]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/cfq-iosched.c
block: remove elevator_queue->ops
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk.h"
18 #include "cfq.h"
19
20 /*
21 * tunables
22 */
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const int cfq_slice_sync = HZ / 10;
31 static int cfq_slice_async = HZ / 25;
32 static const int cfq_slice_async_rq = 2;
33 static int cfq_slice_idle = HZ / 125;
34 static int cfq_group_idle = HZ / 125;
35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
37
38 /*
39 * offset from end of service tree
40 */
41 #define CFQ_IDLE_DELAY (HZ / 5)
42
43 /*
44 * below this threshold, we consider thinktime immediate
45 */
46 #define CFQ_MIN_TT (2)
47
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
51
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56
57 #define RQ_CIC(rq) \
58 ((struct cfq_io_context *) (rq)->elevator_private[0])
59 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
60 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
61
62 static struct kmem_cache *cfq_pool;
63 static struct kmem_cache *cfq_ioc_pool;
64
65 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
66 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
67 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
68
69 #define sample_valid(samples) ((samples) > 80)
70 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
71
72 /*
73 * Most of our rbtree usage is for sorting with min extraction, so
74 * if we cache the leftmost node we don't have to walk down the tree
75 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
76 * move this into the elevator for the rq sorting as well.
77 */
78 struct cfq_rb_root {
79 struct rb_root rb;
80 struct rb_node *left;
81 unsigned count;
82 unsigned total_weight;
83 u64 min_vdisktime;
84 struct cfq_ttime ttime;
85 };
86 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
87 .ttime = {.last_end_request = jiffies,},}
88
89 /*
90 * Per process-grouping structure
91 */
92 struct cfq_queue {
93 /* reference count */
94 int ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
117
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
120 unsigned int allocated_slice;
121 unsigned int slice_dispatch;
122 /* time when first request from queue completed and slice started. */
123 unsigned long slice_start;
124 unsigned long slice_end;
125 long slice_resid;
126
127 /* pending priority requests */
128 int prio_pending;
129 /* number of requests that are on the dispatch list or inside driver */
130 int dispatched;
131
132 /* io prio of this group */
133 unsigned short ioprio, org_ioprio;
134 unsigned short ioprio_class;
135
136 pid_t pid;
137
138 u32 seek_history;
139 sector_t last_request_pos;
140
141 struct cfq_rb_root *service_tree;
142 struct cfq_queue *new_cfqq;
143 struct cfq_group *cfqg;
144 /* Number of sectors dispatched from queue in single dispatch round */
145 unsigned long nr_sectors;
146 };
147
148 /*
149 * First index in the service_trees.
150 * IDLE is handled separately, so it has negative index
151 */
152 enum wl_prio_t {
153 BE_WORKLOAD = 0,
154 RT_WORKLOAD = 1,
155 IDLE_WORKLOAD = 2,
156 CFQ_PRIO_NR,
157 };
158
159 /*
160 * Second index in the service_trees.
161 */
162 enum wl_type_t {
163 ASYNC_WORKLOAD = 0,
164 SYNC_NOIDLE_WORKLOAD = 1,
165 SYNC_WORKLOAD = 2
166 };
167
168 /* This is per cgroup per device grouping structure */
169 struct cfq_group {
170 /* group service_tree member */
171 struct rb_node rb_node;
172
173 /* group service_tree key */
174 u64 vdisktime;
175 unsigned int weight;
176 unsigned int new_weight;
177 bool needs_update;
178
179 /* number of cfqq currently on this group */
180 int nr_cfqq;
181
182 /*
183 * Per group busy queues average. Useful for workload slice calc. We
184 * create the array for each prio class but at run time it is used
185 * only for RT and BE class and slot for IDLE class remains unused.
186 * This is primarily done to avoid confusion and a gcc warning.
187 */
188 unsigned int busy_queues_avg[CFQ_PRIO_NR];
189 /*
190 * rr lists of queues with requests. We maintain service trees for
191 * RT and BE classes. These trees are subdivided in subclasses
192 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
193 * class there is no subclassification and all the cfq queues go on
194 * a single tree service_tree_idle.
195 * Counts are embedded in the cfq_rb_root
196 */
197 struct cfq_rb_root service_trees[2][3];
198 struct cfq_rb_root service_tree_idle;
199
200 unsigned long saved_workload_slice;
201 enum wl_type_t saved_workload;
202 enum wl_prio_t saved_serving_prio;
203 struct blkio_group blkg;
204 #ifdef CONFIG_CFQ_GROUP_IOSCHED
205 struct hlist_node cfqd_node;
206 int ref;
207 #endif
208 /* number of requests that are on the dispatch list or inside driver */
209 int dispatched;
210 struct cfq_ttime ttime;
211 };
212
213 /*
214 * Per block device queue structure
215 */
216 struct cfq_data {
217 struct request_queue *queue;
218 /* Root service tree for cfq_groups */
219 struct cfq_rb_root grp_service_tree;
220 struct cfq_group root_group;
221
222 /*
223 * The priority currently being served
224 */
225 enum wl_prio_t serving_prio;
226 enum wl_type_t serving_type;
227 unsigned long workload_expires;
228 struct cfq_group *serving_group;
229
230 /*
231 * Each priority tree is sorted by next_request position. These
232 * trees are used when determining if two or more queues are
233 * interleaving requests (see cfq_close_cooperator).
234 */
235 struct rb_root prio_trees[CFQ_PRIO_LISTS];
236
237 unsigned int busy_queues;
238 unsigned int busy_sync_queues;
239
240 int rq_in_driver;
241 int rq_in_flight[2];
242
243 /*
244 * queue-depth detection
245 */
246 int rq_queued;
247 int hw_tag;
248 /*
249 * hw_tag can be
250 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
251 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
252 * 0 => no NCQ
253 */
254 int hw_tag_est_depth;
255 unsigned int hw_tag_samples;
256
257 /*
258 * idle window management
259 */
260 struct timer_list idle_slice_timer;
261 struct work_struct unplug_work;
262
263 struct cfq_queue *active_queue;
264 struct cfq_io_context *active_cic;
265
266 /*
267 * async queue for each priority case
268 */
269 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
270 struct cfq_queue *async_idle_cfqq;
271
272 sector_t last_position;
273
274 /*
275 * tunables, see top of file
276 */
277 unsigned int cfq_quantum;
278 unsigned int cfq_fifo_expire[2];
279 unsigned int cfq_back_penalty;
280 unsigned int cfq_back_max;
281 unsigned int cfq_slice[2];
282 unsigned int cfq_slice_async_rq;
283 unsigned int cfq_slice_idle;
284 unsigned int cfq_group_idle;
285 unsigned int cfq_latency;
286
287 struct list_head cic_list;
288
289 /*
290 * Fallback dummy cfqq for extreme OOM conditions
291 */
292 struct cfq_queue oom_cfqq;
293
294 unsigned long last_delayed_sync;
295
296 /* List of cfq groups being managed on this device*/
297 struct hlist_head cfqg_list;
298
299 /* Number of groups which are on blkcg->blkg_list */
300 unsigned int nr_blkcg_linked_grps;
301 };
302
303 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
304
305 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
306 enum wl_prio_t prio,
307 enum wl_type_t type)
308 {
309 if (!cfqg)
310 return NULL;
311
312 if (prio == IDLE_WORKLOAD)
313 return &cfqg->service_tree_idle;
314
315 return &cfqg->service_trees[prio][type];
316 }
317
318 enum cfqq_state_flags {
319 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
320 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
321 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
322 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
323 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
324 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
325 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
326 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
327 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
328 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
329 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
330 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
331 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
332 };
333
334 #define CFQ_CFQQ_FNS(name) \
335 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
336 { \
337 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
338 } \
339 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
340 { \
341 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
342 } \
343 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
344 { \
345 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
346 }
347
348 CFQ_CFQQ_FNS(on_rr);
349 CFQ_CFQQ_FNS(wait_request);
350 CFQ_CFQQ_FNS(must_dispatch);
351 CFQ_CFQQ_FNS(must_alloc_slice);
352 CFQ_CFQQ_FNS(fifo_expire);
353 CFQ_CFQQ_FNS(idle_window);
354 CFQ_CFQQ_FNS(prio_changed);
355 CFQ_CFQQ_FNS(slice_new);
356 CFQ_CFQQ_FNS(sync);
357 CFQ_CFQQ_FNS(coop);
358 CFQ_CFQQ_FNS(split_coop);
359 CFQ_CFQQ_FNS(deep);
360 CFQ_CFQQ_FNS(wait_busy);
361 #undef CFQ_CFQQ_FNS
362
363 #ifdef CONFIG_CFQ_GROUP_IOSCHED
364 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
365 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
366 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
367 blkg_path(&(cfqq)->cfqg->blkg), ##args)
368
369 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
370 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
371 blkg_path(&(cfqg)->blkg), ##args) \
372
373 #else
374 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
375 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
376 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
377 #endif
378 #define cfq_log(cfqd, fmt, args...) \
379 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
380
381 /* Traverses through cfq group service trees */
382 #define for_each_cfqg_st(cfqg, i, j, st) \
383 for (i = 0; i <= IDLE_WORKLOAD; i++) \
384 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
385 : &cfqg->service_tree_idle; \
386 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
387 (i == IDLE_WORKLOAD && j == 0); \
388 j++, st = i < IDLE_WORKLOAD ? \
389 &cfqg->service_trees[i][j]: NULL) \
390
391 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
392 struct cfq_ttime *ttime, bool group_idle)
393 {
394 unsigned long slice;
395 if (!sample_valid(ttime->ttime_samples))
396 return false;
397 if (group_idle)
398 slice = cfqd->cfq_group_idle;
399 else
400 slice = cfqd->cfq_slice_idle;
401 return ttime->ttime_mean > slice;
402 }
403
404 static inline bool iops_mode(struct cfq_data *cfqd)
405 {
406 /*
407 * If we are not idling on queues and it is a NCQ drive, parallel
408 * execution of requests is on and measuring time is not possible
409 * in most of the cases until and unless we drive shallower queue
410 * depths and that becomes a performance bottleneck. In such cases
411 * switch to start providing fairness in terms of number of IOs.
412 */
413 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
414 return true;
415 else
416 return false;
417 }
418
419 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
420 {
421 if (cfq_class_idle(cfqq))
422 return IDLE_WORKLOAD;
423 if (cfq_class_rt(cfqq))
424 return RT_WORKLOAD;
425 return BE_WORKLOAD;
426 }
427
428
429 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
430 {
431 if (!cfq_cfqq_sync(cfqq))
432 return ASYNC_WORKLOAD;
433 if (!cfq_cfqq_idle_window(cfqq))
434 return SYNC_NOIDLE_WORKLOAD;
435 return SYNC_WORKLOAD;
436 }
437
438 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
439 struct cfq_data *cfqd,
440 struct cfq_group *cfqg)
441 {
442 if (wl == IDLE_WORKLOAD)
443 return cfqg->service_tree_idle.count;
444
445 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
446 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
447 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
448 }
449
450 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
451 struct cfq_group *cfqg)
452 {
453 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
454 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
455 }
456
457 static void cfq_dispatch_insert(struct request_queue *, struct request *);
458 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
459 struct io_context *, gfp_t);
460 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
461 struct io_context *);
462
463 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
464 bool is_sync)
465 {
466 return cic->cfqq[is_sync];
467 }
468
469 static inline void cic_set_cfqq(struct cfq_io_context *cic,
470 struct cfq_queue *cfqq, bool is_sync)
471 {
472 cic->cfqq[is_sync] = cfqq;
473 }
474
475 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
476 {
477 return cic->q->elevator->elevator_data;
478 }
479
480 /*
481 * We regard a request as SYNC, if it's either a read or has the SYNC bit
482 * set (in which case it could also be direct WRITE).
483 */
484 static inline bool cfq_bio_sync(struct bio *bio)
485 {
486 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
487 }
488
489 /*
490 * scheduler run of queue, if there are requests pending and no one in the
491 * driver that will restart queueing
492 */
493 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
494 {
495 if (cfqd->busy_queues) {
496 cfq_log(cfqd, "schedule dispatch");
497 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
498 }
499 }
500
501 /*
502 * Scale schedule slice based on io priority. Use the sync time slice only
503 * if a queue is marked sync and has sync io queued. A sync queue with async
504 * io only, should not get full sync slice length.
505 */
506 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
507 unsigned short prio)
508 {
509 const int base_slice = cfqd->cfq_slice[sync];
510
511 WARN_ON(prio >= IOPRIO_BE_NR);
512
513 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
514 }
515
516 static inline int
517 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
518 {
519 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
520 }
521
522 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
523 {
524 u64 d = delta << CFQ_SERVICE_SHIFT;
525
526 d = d * BLKIO_WEIGHT_DEFAULT;
527 do_div(d, cfqg->weight);
528 return d;
529 }
530
531 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
532 {
533 s64 delta = (s64)(vdisktime - min_vdisktime);
534 if (delta > 0)
535 min_vdisktime = vdisktime;
536
537 return min_vdisktime;
538 }
539
540 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
541 {
542 s64 delta = (s64)(vdisktime - min_vdisktime);
543 if (delta < 0)
544 min_vdisktime = vdisktime;
545
546 return min_vdisktime;
547 }
548
549 static void update_min_vdisktime(struct cfq_rb_root *st)
550 {
551 struct cfq_group *cfqg;
552
553 if (st->left) {
554 cfqg = rb_entry_cfqg(st->left);
555 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
556 cfqg->vdisktime);
557 }
558 }
559
560 /*
561 * get averaged number of queues of RT/BE priority.
562 * average is updated, with a formula that gives more weight to higher numbers,
563 * to quickly follows sudden increases and decrease slowly
564 */
565
566 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
567 struct cfq_group *cfqg, bool rt)
568 {
569 unsigned min_q, max_q;
570 unsigned mult = cfq_hist_divisor - 1;
571 unsigned round = cfq_hist_divisor / 2;
572 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
573
574 min_q = min(cfqg->busy_queues_avg[rt], busy);
575 max_q = max(cfqg->busy_queues_avg[rt], busy);
576 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
577 cfq_hist_divisor;
578 return cfqg->busy_queues_avg[rt];
579 }
580
581 static inline unsigned
582 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
583 {
584 struct cfq_rb_root *st = &cfqd->grp_service_tree;
585
586 return cfq_target_latency * cfqg->weight / st->total_weight;
587 }
588
589 static inline unsigned
590 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
591 {
592 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
593 if (cfqd->cfq_latency) {
594 /*
595 * interested queues (we consider only the ones with the same
596 * priority class in the cfq group)
597 */
598 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
599 cfq_class_rt(cfqq));
600 unsigned sync_slice = cfqd->cfq_slice[1];
601 unsigned expect_latency = sync_slice * iq;
602 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
603
604 if (expect_latency > group_slice) {
605 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
606 /* scale low_slice according to IO priority
607 * and sync vs async */
608 unsigned low_slice =
609 min(slice, base_low_slice * slice / sync_slice);
610 /* the adapted slice value is scaled to fit all iqs
611 * into the target latency */
612 slice = max(slice * group_slice / expect_latency,
613 low_slice);
614 }
615 }
616 return slice;
617 }
618
619 static inline void
620 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
621 {
622 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
623
624 cfqq->slice_start = jiffies;
625 cfqq->slice_end = jiffies + slice;
626 cfqq->allocated_slice = slice;
627 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
628 }
629
630 /*
631 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
632 * isn't valid until the first request from the dispatch is activated
633 * and the slice time set.
634 */
635 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
636 {
637 if (cfq_cfqq_slice_new(cfqq))
638 return false;
639 if (time_before(jiffies, cfqq->slice_end))
640 return false;
641
642 return true;
643 }
644
645 /*
646 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
647 * We choose the request that is closest to the head right now. Distance
648 * behind the head is penalized and only allowed to a certain extent.
649 */
650 static struct request *
651 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
652 {
653 sector_t s1, s2, d1 = 0, d2 = 0;
654 unsigned long back_max;
655 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
656 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
657 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
658
659 if (rq1 == NULL || rq1 == rq2)
660 return rq2;
661 if (rq2 == NULL)
662 return rq1;
663
664 if (rq_is_sync(rq1) != rq_is_sync(rq2))
665 return rq_is_sync(rq1) ? rq1 : rq2;
666
667 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
668 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
669
670 s1 = blk_rq_pos(rq1);
671 s2 = blk_rq_pos(rq2);
672
673 /*
674 * by definition, 1KiB is 2 sectors
675 */
676 back_max = cfqd->cfq_back_max * 2;
677
678 /*
679 * Strict one way elevator _except_ in the case where we allow
680 * short backward seeks which are biased as twice the cost of a
681 * similar forward seek.
682 */
683 if (s1 >= last)
684 d1 = s1 - last;
685 else if (s1 + back_max >= last)
686 d1 = (last - s1) * cfqd->cfq_back_penalty;
687 else
688 wrap |= CFQ_RQ1_WRAP;
689
690 if (s2 >= last)
691 d2 = s2 - last;
692 else if (s2 + back_max >= last)
693 d2 = (last - s2) * cfqd->cfq_back_penalty;
694 else
695 wrap |= CFQ_RQ2_WRAP;
696
697 /* Found required data */
698
699 /*
700 * By doing switch() on the bit mask "wrap" we avoid having to
701 * check two variables for all permutations: --> faster!
702 */
703 switch (wrap) {
704 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
705 if (d1 < d2)
706 return rq1;
707 else if (d2 < d1)
708 return rq2;
709 else {
710 if (s1 >= s2)
711 return rq1;
712 else
713 return rq2;
714 }
715
716 case CFQ_RQ2_WRAP:
717 return rq1;
718 case CFQ_RQ1_WRAP:
719 return rq2;
720 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
721 default:
722 /*
723 * Since both rqs are wrapped,
724 * start with the one that's further behind head
725 * (--> only *one* back seek required),
726 * since back seek takes more time than forward.
727 */
728 if (s1 <= s2)
729 return rq1;
730 else
731 return rq2;
732 }
733 }
734
735 /*
736 * The below is leftmost cache rbtree addon
737 */
738 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
739 {
740 /* Service tree is empty */
741 if (!root->count)
742 return NULL;
743
744 if (!root->left)
745 root->left = rb_first(&root->rb);
746
747 if (root->left)
748 return rb_entry(root->left, struct cfq_queue, rb_node);
749
750 return NULL;
751 }
752
753 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
754 {
755 if (!root->left)
756 root->left = rb_first(&root->rb);
757
758 if (root->left)
759 return rb_entry_cfqg(root->left);
760
761 return NULL;
762 }
763
764 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
765 {
766 rb_erase(n, root);
767 RB_CLEAR_NODE(n);
768 }
769
770 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
771 {
772 if (root->left == n)
773 root->left = NULL;
774 rb_erase_init(n, &root->rb);
775 --root->count;
776 }
777
778 /*
779 * would be nice to take fifo expire time into account as well
780 */
781 static struct request *
782 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
783 struct request *last)
784 {
785 struct rb_node *rbnext = rb_next(&last->rb_node);
786 struct rb_node *rbprev = rb_prev(&last->rb_node);
787 struct request *next = NULL, *prev = NULL;
788
789 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
790
791 if (rbprev)
792 prev = rb_entry_rq(rbprev);
793
794 if (rbnext)
795 next = rb_entry_rq(rbnext);
796 else {
797 rbnext = rb_first(&cfqq->sort_list);
798 if (rbnext && rbnext != &last->rb_node)
799 next = rb_entry_rq(rbnext);
800 }
801
802 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
803 }
804
805 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
806 struct cfq_queue *cfqq)
807 {
808 /*
809 * just an approximation, should be ok.
810 */
811 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
812 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
813 }
814
815 static inline s64
816 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
817 {
818 return cfqg->vdisktime - st->min_vdisktime;
819 }
820
821 static void
822 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
823 {
824 struct rb_node **node = &st->rb.rb_node;
825 struct rb_node *parent = NULL;
826 struct cfq_group *__cfqg;
827 s64 key = cfqg_key(st, cfqg);
828 int left = 1;
829
830 while (*node != NULL) {
831 parent = *node;
832 __cfqg = rb_entry_cfqg(parent);
833
834 if (key < cfqg_key(st, __cfqg))
835 node = &parent->rb_left;
836 else {
837 node = &parent->rb_right;
838 left = 0;
839 }
840 }
841
842 if (left)
843 st->left = &cfqg->rb_node;
844
845 rb_link_node(&cfqg->rb_node, parent, node);
846 rb_insert_color(&cfqg->rb_node, &st->rb);
847 }
848
849 static void
850 cfq_update_group_weight(struct cfq_group *cfqg)
851 {
852 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
853 if (cfqg->needs_update) {
854 cfqg->weight = cfqg->new_weight;
855 cfqg->needs_update = false;
856 }
857 }
858
859 static void
860 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
861 {
862 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
863
864 cfq_update_group_weight(cfqg);
865 __cfq_group_service_tree_add(st, cfqg);
866 st->total_weight += cfqg->weight;
867 }
868
869 static void
870 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
871 {
872 struct cfq_rb_root *st = &cfqd->grp_service_tree;
873 struct cfq_group *__cfqg;
874 struct rb_node *n;
875
876 cfqg->nr_cfqq++;
877 if (!RB_EMPTY_NODE(&cfqg->rb_node))
878 return;
879
880 /*
881 * Currently put the group at the end. Later implement something
882 * so that groups get lesser vtime based on their weights, so that
883 * if group does not loose all if it was not continuously backlogged.
884 */
885 n = rb_last(&st->rb);
886 if (n) {
887 __cfqg = rb_entry_cfqg(n);
888 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
889 } else
890 cfqg->vdisktime = st->min_vdisktime;
891 cfq_group_service_tree_add(st, cfqg);
892 }
893
894 static void
895 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
896 {
897 st->total_weight -= cfqg->weight;
898 if (!RB_EMPTY_NODE(&cfqg->rb_node))
899 cfq_rb_erase(&cfqg->rb_node, st);
900 }
901
902 static void
903 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
904 {
905 struct cfq_rb_root *st = &cfqd->grp_service_tree;
906
907 BUG_ON(cfqg->nr_cfqq < 1);
908 cfqg->nr_cfqq--;
909
910 /* If there are other cfq queues under this group, don't delete it */
911 if (cfqg->nr_cfqq)
912 return;
913
914 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
915 cfq_group_service_tree_del(st, cfqg);
916 cfqg->saved_workload_slice = 0;
917 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
918 }
919
920 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
921 unsigned int *unaccounted_time)
922 {
923 unsigned int slice_used;
924
925 /*
926 * Queue got expired before even a single request completed or
927 * got expired immediately after first request completion.
928 */
929 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
930 /*
931 * Also charge the seek time incurred to the group, otherwise
932 * if there are mutiple queues in the group, each can dispatch
933 * a single request on seeky media and cause lots of seek time
934 * and group will never know it.
935 */
936 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
937 1);
938 } else {
939 slice_used = jiffies - cfqq->slice_start;
940 if (slice_used > cfqq->allocated_slice) {
941 *unaccounted_time = slice_used - cfqq->allocated_slice;
942 slice_used = cfqq->allocated_slice;
943 }
944 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
945 *unaccounted_time += cfqq->slice_start -
946 cfqq->dispatch_start;
947 }
948
949 return slice_used;
950 }
951
952 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
953 struct cfq_queue *cfqq)
954 {
955 struct cfq_rb_root *st = &cfqd->grp_service_tree;
956 unsigned int used_sl, charge, unaccounted_sl = 0;
957 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
958 - cfqg->service_tree_idle.count;
959
960 BUG_ON(nr_sync < 0);
961 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
962
963 if (iops_mode(cfqd))
964 charge = cfqq->slice_dispatch;
965 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
966 charge = cfqq->allocated_slice;
967
968 /* Can't update vdisktime while group is on service tree */
969 cfq_group_service_tree_del(st, cfqg);
970 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
971 /* If a new weight was requested, update now, off tree */
972 cfq_group_service_tree_add(st, cfqg);
973
974 /* This group is being expired. Save the context */
975 if (time_after(cfqd->workload_expires, jiffies)) {
976 cfqg->saved_workload_slice = cfqd->workload_expires
977 - jiffies;
978 cfqg->saved_workload = cfqd->serving_type;
979 cfqg->saved_serving_prio = cfqd->serving_prio;
980 } else
981 cfqg->saved_workload_slice = 0;
982
983 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
984 st->min_vdisktime);
985 cfq_log_cfqq(cfqq->cfqd, cfqq,
986 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
987 used_sl, cfqq->slice_dispatch, charge,
988 iops_mode(cfqd), cfqq->nr_sectors);
989 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
990 unaccounted_sl);
991 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
992 }
993
994 #ifdef CONFIG_CFQ_GROUP_IOSCHED
995 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
996 {
997 if (blkg)
998 return container_of(blkg, struct cfq_group, blkg);
999 return NULL;
1000 }
1001
1002 static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1003 unsigned int weight)
1004 {
1005 struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1006 cfqg->new_weight = weight;
1007 cfqg->needs_update = true;
1008 }
1009
1010 static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1011 struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
1012 {
1013 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1014 unsigned int major, minor;
1015
1016 /*
1017 * Add group onto cgroup list. It might happen that bdi->dev is
1018 * not initialized yet. Initialize this new group without major
1019 * and minor info and this info will be filled in once a new thread
1020 * comes for IO.
1021 */
1022 if (bdi->dev) {
1023 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1024 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1025 (void *)cfqd, MKDEV(major, minor));
1026 } else
1027 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1028 (void *)cfqd, 0);
1029
1030 cfqd->nr_blkcg_linked_grps++;
1031 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1032
1033 /* Add group on cfqd list */
1034 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1035 }
1036
1037 /*
1038 * Should be called from sleepable context. No request queue lock as per
1039 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1040 * from sleepable context.
1041 */
1042 static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1043 {
1044 struct cfq_group *cfqg = NULL;
1045 int i, j, ret;
1046 struct cfq_rb_root *st;
1047
1048 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1049 if (!cfqg)
1050 return NULL;
1051
1052 for_each_cfqg_st(cfqg, i, j, st)
1053 *st = CFQ_RB_ROOT;
1054 RB_CLEAR_NODE(&cfqg->rb_node);
1055
1056 cfqg->ttime.last_end_request = jiffies;
1057
1058 /*
1059 * Take the initial reference that will be released on destroy
1060 * This can be thought of a joint reference by cgroup and
1061 * elevator which will be dropped by either elevator exit
1062 * or cgroup deletion path depending on who is exiting first.
1063 */
1064 cfqg->ref = 1;
1065
1066 ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1067 if (ret) {
1068 kfree(cfqg);
1069 return NULL;
1070 }
1071
1072 return cfqg;
1073 }
1074
1075 static struct cfq_group *
1076 cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1077 {
1078 struct cfq_group *cfqg = NULL;
1079 void *key = cfqd;
1080 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1081 unsigned int major, minor;
1082
1083 /*
1084 * This is the common case when there are no blkio cgroups.
1085 * Avoid lookup in this case
1086 */
1087 if (blkcg == &blkio_root_cgroup)
1088 cfqg = &cfqd->root_group;
1089 else
1090 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1091
1092 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1093 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1094 cfqg->blkg.dev = MKDEV(major, minor);
1095 }
1096
1097 return cfqg;
1098 }
1099
1100 /*
1101 * Search for the cfq group current task belongs to. request_queue lock must
1102 * be held.
1103 */
1104 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1105 {
1106 struct blkio_cgroup *blkcg;
1107 struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1108 struct request_queue *q = cfqd->queue;
1109
1110 rcu_read_lock();
1111 blkcg = task_blkio_cgroup(current);
1112 cfqg = cfq_find_cfqg(cfqd, blkcg);
1113 if (cfqg) {
1114 rcu_read_unlock();
1115 return cfqg;
1116 }
1117
1118 /*
1119 * Need to allocate a group. Allocation of group also needs allocation
1120 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1121 * we need to drop rcu lock and queue_lock before we call alloc.
1122 *
1123 * Not taking any queue reference here and assuming that queue is
1124 * around by the time we return. CFQ queue allocation code does
1125 * the same. It might be racy though.
1126 */
1127
1128 rcu_read_unlock();
1129 spin_unlock_irq(q->queue_lock);
1130
1131 cfqg = cfq_alloc_cfqg(cfqd);
1132
1133 spin_lock_irq(q->queue_lock);
1134
1135 rcu_read_lock();
1136 blkcg = task_blkio_cgroup(current);
1137
1138 /*
1139 * If some other thread already allocated the group while we were
1140 * not holding queue lock, free up the group
1141 */
1142 __cfqg = cfq_find_cfqg(cfqd, blkcg);
1143
1144 if (__cfqg) {
1145 kfree(cfqg);
1146 rcu_read_unlock();
1147 return __cfqg;
1148 }
1149
1150 if (!cfqg)
1151 cfqg = &cfqd->root_group;
1152
1153 cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
1154 rcu_read_unlock();
1155 return cfqg;
1156 }
1157
1158 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1159 {
1160 cfqg->ref++;
1161 return cfqg;
1162 }
1163
1164 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1165 {
1166 /* Currently, all async queues are mapped to root group */
1167 if (!cfq_cfqq_sync(cfqq))
1168 cfqg = &cfqq->cfqd->root_group;
1169
1170 cfqq->cfqg = cfqg;
1171 /* cfqq reference on cfqg */
1172 cfqq->cfqg->ref++;
1173 }
1174
1175 static void cfq_put_cfqg(struct cfq_group *cfqg)
1176 {
1177 struct cfq_rb_root *st;
1178 int i, j;
1179
1180 BUG_ON(cfqg->ref <= 0);
1181 cfqg->ref--;
1182 if (cfqg->ref)
1183 return;
1184 for_each_cfqg_st(cfqg, i, j, st)
1185 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1186 free_percpu(cfqg->blkg.stats_cpu);
1187 kfree(cfqg);
1188 }
1189
1190 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1191 {
1192 /* Something wrong if we are trying to remove same group twice */
1193 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1194
1195 hlist_del_init(&cfqg->cfqd_node);
1196
1197 BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
1198 cfqd->nr_blkcg_linked_grps--;
1199
1200 /*
1201 * Put the reference taken at the time of creation so that when all
1202 * queues are gone, group can be destroyed.
1203 */
1204 cfq_put_cfqg(cfqg);
1205 }
1206
1207 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1208 {
1209 struct hlist_node *pos, *n;
1210 struct cfq_group *cfqg;
1211
1212 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1213 /*
1214 * If cgroup removal path got to blk_group first and removed
1215 * it from cgroup list, then it will take care of destroying
1216 * cfqg also.
1217 */
1218 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1219 cfq_destroy_cfqg(cfqd, cfqg);
1220 }
1221 }
1222
1223 /*
1224 * Blk cgroup controller notification saying that blkio_group object is being
1225 * delinked as associated cgroup object is going away. That also means that
1226 * no new IO will come in this group. So get rid of this group as soon as
1227 * any pending IO in the group is finished.
1228 *
1229 * This function is called under rcu_read_lock(). key is the rcu protected
1230 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1231 * read lock.
1232 *
1233 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1234 * it should not be NULL as even if elevator was exiting, cgroup deltion
1235 * path got to it first.
1236 */
1237 static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1238 {
1239 unsigned long flags;
1240 struct cfq_data *cfqd = key;
1241
1242 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1243 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1244 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1245 }
1246
1247 #else /* GROUP_IOSCHED */
1248 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1249 {
1250 return &cfqd->root_group;
1251 }
1252
1253 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1254 {
1255 return cfqg;
1256 }
1257
1258 static inline void
1259 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1260 cfqq->cfqg = cfqg;
1261 }
1262
1263 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1264 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1265
1266 #endif /* GROUP_IOSCHED */
1267
1268 /*
1269 * The cfqd->service_trees holds all pending cfq_queue's that have
1270 * requests waiting to be processed. It is sorted in the order that
1271 * we will service the queues.
1272 */
1273 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1274 bool add_front)
1275 {
1276 struct rb_node **p, *parent;
1277 struct cfq_queue *__cfqq;
1278 unsigned long rb_key;
1279 struct cfq_rb_root *service_tree;
1280 int left;
1281 int new_cfqq = 1;
1282
1283 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1284 cfqq_type(cfqq));
1285 if (cfq_class_idle(cfqq)) {
1286 rb_key = CFQ_IDLE_DELAY;
1287 parent = rb_last(&service_tree->rb);
1288 if (parent && parent != &cfqq->rb_node) {
1289 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1290 rb_key += __cfqq->rb_key;
1291 } else
1292 rb_key += jiffies;
1293 } else if (!add_front) {
1294 /*
1295 * Get our rb key offset. Subtract any residual slice
1296 * value carried from last service. A negative resid
1297 * count indicates slice overrun, and this should position
1298 * the next service time further away in the tree.
1299 */
1300 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1301 rb_key -= cfqq->slice_resid;
1302 cfqq->slice_resid = 0;
1303 } else {
1304 rb_key = -HZ;
1305 __cfqq = cfq_rb_first(service_tree);
1306 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1307 }
1308
1309 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1310 new_cfqq = 0;
1311 /*
1312 * same position, nothing more to do
1313 */
1314 if (rb_key == cfqq->rb_key &&
1315 cfqq->service_tree == service_tree)
1316 return;
1317
1318 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1319 cfqq->service_tree = NULL;
1320 }
1321
1322 left = 1;
1323 parent = NULL;
1324 cfqq->service_tree = service_tree;
1325 p = &service_tree->rb.rb_node;
1326 while (*p) {
1327 struct rb_node **n;
1328
1329 parent = *p;
1330 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1331
1332 /*
1333 * sort by key, that represents service time.
1334 */
1335 if (time_before(rb_key, __cfqq->rb_key))
1336 n = &(*p)->rb_left;
1337 else {
1338 n = &(*p)->rb_right;
1339 left = 0;
1340 }
1341
1342 p = n;
1343 }
1344
1345 if (left)
1346 service_tree->left = &cfqq->rb_node;
1347
1348 cfqq->rb_key = rb_key;
1349 rb_link_node(&cfqq->rb_node, parent, p);
1350 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1351 service_tree->count++;
1352 if (add_front || !new_cfqq)
1353 return;
1354 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1355 }
1356
1357 static struct cfq_queue *
1358 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1359 sector_t sector, struct rb_node **ret_parent,
1360 struct rb_node ***rb_link)
1361 {
1362 struct rb_node **p, *parent;
1363 struct cfq_queue *cfqq = NULL;
1364
1365 parent = NULL;
1366 p = &root->rb_node;
1367 while (*p) {
1368 struct rb_node **n;
1369
1370 parent = *p;
1371 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1372
1373 /*
1374 * Sort strictly based on sector. Smallest to the left,
1375 * largest to the right.
1376 */
1377 if (sector > blk_rq_pos(cfqq->next_rq))
1378 n = &(*p)->rb_right;
1379 else if (sector < blk_rq_pos(cfqq->next_rq))
1380 n = &(*p)->rb_left;
1381 else
1382 break;
1383 p = n;
1384 cfqq = NULL;
1385 }
1386
1387 *ret_parent = parent;
1388 if (rb_link)
1389 *rb_link = p;
1390 return cfqq;
1391 }
1392
1393 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1394 {
1395 struct rb_node **p, *parent;
1396 struct cfq_queue *__cfqq;
1397
1398 if (cfqq->p_root) {
1399 rb_erase(&cfqq->p_node, cfqq->p_root);
1400 cfqq->p_root = NULL;
1401 }
1402
1403 if (cfq_class_idle(cfqq))
1404 return;
1405 if (!cfqq->next_rq)
1406 return;
1407
1408 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1409 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1410 blk_rq_pos(cfqq->next_rq), &parent, &p);
1411 if (!__cfqq) {
1412 rb_link_node(&cfqq->p_node, parent, p);
1413 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1414 } else
1415 cfqq->p_root = NULL;
1416 }
1417
1418 /*
1419 * Update cfqq's position in the service tree.
1420 */
1421 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1422 {
1423 /*
1424 * Resorting requires the cfqq to be on the RR list already.
1425 */
1426 if (cfq_cfqq_on_rr(cfqq)) {
1427 cfq_service_tree_add(cfqd, cfqq, 0);
1428 cfq_prio_tree_add(cfqd, cfqq);
1429 }
1430 }
1431
1432 /*
1433 * add to busy list of queues for service, trying to be fair in ordering
1434 * the pending list according to last request service
1435 */
1436 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1437 {
1438 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1439 BUG_ON(cfq_cfqq_on_rr(cfqq));
1440 cfq_mark_cfqq_on_rr(cfqq);
1441 cfqd->busy_queues++;
1442 if (cfq_cfqq_sync(cfqq))
1443 cfqd->busy_sync_queues++;
1444
1445 cfq_resort_rr_list(cfqd, cfqq);
1446 }
1447
1448 /*
1449 * Called when the cfqq no longer has requests pending, remove it from
1450 * the service tree.
1451 */
1452 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1453 {
1454 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1455 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1456 cfq_clear_cfqq_on_rr(cfqq);
1457
1458 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1459 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1460 cfqq->service_tree = NULL;
1461 }
1462 if (cfqq->p_root) {
1463 rb_erase(&cfqq->p_node, cfqq->p_root);
1464 cfqq->p_root = NULL;
1465 }
1466
1467 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1468 BUG_ON(!cfqd->busy_queues);
1469 cfqd->busy_queues--;
1470 if (cfq_cfqq_sync(cfqq))
1471 cfqd->busy_sync_queues--;
1472 }
1473
1474 /*
1475 * rb tree support functions
1476 */
1477 static void cfq_del_rq_rb(struct request *rq)
1478 {
1479 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1480 const int sync = rq_is_sync(rq);
1481
1482 BUG_ON(!cfqq->queued[sync]);
1483 cfqq->queued[sync]--;
1484
1485 elv_rb_del(&cfqq->sort_list, rq);
1486
1487 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1488 /*
1489 * Queue will be deleted from service tree when we actually
1490 * expire it later. Right now just remove it from prio tree
1491 * as it is empty.
1492 */
1493 if (cfqq->p_root) {
1494 rb_erase(&cfqq->p_node, cfqq->p_root);
1495 cfqq->p_root = NULL;
1496 }
1497 }
1498 }
1499
1500 static void cfq_add_rq_rb(struct request *rq)
1501 {
1502 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1503 struct cfq_data *cfqd = cfqq->cfqd;
1504 struct request *prev;
1505
1506 cfqq->queued[rq_is_sync(rq)]++;
1507
1508 elv_rb_add(&cfqq->sort_list, rq);
1509
1510 if (!cfq_cfqq_on_rr(cfqq))
1511 cfq_add_cfqq_rr(cfqd, cfqq);
1512
1513 /*
1514 * check if this request is a better next-serve candidate
1515 */
1516 prev = cfqq->next_rq;
1517 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1518
1519 /*
1520 * adjust priority tree position, if ->next_rq changes
1521 */
1522 if (prev != cfqq->next_rq)
1523 cfq_prio_tree_add(cfqd, cfqq);
1524
1525 BUG_ON(!cfqq->next_rq);
1526 }
1527
1528 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1529 {
1530 elv_rb_del(&cfqq->sort_list, rq);
1531 cfqq->queued[rq_is_sync(rq)]--;
1532 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1533 rq_data_dir(rq), rq_is_sync(rq));
1534 cfq_add_rq_rb(rq);
1535 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1536 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1537 rq_is_sync(rq));
1538 }
1539
1540 static struct request *
1541 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1542 {
1543 struct task_struct *tsk = current;
1544 struct cfq_io_context *cic;
1545 struct cfq_queue *cfqq;
1546
1547 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1548 if (!cic)
1549 return NULL;
1550
1551 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1552 if (cfqq) {
1553 sector_t sector = bio->bi_sector + bio_sectors(bio);
1554
1555 return elv_rb_find(&cfqq->sort_list, sector);
1556 }
1557
1558 return NULL;
1559 }
1560
1561 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1562 {
1563 struct cfq_data *cfqd = q->elevator->elevator_data;
1564
1565 cfqd->rq_in_driver++;
1566 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1567 cfqd->rq_in_driver);
1568
1569 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1570 }
1571
1572 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1573 {
1574 struct cfq_data *cfqd = q->elevator->elevator_data;
1575
1576 WARN_ON(!cfqd->rq_in_driver);
1577 cfqd->rq_in_driver--;
1578 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1579 cfqd->rq_in_driver);
1580 }
1581
1582 static void cfq_remove_request(struct request *rq)
1583 {
1584 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1585
1586 if (cfqq->next_rq == rq)
1587 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1588
1589 list_del_init(&rq->queuelist);
1590 cfq_del_rq_rb(rq);
1591
1592 cfqq->cfqd->rq_queued--;
1593 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1594 rq_data_dir(rq), rq_is_sync(rq));
1595 if (rq->cmd_flags & REQ_PRIO) {
1596 WARN_ON(!cfqq->prio_pending);
1597 cfqq->prio_pending--;
1598 }
1599 }
1600
1601 static int cfq_merge(struct request_queue *q, struct request **req,
1602 struct bio *bio)
1603 {
1604 struct cfq_data *cfqd = q->elevator->elevator_data;
1605 struct request *__rq;
1606
1607 __rq = cfq_find_rq_fmerge(cfqd, bio);
1608 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1609 *req = __rq;
1610 return ELEVATOR_FRONT_MERGE;
1611 }
1612
1613 return ELEVATOR_NO_MERGE;
1614 }
1615
1616 static void cfq_merged_request(struct request_queue *q, struct request *req,
1617 int type)
1618 {
1619 if (type == ELEVATOR_FRONT_MERGE) {
1620 struct cfq_queue *cfqq = RQ_CFQQ(req);
1621
1622 cfq_reposition_rq_rb(cfqq, req);
1623 }
1624 }
1625
1626 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1627 struct bio *bio)
1628 {
1629 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1630 bio_data_dir(bio), cfq_bio_sync(bio));
1631 }
1632
1633 static void
1634 cfq_merged_requests(struct request_queue *q, struct request *rq,
1635 struct request *next)
1636 {
1637 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1638 /*
1639 * reposition in fifo if next is older than rq
1640 */
1641 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1642 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1643 list_move(&rq->queuelist, &next->queuelist);
1644 rq_set_fifo_time(rq, rq_fifo_time(next));
1645 }
1646
1647 if (cfqq->next_rq == next)
1648 cfqq->next_rq = rq;
1649 cfq_remove_request(next);
1650 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1651 rq_data_dir(next), rq_is_sync(next));
1652 }
1653
1654 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1655 struct bio *bio)
1656 {
1657 struct cfq_data *cfqd = q->elevator->elevator_data;
1658 struct cfq_io_context *cic;
1659 struct cfq_queue *cfqq;
1660
1661 /*
1662 * Disallow merge of a sync bio into an async request.
1663 */
1664 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1665 return false;
1666
1667 /*
1668 * Lookup the cfqq that this bio will be queued with and allow
1669 * merge only if rq is queued there. This function can be called
1670 * from plug merge without queue_lock. In such cases, ioc of @rq
1671 * and %current are guaranteed to be equal. Avoid lookup which
1672 * requires queue_lock by using @rq's cic.
1673 */
1674 if (current->io_context == RQ_CIC(rq)->ioc) {
1675 cic = RQ_CIC(rq);
1676 } else {
1677 cic = cfq_cic_lookup(cfqd, current->io_context);
1678 if (!cic)
1679 return false;
1680 }
1681
1682 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1683 return cfqq == RQ_CFQQ(rq);
1684 }
1685
1686 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1687 {
1688 del_timer(&cfqd->idle_slice_timer);
1689 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1690 }
1691
1692 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1693 struct cfq_queue *cfqq)
1694 {
1695 if (cfqq) {
1696 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1697 cfqd->serving_prio, cfqd->serving_type);
1698 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1699 cfqq->slice_start = 0;
1700 cfqq->dispatch_start = jiffies;
1701 cfqq->allocated_slice = 0;
1702 cfqq->slice_end = 0;
1703 cfqq->slice_dispatch = 0;
1704 cfqq->nr_sectors = 0;
1705
1706 cfq_clear_cfqq_wait_request(cfqq);
1707 cfq_clear_cfqq_must_dispatch(cfqq);
1708 cfq_clear_cfqq_must_alloc_slice(cfqq);
1709 cfq_clear_cfqq_fifo_expire(cfqq);
1710 cfq_mark_cfqq_slice_new(cfqq);
1711
1712 cfq_del_timer(cfqd, cfqq);
1713 }
1714
1715 cfqd->active_queue = cfqq;
1716 }
1717
1718 /*
1719 * current cfqq expired its slice (or was too idle), select new one
1720 */
1721 static void
1722 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1723 bool timed_out)
1724 {
1725 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1726
1727 if (cfq_cfqq_wait_request(cfqq))
1728 cfq_del_timer(cfqd, cfqq);
1729
1730 cfq_clear_cfqq_wait_request(cfqq);
1731 cfq_clear_cfqq_wait_busy(cfqq);
1732
1733 /*
1734 * If this cfqq is shared between multiple processes, check to
1735 * make sure that those processes are still issuing I/Os within
1736 * the mean seek distance. If not, it may be time to break the
1737 * queues apart again.
1738 */
1739 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1740 cfq_mark_cfqq_split_coop(cfqq);
1741
1742 /*
1743 * store what was left of this slice, if the queue idled/timed out
1744 */
1745 if (timed_out) {
1746 if (cfq_cfqq_slice_new(cfqq))
1747 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1748 else
1749 cfqq->slice_resid = cfqq->slice_end - jiffies;
1750 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1751 }
1752
1753 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1754
1755 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1756 cfq_del_cfqq_rr(cfqd, cfqq);
1757
1758 cfq_resort_rr_list(cfqd, cfqq);
1759
1760 if (cfqq == cfqd->active_queue)
1761 cfqd->active_queue = NULL;
1762
1763 if (cfqd->active_cic) {
1764 put_io_context(cfqd->active_cic->ioc, cfqd->queue);
1765 cfqd->active_cic = NULL;
1766 }
1767 }
1768
1769 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1770 {
1771 struct cfq_queue *cfqq = cfqd->active_queue;
1772
1773 if (cfqq)
1774 __cfq_slice_expired(cfqd, cfqq, timed_out);
1775 }
1776
1777 /*
1778 * Get next queue for service. Unless we have a queue preemption,
1779 * we'll simply select the first cfqq in the service tree.
1780 */
1781 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1782 {
1783 struct cfq_rb_root *service_tree =
1784 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1785 cfqd->serving_type);
1786
1787 if (!cfqd->rq_queued)
1788 return NULL;
1789
1790 /* There is nothing to dispatch */
1791 if (!service_tree)
1792 return NULL;
1793 if (RB_EMPTY_ROOT(&service_tree->rb))
1794 return NULL;
1795 return cfq_rb_first(service_tree);
1796 }
1797
1798 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1799 {
1800 struct cfq_group *cfqg;
1801 struct cfq_queue *cfqq;
1802 int i, j;
1803 struct cfq_rb_root *st;
1804
1805 if (!cfqd->rq_queued)
1806 return NULL;
1807
1808 cfqg = cfq_get_next_cfqg(cfqd);
1809 if (!cfqg)
1810 return NULL;
1811
1812 for_each_cfqg_st(cfqg, i, j, st)
1813 if ((cfqq = cfq_rb_first(st)) != NULL)
1814 return cfqq;
1815 return NULL;
1816 }
1817
1818 /*
1819 * Get and set a new active queue for service.
1820 */
1821 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1822 struct cfq_queue *cfqq)
1823 {
1824 if (!cfqq)
1825 cfqq = cfq_get_next_queue(cfqd);
1826
1827 __cfq_set_active_queue(cfqd, cfqq);
1828 return cfqq;
1829 }
1830
1831 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1832 struct request *rq)
1833 {
1834 if (blk_rq_pos(rq) >= cfqd->last_position)
1835 return blk_rq_pos(rq) - cfqd->last_position;
1836 else
1837 return cfqd->last_position - blk_rq_pos(rq);
1838 }
1839
1840 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1841 struct request *rq)
1842 {
1843 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1844 }
1845
1846 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1847 struct cfq_queue *cur_cfqq)
1848 {
1849 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1850 struct rb_node *parent, *node;
1851 struct cfq_queue *__cfqq;
1852 sector_t sector = cfqd->last_position;
1853
1854 if (RB_EMPTY_ROOT(root))
1855 return NULL;
1856
1857 /*
1858 * First, if we find a request starting at the end of the last
1859 * request, choose it.
1860 */
1861 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1862 if (__cfqq)
1863 return __cfqq;
1864
1865 /*
1866 * If the exact sector wasn't found, the parent of the NULL leaf
1867 * will contain the closest sector.
1868 */
1869 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1870 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1871 return __cfqq;
1872
1873 if (blk_rq_pos(__cfqq->next_rq) < sector)
1874 node = rb_next(&__cfqq->p_node);
1875 else
1876 node = rb_prev(&__cfqq->p_node);
1877 if (!node)
1878 return NULL;
1879
1880 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1881 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1882 return __cfqq;
1883
1884 return NULL;
1885 }
1886
1887 /*
1888 * cfqd - obvious
1889 * cur_cfqq - passed in so that we don't decide that the current queue is
1890 * closely cooperating with itself.
1891 *
1892 * So, basically we're assuming that that cur_cfqq has dispatched at least
1893 * one request, and that cfqd->last_position reflects a position on the disk
1894 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1895 * assumption.
1896 */
1897 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1898 struct cfq_queue *cur_cfqq)
1899 {
1900 struct cfq_queue *cfqq;
1901
1902 if (cfq_class_idle(cur_cfqq))
1903 return NULL;
1904 if (!cfq_cfqq_sync(cur_cfqq))
1905 return NULL;
1906 if (CFQQ_SEEKY(cur_cfqq))
1907 return NULL;
1908
1909 /*
1910 * Don't search priority tree if it's the only queue in the group.
1911 */
1912 if (cur_cfqq->cfqg->nr_cfqq == 1)
1913 return NULL;
1914
1915 /*
1916 * We should notice if some of the queues are cooperating, eg
1917 * working closely on the same area of the disk. In that case,
1918 * we can group them together and don't waste time idling.
1919 */
1920 cfqq = cfqq_close(cfqd, cur_cfqq);
1921 if (!cfqq)
1922 return NULL;
1923
1924 /* If new queue belongs to different cfq_group, don't choose it */
1925 if (cur_cfqq->cfqg != cfqq->cfqg)
1926 return NULL;
1927
1928 /*
1929 * It only makes sense to merge sync queues.
1930 */
1931 if (!cfq_cfqq_sync(cfqq))
1932 return NULL;
1933 if (CFQQ_SEEKY(cfqq))
1934 return NULL;
1935
1936 /*
1937 * Do not merge queues of different priority classes
1938 */
1939 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1940 return NULL;
1941
1942 return cfqq;
1943 }
1944
1945 /*
1946 * Determine whether we should enforce idle window for this queue.
1947 */
1948
1949 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1950 {
1951 enum wl_prio_t prio = cfqq_prio(cfqq);
1952 struct cfq_rb_root *service_tree = cfqq->service_tree;
1953
1954 BUG_ON(!service_tree);
1955 BUG_ON(!service_tree->count);
1956
1957 if (!cfqd->cfq_slice_idle)
1958 return false;
1959
1960 /* We never do for idle class queues. */
1961 if (prio == IDLE_WORKLOAD)
1962 return false;
1963
1964 /* We do for queues that were marked with idle window flag. */
1965 if (cfq_cfqq_idle_window(cfqq) &&
1966 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1967 return true;
1968
1969 /*
1970 * Otherwise, we do only if they are the last ones
1971 * in their service tree.
1972 */
1973 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
1974 !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
1975 return true;
1976 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1977 service_tree->count);
1978 return false;
1979 }
1980
1981 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1982 {
1983 struct cfq_queue *cfqq = cfqd->active_queue;
1984 struct cfq_io_context *cic;
1985 unsigned long sl, group_idle = 0;
1986
1987 /*
1988 * SSD device without seek penalty, disable idling. But only do so
1989 * for devices that support queuing, otherwise we still have a problem
1990 * with sync vs async workloads.
1991 */
1992 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1993 return;
1994
1995 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1996 WARN_ON(cfq_cfqq_slice_new(cfqq));
1997
1998 /*
1999 * idle is disabled, either manually or by past process history
2000 */
2001 if (!cfq_should_idle(cfqd, cfqq)) {
2002 /* no queue idling. Check for group idling */
2003 if (cfqd->cfq_group_idle)
2004 group_idle = cfqd->cfq_group_idle;
2005 else
2006 return;
2007 }
2008
2009 /*
2010 * still active requests from this queue, don't idle
2011 */
2012 if (cfqq->dispatched)
2013 return;
2014
2015 /*
2016 * task has exited, don't wait
2017 */
2018 cic = cfqd->active_cic;
2019 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
2020 return;
2021
2022 /*
2023 * If our average think time is larger than the remaining time
2024 * slice, then don't idle. This avoids overrunning the allotted
2025 * time slice.
2026 */
2027 if (sample_valid(cic->ttime.ttime_samples) &&
2028 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2029 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2030 cic->ttime.ttime_mean);
2031 return;
2032 }
2033
2034 /* There are other queues in the group, don't do group idle */
2035 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2036 return;
2037
2038 cfq_mark_cfqq_wait_request(cfqq);
2039
2040 if (group_idle)
2041 sl = cfqd->cfq_group_idle;
2042 else
2043 sl = cfqd->cfq_slice_idle;
2044
2045 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2046 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
2047 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2048 group_idle ? 1 : 0);
2049 }
2050
2051 /*
2052 * Move request from internal lists to the request queue dispatch list.
2053 */
2054 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2055 {
2056 struct cfq_data *cfqd = q->elevator->elevator_data;
2057 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2058
2059 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2060
2061 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2062 cfq_remove_request(rq);
2063 cfqq->dispatched++;
2064 (RQ_CFQG(rq))->dispatched++;
2065 elv_dispatch_sort(q, rq);
2066
2067 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2068 cfqq->nr_sectors += blk_rq_sectors(rq);
2069 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
2070 rq_data_dir(rq), rq_is_sync(rq));
2071 }
2072
2073 /*
2074 * return expired entry, or NULL to just start from scratch in rbtree
2075 */
2076 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2077 {
2078 struct request *rq = NULL;
2079
2080 if (cfq_cfqq_fifo_expire(cfqq))
2081 return NULL;
2082
2083 cfq_mark_cfqq_fifo_expire(cfqq);
2084
2085 if (list_empty(&cfqq->fifo))
2086 return NULL;
2087
2088 rq = rq_entry_fifo(cfqq->fifo.next);
2089 if (time_before(jiffies, rq_fifo_time(rq)))
2090 rq = NULL;
2091
2092 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2093 return rq;
2094 }
2095
2096 static inline int
2097 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2098 {
2099 const int base_rq = cfqd->cfq_slice_async_rq;
2100
2101 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2102
2103 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2104 }
2105
2106 /*
2107 * Must be called with the queue_lock held.
2108 */
2109 static int cfqq_process_refs(struct cfq_queue *cfqq)
2110 {
2111 int process_refs, io_refs;
2112
2113 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2114 process_refs = cfqq->ref - io_refs;
2115 BUG_ON(process_refs < 0);
2116 return process_refs;
2117 }
2118
2119 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2120 {
2121 int process_refs, new_process_refs;
2122 struct cfq_queue *__cfqq;
2123
2124 /*
2125 * If there are no process references on the new_cfqq, then it is
2126 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2127 * chain may have dropped their last reference (not just their
2128 * last process reference).
2129 */
2130 if (!cfqq_process_refs(new_cfqq))
2131 return;
2132
2133 /* Avoid a circular list and skip interim queue merges */
2134 while ((__cfqq = new_cfqq->new_cfqq)) {
2135 if (__cfqq == cfqq)
2136 return;
2137 new_cfqq = __cfqq;
2138 }
2139
2140 process_refs = cfqq_process_refs(cfqq);
2141 new_process_refs = cfqq_process_refs(new_cfqq);
2142 /*
2143 * If the process for the cfqq has gone away, there is no
2144 * sense in merging the queues.
2145 */
2146 if (process_refs == 0 || new_process_refs == 0)
2147 return;
2148
2149 /*
2150 * Merge in the direction of the lesser amount of work.
2151 */
2152 if (new_process_refs >= process_refs) {
2153 cfqq->new_cfqq = new_cfqq;
2154 new_cfqq->ref += process_refs;
2155 } else {
2156 new_cfqq->new_cfqq = cfqq;
2157 cfqq->ref += new_process_refs;
2158 }
2159 }
2160
2161 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2162 struct cfq_group *cfqg, enum wl_prio_t prio)
2163 {
2164 struct cfq_queue *queue;
2165 int i;
2166 bool key_valid = false;
2167 unsigned long lowest_key = 0;
2168 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2169
2170 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2171 /* select the one with lowest rb_key */
2172 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2173 if (queue &&
2174 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2175 lowest_key = queue->rb_key;
2176 cur_best = i;
2177 key_valid = true;
2178 }
2179 }
2180
2181 return cur_best;
2182 }
2183
2184 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2185 {
2186 unsigned slice;
2187 unsigned count;
2188 struct cfq_rb_root *st;
2189 unsigned group_slice;
2190 enum wl_prio_t original_prio = cfqd->serving_prio;
2191
2192 /* Choose next priority. RT > BE > IDLE */
2193 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2194 cfqd->serving_prio = RT_WORKLOAD;
2195 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2196 cfqd->serving_prio = BE_WORKLOAD;
2197 else {
2198 cfqd->serving_prio = IDLE_WORKLOAD;
2199 cfqd->workload_expires = jiffies + 1;
2200 return;
2201 }
2202
2203 if (original_prio != cfqd->serving_prio)
2204 goto new_workload;
2205
2206 /*
2207 * For RT and BE, we have to choose also the type
2208 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2209 * expiration time
2210 */
2211 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2212 count = st->count;
2213
2214 /*
2215 * check workload expiration, and that we still have other queues ready
2216 */
2217 if (count && !time_after(jiffies, cfqd->workload_expires))
2218 return;
2219
2220 new_workload:
2221 /* otherwise select new workload type */
2222 cfqd->serving_type =
2223 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2224 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2225 count = st->count;
2226
2227 /*
2228 * the workload slice is computed as a fraction of target latency
2229 * proportional to the number of queues in that workload, over
2230 * all the queues in the same priority class
2231 */
2232 group_slice = cfq_group_slice(cfqd, cfqg);
2233
2234 slice = group_slice * count /
2235 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2236 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2237
2238 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2239 unsigned int tmp;
2240
2241 /*
2242 * Async queues are currently system wide. Just taking
2243 * proportion of queues with-in same group will lead to higher
2244 * async ratio system wide as generally root group is going
2245 * to have higher weight. A more accurate thing would be to
2246 * calculate system wide asnc/sync ratio.
2247 */
2248 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2249 tmp = tmp/cfqd->busy_queues;
2250 slice = min_t(unsigned, slice, tmp);
2251
2252 /* async workload slice is scaled down according to
2253 * the sync/async slice ratio. */
2254 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2255 } else
2256 /* sync workload slice is at least 2 * cfq_slice_idle */
2257 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2258
2259 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2260 cfq_log(cfqd, "workload slice:%d", slice);
2261 cfqd->workload_expires = jiffies + slice;
2262 }
2263
2264 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2265 {
2266 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2267 struct cfq_group *cfqg;
2268
2269 if (RB_EMPTY_ROOT(&st->rb))
2270 return NULL;
2271 cfqg = cfq_rb_first_group(st);
2272 update_min_vdisktime(st);
2273 return cfqg;
2274 }
2275
2276 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2277 {
2278 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2279
2280 cfqd->serving_group = cfqg;
2281
2282 /* Restore the workload type data */
2283 if (cfqg->saved_workload_slice) {
2284 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2285 cfqd->serving_type = cfqg->saved_workload;
2286 cfqd->serving_prio = cfqg->saved_serving_prio;
2287 } else
2288 cfqd->workload_expires = jiffies - 1;
2289
2290 choose_service_tree(cfqd, cfqg);
2291 }
2292
2293 /*
2294 * Select a queue for service. If we have a current active queue,
2295 * check whether to continue servicing it, or retrieve and set a new one.
2296 */
2297 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2298 {
2299 struct cfq_queue *cfqq, *new_cfqq = NULL;
2300
2301 cfqq = cfqd->active_queue;
2302 if (!cfqq)
2303 goto new_queue;
2304
2305 if (!cfqd->rq_queued)
2306 return NULL;
2307
2308 /*
2309 * We were waiting for group to get backlogged. Expire the queue
2310 */
2311 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2312 goto expire;
2313
2314 /*
2315 * The active queue has run out of time, expire it and select new.
2316 */
2317 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2318 /*
2319 * If slice had not expired at the completion of last request
2320 * we might not have turned on wait_busy flag. Don't expire
2321 * the queue yet. Allow the group to get backlogged.
2322 *
2323 * The very fact that we have used the slice, that means we
2324 * have been idling all along on this queue and it should be
2325 * ok to wait for this request to complete.
2326 */
2327 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2328 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2329 cfqq = NULL;
2330 goto keep_queue;
2331 } else
2332 goto check_group_idle;
2333 }
2334
2335 /*
2336 * The active queue has requests and isn't expired, allow it to
2337 * dispatch.
2338 */
2339 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2340 goto keep_queue;
2341
2342 /*
2343 * If another queue has a request waiting within our mean seek
2344 * distance, let it run. The expire code will check for close
2345 * cooperators and put the close queue at the front of the service
2346 * tree. If possible, merge the expiring queue with the new cfqq.
2347 */
2348 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2349 if (new_cfqq) {
2350 if (!cfqq->new_cfqq)
2351 cfq_setup_merge(cfqq, new_cfqq);
2352 goto expire;
2353 }
2354
2355 /*
2356 * No requests pending. If the active queue still has requests in
2357 * flight or is idling for a new request, allow either of these
2358 * conditions to happen (or time out) before selecting a new queue.
2359 */
2360 if (timer_pending(&cfqd->idle_slice_timer)) {
2361 cfqq = NULL;
2362 goto keep_queue;
2363 }
2364
2365 /*
2366 * This is a deep seek queue, but the device is much faster than
2367 * the queue can deliver, don't idle
2368 **/
2369 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2370 (cfq_cfqq_slice_new(cfqq) ||
2371 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2372 cfq_clear_cfqq_deep(cfqq);
2373 cfq_clear_cfqq_idle_window(cfqq);
2374 }
2375
2376 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2377 cfqq = NULL;
2378 goto keep_queue;
2379 }
2380
2381 /*
2382 * If group idle is enabled and there are requests dispatched from
2383 * this group, wait for requests to complete.
2384 */
2385 check_group_idle:
2386 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2387 cfqq->cfqg->dispatched &&
2388 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2389 cfqq = NULL;
2390 goto keep_queue;
2391 }
2392
2393 expire:
2394 cfq_slice_expired(cfqd, 0);
2395 new_queue:
2396 /*
2397 * Current queue expired. Check if we have to switch to a new
2398 * service tree
2399 */
2400 if (!new_cfqq)
2401 cfq_choose_cfqg(cfqd);
2402
2403 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2404 keep_queue:
2405 return cfqq;
2406 }
2407
2408 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2409 {
2410 int dispatched = 0;
2411
2412 while (cfqq->next_rq) {
2413 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2414 dispatched++;
2415 }
2416
2417 BUG_ON(!list_empty(&cfqq->fifo));
2418
2419 /* By default cfqq is not expired if it is empty. Do it explicitly */
2420 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2421 return dispatched;
2422 }
2423
2424 /*
2425 * Drain our current requests. Used for barriers and when switching
2426 * io schedulers on-the-fly.
2427 */
2428 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2429 {
2430 struct cfq_queue *cfqq;
2431 int dispatched = 0;
2432
2433 /* Expire the timeslice of the current active queue first */
2434 cfq_slice_expired(cfqd, 0);
2435 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2436 __cfq_set_active_queue(cfqd, cfqq);
2437 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2438 }
2439
2440 BUG_ON(cfqd->busy_queues);
2441
2442 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2443 return dispatched;
2444 }
2445
2446 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2447 struct cfq_queue *cfqq)
2448 {
2449 /* the queue hasn't finished any request, can't estimate */
2450 if (cfq_cfqq_slice_new(cfqq))
2451 return true;
2452 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2453 cfqq->slice_end))
2454 return true;
2455
2456 return false;
2457 }
2458
2459 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2460 {
2461 unsigned int max_dispatch;
2462
2463 /*
2464 * Drain async requests before we start sync IO
2465 */
2466 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2467 return false;
2468
2469 /*
2470 * If this is an async queue and we have sync IO in flight, let it wait
2471 */
2472 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2473 return false;
2474
2475 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2476 if (cfq_class_idle(cfqq))
2477 max_dispatch = 1;
2478
2479 /*
2480 * Does this cfqq already have too much IO in flight?
2481 */
2482 if (cfqq->dispatched >= max_dispatch) {
2483 bool promote_sync = false;
2484 /*
2485 * idle queue must always only have a single IO in flight
2486 */
2487 if (cfq_class_idle(cfqq))
2488 return false;
2489
2490 /*
2491 * If there is only one sync queue
2492 * we can ignore async queue here and give the sync
2493 * queue no dispatch limit. The reason is a sync queue can
2494 * preempt async queue, limiting the sync queue doesn't make
2495 * sense. This is useful for aiostress test.
2496 */
2497 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2498 promote_sync = true;
2499
2500 /*
2501 * We have other queues, don't allow more IO from this one
2502 */
2503 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2504 !promote_sync)
2505 return false;
2506
2507 /*
2508 * Sole queue user, no limit
2509 */
2510 if (cfqd->busy_queues == 1 || promote_sync)
2511 max_dispatch = -1;
2512 else
2513 /*
2514 * Normally we start throttling cfqq when cfq_quantum/2
2515 * requests have been dispatched. But we can drive
2516 * deeper queue depths at the beginning of slice
2517 * subjected to upper limit of cfq_quantum.
2518 * */
2519 max_dispatch = cfqd->cfq_quantum;
2520 }
2521
2522 /*
2523 * Async queues must wait a bit before being allowed dispatch.
2524 * We also ramp up the dispatch depth gradually for async IO,
2525 * based on the last sync IO we serviced
2526 */
2527 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2528 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2529 unsigned int depth;
2530
2531 depth = last_sync / cfqd->cfq_slice[1];
2532 if (!depth && !cfqq->dispatched)
2533 depth = 1;
2534 if (depth < max_dispatch)
2535 max_dispatch = depth;
2536 }
2537
2538 /*
2539 * If we're below the current max, allow a dispatch
2540 */
2541 return cfqq->dispatched < max_dispatch;
2542 }
2543
2544 /*
2545 * Dispatch a request from cfqq, moving them to the request queue
2546 * dispatch list.
2547 */
2548 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2549 {
2550 struct request *rq;
2551
2552 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2553
2554 if (!cfq_may_dispatch(cfqd, cfqq))
2555 return false;
2556
2557 /*
2558 * follow expired path, else get first next available
2559 */
2560 rq = cfq_check_fifo(cfqq);
2561 if (!rq)
2562 rq = cfqq->next_rq;
2563
2564 /*
2565 * insert request into driver dispatch list
2566 */
2567 cfq_dispatch_insert(cfqd->queue, rq);
2568
2569 if (!cfqd->active_cic) {
2570 struct cfq_io_context *cic = RQ_CIC(rq);
2571
2572 atomic_long_inc(&cic->ioc->refcount);
2573 cfqd->active_cic = cic;
2574 }
2575
2576 return true;
2577 }
2578
2579 /*
2580 * Find the cfqq that we need to service and move a request from that to the
2581 * dispatch list
2582 */
2583 static int cfq_dispatch_requests(struct request_queue *q, int force)
2584 {
2585 struct cfq_data *cfqd = q->elevator->elevator_data;
2586 struct cfq_queue *cfqq;
2587
2588 if (!cfqd->busy_queues)
2589 return 0;
2590
2591 if (unlikely(force))
2592 return cfq_forced_dispatch(cfqd);
2593
2594 cfqq = cfq_select_queue(cfqd);
2595 if (!cfqq)
2596 return 0;
2597
2598 /*
2599 * Dispatch a request from this cfqq, if it is allowed
2600 */
2601 if (!cfq_dispatch_request(cfqd, cfqq))
2602 return 0;
2603
2604 cfqq->slice_dispatch++;
2605 cfq_clear_cfqq_must_dispatch(cfqq);
2606
2607 /*
2608 * expire an async queue immediately if it has used up its slice. idle
2609 * queue always expire after 1 dispatch round.
2610 */
2611 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2612 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2613 cfq_class_idle(cfqq))) {
2614 cfqq->slice_end = jiffies + 1;
2615 cfq_slice_expired(cfqd, 0);
2616 }
2617
2618 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2619 return 1;
2620 }
2621
2622 /*
2623 * task holds one reference to the queue, dropped when task exits. each rq
2624 * in-flight on this queue also holds a reference, dropped when rq is freed.
2625 *
2626 * Each cfq queue took a reference on the parent group. Drop it now.
2627 * queue lock must be held here.
2628 */
2629 static void cfq_put_queue(struct cfq_queue *cfqq)
2630 {
2631 struct cfq_data *cfqd = cfqq->cfqd;
2632 struct cfq_group *cfqg;
2633
2634 BUG_ON(cfqq->ref <= 0);
2635
2636 cfqq->ref--;
2637 if (cfqq->ref)
2638 return;
2639
2640 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2641 BUG_ON(rb_first(&cfqq->sort_list));
2642 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2643 cfqg = cfqq->cfqg;
2644
2645 if (unlikely(cfqd->active_queue == cfqq)) {
2646 __cfq_slice_expired(cfqd, cfqq, 0);
2647 cfq_schedule_dispatch(cfqd);
2648 }
2649
2650 BUG_ON(cfq_cfqq_on_rr(cfqq));
2651 kmem_cache_free(cfq_pool, cfqq);
2652 cfq_put_cfqg(cfqg);
2653 }
2654
2655 static void cfq_cic_free_rcu(struct rcu_head *head)
2656 {
2657 kmem_cache_free(cfq_ioc_pool,
2658 container_of(head, struct cfq_io_context, rcu_head));
2659 }
2660
2661 static void cfq_cic_free(struct cfq_io_context *cic)
2662 {
2663 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2664 }
2665
2666 static void cfq_release_cic(struct cfq_io_context *cic)
2667 {
2668 struct io_context *ioc = cic->ioc;
2669
2670 radix_tree_delete(&ioc->radix_root, cic->q->id);
2671 hlist_del(&cic->cic_list);
2672 cfq_cic_free(cic);
2673 }
2674
2675 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2676 {
2677 struct cfq_queue *__cfqq, *next;
2678
2679 /*
2680 * If this queue was scheduled to merge with another queue, be
2681 * sure to drop the reference taken on that queue (and others in
2682 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2683 */
2684 __cfqq = cfqq->new_cfqq;
2685 while (__cfqq) {
2686 if (__cfqq == cfqq) {
2687 WARN(1, "cfqq->new_cfqq loop detected\n");
2688 break;
2689 }
2690 next = __cfqq->new_cfqq;
2691 cfq_put_queue(__cfqq);
2692 __cfqq = next;
2693 }
2694 }
2695
2696 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2697 {
2698 if (unlikely(cfqq == cfqd->active_queue)) {
2699 __cfq_slice_expired(cfqd, cfqq, 0);
2700 cfq_schedule_dispatch(cfqd);
2701 }
2702
2703 cfq_put_cooperator(cfqq);
2704
2705 cfq_put_queue(cfqq);
2706 }
2707
2708 static void cfq_exit_cic(struct cfq_io_context *cic)
2709 {
2710 struct cfq_data *cfqd = cic_to_cfqd(cic);
2711 struct io_context *ioc = cic->ioc;
2712
2713 list_del_init(&cic->queue_list);
2714
2715 /*
2716 * Both setting lookup hint to and clearing it from @cic are done
2717 * under queue_lock. If it's not pointing to @cic now, it never
2718 * will. Hint assignment itself can race safely.
2719 */
2720 if (rcu_dereference_raw(ioc->ioc_data) == cic)
2721 rcu_assign_pointer(ioc->ioc_data, NULL);
2722
2723 if (cic->cfqq[BLK_RW_ASYNC]) {
2724 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2725 cic->cfqq[BLK_RW_ASYNC] = NULL;
2726 }
2727
2728 if (cic->cfqq[BLK_RW_SYNC]) {
2729 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2730 cic->cfqq[BLK_RW_SYNC] = NULL;
2731 }
2732 }
2733
2734 static struct cfq_io_context *
2735 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2736 {
2737 struct cfq_io_context *cic;
2738
2739 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2740 cfqd->queue->node);
2741 if (cic) {
2742 cic->ttime.last_end_request = jiffies;
2743 INIT_LIST_HEAD(&cic->queue_list);
2744 INIT_HLIST_NODE(&cic->cic_list);
2745 cic->exit = cfq_exit_cic;
2746 cic->release = cfq_release_cic;
2747 }
2748
2749 return cic;
2750 }
2751
2752 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2753 {
2754 struct task_struct *tsk = current;
2755 int ioprio_class;
2756
2757 if (!cfq_cfqq_prio_changed(cfqq))
2758 return;
2759
2760 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2761 switch (ioprio_class) {
2762 default:
2763 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2764 case IOPRIO_CLASS_NONE:
2765 /*
2766 * no prio set, inherit CPU scheduling settings
2767 */
2768 cfqq->ioprio = task_nice_ioprio(tsk);
2769 cfqq->ioprio_class = task_nice_ioclass(tsk);
2770 break;
2771 case IOPRIO_CLASS_RT:
2772 cfqq->ioprio = task_ioprio(ioc);
2773 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2774 break;
2775 case IOPRIO_CLASS_BE:
2776 cfqq->ioprio = task_ioprio(ioc);
2777 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2778 break;
2779 case IOPRIO_CLASS_IDLE:
2780 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2781 cfqq->ioprio = 7;
2782 cfq_clear_cfqq_idle_window(cfqq);
2783 break;
2784 }
2785
2786 /*
2787 * keep track of original prio settings in case we have to temporarily
2788 * elevate the priority of this queue
2789 */
2790 cfqq->org_ioprio = cfqq->ioprio;
2791 cfq_clear_cfqq_prio_changed(cfqq);
2792 }
2793
2794 static void changed_ioprio(struct cfq_io_context *cic)
2795 {
2796 struct cfq_data *cfqd = cic_to_cfqd(cic);
2797 struct cfq_queue *cfqq;
2798
2799 if (unlikely(!cfqd))
2800 return;
2801
2802 cfqq = cic->cfqq[BLK_RW_ASYNC];
2803 if (cfqq) {
2804 struct cfq_queue *new_cfqq;
2805 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2806 GFP_ATOMIC);
2807 if (new_cfqq) {
2808 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2809 cfq_put_queue(cfqq);
2810 }
2811 }
2812
2813 cfqq = cic->cfqq[BLK_RW_SYNC];
2814 if (cfqq)
2815 cfq_mark_cfqq_prio_changed(cfqq);
2816 }
2817
2818 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2819 pid_t pid, bool is_sync)
2820 {
2821 RB_CLEAR_NODE(&cfqq->rb_node);
2822 RB_CLEAR_NODE(&cfqq->p_node);
2823 INIT_LIST_HEAD(&cfqq->fifo);
2824
2825 cfqq->ref = 0;
2826 cfqq->cfqd = cfqd;
2827
2828 cfq_mark_cfqq_prio_changed(cfqq);
2829
2830 if (is_sync) {
2831 if (!cfq_class_idle(cfqq))
2832 cfq_mark_cfqq_idle_window(cfqq);
2833 cfq_mark_cfqq_sync(cfqq);
2834 }
2835 cfqq->pid = pid;
2836 }
2837
2838 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2839 static void changed_cgroup(struct cfq_io_context *cic)
2840 {
2841 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2842 struct cfq_data *cfqd = cic_to_cfqd(cic);
2843 struct request_queue *q;
2844
2845 if (unlikely(!cfqd))
2846 return;
2847
2848 q = cfqd->queue;
2849
2850 if (sync_cfqq) {
2851 /*
2852 * Drop reference to sync queue. A new sync queue will be
2853 * assigned in new group upon arrival of a fresh request.
2854 */
2855 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2856 cic_set_cfqq(cic, NULL, 1);
2857 cfq_put_queue(sync_cfqq);
2858 }
2859 }
2860 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2861
2862 static struct cfq_queue *
2863 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2864 struct io_context *ioc, gfp_t gfp_mask)
2865 {
2866 struct cfq_queue *cfqq, *new_cfqq = NULL;
2867 struct cfq_io_context *cic;
2868 struct cfq_group *cfqg;
2869
2870 retry:
2871 cfqg = cfq_get_cfqg(cfqd);
2872 cic = cfq_cic_lookup(cfqd, ioc);
2873 /* cic always exists here */
2874 cfqq = cic_to_cfqq(cic, is_sync);
2875
2876 /*
2877 * Always try a new alloc if we fell back to the OOM cfqq
2878 * originally, since it should just be a temporary situation.
2879 */
2880 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2881 cfqq = NULL;
2882 if (new_cfqq) {
2883 cfqq = new_cfqq;
2884 new_cfqq = NULL;
2885 } else if (gfp_mask & __GFP_WAIT) {
2886 spin_unlock_irq(cfqd->queue->queue_lock);
2887 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2888 gfp_mask | __GFP_ZERO,
2889 cfqd->queue->node);
2890 spin_lock_irq(cfqd->queue->queue_lock);
2891 if (new_cfqq)
2892 goto retry;
2893 } else {
2894 cfqq = kmem_cache_alloc_node(cfq_pool,
2895 gfp_mask | __GFP_ZERO,
2896 cfqd->queue->node);
2897 }
2898
2899 if (cfqq) {
2900 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2901 cfq_init_prio_data(cfqq, ioc);
2902 cfq_link_cfqq_cfqg(cfqq, cfqg);
2903 cfq_log_cfqq(cfqd, cfqq, "alloced");
2904 } else
2905 cfqq = &cfqd->oom_cfqq;
2906 }
2907
2908 if (new_cfqq)
2909 kmem_cache_free(cfq_pool, new_cfqq);
2910
2911 return cfqq;
2912 }
2913
2914 static struct cfq_queue **
2915 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2916 {
2917 switch (ioprio_class) {
2918 case IOPRIO_CLASS_RT:
2919 return &cfqd->async_cfqq[0][ioprio];
2920 case IOPRIO_CLASS_BE:
2921 return &cfqd->async_cfqq[1][ioprio];
2922 case IOPRIO_CLASS_IDLE:
2923 return &cfqd->async_idle_cfqq;
2924 default:
2925 BUG();
2926 }
2927 }
2928
2929 static struct cfq_queue *
2930 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2931 gfp_t gfp_mask)
2932 {
2933 const int ioprio = task_ioprio(ioc);
2934 const int ioprio_class = task_ioprio_class(ioc);
2935 struct cfq_queue **async_cfqq = NULL;
2936 struct cfq_queue *cfqq = NULL;
2937
2938 if (!is_sync) {
2939 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2940 cfqq = *async_cfqq;
2941 }
2942
2943 if (!cfqq)
2944 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2945
2946 /*
2947 * pin the queue now that it's allocated, scheduler exit will prune it
2948 */
2949 if (!is_sync && !(*async_cfqq)) {
2950 cfqq->ref++;
2951 *async_cfqq = cfqq;
2952 }
2953
2954 cfqq->ref++;
2955 return cfqq;
2956 }
2957
2958 /**
2959 * cfq_cic_lookup - lookup cfq_io_context
2960 * @cfqd: the associated cfq_data
2961 * @ioc: the associated io_context
2962 *
2963 * Look up cfq_io_context associated with @cfqd - @ioc pair. Must be
2964 * called with queue_lock held.
2965 */
2966 static struct cfq_io_context *
2967 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2968 {
2969 struct request_queue *q = cfqd->queue;
2970 struct cfq_io_context *cic;
2971
2972 lockdep_assert_held(cfqd->queue->queue_lock);
2973 if (unlikely(!ioc))
2974 return NULL;
2975
2976 /*
2977 * cic's are indexed from @ioc using radix tree and hint pointer,
2978 * both of which are protected with RCU. All removals are done
2979 * holding both q and ioc locks, and we're holding q lock - if we
2980 * find a cic which points to us, it's guaranteed to be valid.
2981 */
2982 rcu_read_lock();
2983 cic = rcu_dereference(ioc->ioc_data);
2984 if (cic && cic->q == q)
2985 goto out;
2986
2987 cic = radix_tree_lookup(&ioc->radix_root, cfqd->queue->id);
2988 if (cic && cic->q == q)
2989 rcu_assign_pointer(ioc->ioc_data, cic); /* allowed to race */
2990 else
2991 cic = NULL;
2992 out:
2993 rcu_read_unlock();
2994 return cic;
2995 }
2996
2997 /**
2998 * cfq_create_cic - create and link a cfq_io_context
2999 * @cfqd: cfqd of interest
3000 * @gfp_mask: allocation mask
3001 *
3002 * Make sure cfq_io_context linking %current->io_context and @cfqd exists.
3003 * If ioc and/or cic doesn't exist, they will be created using @gfp_mask.
3004 */
3005 static int cfq_create_cic(struct cfq_data *cfqd, gfp_t gfp_mask)
3006 {
3007 struct request_queue *q = cfqd->queue;
3008 struct cfq_io_context *cic = NULL;
3009 struct io_context *ioc;
3010 int ret = -ENOMEM;
3011
3012 might_sleep_if(gfp_mask & __GFP_WAIT);
3013
3014 /* allocate stuff */
3015 ioc = create_io_context(current, gfp_mask, q->node);
3016 if (!ioc)
3017 goto out;
3018
3019 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3020 if (!cic)
3021 goto out;
3022
3023 ret = radix_tree_preload(gfp_mask);
3024 if (ret)
3025 goto out;
3026
3027 cic->ioc = ioc;
3028 cic->q = cfqd->queue;
3029
3030 /* lock both q and ioc and try to link @cic */
3031 spin_lock_irq(q->queue_lock);
3032 spin_lock(&ioc->lock);
3033
3034 ret = radix_tree_insert(&ioc->radix_root, q->id, cic);
3035 if (likely(!ret)) {
3036 hlist_add_head(&cic->cic_list, &ioc->cic_list);
3037 list_add(&cic->queue_list, &cfqd->cic_list);
3038 cic = NULL;
3039 } else if (ret == -EEXIST) {
3040 /* someone else already did it */
3041 ret = 0;
3042 }
3043
3044 spin_unlock(&ioc->lock);
3045 spin_unlock_irq(q->queue_lock);
3046
3047 radix_tree_preload_end();
3048 out:
3049 if (ret)
3050 printk(KERN_ERR "cfq: cic link failed!\n");
3051 if (cic)
3052 cfq_cic_free(cic);
3053 return ret;
3054 }
3055
3056 /**
3057 * cfq_get_io_context - acquire cfq_io_context and bump refcnt on io_context
3058 * @cfqd: cfqd to setup cic for
3059 * @gfp_mask: allocation mask
3060 *
3061 * Return cfq_io_context associating @cfqd and %current->io_context and
3062 * bump refcnt on io_context. If ioc or cic doesn't exist, they're created
3063 * using @gfp_mask.
3064 *
3065 * Must be called under queue_lock which may be released and re-acquired.
3066 * This function also may sleep depending on @gfp_mask.
3067 */
3068 static struct cfq_io_context *
3069 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3070 {
3071 struct request_queue *q = cfqd->queue;
3072 struct cfq_io_context *cic = NULL;
3073 struct io_context *ioc;
3074 int err;
3075
3076 lockdep_assert_held(q->queue_lock);
3077
3078 while (true) {
3079 /* fast path */
3080 ioc = current->io_context;
3081 if (likely(ioc)) {
3082 cic = cfq_cic_lookup(cfqd, ioc);
3083 if (likely(cic))
3084 break;
3085 }
3086
3087 /* slow path - unlock, create missing ones and retry */
3088 spin_unlock_irq(q->queue_lock);
3089 err = cfq_create_cic(cfqd, gfp_mask);
3090 spin_lock_irq(q->queue_lock);
3091 if (err)
3092 return NULL;
3093 }
3094
3095 /* bump @ioc's refcnt and handle changed notifications */
3096 get_io_context(ioc);
3097
3098 if (unlikely(cic->changed)) {
3099 if (test_and_clear_bit(CIC_IOPRIO_CHANGED, &cic->changed))
3100 changed_ioprio(cic);
3101 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3102 if (test_and_clear_bit(CIC_CGROUP_CHANGED, &cic->changed))
3103 changed_cgroup(cic);
3104 #endif
3105 }
3106
3107 return cic;
3108 }
3109
3110 static void
3111 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3112 {
3113 unsigned long elapsed = jiffies - ttime->last_end_request;
3114 elapsed = min(elapsed, 2UL * slice_idle);
3115
3116 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3117 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3118 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3119 }
3120
3121 static void
3122 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3123 struct cfq_io_context *cic)
3124 {
3125 if (cfq_cfqq_sync(cfqq)) {
3126 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3127 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3128 cfqd->cfq_slice_idle);
3129 }
3130 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3131 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3132 #endif
3133 }
3134
3135 static void
3136 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3137 struct request *rq)
3138 {
3139 sector_t sdist = 0;
3140 sector_t n_sec = blk_rq_sectors(rq);
3141 if (cfqq->last_request_pos) {
3142 if (cfqq->last_request_pos < blk_rq_pos(rq))
3143 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3144 else
3145 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3146 }
3147
3148 cfqq->seek_history <<= 1;
3149 if (blk_queue_nonrot(cfqd->queue))
3150 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3151 else
3152 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3153 }
3154
3155 /*
3156 * Disable idle window if the process thinks too long or seeks so much that
3157 * it doesn't matter
3158 */
3159 static void
3160 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3161 struct cfq_io_context *cic)
3162 {
3163 int old_idle, enable_idle;
3164
3165 /*
3166 * Don't idle for async or idle io prio class
3167 */
3168 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3169 return;
3170
3171 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3172
3173 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3174 cfq_mark_cfqq_deep(cfqq);
3175
3176 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3177 enable_idle = 0;
3178 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3179 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3180 enable_idle = 0;
3181 else if (sample_valid(cic->ttime.ttime_samples)) {
3182 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3183 enable_idle = 0;
3184 else
3185 enable_idle = 1;
3186 }
3187
3188 if (old_idle != enable_idle) {
3189 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3190 if (enable_idle)
3191 cfq_mark_cfqq_idle_window(cfqq);
3192 else
3193 cfq_clear_cfqq_idle_window(cfqq);
3194 }
3195 }
3196
3197 /*
3198 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3199 * no or if we aren't sure, a 1 will cause a preempt.
3200 */
3201 static bool
3202 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3203 struct request *rq)
3204 {
3205 struct cfq_queue *cfqq;
3206
3207 cfqq = cfqd->active_queue;
3208 if (!cfqq)
3209 return false;
3210
3211 if (cfq_class_idle(new_cfqq))
3212 return false;
3213
3214 if (cfq_class_idle(cfqq))
3215 return true;
3216
3217 /*
3218 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3219 */
3220 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3221 return false;
3222
3223 /*
3224 * if the new request is sync, but the currently running queue is
3225 * not, let the sync request have priority.
3226 */
3227 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3228 return true;
3229
3230 if (new_cfqq->cfqg != cfqq->cfqg)
3231 return false;
3232
3233 if (cfq_slice_used(cfqq))
3234 return true;
3235
3236 /* Allow preemption only if we are idling on sync-noidle tree */
3237 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3238 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3239 new_cfqq->service_tree->count == 2 &&
3240 RB_EMPTY_ROOT(&cfqq->sort_list))
3241 return true;
3242
3243 /*
3244 * So both queues are sync. Let the new request get disk time if
3245 * it's a metadata request and the current queue is doing regular IO.
3246 */
3247 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3248 return true;
3249
3250 /*
3251 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3252 */
3253 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3254 return true;
3255
3256 /* An idle queue should not be idle now for some reason */
3257 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3258 return true;
3259
3260 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3261 return false;
3262
3263 /*
3264 * if this request is as-good as one we would expect from the
3265 * current cfqq, let it preempt
3266 */
3267 if (cfq_rq_close(cfqd, cfqq, rq))
3268 return true;
3269
3270 return false;
3271 }
3272
3273 /*
3274 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3275 * let it have half of its nominal slice.
3276 */
3277 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3278 {
3279 struct cfq_queue *old_cfqq = cfqd->active_queue;
3280
3281 cfq_log_cfqq(cfqd, cfqq, "preempt");
3282 cfq_slice_expired(cfqd, 1);
3283
3284 /*
3285 * workload type is changed, don't save slice, otherwise preempt
3286 * doesn't happen
3287 */
3288 if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3289 cfqq->cfqg->saved_workload_slice = 0;
3290
3291 /*
3292 * Put the new queue at the front of the of the current list,
3293 * so we know that it will be selected next.
3294 */
3295 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3296
3297 cfq_service_tree_add(cfqd, cfqq, 1);
3298
3299 cfqq->slice_end = 0;
3300 cfq_mark_cfqq_slice_new(cfqq);
3301 }
3302
3303 /*
3304 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3305 * something we should do about it
3306 */
3307 static void
3308 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3309 struct request *rq)
3310 {
3311 struct cfq_io_context *cic = RQ_CIC(rq);
3312
3313 cfqd->rq_queued++;
3314 if (rq->cmd_flags & REQ_PRIO)
3315 cfqq->prio_pending++;
3316
3317 cfq_update_io_thinktime(cfqd, cfqq, cic);
3318 cfq_update_io_seektime(cfqd, cfqq, rq);
3319 cfq_update_idle_window(cfqd, cfqq, cic);
3320
3321 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3322
3323 if (cfqq == cfqd->active_queue) {
3324 /*
3325 * Remember that we saw a request from this process, but
3326 * don't start queuing just yet. Otherwise we risk seeing lots
3327 * of tiny requests, because we disrupt the normal plugging
3328 * and merging. If the request is already larger than a single
3329 * page, let it rip immediately. For that case we assume that
3330 * merging is already done. Ditto for a busy system that
3331 * has other work pending, don't risk delaying until the
3332 * idle timer unplug to continue working.
3333 */
3334 if (cfq_cfqq_wait_request(cfqq)) {
3335 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3336 cfqd->busy_queues > 1) {
3337 cfq_del_timer(cfqd, cfqq);
3338 cfq_clear_cfqq_wait_request(cfqq);
3339 __blk_run_queue(cfqd->queue);
3340 } else {
3341 cfq_blkiocg_update_idle_time_stats(
3342 &cfqq->cfqg->blkg);
3343 cfq_mark_cfqq_must_dispatch(cfqq);
3344 }
3345 }
3346 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3347 /*
3348 * not the active queue - expire current slice if it is
3349 * idle and has expired it's mean thinktime or this new queue
3350 * has some old slice time left and is of higher priority or
3351 * this new queue is RT and the current one is BE
3352 */
3353 cfq_preempt_queue(cfqd, cfqq);
3354 __blk_run_queue(cfqd->queue);
3355 }
3356 }
3357
3358 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3359 {
3360 struct cfq_data *cfqd = q->elevator->elevator_data;
3361 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3362
3363 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3364 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3365
3366 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3367 list_add_tail(&rq->queuelist, &cfqq->fifo);
3368 cfq_add_rq_rb(rq);
3369 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3370 &cfqd->serving_group->blkg, rq_data_dir(rq),
3371 rq_is_sync(rq));
3372 cfq_rq_enqueued(cfqd, cfqq, rq);
3373 }
3374
3375 /*
3376 * Update hw_tag based on peak queue depth over 50 samples under
3377 * sufficient load.
3378 */
3379 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3380 {
3381 struct cfq_queue *cfqq = cfqd->active_queue;
3382
3383 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3384 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3385
3386 if (cfqd->hw_tag == 1)
3387 return;
3388
3389 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3390 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3391 return;
3392
3393 /*
3394 * If active queue hasn't enough requests and can idle, cfq might not
3395 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3396 * case
3397 */
3398 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3399 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3400 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3401 return;
3402
3403 if (cfqd->hw_tag_samples++ < 50)
3404 return;
3405
3406 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3407 cfqd->hw_tag = 1;
3408 else
3409 cfqd->hw_tag = 0;
3410 }
3411
3412 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3413 {
3414 struct cfq_io_context *cic = cfqd->active_cic;
3415
3416 /* If the queue already has requests, don't wait */
3417 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3418 return false;
3419
3420 /* If there are other queues in the group, don't wait */
3421 if (cfqq->cfqg->nr_cfqq > 1)
3422 return false;
3423
3424 /* the only queue in the group, but think time is big */
3425 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3426 return false;
3427
3428 if (cfq_slice_used(cfqq))
3429 return true;
3430
3431 /* if slice left is less than think time, wait busy */
3432 if (cic && sample_valid(cic->ttime.ttime_samples)
3433 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3434 return true;
3435
3436 /*
3437 * If think times is less than a jiffy than ttime_mean=0 and above
3438 * will not be true. It might happen that slice has not expired yet
3439 * but will expire soon (4-5 ns) during select_queue(). To cover the
3440 * case where think time is less than a jiffy, mark the queue wait
3441 * busy if only 1 jiffy is left in the slice.
3442 */
3443 if (cfqq->slice_end - jiffies == 1)
3444 return true;
3445
3446 return false;
3447 }
3448
3449 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3450 {
3451 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3452 struct cfq_data *cfqd = cfqq->cfqd;
3453 const int sync = rq_is_sync(rq);
3454 unsigned long now;
3455
3456 now = jiffies;
3457 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3458 !!(rq->cmd_flags & REQ_NOIDLE));
3459
3460 cfq_update_hw_tag(cfqd);
3461
3462 WARN_ON(!cfqd->rq_in_driver);
3463 WARN_ON(!cfqq->dispatched);
3464 cfqd->rq_in_driver--;
3465 cfqq->dispatched--;
3466 (RQ_CFQG(rq))->dispatched--;
3467 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3468 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3469 rq_data_dir(rq), rq_is_sync(rq));
3470
3471 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3472
3473 if (sync) {
3474 struct cfq_rb_root *service_tree;
3475
3476 RQ_CIC(rq)->ttime.last_end_request = now;
3477
3478 if (cfq_cfqq_on_rr(cfqq))
3479 service_tree = cfqq->service_tree;
3480 else
3481 service_tree = service_tree_for(cfqq->cfqg,
3482 cfqq_prio(cfqq), cfqq_type(cfqq));
3483 service_tree->ttime.last_end_request = now;
3484 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3485 cfqd->last_delayed_sync = now;
3486 }
3487
3488 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3489 cfqq->cfqg->ttime.last_end_request = now;
3490 #endif
3491
3492 /*
3493 * If this is the active queue, check if it needs to be expired,
3494 * or if we want to idle in case it has no pending requests.
3495 */
3496 if (cfqd->active_queue == cfqq) {
3497 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3498
3499 if (cfq_cfqq_slice_new(cfqq)) {
3500 cfq_set_prio_slice(cfqd, cfqq);
3501 cfq_clear_cfqq_slice_new(cfqq);
3502 }
3503
3504 /*
3505 * Should we wait for next request to come in before we expire
3506 * the queue.
3507 */
3508 if (cfq_should_wait_busy(cfqd, cfqq)) {
3509 unsigned long extend_sl = cfqd->cfq_slice_idle;
3510 if (!cfqd->cfq_slice_idle)
3511 extend_sl = cfqd->cfq_group_idle;
3512 cfqq->slice_end = jiffies + extend_sl;
3513 cfq_mark_cfqq_wait_busy(cfqq);
3514 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3515 }
3516
3517 /*
3518 * Idling is not enabled on:
3519 * - expired queues
3520 * - idle-priority queues
3521 * - async queues
3522 * - queues with still some requests queued
3523 * - when there is a close cooperator
3524 */
3525 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3526 cfq_slice_expired(cfqd, 1);
3527 else if (sync && cfqq_empty &&
3528 !cfq_close_cooperator(cfqd, cfqq)) {
3529 cfq_arm_slice_timer(cfqd);
3530 }
3531 }
3532
3533 if (!cfqd->rq_in_driver)
3534 cfq_schedule_dispatch(cfqd);
3535 }
3536
3537 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3538 {
3539 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3540 cfq_mark_cfqq_must_alloc_slice(cfqq);
3541 return ELV_MQUEUE_MUST;
3542 }
3543
3544 return ELV_MQUEUE_MAY;
3545 }
3546
3547 static int cfq_may_queue(struct request_queue *q, int rw)
3548 {
3549 struct cfq_data *cfqd = q->elevator->elevator_data;
3550 struct task_struct *tsk = current;
3551 struct cfq_io_context *cic;
3552 struct cfq_queue *cfqq;
3553
3554 /*
3555 * don't force setup of a queue from here, as a call to may_queue
3556 * does not necessarily imply that a request actually will be queued.
3557 * so just lookup a possibly existing queue, or return 'may queue'
3558 * if that fails
3559 */
3560 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3561 if (!cic)
3562 return ELV_MQUEUE_MAY;
3563
3564 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3565 if (cfqq) {
3566 cfq_init_prio_data(cfqq, cic->ioc);
3567
3568 return __cfq_may_queue(cfqq);
3569 }
3570
3571 return ELV_MQUEUE_MAY;
3572 }
3573
3574 /*
3575 * queue lock held here
3576 */
3577 static void cfq_put_request(struct request *rq)
3578 {
3579 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3580
3581 if (cfqq) {
3582 const int rw = rq_data_dir(rq);
3583
3584 BUG_ON(!cfqq->allocated[rw]);
3585 cfqq->allocated[rw]--;
3586
3587 put_io_context(RQ_CIC(rq)->ioc, cfqq->cfqd->queue);
3588
3589 rq->elevator_private[0] = NULL;
3590 rq->elevator_private[1] = NULL;
3591
3592 /* Put down rq reference on cfqg */
3593 cfq_put_cfqg(RQ_CFQG(rq));
3594 rq->elevator_private[2] = NULL;
3595
3596 cfq_put_queue(cfqq);
3597 }
3598 }
3599
3600 static struct cfq_queue *
3601 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3602 struct cfq_queue *cfqq)
3603 {
3604 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3605 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3606 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3607 cfq_put_queue(cfqq);
3608 return cic_to_cfqq(cic, 1);
3609 }
3610
3611 /*
3612 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3613 * was the last process referring to said cfqq.
3614 */
3615 static struct cfq_queue *
3616 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3617 {
3618 if (cfqq_process_refs(cfqq) == 1) {
3619 cfqq->pid = current->pid;
3620 cfq_clear_cfqq_coop(cfqq);
3621 cfq_clear_cfqq_split_coop(cfqq);
3622 return cfqq;
3623 }
3624
3625 cic_set_cfqq(cic, NULL, 1);
3626
3627 cfq_put_cooperator(cfqq);
3628
3629 cfq_put_queue(cfqq);
3630 return NULL;
3631 }
3632 /*
3633 * Allocate cfq data structures associated with this request.
3634 */
3635 static int
3636 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3637 {
3638 struct cfq_data *cfqd = q->elevator->elevator_data;
3639 struct cfq_io_context *cic;
3640 const int rw = rq_data_dir(rq);
3641 const bool is_sync = rq_is_sync(rq);
3642 struct cfq_queue *cfqq;
3643
3644 might_sleep_if(gfp_mask & __GFP_WAIT);
3645
3646 spin_lock_irq(q->queue_lock);
3647 cic = cfq_get_io_context(cfqd, gfp_mask);
3648 if (!cic)
3649 goto queue_fail;
3650
3651 new_queue:
3652 cfqq = cic_to_cfqq(cic, is_sync);
3653 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3654 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3655 cic_set_cfqq(cic, cfqq, is_sync);
3656 } else {
3657 /*
3658 * If the queue was seeky for too long, break it apart.
3659 */
3660 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3661 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3662 cfqq = split_cfqq(cic, cfqq);
3663 if (!cfqq)
3664 goto new_queue;
3665 }
3666
3667 /*
3668 * Check to see if this queue is scheduled to merge with
3669 * another, closely cooperating queue. The merging of
3670 * queues happens here as it must be done in process context.
3671 * The reference on new_cfqq was taken in merge_cfqqs.
3672 */
3673 if (cfqq->new_cfqq)
3674 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3675 }
3676
3677 cfqq->allocated[rw]++;
3678
3679 cfqq->ref++;
3680 rq->elevator_private[0] = cic;
3681 rq->elevator_private[1] = cfqq;
3682 rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
3683 spin_unlock_irq(q->queue_lock);
3684 return 0;
3685
3686 queue_fail:
3687 cfq_schedule_dispatch(cfqd);
3688 spin_unlock_irq(q->queue_lock);
3689 cfq_log(cfqd, "set_request fail");
3690 return 1;
3691 }
3692
3693 static void cfq_kick_queue(struct work_struct *work)
3694 {
3695 struct cfq_data *cfqd =
3696 container_of(work, struct cfq_data, unplug_work);
3697 struct request_queue *q = cfqd->queue;
3698
3699 spin_lock_irq(q->queue_lock);
3700 __blk_run_queue(cfqd->queue);
3701 spin_unlock_irq(q->queue_lock);
3702 }
3703
3704 /*
3705 * Timer running if the active_queue is currently idling inside its time slice
3706 */
3707 static void cfq_idle_slice_timer(unsigned long data)
3708 {
3709 struct cfq_data *cfqd = (struct cfq_data *) data;
3710 struct cfq_queue *cfqq;
3711 unsigned long flags;
3712 int timed_out = 1;
3713
3714 cfq_log(cfqd, "idle timer fired");
3715
3716 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3717
3718 cfqq = cfqd->active_queue;
3719 if (cfqq) {
3720 timed_out = 0;
3721
3722 /*
3723 * We saw a request before the queue expired, let it through
3724 */
3725 if (cfq_cfqq_must_dispatch(cfqq))
3726 goto out_kick;
3727
3728 /*
3729 * expired
3730 */
3731 if (cfq_slice_used(cfqq))
3732 goto expire;
3733
3734 /*
3735 * only expire and reinvoke request handler, if there are
3736 * other queues with pending requests
3737 */
3738 if (!cfqd->busy_queues)
3739 goto out_cont;
3740
3741 /*
3742 * not expired and it has a request pending, let it dispatch
3743 */
3744 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3745 goto out_kick;
3746
3747 /*
3748 * Queue depth flag is reset only when the idle didn't succeed
3749 */
3750 cfq_clear_cfqq_deep(cfqq);
3751 }
3752 expire:
3753 cfq_slice_expired(cfqd, timed_out);
3754 out_kick:
3755 cfq_schedule_dispatch(cfqd);
3756 out_cont:
3757 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3758 }
3759
3760 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3761 {
3762 del_timer_sync(&cfqd->idle_slice_timer);
3763 cancel_work_sync(&cfqd->unplug_work);
3764 }
3765
3766 static void cfq_put_async_queues(struct cfq_data *cfqd)
3767 {
3768 int i;
3769
3770 for (i = 0; i < IOPRIO_BE_NR; i++) {
3771 if (cfqd->async_cfqq[0][i])
3772 cfq_put_queue(cfqd->async_cfqq[0][i]);
3773 if (cfqd->async_cfqq[1][i])
3774 cfq_put_queue(cfqd->async_cfqq[1][i]);
3775 }
3776
3777 if (cfqd->async_idle_cfqq)
3778 cfq_put_queue(cfqd->async_idle_cfqq);
3779 }
3780
3781 static void cfq_exit_queue(struct elevator_queue *e)
3782 {
3783 struct cfq_data *cfqd = e->elevator_data;
3784 struct request_queue *q = cfqd->queue;
3785 bool wait = false;
3786
3787 cfq_shutdown_timer_wq(cfqd);
3788
3789 spin_lock_irq(q->queue_lock);
3790
3791 if (cfqd->active_queue)
3792 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3793
3794 while (!list_empty(&cfqd->cic_list)) {
3795 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3796 struct cfq_io_context,
3797 queue_list);
3798 struct io_context *ioc = cic->ioc;
3799
3800 spin_lock(&ioc->lock);
3801 cfq_exit_cic(cic);
3802 cfq_release_cic(cic);
3803 spin_unlock(&ioc->lock);
3804 }
3805
3806 cfq_put_async_queues(cfqd);
3807 cfq_release_cfq_groups(cfqd);
3808
3809 /*
3810 * If there are groups which we could not unlink from blkcg list,
3811 * wait for a rcu period for them to be freed.
3812 */
3813 if (cfqd->nr_blkcg_linked_grps)
3814 wait = true;
3815
3816 spin_unlock_irq(q->queue_lock);
3817
3818 cfq_shutdown_timer_wq(cfqd);
3819
3820 /*
3821 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3822 * Do this wait only if there are other unlinked groups out
3823 * there. This can happen if cgroup deletion path claimed the
3824 * responsibility of cleaning up a group before queue cleanup code
3825 * get to the group.
3826 *
3827 * Do not call synchronize_rcu() unconditionally as there are drivers
3828 * which create/delete request queue hundreds of times during scan/boot
3829 * and synchronize_rcu() can take significant time and slow down boot.
3830 */
3831 if (wait)
3832 synchronize_rcu();
3833
3834 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3835 /* Free up per cpu stats for root group */
3836 free_percpu(cfqd->root_group.blkg.stats_cpu);
3837 #endif
3838 kfree(cfqd);
3839 }
3840
3841 static void *cfq_init_queue(struct request_queue *q)
3842 {
3843 struct cfq_data *cfqd;
3844 int i, j;
3845 struct cfq_group *cfqg;
3846 struct cfq_rb_root *st;
3847
3848 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3849 if (!cfqd)
3850 return NULL;
3851
3852 /* Init root service tree */
3853 cfqd->grp_service_tree = CFQ_RB_ROOT;
3854
3855 /* Init root group */
3856 cfqg = &cfqd->root_group;
3857 for_each_cfqg_st(cfqg, i, j, st)
3858 *st = CFQ_RB_ROOT;
3859 RB_CLEAR_NODE(&cfqg->rb_node);
3860
3861 /* Give preference to root group over other groups */
3862 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3863
3864 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3865 /*
3866 * Set root group reference to 2. One reference will be dropped when
3867 * all groups on cfqd->cfqg_list are being deleted during queue exit.
3868 * Other reference will remain there as we don't want to delete this
3869 * group as it is statically allocated and gets destroyed when
3870 * throtl_data goes away.
3871 */
3872 cfqg->ref = 2;
3873
3874 if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
3875 kfree(cfqg);
3876 kfree(cfqd);
3877 return NULL;
3878 }
3879
3880 rcu_read_lock();
3881
3882 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3883 (void *)cfqd, 0);
3884 rcu_read_unlock();
3885 cfqd->nr_blkcg_linked_grps++;
3886
3887 /* Add group on cfqd->cfqg_list */
3888 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
3889 #endif
3890 /*
3891 * Not strictly needed (since RB_ROOT just clears the node and we
3892 * zeroed cfqd on alloc), but better be safe in case someone decides
3893 * to add magic to the rb code
3894 */
3895 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3896 cfqd->prio_trees[i] = RB_ROOT;
3897
3898 /*
3899 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3900 * Grab a permanent reference to it, so that the normal code flow
3901 * will not attempt to free it.
3902 */
3903 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3904 cfqd->oom_cfqq.ref++;
3905 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3906
3907 INIT_LIST_HEAD(&cfqd->cic_list);
3908
3909 cfqd->queue = q;
3910
3911 init_timer(&cfqd->idle_slice_timer);
3912 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3913 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3914
3915 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3916
3917 cfqd->cfq_quantum = cfq_quantum;
3918 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3919 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3920 cfqd->cfq_back_max = cfq_back_max;
3921 cfqd->cfq_back_penalty = cfq_back_penalty;
3922 cfqd->cfq_slice[0] = cfq_slice_async;
3923 cfqd->cfq_slice[1] = cfq_slice_sync;
3924 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3925 cfqd->cfq_slice_idle = cfq_slice_idle;
3926 cfqd->cfq_group_idle = cfq_group_idle;
3927 cfqd->cfq_latency = 1;
3928 cfqd->hw_tag = -1;
3929 /*
3930 * we optimistically start assuming sync ops weren't delayed in last
3931 * second, in order to have larger depth for async operations.
3932 */
3933 cfqd->last_delayed_sync = jiffies - HZ;
3934 return cfqd;
3935 }
3936
3937 static void cfq_slab_kill(void)
3938 {
3939 /*
3940 * Caller already ensured that pending RCU callbacks are completed,
3941 * so we should have no busy allocations at this point.
3942 */
3943 if (cfq_pool)
3944 kmem_cache_destroy(cfq_pool);
3945 if (cfq_ioc_pool)
3946 kmem_cache_destroy(cfq_ioc_pool);
3947 }
3948
3949 static int __init cfq_slab_setup(void)
3950 {
3951 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3952 if (!cfq_pool)
3953 goto fail;
3954
3955 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3956 if (!cfq_ioc_pool)
3957 goto fail;
3958
3959 return 0;
3960 fail:
3961 cfq_slab_kill();
3962 return -ENOMEM;
3963 }
3964
3965 /*
3966 * sysfs parts below -->
3967 */
3968 static ssize_t
3969 cfq_var_show(unsigned int var, char *page)
3970 {
3971 return sprintf(page, "%d\n", var);
3972 }
3973
3974 static ssize_t
3975 cfq_var_store(unsigned int *var, const char *page, size_t count)
3976 {
3977 char *p = (char *) page;
3978
3979 *var = simple_strtoul(p, &p, 10);
3980 return count;
3981 }
3982
3983 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3984 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3985 { \
3986 struct cfq_data *cfqd = e->elevator_data; \
3987 unsigned int __data = __VAR; \
3988 if (__CONV) \
3989 __data = jiffies_to_msecs(__data); \
3990 return cfq_var_show(__data, (page)); \
3991 }
3992 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3993 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3994 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3995 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3996 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3997 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3998 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
3999 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4000 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4001 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4002 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4003 #undef SHOW_FUNCTION
4004
4005 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4006 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4007 { \
4008 struct cfq_data *cfqd = e->elevator_data; \
4009 unsigned int __data; \
4010 int ret = cfq_var_store(&__data, (page), count); \
4011 if (__data < (MIN)) \
4012 __data = (MIN); \
4013 else if (__data > (MAX)) \
4014 __data = (MAX); \
4015 if (__CONV) \
4016 *(__PTR) = msecs_to_jiffies(__data); \
4017 else \
4018 *(__PTR) = __data; \
4019 return ret; \
4020 }
4021 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4022 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4023 UINT_MAX, 1);
4024 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4025 UINT_MAX, 1);
4026 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4027 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4028 UINT_MAX, 0);
4029 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4030 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4031 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4032 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4033 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4034 UINT_MAX, 0);
4035 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4036 #undef STORE_FUNCTION
4037
4038 #define CFQ_ATTR(name) \
4039 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4040
4041 static struct elv_fs_entry cfq_attrs[] = {
4042 CFQ_ATTR(quantum),
4043 CFQ_ATTR(fifo_expire_sync),
4044 CFQ_ATTR(fifo_expire_async),
4045 CFQ_ATTR(back_seek_max),
4046 CFQ_ATTR(back_seek_penalty),
4047 CFQ_ATTR(slice_sync),
4048 CFQ_ATTR(slice_async),
4049 CFQ_ATTR(slice_async_rq),
4050 CFQ_ATTR(slice_idle),
4051 CFQ_ATTR(group_idle),
4052 CFQ_ATTR(low_latency),
4053 __ATTR_NULL
4054 };
4055
4056 static struct elevator_type iosched_cfq = {
4057 .ops = {
4058 .elevator_merge_fn = cfq_merge,
4059 .elevator_merged_fn = cfq_merged_request,
4060 .elevator_merge_req_fn = cfq_merged_requests,
4061 .elevator_allow_merge_fn = cfq_allow_merge,
4062 .elevator_bio_merged_fn = cfq_bio_merged,
4063 .elevator_dispatch_fn = cfq_dispatch_requests,
4064 .elevator_add_req_fn = cfq_insert_request,
4065 .elevator_activate_req_fn = cfq_activate_request,
4066 .elevator_deactivate_req_fn = cfq_deactivate_request,
4067 .elevator_completed_req_fn = cfq_completed_request,
4068 .elevator_former_req_fn = elv_rb_former_request,
4069 .elevator_latter_req_fn = elv_rb_latter_request,
4070 .elevator_set_req_fn = cfq_set_request,
4071 .elevator_put_req_fn = cfq_put_request,
4072 .elevator_may_queue_fn = cfq_may_queue,
4073 .elevator_init_fn = cfq_init_queue,
4074 .elevator_exit_fn = cfq_exit_queue,
4075 },
4076 .elevator_attrs = cfq_attrs,
4077 .elevator_name = "cfq",
4078 .elevator_owner = THIS_MODULE,
4079 };
4080
4081 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4082 static struct blkio_policy_type blkio_policy_cfq = {
4083 .ops = {
4084 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4085 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4086 },
4087 .plid = BLKIO_POLICY_PROP,
4088 };
4089 #else
4090 static struct blkio_policy_type blkio_policy_cfq;
4091 #endif
4092
4093 static int __init cfq_init(void)
4094 {
4095 /*
4096 * could be 0 on HZ < 1000 setups
4097 */
4098 if (!cfq_slice_async)
4099 cfq_slice_async = 1;
4100 if (!cfq_slice_idle)
4101 cfq_slice_idle = 1;
4102
4103 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4104 if (!cfq_group_idle)
4105 cfq_group_idle = 1;
4106 #else
4107 cfq_group_idle = 0;
4108 #endif
4109 if (cfq_slab_setup())
4110 return -ENOMEM;
4111
4112 elv_register(&iosched_cfq);
4113 blkio_policy_register(&blkio_policy_cfq);
4114
4115 return 0;
4116 }
4117
4118 static void __exit cfq_exit(void)
4119 {
4120 blkio_policy_unregister(&blkio_policy_cfq);
4121 elv_unregister(&iosched_cfq);
4122 rcu_barrier(); /* make sure all cic RCU frees are complete */
4123 cfq_slab_kill();
4124 }
4125
4126 module_init(cfq_init);
4127 module_exit(cfq_exit);
4128
4129 MODULE_AUTHOR("Jens Axboe");
4130 MODULE_LICENSE("GPL");
4131 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");