i] = RB_ROOT;
3686
3687 /*
3688 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3689 * Grab a permanent reference to it, so that the normal code flow
3690 * will not attempt to free it.
3691 */
3692 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3693 atomic_inc(&cfqd->oom_cfqq.ref);
3694 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3695
3696 INIT_LIST_HEAD(&cfqd->cic_list);
3697
3698 cfqd->queue = q;
3699
3700 init_timer(&cfqd->idle_slice_timer);
3701 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3702 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3703
3704 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3705
3706 cfqd->cfq_quantum = cfq_quantum;
3707 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3708 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3709 cfqd->cfq_back_max = cfq_back_max;
3710 cfqd->cfq_back_penalty = cfq_back_penalty;
3711 cfqd->cfq_slice[0] = cfq_slice_async;
3712 cfqd->cfq_slice[1] = cfq_slice_sync;
3713 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3714 cfqd->cfq_slice_idle = cfq_slice_idle;
3715 cfqd->cfq_latency = 1;
3716 cfqd->cfq_group_isolation = 0;
3717 cfqd->hw_tag = -1;
3718 /*
3719 * we optimistically start assuming sync ops weren't delayed in last
3720 * second, in order to have larger depth for async operations.
3721 */
3722 cfqd->last_delayed_sync = jiffies - HZ;
3723 INIT_RCU_HEAD(&cfqd->rcu);
3724 return cfqd;
3725 }
3726
3727 static void cfq_slab_kill(void)
3728 {
3729 /*
3730 * Caller already ensured that pending RCU callbacks are completed,
3731 * so we should have no busy allocations at this point.
3732 */
3733 if (cfq_pool)
3734 kmem_cache_destroy(cfq_pool);
3735 if (cfq_ioc_pool)
3736 kmem_cache_destroy(cfq_ioc_pool);
3737 }
3738
3739 static int __init cfq_slab_setup(void)
3740 {
3741 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3742 if (!cfq_pool)
3743 goto fail;
3744
3745 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3746 if (!cfq_ioc_pool)
3747 goto fail;
3748
3749 return 0;
3750 fail:
3751 cfq_slab_kill();
3752 return -ENOMEM;
3753 }
3754
3755 /*
3756 * sysfs parts below -->
3757 */
3758 static ssize_t
3759 cfq_var_show(unsigned int var, char *page)
3760 {
3761 return sprintf(page, "%d\n", var);
3762 }
3763
3764 static ssize_t
3765 cfq_var_store(unsigned int *var, const char *page, size_t count)
3766 {
3767 char *p = (char *) page;
3768
3769 *var = simple_strtoul(p, &p, 10);
3770 return count;
3771 }
3772
3773 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3774 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3775 { \
3776 struct cfq_data *cfqd = e->elevator_data; \
3777 unsigned int __data = __VAR; \
3778 if (__CONV) \
3779 __data = jiffies_to_msecs(__data); \
3780 return cfq_var_show(__data, (page)); \
3781 }
3782 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3783 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3784 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3785 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3786 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3787 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3788 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3789 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3790 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3791 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3792 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3793 #undef SHOW_FUNCTION
3794
3795 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3796 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3797 { \
3798 struct cfq_data *cfqd = e->elevator_data; \
3799 unsigned int __data; \
3800 int ret = cfq_var_store(&__data, (page), count); \
3801 if (__data < (MIN)) \
3802 __data = (MIN); \
3803 else if (__data > (MAX)) \
3804 __data = (MAX); \
3805 if (__CONV) \
3806 *(__PTR) = msecs_to_jiffies(__data); \
3807 else \
3808 *(__PTR) = __data; \
3809 return ret; \
3810 }
3811 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3812 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3813 UINT_MAX, 1);
3814 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3815 UINT_MAX, 1);
3816 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3817 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3818 UINT_MAX, 0);
3819 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3820 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3821 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3822 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3823 UINT_MAX, 0);
3824 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3825 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3826 #undef STORE_FUNCTION
3827
3828 #define CFQ_ATTR(name) \
3829 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3830
3831 static struct elv_fs_entry cfq_attrs[] = {
3832 CFQ_ATTR(quantum),
3833 CFQ_ATTR(fifo_expire_sync),
3834 CFQ_ATTR(fifo_expire_async),
3835 CFQ_ATTR(back_seek_max),
3836 CFQ_ATTR(back_seek_penalty),
3837 CFQ_ATTR(slice_sync),
3838 CFQ_ATTR(slice_async),
3839 CFQ_ATTR(slice_async_rq),
3840 CFQ_ATTR(slice_idle),
3841 CFQ_ATTR(low_latency),
3842 CFQ_ATTR(group_isolation),
3843 __ATTR_NULL
3844 };
3845
3846 static struct elevator_type iosched_cfq = {
3847 .ops = {
3848 .elevator_merge_fn = cfq_merge,
3849 .elevator_merged_fn = cfq_merged_request,
3850 .elevator_merge_req_fn = cfq_merged_requests,
3851 .elevator_allow_merge_fn = cfq_allow_merge,
3852 .elevator_dispatch_fn = cfq_dispatch_requests,
3853 .elevator_add_req_fn = cfq_insert_request,
3854 .elevator_activate_req_fn = cfq_activate_request,
3855 .elevator_deactivate_req_fn = cfq_deactivate_request,
3856 .elevator_queue_empty_fn = cfq_queue_empty,
3857 .elevator_completed_req_fn = cfq_completed_request,
3858 .elevator_former_req_fn = elv_rb_former_request,
3859 .elevator_latter_req_fn = elv_rb_latter_request,
3860 .elevator_set_req_fn = cfq_set_request,
3861 .elevator_put_req_fn = cfq_put_request,
3862 .elevator_may_queue_fn = cfq_may_queue,
3863 .elevator_init_fn = cfq_init_queue,
3864 .elevator_exit_fn = cfq_exit_queue,
3865 .trim = cfq_free_io_context,
3866 },
3867 .elevator_attrs = cfq_attrs,
3868 .elevator_name = "cfq",
3869 .elevator_owner = THIS_MODULE,
3870 };
3871
3872 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3873 static struct blkio_policy_type blkio_policy_cfq = {
3874 .ops = {
3875 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3876 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3877 },
3878 };
3879 #else
3880 static struct blkio_policy_type blkio_policy_cfq;
3881 #endif
3882
3883 static int __init cfq_init(void)
3884 {
3885 /*
3886 * could be 0 on HZ < 1000 setups
3887 */
3888 if (!cfq_slice_async)
3889 cfq_slice_async = 1;
3890 if (!cfq_slice_idle)
3891 cfq_slice_idle = 1;
3892
3893 if (cfq_slab_setup())
3894 return -ENOMEM;
3895
3896 elv_register(&iosched_cfq);
3897 blkio_policy_register(&blkio_policy_cfq);
3898
3899 return 0;
3900 }
3901
3902 static void __exit cfq_exit(void)
3903 {
3904 DECLARE_COMPLETION_ONSTACK(all_gone);
3905 blkio_policy_unregister(&blkio_policy_cfq);
3906 elv_unregister(&iosched_cfq);
3907 ioc_gone = &all_gone;
3908 /* ioc_gone's update must be visible before reading ioc_count */
3909 smp_wmb();
3910
3911 /*
3912 * this also protects us from entering cfq_slab_kill() with
3913 * pending RCU callbacks
3914 */
3915 if (elv_ioc_count_read(cfq_ioc_count))
3916 wait_for_completion(&all_gone);
3917 cfq_slab_kill();
3918 }
3919
3920 module_init(cfq_init);
3921 module_exit(cfq_exit);
3922
3923 MODULE_AUTHOR("Jens Axboe");
3924 MODULE_LICENSE("GPL");
3925 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");