]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - block/cfq-iosched.c
cfq-iosched: don't pass unused preemption variable around
[mirror_ubuntu-eoan-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/hash.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15
16 /*
17 * tunables
18 */
19 static const int cfq_quantum = 4; /* max queue in one round of service */
20 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
21 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
22 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
23
24 static const int cfq_slice_sync = HZ / 10;
25 static int cfq_slice_async = HZ / 25;
26 static const int cfq_slice_async_rq = 2;
27 static int cfq_slice_idle = HZ / 125;
28
29 /*
30 * grace period before allowing idle class to get disk access
31 */
32 #define CFQ_IDLE_GRACE (HZ / 10)
33
34 /*
35 * below this threshold, we consider thinktime immediate
36 */
37 #define CFQ_MIN_TT (2)
38
39 #define CFQ_SLICE_SCALE (5)
40
41 #define CFQ_KEY_ASYNC (0)
42
43 /*
44 * for the hash of cfqq inside the cfqd
45 */
46 #define CFQ_QHASH_SHIFT 6
47 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
48
49 #define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
50 #define RQ_CFQQ(rq) ((rq)->elevator_private2)
51
52 static struct kmem_cache *cfq_pool;
53 static struct kmem_cache *cfq_ioc_pool;
54
55 static DEFINE_PER_CPU(unsigned long, ioc_count);
56 static struct completion *ioc_gone;
57
58 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
59 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
60 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
61
62 #define ASYNC (0)
63 #define SYNC (1)
64
65 #define cfq_cfqq_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
66
67 #define sample_valid(samples) ((samples) > 80)
68
69 /*
70 * Most of our rbtree usage is for sorting with min extraction, so
71 * if we cache the leftmost node we don't have to walk down the tree
72 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
73 * move this into the elevator for the rq sorting as well.
74 */
75 struct cfq_rb_root {
76 struct rb_root rb;
77 struct rb_node *left;
78 };
79 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
80
81 /*
82 * Per block device queue structure
83 */
84 struct cfq_data {
85 request_queue_t *queue;
86
87 /*
88 * rr list of queues with requests and the count of them
89 */
90 struct cfq_rb_root service_tree;
91 unsigned int busy_queues;
92
93 /*
94 * cfqq lookup hash
95 */
96 struct hlist_head *cfq_hash;
97
98 int rq_in_driver;
99 int hw_tag;
100
101 /*
102 * idle window management
103 */
104 struct timer_list idle_slice_timer;
105 struct work_struct unplug_work;
106
107 struct cfq_queue *active_queue;
108 struct cfq_io_context *active_cic;
109 unsigned int dispatch_slice;
110
111 struct timer_list idle_class_timer;
112
113 sector_t last_position;
114 unsigned long last_end_request;
115
116 /*
117 * tunables, see top of file
118 */
119 unsigned int cfq_quantum;
120 unsigned int cfq_fifo_expire[2];
121 unsigned int cfq_back_penalty;
122 unsigned int cfq_back_max;
123 unsigned int cfq_slice[2];
124 unsigned int cfq_slice_async_rq;
125 unsigned int cfq_slice_idle;
126
127 struct list_head cic_list;
128
129 sector_t new_seek_mean;
130 u64 new_seek_total;
131 };
132
133 /*
134 * Per process-grouping structure
135 */
136 struct cfq_queue {
137 /* reference count */
138 atomic_t ref;
139 /* parent cfq_data */
140 struct cfq_data *cfqd;
141 /* cfqq lookup hash */
142 struct hlist_node cfq_hash;
143 /* hash key */
144 unsigned int key;
145 /* service_tree member */
146 struct rb_node rb_node;
147 /* service_tree key */
148 unsigned long rb_key;
149 /* sorted list of pending requests */
150 struct rb_root sort_list;
151 /* if fifo isn't expired, next request to serve */
152 struct request *next_rq;
153 /* requests queued in sort_list */
154 int queued[2];
155 /* currently allocated requests */
156 int allocated[2];
157 /* pending metadata requests */
158 int meta_pending;
159 /* fifo list of requests in sort_list */
160 struct list_head fifo;
161
162 unsigned long slice_end;
163 long slice_resid;
164
165 /* number of requests that are on the dispatch list or inside driver */
166 int dispatched;
167
168 /* io prio of this group */
169 unsigned short ioprio, org_ioprio;
170 unsigned short ioprio_class, org_ioprio_class;
171
172 /* various state flags, see below */
173 unsigned int flags;
174
175 sector_t last_request_pos;
176 };
177
178 enum cfqq_state_flags {
179 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
180 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
181 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
182 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
183 CFQ_CFQQ_FLAG_must_dispatch, /* must dispatch, even if expired */
184 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
185 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
186 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
187 CFQ_CFQQ_FLAG_queue_new, /* queue never been serviced */
188 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
189 };
190
191 #define CFQ_CFQQ_FNS(name) \
192 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
193 { \
194 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
195 } \
196 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
197 { \
198 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
199 } \
200 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
201 { \
202 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
203 }
204
205 CFQ_CFQQ_FNS(on_rr);
206 CFQ_CFQQ_FNS(wait_request);
207 CFQ_CFQQ_FNS(must_alloc);
208 CFQ_CFQQ_FNS(must_alloc_slice);
209 CFQ_CFQQ_FNS(must_dispatch);
210 CFQ_CFQQ_FNS(fifo_expire);
211 CFQ_CFQQ_FNS(idle_window);
212 CFQ_CFQQ_FNS(prio_changed);
213 CFQ_CFQQ_FNS(queue_new);
214 CFQ_CFQQ_FNS(slice_new);
215 #undef CFQ_CFQQ_FNS
216
217 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
218 static void cfq_dispatch_insert(request_queue_t *, struct request *);
219 static struct cfq_queue *cfq_get_queue(struct cfq_data *, unsigned int, struct task_struct *, gfp_t);
220
221 /*
222 * scheduler run of queue, if there are requests pending and no one in the
223 * driver that will restart queueing
224 */
225 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
226 {
227 if (cfqd->busy_queues)
228 kblockd_schedule_work(&cfqd->unplug_work);
229 }
230
231 static int cfq_queue_empty(request_queue_t *q)
232 {
233 struct cfq_data *cfqd = q->elevator->elevator_data;
234
235 return !cfqd->busy_queues;
236 }
237
238 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw, int is_sync)
239 {
240 /*
241 * Use the per-process queue, for read requests and syncronous writes
242 */
243 if (!(rw & REQ_RW) || is_sync)
244 return task->pid;
245
246 return CFQ_KEY_ASYNC;
247 }
248
249 /*
250 * Scale schedule slice based on io priority. Use the sync time slice only
251 * if a queue is marked sync and has sync io queued. A sync queue with async
252 * io only, should not get full sync slice length.
253 */
254 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
255 unsigned short prio)
256 {
257 const int base_slice = cfqd->cfq_slice[sync];
258
259 WARN_ON(prio >= IOPRIO_BE_NR);
260
261 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
262 }
263
264 static inline int
265 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
266 {
267 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
268 }
269
270 static inline void
271 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
272 {
273 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
274 }
275
276 /*
277 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
278 * isn't valid until the first request from the dispatch is activated
279 * and the slice time set.
280 */
281 static inline int cfq_slice_used(struct cfq_queue *cfqq)
282 {
283 if (cfq_cfqq_slice_new(cfqq))
284 return 0;
285 if (time_before(jiffies, cfqq->slice_end))
286 return 0;
287
288 return 1;
289 }
290
291 /*
292 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
293 * We choose the request that is closest to the head right now. Distance
294 * behind the head is penalized and only allowed to a certain extent.
295 */
296 static struct request *
297 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
298 {
299 sector_t last, s1, s2, d1 = 0, d2 = 0;
300 unsigned long back_max;
301 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
302 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
303 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
304
305 if (rq1 == NULL || rq1 == rq2)
306 return rq2;
307 if (rq2 == NULL)
308 return rq1;
309
310 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
311 return rq1;
312 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
313 return rq2;
314 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
315 return rq1;
316 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
317 return rq2;
318
319 s1 = rq1->sector;
320 s2 = rq2->sector;
321
322 last = cfqd->last_position;
323
324 /*
325 * by definition, 1KiB is 2 sectors
326 */
327 back_max = cfqd->cfq_back_max * 2;
328
329 /*
330 * Strict one way elevator _except_ in the case where we allow
331 * short backward seeks which are biased as twice the cost of a
332 * similar forward seek.
333 */
334 if (s1 >= last)
335 d1 = s1 - last;
336 else if (s1 + back_max >= last)
337 d1 = (last - s1) * cfqd->cfq_back_penalty;
338 else
339 wrap |= CFQ_RQ1_WRAP;
340
341 if (s2 >= last)
342 d2 = s2 - last;
343 else if (s2 + back_max >= last)
344 d2 = (last - s2) * cfqd->cfq_back_penalty;
345 else
346 wrap |= CFQ_RQ2_WRAP;
347
348 /* Found required data */
349
350 /*
351 * By doing switch() on the bit mask "wrap" we avoid having to
352 * check two variables for all permutations: --> faster!
353 */
354 switch (wrap) {
355 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
356 if (d1 < d2)
357 return rq1;
358 else if (d2 < d1)
359 return rq2;
360 else {
361 if (s1 >= s2)
362 return rq1;
363 else
364 return rq2;
365 }
366
367 case CFQ_RQ2_WRAP:
368 return rq1;
369 case CFQ_RQ1_WRAP:
370 return rq2;
371 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
372 default:
373 /*
374 * Since both rqs are wrapped,
375 * start with the one that's further behind head
376 * (--> only *one* back seek required),
377 * since back seek takes more time than forward.
378 */
379 if (s1 <= s2)
380 return rq1;
381 else
382 return rq2;
383 }
384 }
385
386 /*
387 * The below is leftmost cache rbtree addon
388 */
389 static struct rb_node *cfq_rb_first(struct cfq_rb_root *root)
390 {
391 if (!root->left)
392 root->left = rb_first(&root->rb);
393
394 return root->left;
395 }
396
397 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
398 {
399 if (root->left == n)
400 root->left = NULL;
401
402 rb_erase(n, &root->rb);
403 RB_CLEAR_NODE(n);
404 }
405
406 /*
407 * would be nice to take fifo expire time into account as well
408 */
409 static struct request *
410 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
411 struct request *last)
412 {
413 struct rb_node *rbnext = rb_next(&last->rb_node);
414 struct rb_node *rbprev = rb_prev(&last->rb_node);
415 struct request *next = NULL, *prev = NULL;
416
417 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
418
419 if (rbprev)
420 prev = rb_entry_rq(rbprev);
421
422 if (rbnext)
423 next = rb_entry_rq(rbnext);
424 else {
425 rbnext = rb_first(&cfqq->sort_list);
426 if (rbnext && rbnext != &last->rb_node)
427 next = rb_entry_rq(rbnext);
428 }
429
430 return cfq_choose_req(cfqd, next, prev);
431 }
432
433 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
434 struct cfq_queue *cfqq)
435 {
436 /*
437 * just an approximation, should be ok.
438 */
439 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
440 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
441 }
442
443 /*
444 * The cfqd->service_tree holds all pending cfq_queue's that have
445 * requests waiting to be processed. It is sorted in the order that
446 * we will service the queues.
447 */
448 static void cfq_service_tree_add(struct cfq_data *cfqd,
449 struct cfq_queue *cfqq, int add_front)
450 {
451 struct rb_node **p = &cfqd->service_tree.rb.rb_node;
452 struct rb_node *parent = NULL;
453 unsigned long rb_key;
454 int left;
455
456 if (!add_front) {
457 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
458 rb_key += cfqq->slice_resid;
459 cfqq->slice_resid = 0;
460 } else
461 rb_key = 0;
462
463 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
464 /*
465 * same position, nothing more to do
466 */
467 if (rb_key == cfqq->rb_key)
468 return;
469
470 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
471 }
472
473 left = 1;
474 while (*p) {
475 struct cfq_queue *__cfqq;
476 struct rb_node **n;
477
478 parent = *p;
479 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
480
481 /*
482 * sort RT queues first, we always want to give
483 * preference to them. IDLE queues goes to the back.
484 * after that, sort on the next service time.
485 */
486 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
487 n = &(*p)->rb_left;
488 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
489 n = &(*p)->rb_right;
490 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
491 n = &(*p)->rb_left;
492 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
493 n = &(*p)->rb_right;
494 else if (rb_key < __cfqq->rb_key)
495 n = &(*p)->rb_left;
496 else
497 n = &(*p)->rb_right;
498
499 if (n == &(*p)->rb_right)
500 left = 0;
501
502 p = n;
503 }
504
505 if (left)
506 cfqd->service_tree.left = &cfqq->rb_node;
507
508 cfqq->rb_key = rb_key;
509 rb_link_node(&cfqq->rb_node, parent, p);
510 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
511 }
512
513 /*
514 * Update cfqq's position in the service tree.
515 */
516 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
517 {
518 /*
519 * Resorting requires the cfqq to be on the RR list already.
520 */
521 if (cfq_cfqq_on_rr(cfqq))
522 cfq_service_tree_add(cfqd, cfqq, 0);
523 }
524
525 /*
526 * add to busy list of queues for service, trying to be fair in ordering
527 * the pending list according to last request service
528 */
529 static inline void
530 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
531 {
532 BUG_ON(cfq_cfqq_on_rr(cfqq));
533 cfq_mark_cfqq_on_rr(cfqq);
534 cfqd->busy_queues++;
535
536 cfq_resort_rr_list(cfqd, cfqq);
537 }
538
539 /*
540 * Called when the cfqq no longer has requests pending, remove it from
541 * the service tree.
542 */
543 static inline void
544 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
545 {
546 BUG_ON(!cfq_cfqq_on_rr(cfqq));
547 cfq_clear_cfqq_on_rr(cfqq);
548
549 if (!RB_EMPTY_NODE(&cfqq->rb_node))
550 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
551
552 BUG_ON(!cfqd->busy_queues);
553 cfqd->busy_queues--;
554 }
555
556 /*
557 * rb tree support functions
558 */
559 static inline void cfq_del_rq_rb(struct request *rq)
560 {
561 struct cfq_queue *cfqq = RQ_CFQQ(rq);
562 struct cfq_data *cfqd = cfqq->cfqd;
563 const int sync = rq_is_sync(rq);
564
565 BUG_ON(!cfqq->queued[sync]);
566 cfqq->queued[sync]--;
567
568 elv_rb_del(&cfqq->sort_list, rq);
569
570 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
571 cfq_del_cfqq_rr(cfqd, cfqq);
572 }
573
574 static void cfq_add_rq_rb(struct request *rq)
575 {
576 struct cfq_queue *cfqq = RQ_CFQQ(rq);
577 struct cfq_data *cfqd = cfqq->cfqd;
578 struct request *__alias;
579
580 cfqq->queued[rq_is_sync(rq)]++;
581
582 /*
583 * looks a little odd, but the first insert might return an alias.
584 * if that happens, put the alias on the dispatch list
585 */
586 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
587 cfq_dispatch_insert(cfqd->queue, __alias);
588
589 if (!cfq_cfqq_on_rr(cfqq))
590 cfq_add_cfqq_rr(cfqd, cfqq);
591
592 /*
593 * check if this request is a better next-serve candidate
594 */
595 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
596 BUG_ON(!cfqq->next_rq);
597 }
598
599 static inline void
600 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
601 {
602 elv_rb_del(&cfqq->sort_list, rq);
603 cfqq->queued[rq_is_sync(rq)]--;
604 cfq_add_rq_rb(rq);
605 }
606
607 static struct request *
608 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
609 {
610 struct task_struct *tsk = current;
611 pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio), bio_sync(bio));
612 struct cfq_queue *cfqq;
613
614 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
615 if (cfqq) {
616 sector_t sector = bio->bi_sector + bio_sectors(bio);
617
618 return elv_rb_find(&cfqq->sort_list, sector);
619 }
620
621 return NULL;
622 }
623
624 static void cfq_activate_request(request_queue_t *q, struct request *rq)
625 {
626 struct cfq_data *cfqd = q->elevator->elevator_data;
627
628 cfqd->rq_in_driver++;
629
630 /*
631 * If the depth is larger 1, it really could be queueing. But lets
632 * make the mark a little higher - idling could still be good for
633 * low queueing, and a low queueing number could also just indicate
634 * a SCSI mid layer like behaviour where limit+1 is often seen.
635 */
636 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
637 cfqd->hw_tag = 1;
638
639 cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
640 }
641
642 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
643 {
644 struct cfq_data *cfqd = q->elevator->elevator_data;
645
646 WARN_ON(!cfqd->rq_in_driver);
647 cfqd->rq_in_driver--;
648 }
649
650 static void cfq_remove_request(struct request *rq)
651 {
652 struct cfq_queue *cfqq = RQ_CFQQ(rq);
653
654 if (cfqq->next_rq == rq)
655 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
656
657 list_del_init(&rq->queuelist);
658 cfq_del_rq_rb(rq);
659
660 if (rq_is_meta(rq)) {
661 WARN_ON(!cfqq->meta_pending);
662 cfqq->meta_pending--;
663 }
664 }
665
666 static int cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
667 {
668 struct cfq_data *cfqd = q->elevator->elevator_data;
669 struct request *__rq;
670
671 __rq = cfq_find_rq_fmerge(cfqd, bio);
672 if (__rq && elv_rq_merge_ok(__rq, bio)) {
673 *req = __rq;
674 return ELEVATOR_FRONT_MERGE;
675 }
676
677 return ELEVATOR_NO_MERGE;
678 }
679
680 static void cfq_merged_request(request_queue_t *q, struct request *req,
681 int type)
682 {
683 if (type == ELEVATOR_FRONT_MERGE) {
684 struct cfq_queue *cfqq = RQ_CFQQ(req);
685
686 cfq_reposition_rq_rb(cfqq, req);
687 }
688 }
689
690 static void
691 cfq_merged_requests(request_queue_t *q, struct request *rq,
692 struct request *next)
693 {
694 /*
695 * reposition in fifo if next is older than rq
696 */
697 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
698 time_before(next->start_time, rq->start_time))
699 list_move(&rq->queuelist, &next->queuelist);
700
701 cfq_remove_request(next);
702 }
703
704 static int cfq_allow_merge(request_queue_t *q, struct request *rq,
705 struct bio *bio)
706 {
707 struct cfq_data *cfqd = q->elevator->elevator_data;
708 const int rw = bio_data_dir(bio);
709 struct cfq_queue *cfqq;
710 pid_t key;
711
712 /*
713 * Disallow merge of a sync bio into an async request.
714 */
715 if ((bio_data_dir(bio) == READ || bio_sync(bio)) && !rq_is_sync(rq))
716 return 0;
717
718 /*
719 * Lookup the cfqq that this bio will be queued with. Allow
720 * merge only if rq is queued there.
721 */
722 key = cfq_queue_pid(current, rw, bio_sync(bio));
723 cfqq = cfq_find_cfq_hash(cfqd, key, current->ioprio);
724
725 if (cfqq == RQ_CFQQ(rq))
726 return 1;
727
728 return 0;
729 }
730
731 static inline void
732 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
733 {
734 if (cfqq) {
735 /*
736 * stop potential idle class queues waiting service
737 */
738 del_timer(&cfqd->idle_class_timer);
739
740 cfqq->slice_end = 0;
741 cfq_clear_cfqq_must_alloc_slice(cfqq);
742 cfq_clear_cfqq_fifo_expire(cfqq);
743 cfq_mark_cfqq_slice_new(cfqq);
744 cfq_clear_cfqq_queue_new(cfqq);
745 }
746
747 cfqd->active_queue = cfqq;
748 }
749
750 /*
751 * current cfqq expired its slice (or was too idle), select new one
752 */
753 static void
754 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
755 int timed_out)
756 {
757 if (cfq_cfqq_wait_request(cfqq))
758 del_timer(&cfqd->idle_slice_timer);
759
760 cfq_clear_cfqq_must_dispatch(cfqq);
761 cfq_clear_cfqq_wait_request(cfqq);
762
763 /*
764 * store what was left of this slice, if the queue idled/timed out
765 */
766 if (timed_out && !cfq_cfqq_slice_new(cfqq))
767 cfqq->slice_resid = cfqq->slice_end - jiffies;
768
769 cfq_resort_rr_list(cfqd, cfqq);
770
771 if (cfqq == cfqd->active_queue)
772 cfqd->active_queue = NULL;
773
774 if (cfqd->active_cic) {
775 put_io_context(cfqd->active_cic->ioc);
776 cfqd->active_cic = NULL;
777 }
778
779 cfqd->dispatch_slice = 0;
780 }
781
782 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
783 {
784 struct cfq_queue *cfqq = cfqd->active_queue;
785
786 if (cfqq)
787 __cfq_slice_expired(cfqd, cfqq, timed_out);
788 }
789
790 /*
791 * Get next queue for service. Unless we have a queue preemption,
792 * we'll simply select the first cfqq in the service tree.
793 */
794 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
795 {
796 struct cfq_queue *cfqq;
797 struct rb_node *n;
798
799 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
800 return NULL;
801
802 n = cfq_rb_first(&cfqd->service_tree);
803 cfqq = rb_entry(n, struct cfq_queue, rb_node);
804
805 if (cfq_class_idle(cfqq)) {
806 unsigned long end;
807
808 /*
809 * if we have idle queues and no rt or be queues had
810 * pending requests, either allow immediate service if
811 * the grace period has passed or arm the idle grace
812 * timer
813 */
814 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
815 if (time_before(jiffies, end)) {
816 mod_timer(&cfqd->idle_class_timer, end);
817 cfqq = NULL;
818 }
819 }
820
821 return cfqq;
822 }
823
824 /*
825 * Get and set a new active queue for service.
826 */
827 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
828 {
829 struct cfq_queue *cfqq;
830
831 cfqq = cfq_get_next_queue(cfqd);
832 __cfq_set_active_queue(cfqd, cfqq);
833 return cfqq;
834 }
835
836 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
837 struct request *rq)
838 {
839 if (rq->sector >= cfqd->last_position)
840 return rq->sector - cfqd->last_position;
841 else
842 return cfqd->last_position - rq->sector;
843 }
844
845 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
846 {
847 struct cfq_io_context *cic = cfqd->active_cic;
848
849 if (!sample_valid(cic->seek_samples))
850 return 0;
851
852 return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
853 }
854
855 static int cfq_close_cooperator(struct cfq_data *cfq_data,
856 struct cfq_queue *cfqq)
857 {
858 /*
859 * We should notice if some of the queues are cooperating, eg
860 * working closely on the same area of the disk. In that case,
861 * we can group them together and don't waste time idling.
862 */
863 return 0;
864 }
865
866 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
867
868 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
869 {
870 struct cfq_queue *cfqq = cfqd->active_queue;
871 struct cfq_io_context *cic;
872 unsigned long sl;
873
874 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
875 WARN_ON(cfq_cfqq_slice_new(cfqq));
876
877 /*
878 * idle is disabled, either manually or by past process history
879 */
880 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
881 return;
882
883 /*
884 * task has exited, don't wait
885 */
886 cic = cfqd->active_cic;
887 if (!cic || !cic->ioc->task)
888 return;
889
890 /*
891 * See if this prio level has a good candidate
892 */
893 if (cfq_close_cooperator(cfqd, cfqq) &&
894 (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
895 return;
896
897 cfq_mark_cfqq_must_dispatch(cfqq);
898 cfq_mark_cfqq_wait_request(cfqq);
899
900 /*
901 * we don't want to idle for seeks, but we do want to allow
902 * fair distribution of slice time for a process doing back-to-back
903 * seeks. so allow a little bit of time for him to submit a new rq
904 */
905 sl = cfqd->cfq_slice_idle;
906 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
907 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
908
909 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
910 }
911
912 /*
913 * Move request from internal lists to the request queue dispatch list.
914 */
915 static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
916 {
917 struct cfq_queue *cfqq = RQ_CFQQ(rq);
918
919 cfq_remove_request(rq);
920 cfqq->dispatched++;
921 elv_dispatch_sort(q, rq);
922 }
923
924 /*
925 * return expired entry, or NULL to just start from scratch in rbtree
926 */
927 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
928 {
929 struct cfq_data *cfqd = cfqq->cfqd;
930 struct request *rq;
931 int fifo;
932
933 if (cfq_cfqq_fifo_expire(cfqq))
934 return NULL;
935
936 cfq_mark_cfqq_fifo_expire(cfqq);
937
938 if (list_empty(&cfqq->fifo))
939 return NULL;
940
941 fifo = cfq_cfqq_sync(cfqq);
942 rq = rq_entry_fifo(cfqq->fifo.next);
943
944 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
945 return NULL;
946
947 return rq;
948 }
949
950 static inline int
951 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
952 {
953 const int base_rq = cfqd->cfq_slice_async_rq;
954
955 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
956
957 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
958 }
959
960 /*
961 * Select a queue for service. If we have a current active queue,
962 * check whether to continue servicing it, or retrieve and set a new one.
963 */
964 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
965 {
966 struct cfq_queue *cfqq;
967
968 cfqq = cfqd->active_queue;
969 if (!cfqq)
970 goto new_queue;
971
972 /*
973 * The active queue has run out of time, expire it and select new.
974 */
975 if (cfq_slice_used(cfqq))
976 goto expire;
977
978 /*
979 * The active queue has requests and isn't expired, allow it to
980 * dispatch.
981 */
982 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
983 goto keep_queue;
984
985 /*
986 * No requests pending. If the active queue still has requests in
987 * flight or is idling for a new request, allow either of these
988 * conditions to happen (or time out) before selecting a new queue.
989 */
990 if (cfqq->dispatched || timer_pending(&cfqd->idle_slice_timer)) {
991 cfqq = NULL;
992 goto keep_queue;
993 }
994
995 expire:
996 cfq_slice_expired(cfqd, 0);
997 new_queue:
998 cfqq = cfq_set_active_queue(cfqd);
999 keep_queue:
1000 return cfqq;
1001 }
1002
1003 /*
1004 * Dispatch some requests from cfqq, moving them to the request queue
1005 * dispatch list.
1006 */
1007 static int
1008 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1009 int max_dispatch)
1010 {
1011 int dispatched = 0;
1012
1013 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1014
1015 do {
1016 struct request *rq;
1017
1018 /*
1019 * follow expired path, else get first next available
1020 */
1021 if ((rq = cfq_check_fifo(cfqq)) == NULL)
1022 rq = cfqq->next_rq;
1023
1024 /*
1025 * finally, insert request into driver dispatch list
1026 */
1027 cfq_dispatch_insert(cfqd->queue, rq);
1028
1029 cfqd->dispatch_slice++;
1030 dispatched++;
1031
1032 if (!cfqd->active_cic) {
1033 atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1034 cfqd->active_cic = RQ_CIC(rq);
1035 }
1036
1037 if (RB_EMPTY_ROOT(&cfqq->sort_list))
1038 break;
1039
1040 } while (dispatched < max_dispatch);
1041
1042 /*
1043 * expire an async queue immediately if it has used up its slice. idle
1044 * queue always expire after 1 dispatch round.
1045 */
1046 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1047 cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1048 cfq_class_idle(cfqq))) {
1049 cfqq->slice_end = jiffies + 1;
1050 cfq_slice_expired(cfqd, 0);
1051 }
1052
1053 return dispatched;
1054 }
1055
1056 static inline int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1057 {
1058 int dispatched = 0;
1059
1060 while (cfqq->next_rq) {
1061 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1062 dispatched++;
1063 }
1064
1065 BUG_ON(!list_empty(&cfqq->fifo));
1066 return dispatched;
1067 }
1068
1069 /*
1070 * Drain our current requests. Used for barriers and when switching
1071 * io schedulers on-the-fly.
1072 */
1073 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1074 {
1075 int dispatched = 0;
1076 struct rb_node *n;
1077
1078 while ((n = cfq_rb_first(&cfqd->service_tree)) != NULL) {
1079 struct cfq_queue *cfqq = rb_entry(n, struct cfq_queue, rb_node);
1080
1081 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1082 }
1083
1084 cfq_slice_expired(cfqd, 0);
1085
1086 BUG_ON(cfqd->busy_queues);
1087
1088 return dispatched;
1089 }
1090
1091 static int cfq_dispatch_requests(request_queue_t *q, int force)
1092 {
1093 struct cfq_data *cfqd = q->elevator->elevator_data;
1094 struct cfq_queue *cfqq;
1095 int dispatched;
1096
1097 if (!cfqd->busy_queues)
1098 return 0;
1099
1100 if (unlikely(force))
1101 return cfq_forced_dispatch(cfqd);
1102
1103 dispatched = 0;
1104 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1105 int max_dispatch;
1106
1107 if (cfqd->busy_queues > 1) {
1108 /*
1109 * So we have dispatched before in this round, if the
1110 * next queue has idling enabled (must be sync), don't
1111 * allow it service until the previous have completed.
1112 */
1113 if (cfqd->rq_in_driver && cfq_cfqq_idle_window(cfqq) &&
1114 dispatched)
1115 break;
1116 if (cfqq->dispatched >= cfqd->cfq_quantum)
1117 break;
1118 }
1119
1120 cfq_clear_cfqq_must_dispatch(cfqq);
1121 cfq_clear_cfqq_wait_request(cfqq);
1122 del_timer(&cfqd->idle_slice_timer);
1123
1124 max_dispatch = cfqd->cfq_quantum;
1125 if (cfq_class_idle(cfqq))
1126 max_dispatch = 1;
1127
1128 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1129 }
1130
1131 return dispatched;
1132 }
1133
1134 /*
1135 * task holds one reference to the queue, dropped when task exits. each rq
1136 * in-flight on this queue also holds a reference, dropped when rq is freed.
1137 *
1138 * queue lock must be held here.
1139 */
1140 static void cfq_put_queue(struct cfq_queue *cfqq)
1141 {
1142 struct cfq_data *cfqd = cfqq->cfqd;
1143
1144 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1145
1146 if (!atomic_dec_and_test(&cfqq->ref))
1147 return;
1148
1149 BUG_ON(rb_first(&cfqq->sort_list));
1150 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1151 BUG_ON(cfq_cfqq_on_rr(cfqq));
1152
1153 if (unlikely(cfqd->active_queue == cfqq)) {
1154 __cfq_slice_expired(cfqd, cfqq, 0);
1155 cfq_schedule_dispatch(cfqd);
1156 }
1157
1158 /*
1159 * it's on the empty list and still hashed
1160 */
1161 hlist_del(&cfqq->cfq_hash);
1162 kmem_cache_free(cfq_pool, cfqq);
1163 }
1164
1165 static struct cfq_queue *
1166 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1167 const int hashval)
1168 {
1169 struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1170 struct hlist_node *entry;
1171 struct cfq_queue *__cfqq;
1172
1173 hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1174 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1175
1176 if (__cfqq->key == key && (__p == prio || !prio))
1177 return __cfqq;
1178 }
1179
1180 return NULL;
1181 }
1182
1183 static struct cfq_queue *
1184 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1185 {
1186 return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1187 }
1188
1189 static void cfq_free_io_context(struct io_context *ioc)
1190 {
1191 struct cfq_io_context *__cic;
1192 struct rb_node *n;
1193 int freed = 0;
1194
1195 while ((n = rb_first(&ioc->cic_root)) != NULL) {
1196 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1197 rb_erase(&__cic->rb_node, &ioc->cic_root);
1198 kmem_cache_free(cfq_ioc_pool, __cic);
1199 freed++;
1200 }
1201
1202 elv_ioc_count_mod(ioc_count, -freed);
1203
1204 if (ioc_gone && !elv_ioc_count_read(ioc_count))
1205 complete(ioc_gone);
1206 }
1207
1208 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1209 {
1210 if (unlikely(cfqq == cfqd->active_queue)) {
1211 __cfq_slice_expired(cfqd, cfqq, 0);
1212 cfq_schedule_dispatch(cfqd);
1213 }
1214
1215 cfq_put_queue(cfqq);
1216 }
1217
1218 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1219 struct cfq_io_context *cic)
1220 {
1221 list_del_init(&cic->queue_list);
1222 smp_wmb();
1223 cic->key = NULL;
1224
1225 if (cic->cfqq[ASYNC]) {
1226 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1227 cic->cfqq[ASYNC] = NULL;
1228 }
1229
1230 if (cic->cfqq[SYNC]) {
1231 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1232 cic->cfqq[SYNC] = NULL;
1233 }
1234 }
1235
1236 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1237 {
1238 struct cfq_data *cfqd = cic->key;
1239
1240 if (cfqd) {
1241 request_queue_t *q = cfqd->queue;
1242
1243 spin_lock_irq(q->queue_lock);
1244 __cfq_exit_single_io_context(cfqd, cic);
1245 spin_unlock_irq(q->queue_lock);
1246 }
1247 }
1248
1249 /*
1250 * The process that ioc belongs to has exited, we need to clean up
1251 * and put the internal structures we have that belongs to that process.
1252 */
1253 static void cfq_exit_io_context(struct io_context *ioc)
1254 {
1255 struct cfq_io_context *__cic;
1256 struct rb_node *n;
1257
1258 /*
1259 * put the reference this task is holding to the various queues
1260 */
1261
1262 n = rb_first(&ioc->cic_root);
1263 while (n != NULL) {
1264 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1265
1266 cfq_exit_single_io_context(__cic);
1267 n = rb_next(n);
1268 }
1269 }
1270
1271 static struct cfq_io_context *
1272 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1273 {
1274 struct cfq_io_context *cic;
1275
1276 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
1277 if (cic) {
1278 memset(cic, 0, sizeof(*cic));
1279 cic->last_end_request = jiffies;
1280 INIT_LIST_HEAD(&cic->queue_list);
1281 cic->dtor = cfq_free_io_context;
1282 cic->exit = cfq_exit_io_context;
1283 elv_ioc_count_inc(ioc_count);
1284 }
1285
1286 return cic;
1287 }
1288
1289 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1290 {
1291 struct task_struct *tsk = current;
1292 int ioprio_class;
1293
1294 if (!cfq_cfqq_prio_changed(cfqq))
1295 return;
1296
1297 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1298 switch (ioprio_class) {
1299 default:
1300 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1301 case IOPRIO_CLASS_NONE:
1302 /*
1303 * no prio set, place us in the middle of the BE classes
1304 */
1305 cfqq->ioprio = task_nice_ioprio(tsk);
1306 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1307 break;
1308 case IOPRIO_CLASS_RT:
1309 cfqq->ioprio = task_ioprio(tsk);
1310 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1311 break;
1312 case IOPRIO_CLASS_BE:
1313 cfqq->ioprio = task_ioprio(tsk);
1314 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1315 break;
1316 case IOPRIO_CLASS_IDLE:
1317 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1318 cfqq->ioprio = 7;
1319 cfq_clear_cfqq_idle_window(cfqq);
1320 break;
1321 }
1322
1323 /*
1324 * keep track of original prio settings in case we have to temporarily
1325 * elevate the priority of this queue
1326 */
1327 cfqq->org_ioprio = cfqq->ioprio;
1328 cfqq->org_ioprio_class = cfqq->ioprio_class;
1329 cfq_clear_cfqq_prio_changed(cfqq);
1330 }
1331
1332 static inline void changed_ioprio(struct cfq_io_context *cic)
1333 {
1334 struct cfq_data *cfqd = cic->key;
1335 struct cfq_queue *cfqq;
1336 unsigned long flags;
1337
1338 if (unlikely(!cfqd))
1339 return;
1340
1341 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1342
1343 cfqq = cic->cfqq[ASYNC];
1344 if (cfqq) {
1345 struct cfq_queue *new_cfqq;
1346 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1347 GFP_ATOMIC);
1348 if (new_cfqq) {
1349 cic->cfqq[ASYNC] = new_cfqq;
1350 cfq_put_queue(cfqq);
1351 }
1352 }
1353
1354 cfqq = cic->cfqq[SYNC];
1355 if (cfqq)
1356 cfq_mark_cfqq_prio_changed(cfqq);
1357
1358 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1359 }
1360
1361 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1362 {
1363 struct cfq_io_context *cic;
1364 struct rb_node *n;
1365
1366 ioc->ioprio_changed = 0;
1367
1368 n = rb_first(&ioc->cic_root);
1369 while (n != NULL) {
1370 cic = rb_entry(n, struct cfq_io_context, rb_node);
1371
1372 changed_ioprio(cic);
1373 n = rb_next(n);
1374 }
1375 }
1376
1377 static struct cfq_queue *
1378 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1379 gfp_t gfp_mask)
1380 {
1381 const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1382 struct cfq_queue *cfqq, *new_cfqq = NULL;
1383 unsigned short ioprio;
1384
1385 retry:
1386 ioprio = tsk->ioprio;
1387 cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1388
1389 if (!cfqq) {
1390 if (new_cfqq) {
1391 cfqq = new_cfqq;
1392 new_cfqq = NULL;
1393 } else if (gfp_mask & __GFP_WAIT) {
1394 /*
1395 * Inform the allocator of the fact that we will
1396 * just repeat this allocation if it fails, to allow
1397 * the allocator to do whatever it needs to attempt to
1398 * free memory.
1399 */
1400 spin_unlock_irq(cfqd->queue->queue_lock);
1401 new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
1402 spin_lock_irq(cfqd->queue->queue_lock);
1403 goto retry;
1404 } else {
1405 cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
1406 if (!cfqq)
1407 goto out;
1408 }
1409
1410 memset(cfqq, 0, sizeof(*cfqq));
1411
1412 INIT_HLIST_NODE(&cfqq->cfq_hash);
1413 RB_CLEAR_NODE(&cfqq->rb_node);
1414 INIT_LIST_HEAD(&cfqq->fifo);
1415
1416 cfqq->key = key;
1417 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1418 atomic_set(&cfqq->ref, 0);
1419 cfqq->cfqd = cfqd;
1420
1421 if (key != CFQ_KEY_ASYNC)
1422 cfq_mark_cfqq_idle_window(cfqq);
1423
1424 cfq_mark_cfqq_prio_changed(cfqq);
1425 cfq_mark_cfqq_queue_new(cfqq);
1426 cfq_init_prio_data(cfqq);
1427 }
1428
1429 if (new_cfqq)
1430 kmem_cache_free(cfq_pool, new_cfqq);
1431
1432 atomic_inc(&cfqq->ref);
1433 out:
1434 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1435 return cfqq;
1436 }
1437
1438 /*
1439 * We drop cfq io contexts lazily, so we may find a dead one.
1440 */
1441 static void
1442 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1443 {
1444 WARN_ON(!list_empty(&cic->queue_list));
1445 rb_erase(&cic->rb_node, &ioc->cic_root);
1446 kmem_cache_free(cfq_ioc_pool, cic);
1447 elv_ioc_count_dec(ioc_count);
1448 }
1449
1450 static struct cfq_io_context *
1451 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1452 {
1453 struct rb_node *n;
1454 struct cfq_io_context *cic;
1455 void *k, *key = cfqd;
1456
1457 restart:
1458 n = ioc->cic_root.rb_node;
1459 while (n) {
1460 cic = rb_entry(n, struct cfq_io_context, rb_node);
1461 /* ->key must be copied to avoid race with cfq_exit_queue() */
1462 k = cic->key;
1463 if (unlikely(!k)) {
1464 cfq_drop_dead_cic(ioc, cic);
1465 goto restart;
1466 }
1467
1468 if (key < k)
1469 n = n->rb_left;
1470 else if (key > k)
1471 n = n->rb_right;
1472 else
1473 return cic;
1474 }
1475
1476 return NULL;
1477 }
1478
1479 static inline void
1480 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1481 struct cfq_io_context *cic)
1482 {
1483 struct rb_node **p;
1484 struct rb_node *parent;
1485 struct cfq_io_context *__cic;
1486 unsigned long flags;
1487 void *k;
1488
1489 cic->ioc = ioc;
1490 cic->key = cfqd;
1491
1492 restart:
1493 parent = NULL;
1494 p = &ioc->cic_root.rb_node;
1495 while (*p) {
1496 parent = *p;
1497 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1498 /* ->key must be copied to avoid race with cfq_exit_queue() */
1499 k = __cic->key;
1500 if (unlikely(!k)) {
1501 cfq_drop_dead_cic(ioc, __cic);
1502 goto restart;
1503 }
1504
1505 if (cic->key < k)
1506 p = &(*p)->rb_left;
1507 else if (cic->key > k)
1508 p = &(*p)->rb_right;
1509 else
1510 BUG();
1511 }
1512
1513 rb_link_node(&cic->rb_node, parent, p);
1514 rb_insert_color(&cic->rb_node, &ioc->cic_root);
1515
1516 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1517 list_add(&cic->queue_list, &cfqd->cic_list);
1518 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1519 }
1520
1521 /*
1522 * Setup general io context and cfq io context. There can be several cfq
1523 * io contexts per general io context, if this process is doing io to more
1524 * than one device managed by cfq.
1525 */
1526 static struct cfq_io_context *
1527 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1528 {
1529 struct io_context *ioc = NULL;
1530 struct cfq_io_context *cic;
1531
1532 might_sleep_if(gfp_mask & __GFP_WAIT);
1533
1534 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1535 if (!ioc)
1536 return NULL;
1537
1538 cic = cfq_cic_rb_lookup(cfqd, ioc);
1539 if (cic)
1540 goto out;
1541
1542 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1543 if (cic == NULL)
1544 goto err;
1545
1546 cfq_cic_link(cfqd, ioc, cic);
1547 out:
1548 smp_read_barrier_depends();
1549 if (unlikely(ioc->ioprio_changed))
1550 cfq_ioc_set_ioprio(ioc);
1551
1552 return cic;
1553 err:
1554 put_io_context(ioc);
1555 return NULL;
1556 }
1557
1558 static void
1559 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1560 {
1561 unsigned long elapsed = jiffies - cic->last_end_request;
1562 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1563
1564 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1565 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1566 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1567 }
1568
1569 static void
1570 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1571 struct request *rq)
1572 {
1573 sector_t sdist;
1574 u64 total;
1575
1576 if (cic->last_request_pos < rq->sector)
1577 sdist = rq->sector - cic->last_request_pos;
1578 else
1579 sdist = cic->last_request_pos - rq->sector;
1580
1581 if (!cic->seek_samples) {
1582 cfqd->new_seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1583 cfqd->new_seek_mean = cfqd->new_seek_total / 256;
1584 }
1585
1586 /*
1587 * Don't allow the seek distance to get too large from the
1588 * odd fragment, pagein, etc
1589 */
1590 if (cic->seek_samples <= 60) /* second&third seek */
1591 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1592 else
1593 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1594
1595 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1596 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1597 total = cic->seek_total + (cic->seek_samples/2);
1598 do_div(total, cic->seek_samples);
1599 cic->seek_mean = (sector_t)total;
1600 }
1601
1602 /*
1603 * Disable idle window if the process thinks too long or seeks so much that
1604 * it doesn't matter
1605 */
1606 static void
1607 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1608 struct cfq_io_context *cic)
1609 {
1610 int enable_idle = cfq_cfqq_idle_window(cfqq);
1611
1612 if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1613 (cfqd->hw_tag && CIC_SEEKY(cic)))
1614 enable_idle = 0;
1615 else if (sample_valid(cic->ttime_samples)) {
1616 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1617 enable_idle = 0;
1618 else
1619 enable_idle = 1;
1620 }
1621
1622 if (enable_idle)
1623 cfq_mark_cfqq_idle_window(cfqq);
1624 else
1625 cfq_clear_cfqq_idle_window(cfqq);
1626 }
1627
1628 /*
1629 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1630 * no or if we aren't sure, a 1 will cause a preempt.
1631 */
1632 static int
1633 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1634 struct request *rq)
1635 {
1636 struct cfq_queue *cfqq;
1637
1638 cfqq = cfqd->active_queue;
1639 if (!cfqq)
1640 return 0;
1641
1642 if (cfq_slice_used(cfqq))
1643 return 1;
1644
1645 if (cfq_class_idle(new_cfqq))
1646 return 0;
1647
1648 if (cfq_class_idle(cfqq))
1649 return 1;
1650
1651 /*
1652 * if the new request is sync, but the currently running queue is
1653 * not, let the sync request have priority.
1654 */
1655 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1656 return 1;
1657
1658 /*
1659 * So both queues are sync. Let the new request get disk time if
1660 * it's a metadata request and the current queue is doing regular IO.
1661 */
1662 if (rq_is_meta(rq) && !cfqq->meta_pending)
1663 return 1;
1664
1665 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1666 return 0;
1667
1668 /*
1669 * if this request is as-good as one we would expect from the
1670 * current cfqq, let it preempt
1671 */
1672 if (cfq_rq_close(cfqd, rq))
1673 return 1;
1674
1675 return 0;
1676 }
1677
1678 /*
1679 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1680 * let it have half of its nominal slice.
1681 */
1682 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1683 {
1684 cfq_slice_expired(cfqd, 1);
1685
1686 /*
1687 * Put the new queue at the front of the of the current list,
1688 * so we know that it will be selected next.
1689 */
1690 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1691
1692 cfq_service_tree_add(cfqd, cfqq, 1);
1693
1694 cfqq->slice_end = 0;
1695 cfq_mark_cfqq_slice_new(cfqq);
1696 }
1697
1698 /*
1699 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1700 * something we should do about it
1701 */
1702 static void
1703 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1704 struct request *rq)
1705 {
1706 struct cfq_io_context *cic = RQ_CIC(rq);
1707
1708 if (rq_is_meta(rq))
1709 cfqq->meta_pending++;
1710
1711 cfq_update_io_thinktime(cfqd, cic);
1712 cfq_update_io_seektime(cfqd, cic, rq);
1713 cfq_update_idle_window(cfqd, cfqq, cic);
1714
1715 cic->last_request_pos = rq->sector + rq->nr_sectors;
1716 cfqq->last_request_pos = cic->last_request_pos;
1717
1718 if (cfqq == cfqd->active_queue) {
1719 /*
1720 * if we are waiting for a request for this queue, let it rip
1721 * immediately and flag that we must not expire this queue
1722 * just now
1723 */
1724 if (cfq_cfqq_wait_request(cfqq)) {
1725 cfq_mark_cfqq_must_dispatch(cfqq);
1726 del_timer(&cfqd->idle_slice_timer);
1727 blk_start_queueing(cfqd->queue);
1728 }
1729 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1730 /*
1731 * not the active queue - expire current slice if it is
1732 * idle and has expired it's mean thinktime or this new queue
1733 * has some old slice time left and is of higher priority
1734 */
1735 cfq_preempt_queue(cfqd, cfqq);
1736 cfq_mark_cfqq_must_dispatch(cfqq);
1737 blk_start_queueing(cfqd->queue);
1738 }
1739 }
1740
1741 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1742 {
1743 struct cfq_data *cfqd = q->elevator->elevator_data;
1744 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1745
1746 cfq_init_prio_data(cfqq);
1747
1748 cfq_add_rq_rb(rq);
1749
1750 list_add_tail(&rq->queuelist, &cfqq->fifo);
1751
1752 cfq_rq_enqueued(cfqd, cfqq, rq);
1753 }
1754
1755 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1756 {
1757 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1758 struct cfq_data *cfqd = cfqq->cfqd;
1759 const int sync = rq_is_sync(rq);
1760 unsigned long now;
1761
1762 now = jiffies;
1763
1764 WARN_ON(!cfqd->rq_in_driver);
1765 WARN_ON(!cfqq->dispatched);
1766 cfqd->rq_in_driver--;
1767 cfqq->dispatched--;
1768
1769 if (!cfq_class_idle(cfqq))
1770 cfqd->last_end_request = now;
1771
1772 if (sync)
1773 RQ_CIC(rq)->last_end_request = now;
1774
1775 /*
1776 * If this is the active queue, check if it needs to be expired,
1777 * or if we want to idle in case it has no pending requests.
1778 */
1779 if (cfqd->active_queue == cfqq) {
1780 if (cfq_cfqq_slice_new(cfqq)) {
1781 cfq_set_prio_slice(cfqd, cfqq);
1782 cfq_clear_cfqq_slice_new(cfqq);
1783 }
1784 if (cfq_slice_used(cfqq))
1785 cfq_slice_expired(cfqd, 1);
1786 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1787 cfq_arm_slice_timer(cfqd);
1788 }
1789
1790 if (!cfqd->rq_in_driver)
1791 cfq_schedule_dispatch(cfqd);
1792 }
1793
1794 /*
1795 * we temporarily boost lower priority queues if they are holding fs exclusive
1796 * resources. they are boosted to normal prio (CLASS_BE/4)
1797 */
1798 static void cfq_prio_boost(struct cfq_queue *cfqq)
1799 {
1800 if (has_fs_excl()) {
1801 /*
1802 * boost idle prio on transactions that would lock out other
1803 * users of the filesystem
1804 */
1805 if (cfq_class_idle(cfqq))
1806 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1807 if (cfqq->ioprio > IOPRIO_NORM)
1808 cfqq->ioprio = IOPRIO_NORM;
1809 } else {
1810 /*
1811 * check if we need to unboost the queue
1812 */
1813 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1814 cfqq->ioprio_class = cfqq->org_ioprio_class;
1815 if (cfqq->ioprio != cfqq->org_ioprio)
1816 cfqq->ioprio = cfqq->org_ioprio;
1817 }
1818 }
1819
1820 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1821 {
1822 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1823 !cfq_cfqq_must_alloc_slice(cfqq)) {
1824 cfq_mark_cfqq_must_alloc_slice(cfqq);
1825 return ELV_MQUEUE_MUST;
1826 }
1827
1828 return ELV_MQUEUE_MAY;
1829 }
1830
1831 static int cfq_may_queue(request_queue_t *q, int rw)
1832 {
1833 struct cfq_data *cfqd = q->elevator->elevator_data;
1834 struct task_struct *tsk = current;
1835 struct cfq_queue *cfqq;
1836 unsigned int key;
1837
1838 key = cfq_queue_pid(tsk, rw, rw & REQ_RW_SYNC);
1839
1840 /*
1841 * don't force setup of a queue from here, as a call to may_queue
1842 * does not necessarily imply that a request actually will be queued.
1843 * so just lookup a possibly existing queue, or return 'may queue'
1844 * if that fails
1845 */
1846 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
1847 if (cfqq) {
1848 cfq_init_prio_data(cfqq);
1849 cfq_prio_boost(cfqq);
1850
1851 return __cfq_may_queue(cfqq);
1852 }
1853
1854 return ELV_MQUEUE_MAY;
1855 }
1856
1857 /*
1858 * queue lock held here
1859 */
1860 static void cfq_put_request(struct request *rq)
1861 {
1862 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1863
1864 if (cfqq) {
1865 const int rw = rq_data_dir(rq);
1866
1867 BUG_ON(!cfqq->allocated[rw]);
1868 cfqq->allocated[rw]--;
1869
1870 put_io_context(RQ_CIC(rq)->ioc);
1871
1872 rq->elevator_private = NULL;
1873 rq->elevator_private2 = NULL;
1874
1875 cfq_put_queue(cfqq);
1876 }
1877 }
1878
1879 /*
1880 * Allocate cfq data structures associated with this request.
1881 */
1882 static int
1883 cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1884 {
1885 struct cfq_data *cfqd = q->elevator->elevator_data;
1886 struct task_struct *tsk = current;
1887 struct cfq_io_context *cic;
1888 const int rw = rq_data_dir(rq);
1889 const int is_sync = rq_is_sync(rq);
1890 pid_t key = cfq_queue_pid(tsk, rw, is_sync);
1891 struct cfq_queue *cfqq;
1892 unsigned long flags;
1893
1894 might_sleep_if(gfp_mask & __GFP_WAIT);
1895
1896 cic = cfq_get_io_context(cfqd, gfp_mask);
1897
1898 spin_lock_irqsave(q->queue_lock, flags);
1899
1900 if (!cic)
1901 goto queue_fail;
1902
1903 if (!cic->cfqq[is_sync]) {
1904 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
1905 if (!cfqq)
1906 goto queue_fail;
1907
1908 cic->cfqq[is_sync] = cfqq;
1909 } else
1910 cfqq = cic->cfqq[is_sync];
1911
1912 cfqq->allocated[rw]++;
1913 cfq_clear_cfqq_must_alloc(cfqq);
1914 atomic_inc(&cfqq->ref);
1915
1916 spin_unlock_irqrestore(q->queue_lock, flags);
1917
1918 rq->elevator_private = cic;
1919 rq->elevator_private2 = cfqq;
1920 return 0;
1921
1922 queue_fail:
1923 if (cic)
1924 put_io_context(cic->ioc);
1925
1926 cfq_schedule_dispatch(cfqd);
1927 spin_unlock_irqrestore(q->queue_lock, flags);
1928 return 1;
1929 }
1930
1931 static void cfq_kick_queue(struct work_struct *work)
1932 {
1933 struct cfq_data *cfqd =
1934 container_of(work, struct cfq_data, unplug_work);
1935 request_queue_t *q = cfqd->queue;
1936 unsigned long flags;
1937
1938 spin_lock_irqsave(q->queue_lock, flags);
1939 blk_start_queueing(q);
1940 spin_unlock_irqrestore(q->queue_lock, flags);
1941 }
1942
1943 /*
1944 * Timer running if the active_queue is currently idling inside its time slice
1945 */
1946 static void cfq_idle_slice_timer(unsigned long data)
1947 {
1948 struct cfq_data *cfqd = (struct cfq_data *) data;
1949 struct cfq_queue *cfqq;
1950 unsigned long flags;
1951 int timed_out = 1;
1952
1953 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1954
1955 if ((cfqq = cfqd->active_queue) != NULL) {
1956 timed_out = 0;
1957
1958 /*
1959 * expired
1960 */
1961 if (cfq_slice_used(cfqq))
1962 goto expire;
1963
1964 /*
1965 * only expire and reinvoke request handler, if there are
1966 * other queues with pending requests
1967 */
1968 if (!cfqd->busy_queues)
1969 goto out_cont;
1970
1971 /*
1972 * not expired and it has a request pending, let it dispatch
1973 */
1974 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
1975 cfq_mark_cfqq_must_dispatch(cfqq);
1976 goto out_kick;
1977 }
1978 }
1979 expire:
1980 cfq_slice_expired(cfqd, timed_out);
1981 out_kick:
1982 cfq_schedule_dispatch(cfqd);
1983 out_cont:
1984 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1985 }
1986
1987 /*
1988 * Timer running if an idle class queue is waiting for service
1989 */
1990 static void cfq_idle_class_timer(unsigned long data)
1991 {
1992 struct cfq_data *cfqd = (struct cfq_data *) data;
1993 unsigned long flags, end;
1994
1995 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1996
1997 /*
1998 * race with a non-idle queue, reset timer
1999 */
2000 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2001 if (!time_after_eq(jiffies, end))
2002 mod_timer(&cfqd->idle_class_timer, end);
2003 else
2004 cfq_schedule_dispatch(cfqd);
2005
2006 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2007 }
2008
2009 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2010 {
2011 del_timer_sync(&cfqd->idle_slice_timer);
2012 del_timer_sync(&cfqd->idle_class_timer);
2013 blk_sync_queue(cfqd->queue);
2014 }
2015
2016 static void cfq_exit_queue(elevator_t *e)
2017 {
2018 struct cfq_data *cfqd = e->elevator_data;
2019 request_queue_t *q = cfqd->queue;
2020
2021 cfq_shutdown_timer_wq(cfqd);
2022
2023 spin_lock_irq(q->queue_lock);
2024
2025 if (cfqd->active_queue)
2026 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2027
2028 while (!list_empty(&cfqd->cic_list)) {
2029 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2030 struct cfq_io_context,
2031 queue_list);
2032
2033 __cfq_exit_single_io_context(cfqd, cic);
2034 }
2035
2036 spin_unlock_irq(q->queue_lock);
2037
2038 cfq_shutdown_timer_wq(cfqd);
2039
2040 kfree(cfqd->cfq_hash);
2041 kfree(cfqd);
2042 }
2043
2044 static void *cfq_init_queue(request_queue_t *q)
2045 {
2046 struct cfq_data *cfqd;
2047 int i;
2048
2049 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
2050 if (!cfqd)
2051 return NULL;
2052
2053 memset(cfqd, 0, sizeof(*cfqd));
2054
2055 cfqd->service_tree = CFQ_RB_ROOT;
2056 INIT_LIST_HEAD(&cfqd->cic_list);
2057
2058 cfqd->cfq_hash = kmalloc_node(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL, q->node);
2059 if (!cfqd->cfq_hash)
2060 goto out_free;
2061
2062 for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2063 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2064
2065 cfqd->queue = q;
2066
2067 init_timer(&cfqd->idle_slice_timer);
2068 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2069 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2070
2071 init_timer(&cfqd->idle_class_timer);
2072 cfqd->idle_class_timer.function = cfq_idle_class_timer;
2073 cfqd->idle_class_timer.data = (unsigned long) cfqd;
2074
2075 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2076
2077 cfqd->cfq_quantum = cfq_quantum;
2078 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2079 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2080 cfqd->cfq_back_max = cfq_back_max;
2081 cfqd->cfq_back_penalty = cfq_back_penalty;
2082 cfqd->cfq_slice[0] = cfq_slice_async;
2083 cfqd->cfq_slice[1] = cfq_slice_sync;
2084 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2085 cfqd->cfq_slice_idle = cfq_slice_idle;
2086
2087 return cfqd;
2088 out_free:
2089 kfree(cfqd);
2090 return NULL;
2091 }
2092
2093 static void cfq_slab_kill(void)
2094 {
2095 if (cfq_pool)
2096 kmem_cache_destroy(cfq_pool);
2097 if (cfq_ioc_pool)
2098 kmem_cache_destroy(cfq_ioc_pool);
2099 }
2100
2101 static int __init cfq_slab_setup(void)
2102 {
2103 cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2104 NULL, NULL);
2105 if (!cfq_pool)
2106 goto fail;
2107
2108 cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2109 sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2110 if (!cfq_ioc_pool)
2111 goto fail;
2112
2113 return 0;
2114 fail:
2115 cfq_slab_kill();
2116 return -ENOMEM;
2117 }
2118
2119 /*
2120 * sysfs parts below -->
2121 */
2122 static ssize_t
2123 cfq_var_show(unsigned int var, char *page)
2124 {
2125 return sprintf(page, "%d\n", var);
2126 }
2127
2128 static ssize_t
2129 cfq_var_store(unsigned int *var, const char *page, size_t count)
2130 {
2131 char *p = (char *) page;
2132
2133 *var = simple_strtoul(p, &p, 10);
2134 return count;
2135 }
2136
2137 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2138 static ssize_t __FUNC(elevator_t *e, char *page) \
2139 { \
2140 struct cfq_data *cfqd = e->elevator_data; \
2141 unsigned int __data = __VAR; \
2142 if (__CONV) \
2143 __data = jiffies_to_msecs(__data); \
2144 return cfq_var_show(__data, (page)); \
2145 }
2146 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2147 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2148 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2149 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2150 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2151 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2152 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2153 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2154 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2155 #undef SHOW_FUNCTION
2156
2157 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2158 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2159 { \
2160 struct cfq_data *cfqd = e->elevator_data; \
2161 unsigned int __data; \
2162 int ret = cfq_var_store(&__data, (page), count); \
2163 if (__data < (MIN)) \
2164 __data = (MIN); \
2165 else if (__data > (MAX)) \
2166 __data = (MAX); \
2167 if (__CONV) \
2168 *(__PTR) = msecs_to_jiffies(__data); \
2169 else \
2170 *(__PTR) = __data; \
2171 return ret; \
2172 }
2173 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2174 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2175 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2176 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2177 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2178 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2179 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2180 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2181 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2182 #undef STORE_FUNCTION
2183
2184 #define CFQ_ATTR(name) \
2185 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2186
2187 static struct elv_fs_entry cfq_attrs[] = {
2188 CFQ_ATTR(quantum),
2189 CFQ_ATTR(fifo_expire_sync),
2190 CFQ_ATTR(fifo_expire_async),
2191 CFQ_ATTR(back_seek_max),
2192 CFQ_ATTR(back_seek_penalty),
2193 CFQ_ATTR(slice_sync),
2194 CFQ_ATTR(slice_async),
2195 CFQ_ATTR(slice_async_rq),
2196 CFQ_ATTR(slice_idle),
2197 __ATTR_NULL
2198 };
2199
2200 static struct elevator_type iosched_cfq = {
2201 .ops = {
2202 .elevator_merge_fn = cfq_merge,
2203 .elevator_merged_fn = cfq_merged_request,
2204 .elevator_merge_req_fn = cfq_merged_requests,
2205 .elevator_allow_merge_fn = cfq_allow_merge,
2206 .elevator_dispatch_fn = cfq_dispatch_requests,
2207 .elevator_add_req_fn = cfq_insert_request,
2208 .elevator_activate_req_fn = cfq_activate_request,
2209 .elevator_deactivate_req_fn = cfq_deactivate_request,
2210 .elevator_queue_empty_fn = cfq_queue_empty,
2211 .elevator_completed_req_fn = cfq_completed_request,
2212 .elevator_former_req_fn = elv_rb_former_request,
2213 .elevator_latter_req_fn = elv_rb_latter_request,
2214 .elevator_set_req_fn = cfq_set_request,
2215 .elevator_put_req_fn = cfq_put_request,
2216 .elevator_may_queue_fn = cfq_may_queue,
2217 .elevator_init_fn = cfq_init_queue,
2218 .elevator_exit_fn = cfq_exit_queue,
2219 .trim = cfq_free_io_context,
2220 },
2221 .elevator_attrs = cfq_attrs,
2222 .elevator_name = "cfq",
2223 .elevator_owner = THIS_MODULE,
2224 };
2225
2226 static int __init cfq_init(void)
2227 {
2228 int ret;
2229
2230 /*
2231 * could be 0 on HZ < 1000 setups
2232 */
2233 if (!cfq_slice_async)
2234 cfq_slice_async = 1;
2235 if (!cfq_slice_idle)
2236 cfq_slice_idle = 1;
2237
2238 if (cfq_slab_setup())
2239 return -ENOMEM;
2240
2241 ret = elv_register(&iosched_cfq);
2242 if (ret)
2243 cfq_slab_kill();
2244
2245 return ret;
2246 }
2247
2248 static void __exit cfq_exit(void)
2249 {
2250 DECLARE_COMPLETION_ONSTACK(all_gone);
2251 elv_unregister(&iosched_cfq);
2252 ioc_gone = &all_gone;
2253 /* ioc_gone's update must be visible before reading ioc_count */
2254 smp_wmb();
2255 if (elv_ioc_count_read(ioc_count))
2256 wait_for_completion(ioc_gone);
2257 synchronize_rcu();
2258 cfq_slab_kill();
2259 }
2260
2261 module_init(cfq_init);
2262 module_exit(cfq_exit);
2263
2264 MODULE_AUTHOR("Jens Axboe");
2265 MODULE_LICENSE("GPL");
2266 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");