]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/cfq-iosched.c
cfq: fix IOPRIO_CLASS_IDLE accounting
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14
15 /*
16 * tunables
17 */
18 static const int cfq_quantum = 4; /* max queue in one round of service */
19 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
20 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
21 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
22
23 static const int cfq_slice_sync = HZ / 10;
24 static int cfq_slice_async = HZ / 25;
25 static const int cfq_slice_async_rq = 2;
26 static int cfq_slice_idle = HZ / 125;
27
28 /*
29 * grace period before allowing idle class to get disk access
30 */
31 #define CFQ_IDLE_GRACE (HZ / 10)
32
33 /*
34 * below this threshold, we consider thinktime immediate
35 */
36 #define CFQ_MIN_TT (2)
37
38 #define CFQ_SLICE_SCALE (5)
39
40 #define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
41 #define RQ_CFQQ(rq) ((rq)->elevator_private2)
42
43 static struct kmem_cache *cfq_pool;
44 static struct kmem_cache *cfq_ioc_pool;
45
46 static DEFINE_PER_CPU(unsigned long, ioc_count);
47 static struct completion *ioc_gone;
48
49 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
50 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
51 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
52
53 #define ASYNC (0)
54 #define SYNC (1)
55
56 #define sample_valid(samples) ((samples) > 80)
57
58 /*
59 * Most of our rbtree usage is for sorting with min extraction, so
60 * if we cache the leftmost node we don't have to walk down the tree
61 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
62 * move this into the elevator for the rq sorting as well.
63 */
64 struct cfq_rb_root {
65 struct rb_root rb;
66 struct rb_node *left;
67 };
68 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
69
70 /*
71 * Per block device queue structure
72 */
73 struct cfq_data {
74 struct request_queue *queue;
75
76 /*
77 * rr list of queues with requests and the count of them
78 */
79 struct cfq_rb_root service_tree;
80 unsigned int busy_queues;
81
82 int rq_in_driver;
83 int sync_flight;
84 int hw_tag;
85
86 /*
87 * idle window management
88 */
89 struct timer_list idle_slice_timer;
90 struct work_struct unplug_work;
91
92 struct cfq_queue *active_queue;
93 struct cfq_io_context *active_cic;
94
95 /*
96 * async queue for each priority case
97 */
98 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
99 struct cfq_queue *async_idle_cfqq;
100
101 struct timer_list idle_class_timer;
102
103 sector_t last_position;
104 unsigned long last_end_request;
105
106 /*
107 * tunables, see top of file
108 */
109 unsigned int cfq_quantum;
110 unsigned int cfq_fifo_expire[2];
111 unsigned int cfq_back_penalty;
112 unsigned int cfq_back_max;
113 unsigned int cfq_slice[2];
114 unsigned int cfq_slice_async_rq;
115 unsigned int cfq_slice_idle;
116
117 struct list_head cic_list;
118 };
119
120 /*
121 * Per process-grouping structure
122 */
123 struct cfq_queue {
124 /* reference count */
125 atomic_t ref;
126 /* parent cfq_data */
127 struct cfq_data *cfqd;
128 /* service_tree member */
129 struct rb_node rb_node;
130 /* service_tree key */
131 unsigned long rb_key;
132 /* sorted list of pending requests */
133 struct rb_root sort_list;
134 /* if fifo isn't expired, next request to serve */
135 struct request *next_rq;
136 /* requests queued in sort_list */
137 int queued[2];
138 /* currently allocated requests */
139 int allocated[2];
140 /* pending metadata requests */
141 int meta_pending;
142 /* fifo list of requests in sort_list */
143 struct list_head fifo;
144
145 unsigned long slice_end;
146 long slice_resid;
147
148 /* number of requests that are on the dispatch list or inside driver */
149 int dispatched;
150
151 /* io prio of this group */
152 unsigned short ioprio, org_ioprio;
153 unsigned short ioprio_class, org_ioprio_class;
154
155 /* various state flags, see below */
156 unsigned int flags;
157 };
158
159 enum cfqq_state_flags {
160 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
161 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
162 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
163 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
164 CFQ_CFQQ_FLAG_must_dispatch, /* must dispatch, even if expired */
165 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
166 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
167 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
168 CFQ_CFQQ_FLAG_queue_new, /* queue never been serviced */
169 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
170 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
171 };
172
173 #define CFQ_CFQQ_FNS(name) \
174 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
175 { \
176 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
177 } \
178 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
179 { \
180 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
181 } \
182 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
183 { \
184 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
185 }
186
187 CFQ_CFQQ_FNS(on_rr);
188 CFQ_CFQQ_FNS(wait_request);
189 CFQ_CFQQ_FNS(must_alloc);
190 CFQ_CFQQ_FNS(must_alloc_slice);
191 CFQ_CFQQ_FNS(must_dispatch);
192 CFQ_CFQQ_FNS(fifo_expire);
193 CFQ_CFQQ_FNS(idle_window);
194 CFQ_CFQQ_FNS(prio_changed);
195 CFQ_CFQQ_FNS(queue_new);
196 CFQ_CFQQ_FNS(slice_new);
197 CFQ_CFQQ_FNS(sync);
198 #undef CFQ_CFQQ_FNS
199
200 static void cfq_dispatch_insert(struct request_queue *, struct request *);
201 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
202 struct task_struct *, gfp_t);
203 static struct cfq_io_context *cfq_cic_rb_lookup(struct cfq_data *,
204 struct io_context *);
205
206 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
207 int is_sync)
208 {
209 return cic->cfqq[!!is_sync];
210 }
211
212 static inline void cic_set_cfqq(struct cfq_io_context *cic,
213 struct cfq_queue *cfqq, int is_sync)
214 {
215 cic->cfqq[!!is_sync] = cfqq;
216 }
217
218 /*
219 * We regard a request as SYNC, if it's either a read or has the SYNC bit
220 * set (in which case it could also be direct WRITE).
221 */
222 static inline int cfq_bio_sync(struct bio *bio)
223 {
224 if (bio_data_dir(bio) == READ || bio_sync(bio))
225 return 1;
226
227 return 0;
228 }
229
230 /*
231 * scheduler run of queue, if there are requests pending and no one in the
232 * driver that will restart queueing
233 */
234 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
235 {
236 if (cfqd->busy_queues)
237 kblockd_schedule_work(&cfqd->unplug_work);
238 }
239
240 static int cfq_queue_empty(struct request_queue *q)
241 {
242 struct cfq_data *cfqd = q->elevator->elevator_data;
243
244 return !cfqd->busy_queues;
245 }
246
247 /*
248 * Scale schedule slice based on io priority. Use the sync time slice only
249 * if a queue is marked sync and has sync io queued. A sync queue with async
250 * io only, should not get full sync slice length.
251 */
252 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
253 unsigned short prio)
254 {
255 const int base_slice = cfqd->cfq_slice[sync];
256
257 WARN_ON(prio >= IOPRIO_BE_NR);
258
259 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
260 }
261
262 static inline int
263 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
264 {
265 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
266 }
267
268 static inline void
269 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
270 {
271 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
272 }
273
274 /*
275 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
276 * isn't valid until the first request from the dispatch is activated
277 * and the slice time set.
278 */
279 static inline int cfq_slice_used(struct cfq_queue *cfqq)
280 {
281 if (cfq_cfqq_slice_new(cfqq))
282 return 0;
283 if (time_before(jiffies, cfqq->slice_end))
284 return 0;
285
286 return 1;
287 }
288
289 /*
290 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
291 * We choose the request that is closest to the head right now. Distance
292 * behind the head is penalized and only allowed to a certain extent.
293 */
294 static struct request *
295 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
296 {
297 sector_t last, s1, s2, d1 = 0, d2 = 0;
298 unsigned long back_max;
299 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
300 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
301 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
302
303 if (rq1 == NULL || rq1 == rq2)
304 return rq2;
305 if (rq2 == NULL)
306 return rq1;
307
308 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
309 return rq1;
310 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
311 return rq2;
312 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
313 return rq1;
314 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
315 return rq2;
316
317 s1 = rq1->sector;
318 s2 = rq2->sector;
319
320 last = cfqd->last_position;
321
322 /*
323 * by definition, 1KiB is 2 sectors
324 */
325 back_max = cfqd->cfq_back_max * 2;
326
327 /*
328 * Strict one way elevator _except_ in the case where we allow
329 * short backward seeks which are biased as twice the cost of a
330 * similar forward seek.
331 */
332 if (s1 >= last)
333 d1 = s1 - last;
334 else if (s1 + back_max >= last)
335 d1 = (last - s1) * cfqd->cfq_back_penalty;
336 else
337 wrap |= CFQ_RQ1_WRAP;
338
339 if (s2 >= last)
340 d2 = s2 - last;
341 else if (s2 + back_max >= last)
342 d2 = (last - s2) * cfqd->cfq_back_penalty;
343 else
344 wrap |= CFQ_RQ2_WRAP;
345
346 /* Found required data */
347
348 /*
349 * By doing switch() on the bit mask "wrap" we avoid having to
350 * check two variables for all permutations: --> faster!
351 */
352 switch (wrap) {
353 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
354 if (d1 < d2)
355 return rq1;
356 else if (d2 < d1)
357 return rq2;
358 else {
359 if (s1 >= s2)
360 return rq1;
361 else
362 return rq2;
363 }
364
365 case CFQ_RQ2_WRAP:
366 return rq1;
367 case CFQ_RQ1_WRAP:
368 return rq2;
369 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
370 default:
371 /*
372 * Since both rqs are wrapped,
373 * start with the one that's further behind head
374 * (--> only *one* back seek required),
375 * since back seek takes more time than forward.
376 */
377 if (s1 <= s2)
378 return rq1;
379 else
380 return rq2;
381 }
382 }
383
384 /*
385 * The below is leftmost cache rbtree addon
386 */
387 static struct rb_node *cfq_rb_first(struct cfq_rb_root *root)
388 {
389 if (!root->left)
390 root->left = rb_first(&root->rb);
391
392 return root->left;
393 }
394
395 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
396 {
397 if (root->left == n)
398 root->left = NULL;
399
400 rb_erase(n, &root->rb);
401 RB_CLEAR_NODE(n);
402 }
403
404 /*
405 * would be nice to take fifo expire time into account as well
406 */
407 static struct request *
408 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
409 struct request *last)
410 {
411 struct rb_node *rbnext = rb_next(&last->rb_node);
412 struct rb_node *rbprev = rb_prev(&last->rb_node);
413 struct request *next = NULL, *prev = NULL;
414
415 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
416
417 if (rbprev)
418 prev = rb_entry_rq(rbprev);
419
420 if (rbnext)
421 next = rb_entry_rq(rbnext);
422 else {
423 rbnext = rb_first(&cfqq->sort_list);
424 if (rbnext && rbnext != &last->rb_node)
425 next = rb_entry_rq(rbnext);
426 }
427
428 return cfq_choose_req(cfqd, next, prev);
429 }
430
431 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
432 struct cfq_queue *cfqq)
433 {
434 /*
435 * just an approximation, should be ok.
436 */
437 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
438 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
439 }
440
441 /*
442 * The cfqd->service_tree holds all pending cfq_queue's that have
443 * requests waiting to be processed. It is sorted in the order that
444 * we will service the queues.
445 */
446 static void cfq_service_tree_add(struct cfq_data *cfqd,
447 struct cfq_queue *cfqq, int add_front)
448 {
449 struct rb_node **p = &cfqd->service_tree.rb.rb_node;
450 struct rb_node *parent = NULL;
451 unsigned long rb_key;
452 int left;
453
454 if (!add_front) {
455 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
456 rb_key += cfqq->slice_resid;
457 cfqq->slice_resid = 0;
458 } else
459 rb_key = 0;
460
461 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
462 /*
463 * same position, nothing more to do
464 */
465 if (rb_key == cfqq->rb_key)
466 return;
467
468 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
469 }
470
471 left = 1;
472 while (*p) {
473 struct cfq_queue *__cfqq;
474 struct rb_node **n;
475
476 parent = *p;
477 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
478
479 /*
480 * sort RT queues first, we always want to give
481 * preference to them. IDLE queues goes to the back.
482 * after that, sort on the next service time.
483 */
484 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
485 n = &(*p)->rb_left;
486 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
487 n = &(*p)->rb_right;
488 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
489 n = &(*p)->rb_left;
490 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
491 n = &(*p)->rb_right;
492 else if (rb_key < __cfqq->rb_key)
493 n = &(*p)->rb_left;
494 else
495 n = &(*p)->rb_right;
496
497 if (n == &(*p)->rb_right)
498 left = 0;
499
500 p = n;
501 }
502
503 if (left)
504 cfqd->service_tree.left = &cfqq->rb_node;
505
506 cfqq->rb_key = rb_key;
507 rb_link_node(&cfqq->rb_node, parent, p);
508 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
509 }
510
511 /*
512 * Update cfqq's position in the service tree.
513 */
514 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
515 {
516 /*
517 * Resorting requires the cfqq to be on the RR list already.
518 */
519 if (cfq_cfqq_on_rr(cfqq))
520 cfq_service_tree_add(cfqd, cfqq, 0);
521 }
522
523 /*
524 * add to busy list of queues for service, trying to be fair in ordering
525 * the pending list according to last request service
526 */
527 static inline void
528 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
529 {
530 BUG_ON(cfq_cfqq_on_rr(cfqq));
531 cfq_mark_cfqq_on_rr(cfqq);
532 cfqd->busy_queues++;
533
534 cfq_resort_rr_list(cfqd, cfqq);
535 }
536
537 /*
538 * Called when the cfqq no longer has requests pending, remove it from
539 * the service tree.
540 */
541 static inline void
542 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
543 {
544 BUG_ON(!cfq_cfqq_on_rr(cfqq));
545 cfq_clear_cfqq_on_rr(cfqq);
546
547 if (!RB_EMPTY_NODE(&cfqq->rb_node))
548 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
549
550 BUG_ON(!cfqd->busy_queues);
551 cfqd->busy_queues--;
552 }
553
554 /*
555 * rb tree support functions
556 */
557 static inline void cfq_del_rq_rb(struct request *rq)
558 {
559 struct cfq_queue *cfqq = RQ_CFQQ(rq);
560 struct cfq_data *cfqd = cfqq->cfqd;
561 const int sync = rq_is_sync(rq);
562
563 BUG_ON(!cfqq->queued[sync]);
564 cfqq->queued[sync]--;
565
566 elv_rb_del(&cfqq->sort_list, rq);
567
568 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
569 cfq_del_cfqq_rr(cfqd, cfqq);
570 }
571
572 static void cfq_add_rq_rb(struct request *rq)
573 {
574 struct cfq_queue *cfqq = RQ_CFQQ(rq);
575 struct cfq_data *cfqd = cfqq->cfqd;
576 struct request *__alias;
577
578 cfqq->queued[rq_is_sync(rq)]++;
579
580 /*
581 * looks a little odd, but the first insert might return an alias.
582 * if that happens, put the alias on the dispatch list
583 */
584 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
585 cfq_dispatch_insert(cfqd->queue, __alias);
586
587 if (!cfq_cfqq_on_rr(cfqq))
588 cfq_add_cfqq_rr(cfqd, cfqq);
589
590 /*
591 * check if this request is a better next-serve candidate
592 */
593 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
594 BUG_ON(!cfqq->next_rq);
595 }
596
597 static inline void
598 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
599 {
600 elv_rb_del(&cfqq->sort_list, rq);
601 cfqq->queued[rq_is_sync(rq)]--;
602 cfq_add_rq_rb(rq);
603 }
604
605 static struct request *
606 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
607 {
608 struct task_struct *tsk = current;
609 struct cfq_io_context *cic;
610 struct cfq_queue *cfqq;
611
612 cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
613 if (!cic)
614 return NULL;
615
616 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
617 if (cfqq) {
618 sector_t sector = bio->bi_sector + bio_sectors(bio);
619
620 return elv_rb_find(&cfqq->sort_list, sector);
621 }
622
623 return NULL;
624 }
625
626 static void cfq_activate_request(struct request_queue *q, struct request *rq)
627 {
628 struct cfq_data *cfqd = q->elevator->elevator_data;
629
630 cfqd->rq_in_driver++;
631
632 /*
633 * If the depth is larger 1, it really could be queueing. But lets
634 * make the mark a little higher - idling could still be good for
635 * low queueing, and a low queueing number could also just indicate
636 * a SCSI mid layer like behaviour where limit+1 is often seen.
637 */
638 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
639 cfqd->hw_tag = 1;
640
641 cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
642 }
643
644 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
645 {
646 struct cfq_data *cfqd = q->elevator->elevator_data;
647
648 WARN_ON(!cfqd->rq_in_driver);
649 cfqd->rq_in_driver--;
650 }
651
652 static void cfq_remove_request(struct request *rq)
653 {
654 struct cfq_queue *cfqq = RQ_CFQQ(rq);
655
656 if (cfqq->next_rq == rq)
657 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
658
659 list_del_init(&rq->queuelist);
660 cfq_del_rq_rb(rq);
661
662 if (rq_is_meta(rq)) {
663 WARN_ON(!cfqq->meta_pending);
664 cfqq->meta_pending--;
665 }
666 }
667
668 static int cfq_merge(struct request_queue *q, struct request **req,
669 struct bio *bio)
670 {
671 struct cfq_data *cfqd = q->elevator->elevator_data;
672 struct request *__rq;
673
674 __rq = cfq_find_rq_fmerge(cfqd, bio);
675 if (__rq && elv_rq_merge_ok(__rq, bio)) {
676 *req = __rq;
677 return ELEVATOR_FRONT_MERGE;
678 }
679
680 return ELEVATOR_NO_MERGE;
681 }
682
683 static void cfq_merged_request(struct request_queue *q, struct request *req,
684 int type)
685 {
686 if (type == ELEVATOR_FRONT_MERGE) {
687 struct cfq_queue *cfqq = RQ_CFQQ(req);
688
689 cfq_reposition_rq_rb(cfqq, req);
690 }
691 }
692
693 static void
694 cfq_merged_requests(struct request_queue *q, struct request *rq,
695 struct request *next)
696 {
697 /*
698 * reposition in fifo if next is older than rq
699 */
700 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
701 time_before(next->start_time, rq->start_time))
702 list_move(&rq->queuelist, &next->queuelist);
703
704 cfq_remove_request(next);
705 }
706
707 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
708 struct bio *bio)
709 {
710 struct cfq_data *cfqd = q->elevator->elevator_data;
711 struct cfq_io_context *cic;
712 struct cfq_queue *cfqq;
713
714 /*
715 * Disallow merge of a sync bio into an async request.
716 */
717 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
718 return 0;
719
720 /*
721 * Lookup the cfqq that this bio will be queued with. Allow
722 * merge only if rq is queued there.
723 */
724 cic = cfq_cic_rb_lookup(cfqd, current->io_context);
725 if (!cic)
726 return 0;
727
728 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
729 if (cfqq == RQ_CFQQ(rq))
730 return 1;
731
732 return 0;
733 }
734
735 static inline void
736 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
737 {
738 if (cfqq) {
739 /*
740 * stop potential idle class queues waiting service
741 */
742 del_timer(&cfqd->idle_class_timer);
743
744 cfqq->slice_end = 0;
745 cfq_clear_cfqq_must_alloc_slice(cfqq);
746 cfq_clear_cfqq_fifo_expire(cfqq);
747 cfq_mark_cfqq_slice_new(cfqq);
748 cfq_clear_cfqq_queue_new(cfqq);
749 }
750
751 cfqd->active_queue = cfqq;
752 }
753
754 /*
755 * current cfqq expired its slice (or was too idle), select new one
756 */
757 static void
758 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
759 int timed_out)
760 {
761 if (cfq_cfqq_wait_request(cfqq))
762 del_timer(&cfqd->idle_slice_timer);
763
764 cfq_clear_cfqq_must_dispatch(cfqq);
765 cfq_clear_cfqq_wait_request(cfqq);
766
767 /*
768 * store what was left of this slice, if the queue idled/timed out
769 */
770 if (timed_out && !cfq_cfqq_slice_new(cfqq))
771 cfqq->slice_resid = cfqq->slice_end - jiffies;
772
773 cfq_resort_rr_list(cfqd, cfqq);
774
775 if (cfqq == cfqd->active_queue)
776 cfqd->active_queue = NULL;
777
778 if (cfqd->active_cic) {
779 put_io_context(cfqd->active_cic->ioc);
780 cfqd->active_cic = NULL;
781 }
782 }
783
784 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
785 {
786 struct cfq_queue *cfqq = cfqd->active_queue;
787
788 if (cfqq)
789 __cfq_slice_expired(cfqd, cfqq, timed_out);
790 }
791
792 /*
793 * Get next queue for service. Unless we have a queue preemption,
794 * we'll simply select the first cfqq in the service tree.
795 */
796 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
797 {
798 struct cfq_queue *cfqq;
799 struct rb_node *n;
800
801 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
802 return NULL;
803
804 n = cfq_rb_first(&cfqd->service_tree);
805 cfqq = rb_entry(n, struct cfq_queue, rb_node);
806
807 if (cfq_class_idle(cfqq)) {
808 unsigned long end;
809
810 /*
811 * if we have idle queues and no rt or be queues had
812 * pending requests, either allow immediate service if
813 * the grace period has passed or arm the idle grace
814 * timer
815 */
816 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
817 if (time_before(jiffies, end)) {
818 mod_timer(&cfqd->idle_class_timer, end);
819 cfqq = NULL;
820 }
821 }
822
823 return cfqq;
824 }
825
826 /*
827 * Get and set a new active queue for service.
828 */
829 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
830 {
831 struct cfq_queue *cfqq;
832
833 cfqq = cfq_get_next_queue(cfqd);
834 __cfq_set_active_queue(cfqd, cfqq);
835 return cfqq;
836 }
837
838 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
839 struct request *rq)
840 {
841 if (rq->sector >= cfqd->last_position)
842 return rq->sector - cfqd->last_position;
843 else
844 return cfqd->last_position - rq->sector;
845 }
846
847 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
848 {
849 struct cfq_io_context *cic = cfqd->active_cic;
850
851 if (!sample_valid(cic->seek_samples))
852 return 0;
853
854 return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
855 }
856
857 static int cfq_close_cooperator(struct cfq_data *cfq_data,
858 struct cfq_queue *cfqq)
859 {
860 /*
861 * We should notice if some of the queues are cooperating, eg
862 * working closely on the same area of the disk. In that case,
863 * we can group them together and don't waste time idling.
864 */
865 return 0;
866 }
867
868 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
869
870 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
871 {
872 struct cfq_queue *cfqq = cfqd->active_queue;
873 struct cfq_io_context *cic;
874 unsigned long sl;
875
876 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
877 WARN_ON(cfq_cfqq_slice_new(cfqq));
878
879 /*
880 * idle is disabled, either manually or by past process history
881 */
882 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
883 return;
884
885 /*
886 * task has exited, don't wait
887 */
888 cic = cfqd->active_cic;
889 if (!cic || !cic->ioc->task)
890 return;
891
892 /*
893 * See if this prio level has a good candidate
894 */
895 if (cfq_close_cooperator(cfqd, cfqq) &&
896 (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
897 return;
898
899 cfq_mark_cfqq_must_dispatch(cfqq);
900 cfq_mark_cfqq_wait_request(cfqq);
901
902 /*
903 * we don't want to idle for seeks, but we do want to allow
904 * fair distribution of slice time for a process doing back-to-back
905 * seeks. so allow a little bit of time for him to submit a new rq
906 */
907 sl = cfqd->cfq_slice_idle;
908 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
909 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
910
911 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
912 }
913
914 /*
915 * Move request from internal lists to the request queue dispatch list.
916 */
917 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
918 {
919 struct cfq_data *cfqd = q->elevator->elevator_data;
920 struct cfq_queue *cfqq = RQ_CFQQ(rq);
921
922 cfq_remove_request(rq);
923 cfqq->dispatched++;
924 elv_dispatch_sort(q, rq);
925
926 if (cfq_cfqq_sync(cfqq))
927 cfqd->sync_flight++;
928 }
929
930 /*
931 * return expired entry, or NULL to just start from scratch in rbtree
932 */
933 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
934 {
935 struct cfq_data *cfqd = cfqq->cfqd;
936 struct request *rq;
937 int fifo;
938
939 if (cfq_cfqq_fifo_expire(cfqq))
940 return NULL;
941
942 cfq_mark_cfqq_fifo_expire(cfqq);
943
944 if (list_empty(&cfqq->fifo))
945 return NULL;
946
947 fifo = cfq_cfqq_sync(cfqq);
948 rq = rq_entry_fifo(cfqq->fifo.next);
949
950 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
951 return NULL;
952
953 return rq;
954 }
955
956 static inline int
957 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
958 {
959 const int base_rq = cfqd->cfq_slice_async_rq;
960
961 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
962
963 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
964 }
965
966 /*
967 * Select a queue for service. If we have a current active queue,
968 * check whether to continue servicing it, or retrieve and set a new one.
969 */
970 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
971 {
972 struct cfq_queue *cfqq;
973
974 cfqq = cfqd->active_queue;
975 if (!cfqq)
976 goto new_queue;
977
978 /*
979 * The active queue has run out of time, expire it and select new.
980 */
981 if (cfq_slice_used(cfqq))
982 goto expire;
983
984 /*
985 * The active queue has requests and isn't expired, allow it to
986 * dispatch.
987 */
988 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
989 goto keep_queue;
990
991 /*
992 * No requests pending. If the active queue still has requests in
993 * flight or is idling for a new request, allow either of these
994 * conditions to happen (or time out) before selecting a new queue.
995 */
996 if (timer_pending(&cfqd->idle_slice_timer) ||
997 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
998 cfqq = NULL;
999 goto keep_queue;
1000 }
1001
1002 expire:
1003 cfq_slice_expired(cfqd, 0);
1004 new_queue:
1005 cfqq = cfq_set_active_queue(cfqd);
1006 keep_queue:
1007 return cfqq;
1008 }
1009
1010 /*
1011 * Dispatch some requests from cfqq, moving them to the request queue
1012 * dispatch list.
1013 */
1014 static int
1015 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1016 int max_dispatch)
1017 {
1018 int dispatched = 0;
1019
1020 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1021
1022 do {
1023 struct request *rq;
1024
1025 /*
1026 * follow expired path, else get first next available
1027 */
1028 if ((rq = cfq_check_fifo(cfqq)) == NULL)
1029 rq = cfqq->next_rq;
1030
1031 /*
1032 * finally, insert request into driver dispatch list
1033 */
1034 cfq_dispatch_insert(cfqd->queue, rq);
1035
1036 dispatched++;
1037
1038 if (!cfqd->active_cic) {
1039 atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1040 cfqd->active_cic = RQ_CIC(rq);
1041 }
1042
1043 if (RB_EMPTY_ROOT(&cfqq->sort_list))
1044 break;
1045
1046 } while (dispatched < max_dispatch);
1047
1048 /*
1049 * expire an async queue immediately if it has used up its slice. idle
1050 * queue always expire after 1 dispatch round.
1051 */
1052 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1053 dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1054 cfq_class_idle(cfqq))) {
1055 cfqq->slice_end = jiffies + 1;
1056 cfq_slice_expired(cfqd, 0);
1057 }
1058
1059 return dispatched;
1060 }
1061
1062 static inline int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1063 {
1064 int dispatched = 0;
1065
1066 while (cfqq->next_rq) {
1067 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1068 dispatched++;
1069 }
1070
1071 BUG_ON(!list_empty(&cfqq->fifo));
1072 return dispatched;
1073 }
1074
1075 /*
1076 * Drain our current requests. Used for barriers and when switching
1077 * io schedulers on-the-fly.
1078 */
1079 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1080 {
1081 int dispatched = 0;
1082 struct rb_node *n;
1083
1084 while ((n = cfq_rb_first(&cfqd->service_tree)) != NULL) {
1085 struct cfq_queue *cfqq = rb_entry(n, struct cfq_queue, rb_node);
1086
1087 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1088 }
1089
1090 cfq_slice_expired(cfqd, 0);
1091
1092 BUG_ON(cfqd->busy_queues);
1093
1094 return dispatched;
1095 }
1096
1097 static int cfq_dispatch_requests(struct request_queue *q, int force)
1098 {
1099 struct cfq_data *cfqd = q->elevator->elevator_data;
1100 struct cfq_queue *cfqq;
1101 int dispatched;
1102
1103 if (!cfqd->busy_queues)
1104 return 0;
1105
1106 if (unlikely(force))
1107 return cfq_forced_dispatch(cfqd);
1108
1109 dispatched = 0;
1110 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1111 int max_dispatch;
1112
1113 max_dispatch = cfqd->cfq_quantum;
1114 if (cfq_class_idle(cfqq))
1115 max_dispatch = 1;
1116
1117 if (cfqq->dispatched >= max_dispatch) {
1118 if (cfqd->busy_queues > 1)
1119 break;
1120 if (cfqq->dispatched >= 4 * max_dispatch)
1121 break;
1122 }
1123
1124 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1125 break;
1126
1127 cfq_clear_cfqq_must_dispatch(cfqq);
1128 cfq_clear_cfqq_wait_request(cfqq);
1129 del_timer(&cfqd->idle_slice_timer);
1130
1131 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1132 }
1133
1134 return dispatched;
1135 }
1136
1137 /*
1138 * task holds one reference to the queue, dropped when task exits. each rq
1139 * in-flight on this queue also holds a reference, dropped when rq is freed.
1140 *
1141 * queue lock must be held here.
1142 */
1143 static void cfq_put_queue(struct cfq_queue *cfqq)
1144 {
1145 struct cfq_data *cfqd = cfqq->cfqd;
1146
1147 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1148
1149 if (!atomic_dec_and_test(&cfqq->ref))
1150 return;
1151
1152 BUG_ON(rb_first(&cfqq->sort_list));
1153 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1154 BUG_ON(cfq_cfqq_on_rr(cfqq));
1155
1156 if (unlikely(cfqd->active_queue == cfqq)) {
1157 __cfq_slice_expired(cfqd, cfqq, 0);
1158 cfq_schedule_dispatch(cfqd);
1159 }
1160
1161 kmem_cache_free(cfq_pool, cfqq);
1162 }
1163
1164 static void cfq_free_io_context(struct io_context *ioc)
1165 {
1166 struct cfq_io_context *__cic;
1167 struct rb_node *n;
1168 int freed = 0;
1169
1170 ioc->ioc_data = NULL;
1171
1172 while ((n = rb_first(&ioc->cic_root)) != NULL) {
1173 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1174 rb_erase(&__cic->rb_node, &ioc->cic_root);
1175 kmem_cache_free(cfq_ioc_pool, __cic);
1176 freed++;
1177 }
1178
1179 elv_ioc_count_mod(ioc_count, -freed);
1180
1181 if (ioc_gone && !elv_ioc_count_read(ioc_count))
1182 complete(ioc_gone);
1183 }
1184
1185 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1186 {
1187 if (unlikely(cfqq == cfqd->active_queue)) {
1188 __cfq_slice_expired(cfqd, cfqq, 0);
1189 cfq_schedule_dispatch(cfqd);
1190 }
1191
1192 cfq_put_queue(cfqq);
1193 }
1194
1195 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1196 struct cfq_io_context *cic)
1197 {
1198 list_del_init(&cic->queue_list);
1199 smp_wmb();
1200 cic->key = NULL;
1201
1202 if (cic->cfqq[ASYNC]) {
1203 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1204 cic->cfqq[ASYNC] = NULL;
1205 }
1206
1207 if (cic->cfqq[SYNC]) {
1208 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1209 cic->cfqq[SYNC] = NULL;
1210 }
1211 }
1212
1213 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1214 {
1215 struct cfq_data *cfqd = cic->key;
1216
1217 if (cfqd) {
1218 struct request_queue *q = cfqd->queue;
1219
1220 spin_lock_irq(q->queue_lock);
1221 __cfq_exit_single_io_context(cfqd, cic);
1222 spin_unlock_irq(q->queue_lock);
1223 }
1224 }
1225
1226 /*
1227 * The process that ioc belongs to has exited, we need to clean up
1228 * and put the internal structures we have that belongs to that process.
1229 */
1230 static void cfq_exit_io_context(struct io_context *ioc)
1231 {
1232 struct cfq_io_context *__cic;
1233 struct rb_node *n;
1234
1235 ioc->ioc_data = NULL;
1236
1237 /*
1238 * put the reference this task is holding to the various queues
1239 */
1240 n = rb_first(&ioc->cic_root);
1241 while (n != NULL) {
1242 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1243
1244 cfq_exit_single_io_context(__cic);
1245 n = rb_next(n);
1246 }
1247 }
1248
1249 static struct cfq_io_context *
1250 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1251 {
1252 struct cfq_io_context *cic;
1253
1254 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1255 cfqd->queue->node);
1256 if (cic) {
1257 cic->last_end_request = jiffies;
1258 INIT_LIST_HEAD(&cic->queue_list);
1259 cic->dtor = cfq_free_io_context;
1260 cic->exit = cfq_exit_io_context;
1261 elv_ioc_count_inc(ioc_count);
1262 }
1263
1264 return cic;
1265 }
1266
1267 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1268 {
1269 struct task_struct *tsk = current;
1270 int ioprio_class;
1271
1272 if (!cfq_cfqq_prio_changed(cfqq))
1273 return;
1274
1275 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1276 switch (ioprio_class) {
1277 default:
1278 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1279 case IOPRIO_CLASS_NONE:
1280 /*
1281 * no prio set, place us in the middle of the BE classes
1282 */
1283 cfqq->ioprio = task_nice_ioprio(tsk);
1284 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1285 break;
1286 case IOPRIO_CLASS_RT:
1287 cfqq->ioprio = task_ioprio(tsk);
1288 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1289 break;
1290 case IOPRIO_CLASS_BE:
1291 cfqq->ioprio = task_ioprio(tsk);
1292 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1293 break;
1294 case IOPRIO_CLASS_IDLE:
1295 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1296 cfqq->ioprio = 7;
1297 cfq_clear_cfqq_idle_window(cfqq);
1298 break;
1299 }
1300
1301 /*
1302 * keep track of original prio settings in case we have to temporarily
1303 * elevate the priority of this queue
1304 */
1305 cfqq->org_ioprio = cfqq->ioprio;
1306 cfqq->org_ioprio_class = cfqq->ioprio_class;
1307 cfq_clear_cfqq_prio_changed(cfqq);
1308 }
1309
1310 static inline void changed_ioprio(struct cfq_io_context *cic)
1311 {
1312 struct cfq_data *cfqd = cic->key;
1313 struct cfq_queue *cfqq;
1314 unsigned long flags;
1315
1316 if (unlikely(!cfqd))
1317 return;
1318
1319 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1320
1321 cfqq = cic->cfqq[ASYNC];
1322 if (cfqq) {
1323 struct cfq_queue *new_cfqq;
1324 new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc->task,
1325 GFP_ATOMIC);
1326 if (new_cfqq) {
1327 cic->cfqq[ASYNC] = new_cfqq;
1328 cfq_put_queue(cfqq);
1329 }
1330 }
1331
1332 cfqq = cic->cfqq[SYNC];
1333 if (cfqq)
1334 cfq_mark_cfqq_prio_changed(cfqq);
1335
1336 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1337 }
1338
1339 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1340 {
1341 struct cfq_io_context *cic;
1342 struct rb_node *n;
1343
1344 ioc->ioprio_changed = 0;
1345
1346 n = rb_first(&ioc->cic_root);
1347 while (n != NULL) {
1348 cic = rb_entry(n, struct cfq_io_context, rb_node);
1349
1350 changed_ioprio(cic);
1351 n = rb_next(n);
1352 }
1353 }
1354
1355 static struct cfq_queue *
1356 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1357 struct task_struct *tsk, gfp_t gfp_mask)
1358 {
1359 struct cfq_queue *cfqq, *new_cfqq = NULL;
1360 struct cfq_io_context *cic;
1361
1362 retry:
1363 cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
1364 /* cic always exists here */
1365 cfqq = cic_to_cfqq(cic, is_sync);
1366
1367 if (!cfqq) {
1368 if (new_cfqq) {
1369 cfqq = new_cfqq;
1370 new_cfqq = NULL;
1371 } else if (gfp_mask & __GFP_WAIT) {
1372 /*
1373 * Inform the allocator of the fact that we will
1374 * just repeat this allocation if it fails, to allow
1375 * the allocator to do whatever it needs to attempt to
1376 * free memory.
1377 */
1378 spin_unlock_irq(cfqd->queue->queue_lock);
1379 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1380 gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1381 cfqd->queue->node);
1382 spin_lock_irq(cfqd->queue->queue_lock);
1383 goto retry;
1384 } else {
1385 cfqq = kmem_cache_alloc_node(cfq_pool,
1386 gfp_mask | __GFP_ZERO,
1387 cfqd->queue->node);
1388 if (!cfqq)
1389 goto out;
1390 }
1391
1392 RB_CLEAR_NODE(&cfqq->rb_node);
1393 INIT_LIST_HEAD(&cfqq->fifo);
1394
1395 atomic_set(&cfqq->ref, 0);
1396 cfqq->cfqd = cfqd;
1397
1398 if (is_sync) {
1399 cfq_mark_cfqq_idle_window(cfqq);
1400 cfq_mark_cfqq_sync(cfqq);
1401 }
1402
1403 cfq_mark_cfqq_prio_changed(cfqq);
1404 cfq_mark_cfqq_queue_new(cfqq);
1405
1406 cfq_init_prio_data(cfqq);
1407 }
1408
1409 if (new_cfqq)
1410 kmem_cache_free(cfq_pool, new_cfqq);
1411
1412 out:
1413 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1414 return cfqq;
1415 }
1416
1417 static struct cfq_queue **
1418 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1419 {
1420 switch(ioprio_class) {
1421 case IOPRIO_CLASS_RT:
1422 return &cfqd->async_cfqq[0][ioprio];
1423 case IOPRIO_CLASS_BE:
1424 return &cfqd->async_cfqq[1][ioprio];
1425 case IOPRIO_CLASS_IDLE:
1426 return &cfqd->async_idle_cfqq;
1427 default:
1428 BUG();
1429 }
1430 }
1431
1432 static struct cfq_queue *
1433 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct task_struct *tsk,
1434 gfp_t gfp_mask)
1435 {
1436 const int ioprio = task_ioprio(tsk);
1437 const int ioprio_class = task_ioprio_class(tsk);
1438 struct cfq_queue **async_cfqq = NULL;
1439 struct cfq_queue *cfqq = NULL;
1440
1441 if (!is_sync) {
1442 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1443 cfqq = *async_cfqq;
1444 }
1445
1446 if (!cfqq) {
1447 cfqq = cfq_find_alloc_queue(cfqd, is_sync, tsk, gfp_mask);
1448 if (!cfqq)
1449 return NULL;
1450 }
1451
1452 /*
1453 * pin the queue now that it's allocated, scheduler exit will prune it
1454 */
1455 if (!is_sync && !(*async_cfqq)) {
1456 atomic_inc(&cfqq->ref);
1457 *async_cfqq = cfqq;
1458 }
1459
1460 atomic_inc(&cfqq->ref);
1461 return cfqq;
1462 }
1463
1464 /*
1465 * We drop cfq io contexts lazily, so we may find a dead one.
1466 */
1467 static void
1468 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1469 {
1470 WARN_ON(!list_empty(&cic->queue_list));
1471
1472 if (ioc->ioc_data == cic)
1473 ioc->ioc_data = NULL;
1474
1475 rb_erase(&cic->rb_node, &ioc->cic_root);
1476 kmem_cache_free(cfq_ioc_pool, cic);
1477 elv_ioc_count_dec(ioc_count);
1478 }
1479
1480 static struct cfq_io_context *
1481 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1482 {
1483 struct rb_node *n;
1484 struct cfq_io_context *cic;
1485 void *k, *key = cfqd;
1486
1487 if (unlikely(!ioc))
1488 return NULL;
1489
1490 /*
1491 * we maintain a last-hit cache, to avoid browsing over the tree
1492 */
1493 cic = ioc->ioc_data;
1494 if (cic && cic->key == cfqd)
1495 return cic;
1496
1497 restart:
1498 n = ioc->cic_root.rb_node;
1499 while (n) {
1500 cic = rb_entry(n, struct cfq_io_context, rb_node);
1501 /* ->key must be copied to avoid race with cfq_exit_queue() */
1502 k = cic->key;
1503 if (unlikely(!k)) {
1504 cfq_drop_dead_cic(ioc, cic);
1505 goto restart;
1506 }
1507
1508 if (key < k)
1509 n = n->rb_left;
1510 else if (key > k)
1511 n = n->rb_right;
1512 else {
1513 ioc->ioc_data = cic;
1514 return cic;
1515 }
1516 }
1517
1518 return NULL;
1519 }
1520
1521 static inline void
1522 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1523 struct cfq_io_context *cic)
1524 {
1525 struct rb_node **p;
1526 struct rb_node *parent;
1527 struct cfq_io_context *__cic;
1528 unsigned long flags;
1529 void *k;
1530
1531 cic->ioc = ioc;
1532 cic->key = cfqd;
1533
1534 restart:
1535 parent = NULL;
1536 p = &ioc->cic_root.rb_node;
1537 while (*p) {
1538 parent = *p;
1539 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1540 /* ->key must be copied to avoid race with cfq_exit_queue() */
1541 k = __cic->key;
1542 if (unlikely(!k)) {
1543 cfq_drop_dead_cic(ioc, __cic);
1544 goto restart;
1545 }
1546
1547 if (cic->key < k)
1548 p = &(*p)->rb_left;
1549 else if (cic->key > k)
1550 p = &(*p)->rb_right;
1551 else
1552 BUG();
1553 }
1554
1555 rb_link_node(&cic->rb_node, parent, p);
1556 rb_insert_color(&cic->rb_node, &ioc->cic_root);
1557
1558 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1559 list_add(&cic->queue_list, &cfqd->cic_list);
1560 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1561 }
1562
1563 /*
1564 * Setup general io context and cfq io context. There can be several cfq
1565 * io contexts per general io context, if this process is doing io to more
1566 * than one device managed by cfq.
1567 */
1568 static struct cfq_io_context *
1569 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1570 {
1571 struct io_context *ioc = NULL;
1572 struct cfq_io_context *cic;
1573
1574 might_sleep_if(gfp_mask & __GFP_WAIT);
1575
1576 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1577 if (!ioc)
1578 return NULL;
1579
1580 cic = cfq_cic_rb_lookup(cfqd, ioc);
1581 if (cic)
1582 goto out;
1583
1584 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1585 if (cic == NULL)
1586 goto err;
1587
1588 cfq_cic_link(cfqd, ioc, cic);
1589 out:
1590 smp_read_barrier_depends();
1591 if (unlikely(ioc->ioprio_changed))
1592 cfq_ioc_set_ioprio(ioc);
1593
1594 return cic;
1595 err:
1596 put_io_context(ioc);
1597 return NULL;
1598 }
1599
1600 static void
1601 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1602 {
1603 unsigned long elapsed = jiffies - cic->last_end_request;
1604 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1605
1606 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1607 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1608 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1609 }
1610
1611 static void
1612 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1613 struct request *rq)
1614 {
1615 sector_t sdist;
1616 u64 total;
1617
1618 if (cic->last_request_pos < rq->sector)
1619 sdist = rq->sector - cic->last_request_pos;
1620 else
1621 sdist = cic->last_request_pos - rq->sector;
1622
1623 /*
1624 * Don't allow the seek distance to get too large from the
1625 * odd fragment, pagein, etc
1626 */
1627 if (cic->seek_samples <= 60) /* second&third seek */
1628 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1629 else
1630 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1631
1632 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1633 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1634 total = cic->seek_total + (cic->seek_samples/2);
1635 do_div(total, cic->seek_samples);
1636 cic->seek_mean = (sector_t)total;
1637 }
1638
1639 /*
1640 * Disable idle window if the process thinks too long or seeks so much that
1641 * it doesn't matter
1642 */
1643 static void
1644 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1645 struct cfq_io_context *cic)
1646 {
1647 int enable_idle;
1648
1649 if (!cfq_cfqq_sync(cfqq))
1650 return;
1651
1652 enable_idle = cfq_cfqq_idle_window(cfqq);
1653
1654 if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1655 (cfqd->hw_tag && CIC_SEEKY(cic)))
1656 enable_idle = 0;
1657 else if (sample_valid(cic->ttime_samples)) {
1658 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1659 enable_idle = 0;
1660 else
1661 enable_idle = 1;
1662 }
1663
1664 if (enable_idle)
1665 cfq_mark_cfqq_idle_window(cfqq);
1666 else
1667 cfq_clear_cfqq_idle_window(cfqq);
1668 }
1669
1670 /*
1671 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1672 * no or if we aren't sure, a 1 will cause a preempt.
1673 */
1674 static int
1675 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1676 struct request *rq)
1677 {
1678 struct cfq_queue *cfqq;
1679
1680 cfqq = cfqd->active_queue;
1681 if (!cfqq)
1682 return 0;
1683
1684 if (cfq_slice_used(cfqq))
1685 return 1;
1686
1687 if (cfq_class_idle(new_cfqq))
1688 return 0;
1689
1690 if (cfq_class_idle(cfqq))
1691 return 1;
1692
1693 /*
1694 * if the new request is sync, but the currently running queue is
1695 * not, let the sync request have priority.
1696 */
1697 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1698 return 1;
1699
1700 /*
1701 * So both queues are sync. Let the new request get disk time if
1702 * it's a metadata request and the current queue is doing regular IO.
1703 */
1704 if (rq_is_meta(rq) && !cfqq->meta_pending)
1705 return 1;
1706
1707 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1708 return 0;
1709
1710 /*
1711 * if this request is as-good as one we would expect from the
1712 * current cfqq, let it preempt
1713 */
1714 if (cfq_rq_close(cfqd, rq))
1715 return 1;
1716
1717 return 0;
1718 }
1719
1720 /*
1721 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1722 * let it have half of its nominal slice.
1723 */
1724 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1725 {
1726 cfq_slice_expired(cfqd, 1);
1727
1728 /*
1729 * Put the new queue at the front of the of the current list,
1730 * so we know that it will be selected next.
1731 */
1732 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1733
1734 cfq_service_tree_add(cfqd, cfqq, 1);
1735
1736 cfqq->slice_end = 0;
1737 cfq_mark_cfqq_slice_new(cfqq);
1738 }
1739
1740 /*
1741 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1742 * something we should do about it
1743 */
1744 static void
1745 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1746 struct request *rq)
1747 {
1748 struct cfq_io_context *cic = RQ_CIC(rq);
1749
1750 if (rq_is_meta(rq))
1751 cfqq->meta_pending++;
1752
1753 cfq_update_io_thinktime(cfqd, cic);
1754 cfq_update_io_seektime(cfqd, cic, rq);
1755 cfq_update_idle_window(cfqd, cfqq, cic);
1756
1757 cic->last_request_pos = rq->sector + rq->nr_sectors;
1758
1759 if (cfqq == cfqd->active_queue) {
1760 /*
1761 * if we are waiting for a request for this queue, let it rip
1762 * immediately and flag that we must not expire this queue
1763 * just now
1764 */
1765 if (cfq_cfqq_wait_request(cfqq)) {
1766 cfq_mark_cfqq_must_dispatch(cfqq);
1767 del_timer(&cfqd->idle_slice_timer);
1768 blk_start_queueing(cfqd->queue);
1769 }
1770 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1771 /*
1772 * not the active queue - expire current slice if it is
1773 * idle and has expired it's mean thinktime or this new queue
1774 * has some old slice time left and is of higher priority
1775 */
1776 cfq_preempt_queue(cfqd, cfqq);
1777 cfq_mark_cfqq_must_dispatch(cfqq);
1778 blk_start_queueing(cfqd->queue);
1779 }
1780 }
1781
1782 static void cfq_insert_request(struct request_queue *q, struct request *rq)
1783 {
1784 struct cfq_data *cfqd = q->elevator->elevator_data;
1785 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1786
1787 cfq_init_prio_data(cfqq);
1788
1789 cfq_add_rq_rb(rq);
1790
1791 list_add_tail(&rq->queuelist, &cfqq->fifo);
1792
1793 cfq_rq_enqueued(cfqd, cfqq, rq);
1794 }
1795
1796 static void cfq_completed_request(struct request_queue *q, struct request *rq)
1797 {
1798 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1799 struct cfq_data *cfqd = cfqq->cfqd;
1800 const int sync = rq_is_sync(rq);
1801 unsigned long now;
1802
1803 now = jiffies;
1804
1805 WARN_ON(!cfqd->rq_in_driver);
1806 WARN_ON(!cfqq->dispatched);
1807 cfqd->rq_in_driver--;
1808 cfqq->dispatched--;
1809
1810 if (cfq_cfqq_sync(cfqq))
1811 cfqd->sync_flight--;
1812
1813 if (!cfq_class_idle(cfqq))
1814 cfqd->last_end_request = now;
1815
1816 if (sync)
1817 RQ_CIC(rq)->last_end_request = now;
1818
1819 /*
1820 * If this is the active queue, check if it needs to be expired,
1821 * or if we want to idle in case it has no pending requests.
1822 */
1823 if (cfqd->active_queue == cfqq) {
1824 if (cfq_cfqq_slice_new(cfqq)) {
1825 cfq_set_prio_slice(cfqd, cfqq);
1826 cfq_clear_cfqq_slice_new(cfqq);
1827 }
1828 if (cfq_slice_used(cfqq))
1829 cfq_slice_expired(cfqd, 1);
1830 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1831 cfq_arm_slice_timer(cfqd);
1832 }
1833
1834 if (!cfqd->rq_in_driver)
1835 cfq_schedule_dispatch(cfqd);
1836 }
1837
1838 /*
1839 * we temporarily boost lower priority queues if they are holding fs exclusive
1840 * resources. they are boosted to normal prio (CLASS_BE/4)
1841 */
1842 static void cfq_prio_boost(struct cfq_queue *cfqq)
1843 {
1844 if (has_fs_excl()) {
1845 /*
1846 * boost idle prio on transactions that would lock out other
1847 * users of the filesystem
1848 */
1849 if (cfq_class_idle(cfqq))
1850 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1851 if (cfqq->ioprio > IOPRIO_NORM)
1852 cfqq->ioprio = IOPRIO_NORM;
1853 } else {
1854 /*
1855 * check if we need to unboost the queue
1856 */
1857 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1858 cfqq->ioprio_class = cfqq->org_ioprio_class;
1859 if (cfqq->ioprio != cfqq->org_ioprio)
1860 cfqq->ioprio = cfqq->org_ioprio;
1861 }
1862 }
1863
1864 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1865 {
1866 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1867 !cfq_cfqq_must_alloc_slice(cfqq)) {
1868 cfq_mark_cfqq_must_alloc_slice(cfqq);
1869 return ELV_MQUEUE_MUST;
1870 }
1871
1872 return ELV_MQUEUE_MAY;
1873 }
1874
1875 static int cfq_may_queue(struct request_queue *q, int rw)
1876 {
1877 struct cfq_data *cfqd = q->elevator->elevator_data;
1878 struct task_struct *tsk = current;
1879 struct cfq_io_context *cic;
1880 struct cfq_queue *cfqq;
1881
1882 /*
1883 * don't force setup of a queue from here, as a call to may_queue
1884 * does not necessarily imply that a request actually will be queued.
1885 * so just lookup a possibly existing queue, or return 'may queue'
1886 * if that fails
1887 */
1888 cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
1889 if (!cic)
1890 return ELV_MQUEUE_MAY;
1891
1892 cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
1893 if (cfqq) {
1894 cfq_init_prio_data(cfqq);
1895 cfq_prio_boost(cfqq);
1896
1897 return __cfq_may_queue(cfqq);
1898 }
1899
1900 return ELV_MQUEUE_MAY;
1901 }
1902
1903 /*
1904 * queue lock held here
1905 */
1906 static void cfq_put_request(struct request *rq)
1907 {
1908 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1909
1910 if (cfqq) {
1911 const int rw = rq_data_dir(rq);
1912
1913 BUG_ON(!cfqq->allocated[rw]);
1914 cfqq->allocated[rw]--;
1915
1916 put_io_context(RQ_CIC(rq)->ioc);
1917
1918 rq->elevator_private = NULL;
1919 rq->elevator_private2 = NULL;
1920
1921 cfq_put_queue(cfqq);
1922 }
1923 }
1924
1925 /*
1926 * Allocate cfq data structures associated with this request.
1927 */
1928 static int
1929 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1930 {
1931 struct cfq_data *cfqd = q->elevator->elevator_data;
1932 struct task_struct *tsk = current;
1933 struct cfq_io_context *cic;
1934 const int rw = rq_data_dir(rq);
1935 const int is_sync = rq_is_sync(rq);
1936 struct cfq_queue *cfqq;
1937 unsigned long flags;
1938
1939 might_sleep_if(gfp_mask & __GFP_WAIT);
1940
1941 cic = cfq_get_io_context(cfqd, gfp_mask);
1942
1943 spin_lock_irqsave(q->queue_lock, flags);
1944
1945 if (!cic)
1946 goto queue_fail;
1947
1948 cfqq = cic_to_cfqq(cic, is_sync);
1949 if (!cfqq) {
1950 cfqq = cfq_get_queue(cfqd, is_sync, tsk, gfp_mask);
1951
1952 if (!cfqq)
1953 goto queue_fail;
1954
1955 cic_set_cfqq(cic, cfqq, is_sync);
1956 }
1957
1958 cfqq->allocated[rw]++;
1959 cfq_clear_cfqq_must_alloc(cfqq);
1960 atomic_inc(&cfqq->ref);
1961
1962 spin_unlock_irqrestore(q->queue_lock, flags);
1963
1964 rq->elevator_private = cic;
1965 rq->elevator_private2 = cfqq;
1966 return 0;
1967
1968 queue_fail:
1969 if (cic)
1970 put_io_context(cic->ioc);
1971
1972 cfq_schedule_dispatch(cfqd);
1973 spin_unlock_irqrestore(q->queue_lock, flags);
1974 return 1;
1975 }
1976
1977 static void cfq_kick_queue(struct work_struct *work)
1978 {
1979 struct cfq_data *cfqd =
1980 container_of(work, struct cfq_data, unplug_work);
1981 struct request_queue *q = cfqd->queue;
1982 unsigned long flags;
1983
1984 spin_lock_irqsave(q->queue_lock, flags);
1985 blk_start_queueing(q);
1986 spin_unlock_irqrestore(q->queue_lock, flags);
1987 }
1988
1989 /*
1990 * Timer running if the active_queue is currently idling inside its time slice
1991 */
1992 static void cfq_idle_slice_timer(unsigned long data)
1993 {
1994 struct cfq_data *cfqd = (struct cfq_data *) data;
1995 struct cfq_queue *cfqq;
1996 unsigned long flags;
1997 int timed_out = 1;
1998
1999 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2000
2001 if ((cfqq = cfqd->active_queue) != NULL) {
2002 timed_out = 0;
2003
2004 /*
2005 * expired
2006 */
2007 if (cfq_slice_used(cfqq))
2008 goto expire;
2009
2010 /*
2011 * only expire and reinvoke request handler, if there are
2012 * other queues with pending requests
2013 */
2014 if (!cfqd->busy_queues)
2015 goto out_cont;
2016
2017 /*
2018 * not expired and it has a request pending, let it dispatch
2019 */
2020 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
2021 cfq_mark_cfqq_must_dispatch(cfqq);
2022 goto out_kick;
2023 }
2024 }
2025 expire:
2026 cfq_slice_expired(cfqd, timed_out);
2027 out_kick:
2028 cfq_schedule_dispatch(cfqd);
2029 out_cont:
2030 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2031 }
2032
2033 /*
2034 * Timer running if an idle class queue is waiting for service
2035 */
2036 static void cfq_idle_class_timer(unsigned long data)
2037 {
2038 struct cfq_data *cfqd = (struct cfq_data *) data;
2039 unsigned long flags, end;
2040
2041 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2042
2043 /*
2044 * race with a non-idle queue, reset timer
2045 */
2046 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2047 if (!time_after_eq(jiffies, end))
2048 mod_timer(&cfqd->idle_class_timer, end);
2049 else
2050 cfq_schedule_dispatch(cfqd);
2051
2052 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2053 }
2054
2055 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2056 {
2057 del_timer_sync(&cfqd->idle_slice_timer);
2058 del_timer_sync(&cfqd->idle_class_timer);
2059 kblockd_flush_work(&cfqd->unplug_work);
2060 }
2061
2062 static void cfq_put_async_queues(struct cfq_data *cfqd)
2063 {
2064 int i;
2065
2066 for (i = 0; i < IOPRIO_BE_NR; i++) {
2067 if (cfqd->async_cfqq[0][i])
2068 cfq_put_queue(cfqd->async_cfqq[0][i]);
2069 if (cfqd->async_cfqq[1][i])
2070 cfq_put_queue(cfqd->async_cfqq[1][i]);
2071 }
2072
2073 if (cfqd->async_idle_cfqq)
2074 cfq_put_queue(cfqd->async_idle_cfqq);
2075 }
2076
2077 static void cfq_exit_queue(elevator_t *e)
2078 {
2079 struct cfq_data *cfqd = e->elevator_data;
2080 struct request_queue *q = cfqd->queue;
2081
2082 cfq_shutdown_timer_wq(cfqd);
2083
2084 spin_lock_irq(q->queue_lock);
2085
2086 if (cfqd->active_queue)
2087 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2088
2089 while (!list_empty(&cfqd->cic_list)) {
2090 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2091 struct cfq_io_context,
2092 queue_list);
2093
2094 __cfq_exit_single_io_context(cfqd, cic);
2095 }
2096
2097 cfq_put_async_queues(cfqd);
2098
2099 spin_unlock_irq(q->queue_lock);
2100
2101 cfq_shutdown_timer_wq(cfqd);
2102
2103 kfree(cfqd);
2104 }
2105
2106 static void *cfq_init_queue(struct request_queue *q)
2107 {
2108 struct cfq_data *cfqd;
2109
2110 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2111 if (!cfqd)
2112 return NULL;
2113
2114 cfqd->service_tree = CFQ_RB_ROOT;
2115 INIT_LIST_HEAD(&cfqd->cic_list);
2116
2117 cfqd->queue = q;
2118
2119 init_timer(&cfqd->idle_slice_timer);
2120 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2121 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2122
2123 init_timer(&cfqd->idle_class_timer);
2124 cfqd->idle_class_timer.function = cfq_idle_class_timer;
2125 cfqd->idle_class_timer.data = (unsigned long) cfqd;
2126
2127 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2128
2129 cfqd->cfq_quantum = cfq_quantum;
2130 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2131 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2132 cfqd->cfq_back_max = cfq_back_max;
2133 cfqd->cfq_back_penalty = cfq_back_penalty;
2134 cfqd->cfq_slice[0] = cfq_slice_async;
2135 cfqd->cfq_slice[1] = cfq_slice_sync;
2136 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2137 cfqd->cfq_slice_idle = cfq_slice_idle;
2138
2139 return cfqd;
2140 }
2141
2142 static void cfq_slab_kill(void)
2143 {
2144 if (cfq_pool)
2145 kmem_cache_destroy(cfq_pool);
2146 if (cfq_ioc_pool)
2147 kmem_cache_destroy(cfq_ioc_pool);
2148 }
2149
2150 static int __init cfq_slab_setup(void)
2151 {
2152 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2153 if (!cfq_pool)
2154 goto fail;
2155
2156 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2157 if (!cfq_ioc_pool)
2158 goto fail;
2159
2160 return 0;
2161 fail:
2162 cfq_slab_kill();
2163 return -ENOMEM;
2164 }
2165
2166 /*
2167 * sysfs parts below -->
2168 */
2169 static ssize_t
2170 cfq_var_show(unsigned int var, char *page)
2171 {
2172 return sprintf(page, "%d\n", var);
2173 }
2174
2175 static ssize_t
2176 cfq_var_store(unsigned int *var, const char *page, size_t count)
2177 {
2178 char *p = (char *) page;
2179
2180 *var = simple_strtoul(p, &p, 10);
2181 return count;
2182 }
2183
2184 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2185 static ssize_t __FUNC(elevator_t *e, char *page) \
2186 { \
2187 struct cfq_data *cfqd = e->elevator_data; \
2188 unsigned int __data = __VAR; \
2189 if (__CONV) \
2190 __data = jiffies_to_msecs(__data); \
2191 return cfq_var_show(__data, (page)); \
2192 }
2193 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2194 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2195 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2196 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2197 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2198 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2199 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2200 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2201 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2202 #undef SHOW_FUNCTION
2203
2204 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2205 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2206 { \
2207 struct cfq_data *cfqd = e->elevator_data; \
2208 unsigned int __data; \
2209 int ret = cfq_var_store(&__data, (page), count); \
2210 if (__data < (MIN)) \
2211 __data = (MIN); \
2212 else if (__data > (MAX)) \
2213 __data = (MAX); \
2214 if (__CONV) \
2215 *(__PTR) = msecs_to_jiffies(__data); \
2216 else \
2217 *(__PTR) = __data; \
2218 return ret; \
2219 }
2220 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2221 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2222 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2223 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2224 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2225 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2226 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2227 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2228 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2229 #undef STORE_FUNCTION
2230
2231 #define CFQ_ATTR(name) \
2232 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2233
2234 static struct elv_fs_entry cfq_attrs[] = {
2235 CFQ_ATTR(quantum),
2236 CFQ_ATTR(fifo_expire_sync),
2237 CFQ_ATTR(fifo_expire_async),
2238 CFQ_ATTR(back_seek_max),
2239 CFQ_ATTR(back_seek_penalty),
2240 CFQ_ATTR(slice_sync),
2241 CFQ_ATTR(slice_async),
2242 CFQ_ATTR(slice_async_rq),
2243 CFQ_ATTR(slice_idle),
2244 __ATTR_NULL
2245 };
2246
2247 static struct elevator_type iosched_cfq = {
2248 .ops = {
2249 .elevator_merge_fn = cfq_merge,
2250 .elevator_merged_fn = cfq_merged_request,
2251 .elevator_merge_req_fn = cfq_merged_requests,
2252 .elevator_allow_merge_fn = cfq_allow_merge,
2253 .elevator_dispatch_fn = cfq_dispatch_requests,
2254 .elevator_add_req_fn = cfq_insert_request,
2255 .elevator_activate_req_fn = cfq_activate_request,
2256 .elevator_deactivate_req_fn = cfq_deactivate_request,
2257 .elevator_queue_empty_fn = cfq_queue_empty,
2258 .elevator_completed_req_fn = cfq_completed_request,
2259 .elevator_former_req_fn = elv_rb_former_request,
2260 .elevator_latter_req_fn = elv_rb_latter_request,
2261 .elevator_set_req_fn = cfq_set_request,
2262 .elevator_put_req_fn = cfq_put_request,
2263 .elevator_may_queue_fn = cfq_may_queue,
2264 .elevator_init_fn = cfq_init_queue,
2265 .elevator_exit_fn = cfq_exit_queue,
2266 .trim = cfq_free_io_context,
2267 },
2268 .elevator_attrs = cfq_attrs,
2269 .elevator_name = "cfq",
2270 .elevator_owner = THIS_MODULE,
2271 };
2272
2273 static int __init cfq_init(void)
2274 {
2275 int ret;
2276
2277 /*
2278 * could be 0 on HZ < 1000 setups
2279 */
2280 if (!cfq_slice_async)
2281 cfq_slice_async = 1;
2282 if (!cfq_slice_idle)
2283 cfq_slice_idle = 1;
2284
2285 if (cfq_slab_setup())
2286 return -ENOMEM;
2287
2288 ret = elv_register(&iosched_cfq);
2289 if (ret)
2290 cfq_slab_kill();
2291
2292 return ret;
2293 }
2294
2295 static void __exit cfq_exit(void)
2296 {
2297 DECLARE_COMPLETION_ONSTACK(all_gone);
2298 elv_unregister(&iosched_cfq);
2299 ioc_gone = &all_gone;
2300 /* ioc_gone's update must be visible before reading ioc_count */
2301 smp_wmb();
2302 if (elv_ioc_count_read(ioc_count))
2303 wait_for_completion(ioc_gone);
2304 synchronize_rcu();
2305 cfq_slab_kill();
2306 }
2307
2308 module_init(cfq_init);
2309 module_exit(cfq_exit);
2310
2311 MODULE_AUTHOR("Jens Axboe");
2312 MODULE_LICENSE("GPL");
2313 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");