]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/cfq-iosched.c
Merge branch 'liblockdep-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk.h"
18 #include "blk-cgroup.h"
19
20 /*
21 * tunables
22 */
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const int cfq_slice_sync = HZ / 10;
31 static int cfq_slice_async = HZ / 25;
32 static const int cfq_slice_async_rq = 2;
33 static int cfq_slice_idle = HZ / 125;
34 static int cfq_group_idle = HZ / 125;
35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
37
38 /*
39 * offset from end of service tree
40 */
41 #define CFQ_IDLE_DELAY (HZ / 5)
42
43 /*
44 * below this threshold, we consider thinktime immediate
45 */
46 #define CFQ_MIN_TT (2)
47
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
51
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56
57 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
60
61 static struct kmem_cache *cfq_pool;
62
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
69
70 struct cfq_ttime {
71 unsigned long last_end_request;
72
73 unsigned long ttime_total;
74 unsigned long ttime_samples;
75 unsigned long ttime_mean;
76 };
77
78 /*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84 struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
87 unsigned count;
88 u64 min_vdisktime;
89 struct cfq_ttime ttime;
90 };
91 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
92 .ttime = {.last_end_request = jiffies,},}
93
94 /*
95 * Per process-grouping structure
96 */
97 struct cfq_queue {
98 /* reference count */
99 int ref;
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
122
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
125 unsigned int allocated_slice;
126 unsigned int slice_dispatch;
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
129 unsigned long slice_end;
130 long slice_resid;
131
132 /* pending priority requests */
133 int prio_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
136
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class;
140
141 pid_t pid;
142
143 u32 seek_history;
144 sector_t last_request_pos;
145
146 struct cfq_rb_root *service_tree;
147 struct cfq_queue *new_cfqq;
148 struct cfq_group *cfqg;
149 /* Number of sectors dispatched from queue in single dispatch round */
150 unsigned long nr_sectors;
151 };
152
153 /*
154 * First index in the service_trees.
155 * IDLE is handled separately, so it has negative index
156 */
157 enum wl_class_t {
158 BE_WORKLOAD = 0,
159 RT_WORKLOAD = 1,
160 IDLE_WORKLOAD = 2,
161 CFQ_PRIO_NR,
162 };
163
164 /*
165 * Second index in the service_trees.
166 */
167 enum wl_type_t {
168 ASYNC_WORKLOAD = 0,
169 SYNC_NOIDLE_WORKLOAD = 1,
170 SYNC_WORKLOAD = 2
171 };
172
173 struct cfqg_stats {
174 #ifdef CONFIG_CFQ_GROUP_IOSCHED
175 /* total bytes transferred */
176 struct blkg_rwstat service_bytes;
177 /* total IOs serviced, post merge */
178 struct blkg_rwstat serviced;
179 /* number of ios merged */
180 struct blkg_rwstat merged;
181 /* total time spent on device in ns, may not be accurate w/ queueing */
182 struct blkg_rwstat service_time;
183 /* total time spent waiting in scheduler queue in ns */
184 struct blkg_rwstat wait_time;
185 /* number of IOs queued up */
186 struct blkg_rwstat queued;
187 /* total sectors transferred */
188 struct blkg_stat sectors;
189 /* total disk time and nr sectors dispatched by this group */
190 struct blkg_stat time;
191 #ifdef CONFIG_DEBUG_BLK_CGROUP
192 /* time not charged to this cgroup */
193 struct blkg_stat unaccounted_time;
194 /* sum of number of ios queued across all samples */
195 struct blkg_stat avg_queue_size_sum;
196 /* count of samples taken for average */
197 struct blkg_stat avg_queue_size_samples;
198 /* how many times this group has been removed from service tree */
199 struct blkg_stat dequeue;
200 /* total time spent waiting for it to be assigned a timeslice. */
201 struct blkg_stat group_wait_time;
202 /* time spent idling for this blkcg_gq */
203 struct blkg_stat idle_time;
204 /* total time with empty current active q with other requests queued */
205 struct blkg_stat empty_time;
206 /* fields after this shouldn't be cleared on stat reset */
207 uint64_t start_group_wait_time;
208 uint64_t start_idle_time;
209 uint64_t start_empty_time;
210 uint16_t flags;
211 #endif /* CONFIG_DEBUG_BLK_CGROUP */
212 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
213 };
214
215 /* This is per cgroup per device grouping structure */
216 struct cfq_group {
217 /* must be the first member */
218 struct blkg_policy_data pd;
219
220 /* group service_tree member */
221 struct rb_node rb_node;
222
223 /* group service_tree key */
224 u64 vdisktime;
225
226 /*
227 * The number of active cfqgs and sum of their weights under this
228 * cfqg. This covers this cfqg's leaf_weight and all children's
229 * weights, but does not cover weights of further descendants.
230 *
231 * If a cfqg is on the service tree, it's active. An active cfqg
232 * also activates its parent and contributes to the children_weight
233 * of the parent.
234 */
235 int nr_active;
236 unsigned int children_weight;
237
238 /*
239 * vfraction is the fraction of vdisktime that the tasks in this
240 * cfqg are entitled to. This is determined by compounding the
241 * ratios walking up from this cfqg to the root.
242 *
243 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
244 * vfractions on a service tree is approximately 1. The sum may
245 * deviate a bit due to rounding errors and fluctuations caused by
246 * cfqgs entering and leaving the service tree.
247 */
248 unsigned int vfraction;
249
250 /*
251 * There are two weights - (internal) weight is the weight of this
252 * cfqg against the sibling cfqgs. leaf_weight is the wight of
253 * this cfqg against the child cfqgs. For the root cfqg, both
254 * weights are kept in sync for backward compatibility.
255 */
256 unsigned int weight;
257 unsigned int new_weight;
258 unsigned int dev_weight;
259
260 unsigned int leaf_weight;
261 unsigned int new_leaf_weight;
262 unsigned int dev_leaf_weight;
263
264 /* number of cfqq currently on this group */
265 int nr_cfqq;
266
267 /*
268 * Per group busy queues average. Useful for workload slice calc. We
269 * create the array for each prio class but at run time it is used
270 * only for RT and BE class and slot for IDLE class remains unused.
271 * This is primarily done to avoid confusion and a gcc warning.
272 */
273 unsigned int busy_queues_avg[CFQ_PRIO_NR];
274 /*
275 * rr lists of queues with requests. We maintain service trees for
276 * RT and BE classes. These trees are subdivided in subclasses
277 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
278 * class there is no subclassification and all the cfq queues go on
279 * a single tree service_tree_idle.
280 * Counts are embedded in the cfq_rb_root
281 */
282 struct cfq_rb_root service_trees[2][3];
283 struct cfq_rb_root service_tree_idle;
284
285 unsigned long saved_wl_slice;
286 enum wl_type_t saved_wl_type;
287 enum wl_class_t saved_wl_class;
288
289 /* number of requests that are on the dispatch list or inside driver */
290 int dispatched;
291 struct cfq_ttime ttime;
292 struct cfqg_stats stats; /* stats for this cfqg */
293 struct cfqg_stats dead_stats; /* stats pushed from dead children */
294 };
295
296 struct cfq_io_cq {
297 struct io_cq icq; /* must be the first member */
298 struct cfq_queue *cfqq[2];
299 struct cfq_ttime ttime;
300 int ioprio; /* the current ioprio */
301 #ifdef CONFIG_CFQ_GROUP_IOSCHED
302 uint64_t blkcg_id; /* the current blkcg ID */
303 #endif
304 };
305
306 /*
307 * Per block device queue structure
308 */
309 struct cfq_data {
310 struct request_queue *queue;
311 /* Root service tree for cfq_groups */
312 struct cfq_rb_root grp_service_tree;
313 struct cfq_group *root_group;
314
315 /*
316 * The priority currently being served
317 */
318 enum wl_class_t serving_wl_class;
319 enum wl_type_t serving_wl_type;
320 unsigned long workload_expires;
321 struct cfq_group *serving_group;
322
323 /*
324 * Each priority tree is sorted by next_request position. These
325 * trees are used when determining if two or more queues are
326 * interleaving requests (see cfq_close_cooperator).
327 */
328 struct rb_root prio_trees[CFQ_PRIO_LISTS];
329
330 unsigned int busy_queues;
331 unsigned int busy_sync_queues;
332
333 int rq_in_driver;
334 int rq_in_flight[2];
335
336 /*
337 * queue-depth detection
338 */
339 int rq_queued;
340 int hw_tag;
341 /*
342 * hw_tag can be
343 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
344 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
345 * 0 => no NCQ
346 */
347 int hw_tag_est_depth;
348 unsigned int hw_tag_samples;
349
350 /*
351 * idle window management
352 */
353 struct timer_list idle_slice_timer;
354 struct work_struct unplug_work;
355
356 struct cfq_queue *active_queue;
357 struct cfq_io_cq *active_cic;
358
359 /*
360 * async queue for each priority case
361 */
362 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
363 struct cfq_queue *async_idle_cfqq;
364
365 sector_t last_position;
366
367 /*
368 * tunables, see top of file
369 */
370 unsigned int cfq_quantum;
371 unsigned int cfq_fifo_expire[2];
372 unsigned int cfq_back_penalty;
373 unsigned int cfq_back_max;
374 unsigned int cfq_slice[2];
375 unsigned int cfq_slice_async_rq;
376 unsigned int cfq_slice_idle;
377 unsigned int cfq_group_idle;
378 unsigned int cfq_latency;
379 unsigned int cfq_target_latency;
380
381 /*
382 * Fallback dummy cfqq for extreme OOM conditions
383 */
384 struct cfq_queue oom_cfqq;
385
386 unsigned long last_delayed_sync;
387 };
388
389 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
390
391 static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
392 enum wl_class_t class,
393 enum wl_type_t type)
394 {
395 if (!cfqg)
396 return NULL;
397
398 if (class == IDLE_WORKLOAD)
399 return &cfqg->service_tree_idle;
400
401 return &cfqg->service_trees[class][type];
402 }
403
404 enum cfqq_state_flags {
405 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
406 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
407 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
408 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
409 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
410 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
411 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
412 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
413 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
414 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
415 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
416 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
417 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
418 };
419
420 #define CFQ_CFQQ_FNS(name) \
421 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
422 { \
423 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
424 } \
425 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
426 { \
427 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
428 } \
429 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
430 { \
431 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
432 }
433
434 CFQ_CFQQ_FNS(on_rr);
435 CFQ_CFQQ_FNS(wait_request);
436 CFQ_CFQQ_FNS(must_dispatch);
437 CFQ_CFQQ_FNS(must_alloc_slice);
438 CFQ_CFQQ_FNS(fifo_expire);
439 CFQ_CFQQ_FNS(idle_window);
440 CFQ_CFQQ_FNS(prio_changed);
441 CFQ_CFQQ_FNS(slice_new);
442 CFQ_CFQQ_FNS(sync);
443 CFQ_CFQQ_FNS(coop);
444 CFQ_CFQQ_FNS(split_coop);
445 CFQ_CFQQ_FNS(deep);
446 CFQ_CFQQ_FNS(wait_busy);
447 #undef CFQ_CFQQ_FNS
448
449 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
450 {
451 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
452 }
453
454 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
455 {
456 return pd_to_blkg(&cfqg->pd);
457 }
458
459 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
460
461 /* cfqg stats flags */
462 enum cfqg_stats_flags {
463 CFQG_stats_waiting = 0,
464 CFQG_stats_idling,
465 CFQG_stats_empty,
466 };
467
468 #define CFQG_FLAG_FNS(name) \
469 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
470 { \
471 stats->flags |= (1 << CFQG_stats_##name); \
472 } \
473 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
474 { \
475 stats->flags &= ~(1 << CFQG_stats_##name); \
476 } \
477 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
478 { \
479 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
480 } \
481
482 CFQG_FLAG_FNS(waiting)
483 CFQG_FLAG_FNS(idling)
484 CFQG_FLAG_FNS(empty)
485 #undef CFQG_FLAG_FNS
486
487 /* This should be called with the queue_lock held. */
488 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
489 {
490 unsigned long long now;
491
492 if (!cfqg_stats_waiting(stats))
493 return;
494
495 now = sched_clock();
496 if (time_after64(now, stats->start_group_wait_time))
497 blkg_stat_add(&stats->group_wait_time,
498 now - stats->start_group_wait_time);
499 cfqg_stats_clear_waiting(stats);
500 }
501
502 /* This should be called with the queue_lock held. */
503 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
504 struct cfq_group *curr_cfqg)
505 {
506 struct cfqg_stats *stats = &cfqg->stats;
507
508 if (cfqg_stats_waiting(stats))
509 return;
510 if (cfqg == curr_cfqg)
511 return;
512 stats->start_group_wait_time = sched_clock();
513 cfqg_stats_mark_waiting(stats);
514 }
515
516 /* This should be called with the queue_lock held. */
517 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
518 {
519 unsigned long long now;
520
521 if (!cfqg_stats_empty(stats))
522 return;
523
524 now = sched_clock();
525 if (time_after64(now, stats->start_empty_time))
526 blkg_stat_add(&stats->empty_time,
527 now - stats->start_empty_time);
528 cfqg_stats_clear_empty(stats);
529 }
530
531 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
532 {
533 blkg_stat_add(&cfqg->stats.dequeue, 1);
534 }
535
536 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
537 {
538 struct cfqg_stats *stats = &cfqg->stats;
539
540 if (blkg_rwstat_total(&stats->queued))
541 return;
542
543 /*
544 * group is already marked empty. This can happen if cfqq got new
545 * request in parent group and moved to this group while being added
546 * to service tree. Just ignore the event and move on.
547 */
548 if (cfqg_stats_empty(stats))
549 return;
550
551 stats->start_empty_time = sched_clock();
552 cfqg_stats_mark_empty(stats);
553 }
554
555 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
556 {
557 struct cfqg_stats *stats = &cfqg->stats;
558
559 if (cfqg_stats_idling(stats)) {
560 unsigned long long now = sched_clock();
561
562 if (time_after64(now, stats->start_idle_time))
563 blkg_stat_add(&stats->idle_time,
564 now - stats->start_idle_time);
565 cfqg_stats_clear_idling(stats);
566 }
567 }
568
569 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
570 {
571 struct cfqg_stats *stats = &cfqg->stats;
572
573 BUG_ON(cfqg_stats_idling(stats));
574
575 stats->start_idle_time = sched_clock();
576 cfqg_stats_mark_idling(stats);
577 }
578
579 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
580 {
581 struct cfqg_stats *stats = &cfqg->stats;
582
583 blkg_stat_add(&stats->avg_queue_size_sum,
584 blkg_rwstat_total(&stats->queued));
585 blkg_stat_add(&stats->avg_queue_size_samples, 1);
586 cfqg_stats_update_group_wait_time(stats);
587 }
588
589 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
590
591 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
592 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
593 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
594 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
595 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
596 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
597 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
598
599 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
600
601 #ifdef CONFIG_CFQ_GROUP_IOSCHED
602
603 static struct blkcg_policy blkcg_policy_cfq;
604
605 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
606 {
607 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
608 }
609
610 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
611 {
612 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
613
614 return pblkg ? blkg_to_cfqg(pblkg) : NULL;
615 }
616
617 static inline void cfqg_get(struct cfq_group *cfqg)
618 {
619 return blkg_get(cfqg_to_blkg(cfqg));
620 }
621
622 static inline void cfqg_put(struct cfq_group *cfqg)
623 {
624 return blkg_put(cfqg_to_blkg(cfqg));
625 }
626
627 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
628 char __pbuf[128]; \
629 \
630 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
631 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
632 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
633 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
634 __pbuf, ##args); \
635 } while (0)
636
637 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
638 char __pbuf[128]; \
639 \
640 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
641 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
642 } while (0)
643
644 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
645 struct cfq_group *curr_cfqg, int rw)
646 {
647 blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
648 cfqg_stats_end_empty_time(&cfqg->stats);
649 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
650 }
651
652 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
653 unsigned long time, unsigned long unaccounted_time)
654 {
655 blkg_stat_add(&cfqg->stats.time, time);
656 #ifdef CONFIG_DEBUG_BLK_CGROUP
657 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
658 #endif
659 }
660
661 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
662 {
663 blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
664 }
665
666 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
667 {
668 blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
669 }
670
671 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
672 uint64_t bytes, int rw)
673 {
674 blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
675 blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
676 blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
677 }
678
679 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
680 uint64_t start_time, uint64_t io_start_time, int rw)
681 {
682 struct cfqg_stats *stats = &cfqg->stats;
683 unsigned long long now = sched_clock();
684
685 if (time_after64(now, io_start_time))
686 blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
687 if (time_after64(io_start_time, start_time))
688 blkg_rwstat_add(&stats->wait_time, rw,
689 io_start_time - start_time);
690 }
691
692 /* @stats = 0 */
693 static void cfqg_stats_reset(struct cfqg_stats *stats)
694 {
695 /* queued stats shouldn't be cleared */
696 blkg_rwstat_reset(&stats->service_bytes);
697 blkg_rwstat_reset(&stats->serviced);
698 blkg_rwstat_reset(&stats->merged);
699 blkg_rwstat_reset(&stats->service_time);
700 blkg_rwstat_reset(&stats->wait_time);
701 blkg_stat_reset(&stats->time);
702 #ifdef CONFIG_DEBUG_BLK_CGROUP
703 blkg_stat_reset(&stats->unaccounted_time);
704 blkg_stat_reset(&stats->avg_queue_size_sum);
705 blkg_stat_reset(&stats->avg_queue_size_samples);
706 blkg_stat_reset(&stats->dequeue);
707 blkg_stat_reset(&stats->group_wait_time);
708 blkg_stat_reset(&stats->idle_time);
709 blkg_stat_reset(&stats->empty_time);
710 #endif
711 }
712
713 /* @to += @from */
714 static void cfqg_stats_merge(struct cfqg_stats *to, struct cfqg_stats *from)
715 {
716 /* queued stats shouldn't be cleared */
717 blkg_rwstat_merge(&to->service_bytes, &from->service_bytes);
718 blkg_rwstat_merge(&to->serviced, &from->serviced);
719 blkg_rwstat_merge(&to->merged, &from->merged);
720 blkg_rwstat_merge(&to->service_time, &from->service_time);
721 blkg_rwstat_merge(&to->wait_time, &from->wait_time);
722 blkg_stat_merge(&from->time, &from->time);
723 #ifdef CONFIG_DEBUG_BLK_CGROUP
724 blkg_stat_merge(&to->unaccounted_time, &from->unaccounted_time);
725 blkg_stat_merge(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
726 blkg_stat_merge(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
727 blkg_stat_merge(&to->dequeue, &from->dequeue);
728 blkg_stat_merge(&to->group_wait_time, &from->group_wait_time);
729 blkg_stat_merge(&to->idle_time, &from->idle_time);
730 blkg_stat_merge(&to->empty_time, &from->empty_time);
731 #endif
732 }
733
734 /*
735 * Transfer @cfqg's stats to its parent's dead_stats so that the ancestors'
736 * recursive stats can still account for the amount used by this cfqg after
737 * it's gone.
738 */
739 static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
740 {
741 struct cfq_group *parent = cfqg_parent(cfqg);
742
743 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
744
745 if (unlikely(!parent))
746 return;
747
748 cfqg_stats_merge(&parent->dead_stats, &cfqg->stats);
749 cfqg_stats_merge(&parent->dead_stats, &cfqg->dead_stats);
750 cfqg_stats_reset(&cfqg->stats);
751 cfqg_stats_reset(&cfqg->dead_stats);
752 }
753
754 #else /* CONFIG_CFQ_GROUP_IOSCHED */
755
756 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
757 static inline void cfqg_get(struct cfq_group *cfqg) { }
758 static inline void cfqg_put(struct cfq_group *cfqg) { }
759
760 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
761 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
762 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
763 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
764 ##args)
765 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
766
767 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
768 struct cfq_group *curr_cfqg, int rw) { }
769 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
770 unsigned long time, unsigned long unaccounted_time) { }
771 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
772 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
773 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
774 uint64_t bytes, int rw) { }
775 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
776 uint64_t start_time, uint64_t io_start_time, int rw) { }
777
778 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
779
780 #define cfq_log(cfqd, fmt, args...) \
781 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
782
783 /* Traverses through cfq group service trees */
784 #define for_each_cfqg_st(cfqg, i, j, st) \
785 for (i = 0; i <= IDLE_WORKLOAD; i++) \
786 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
787 : &cfqg->service_tree_idle; \
788 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
789 (i == IDLE_WORKLOAD && j == 0); \
790 j++, st = i < IDLE_WORKLOAD ? \
791 &cfqg->service_trees[i][j]: NULL) \
792
793 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
794 struct cfq_ttime *ttime, bool group_idle)
795 {
796 unsigned long slice;
797 if (!sample_valid(ttime->ttime_samples))
798 return false;
799 if (group_idle)
800 slice = cfqd->cfq_group_idle;
801 else
802 slice = cfqd->cfq_slice_idle;
803 return ttime->ttime_mean > slice;
804 }
805
806 static inline bool iops_mode(struct cfq_data *cfqd)
807 {
808 /*
809 * If we are not idling on queues and it is a NCQ drive, parallel
810 * execution of requests is on and measuring time is not possible
811 * in most of the cases until and unless we drive shallower queue
812 * depths and that becomes a performance bottleneck. In such cases
813 * switch to start providing fairness in terms of number of IOs.
814 */
815 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
816 return true;
817 else
818 return false;
819 }
820
821 static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
822 {
823 if (cfq_class_idle(cfqq))
824 return IDLE_WORKLOAD;
825 if (cfq_class_rt(cfqq))
826 return RT_WORKLOAD;
827 return BE_WORKLOAD;
828 }
829
830
831 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
832 {
833 if (!cfq_cfqq_sync(cfqq))
834 return ASYNC_WORKLOAD;
835 if (!cfq_cfqq_idle_window(cfqq))
836 return SYNC_NOIDLE_WORKLOAD;
837 return SYNC_WORKLOAD;
838 }
839
840 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
841 struct cfq_data *cfqd,
842 struct cfq_group *cfqg)
843 {
844 if (wl_class == IDLE_WORKLOAD)
845 return cfqg->service_tree_idle.count;
846
847 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
848 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
849 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
850 }
851
852 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
853 struct cfq_group *cfqg)
854 {
855 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
856 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
857 }
858
859 static void cfq_dispatch_insert(struct request_queue *, struct request *);
860 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
861 struct cfq_io_cq *cic, struct bio *bio,
862 gfp_t gfp_mask);
863
864 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
865 {
866 /* cic->icq is the first member, %NULL will convert to %NULL */
867 return container_of(icq, struct cfq_io_cq, icq);
868 }
869
870 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
871 struct io_context *ioc)
872 {
873 if (ioc)
874 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
875 return NULL;
876 }
877
878 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
879 {
880 return cic->cfqq[is_sync];
881 }
882
883 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
884 bool is_sync)
885 {
886 cic->cfqq[is_sync] = cfqq;
887 }
888
889 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
890 {
891 return cic->icq.q->elevator->elevator_data;
892 }
893
894 /*
895 * We regard a request as SYNC, if it's either a read or has the SYNC bit
896 * set (in which case it could also be direct WRITE).
897 */
898 static inline bool cfq_bio_sync(struct bio *bio)
899 {
900 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
901 }
902
903 /*
904 * scheduler run of queue, if there are requests pending and no one in the
905 * driver that will restart queueing
906 */
907 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
908 {
909 if (cfqd->busy_queues) {
910 cfq_log(cfqd, "schedule dispatch");
911 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
912 }
913 }
914
915 /*
916 * Scale schedule slice based on io priority. Use the sync time slice only
917 * if a queue is marked sync and has sync io queued. A sync queue with async
918 * io only, should not get full sync slice length.
919 */
920 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
921 unsigned short prio)
922 {
923 const int base_slice = cfqd->cfq_slice[sync];
924
925 WARN_ON(prio >= IOPRIO_BE_NR);
926
927 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
928 }
929
930 static inline int
931 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
932 {
933 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
934 }
935
936 /**
937 * cfqg_scale_charge - scale disk time charge according to cfqg weight
938 * @charge: disk time being charged
939 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
940 *
941 * Scale @charge according to @vfraction, which is in range (0, 1]. The
942 * scaling is inversely proportional.
943 *
944 * scaled = charge / vfraction
945 *
946 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
947 */
948 static inline u64 cfqg_scale_charge(unsigned long charge,
949 unsigned int vfraction)
950 {
951 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
952
953 /* charge / vfraction */
954 c <<= CFQ_SERVICE_SHIFT;
955 do_div(c, vfraction);
956 return c;
957 }
958
959 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
960 {
961 s64 delta = (s64)(vdisktime - min_vdisktime);
962 if (delta > 0)
963 min_vdisktime = vdisktime;
964
965 return min_vdisktime;
966 }
967
968 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
969 {
970 s64 delta = (s64)(vdisktime - min_vdisktime);
971 if (delta < 0)
972 min_vdisktime = vdisktime;
973
974 return min_vdisktime;
975 }
976
977 static void update_min_vdisktime(struct cfq_rb_root *st)
978 {
979 struct cfq_group *cfqg;
980
981 if (st->left) {
982 cfqg = rb_entry_cfqg(st->left);
983 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
984 cfqg->vdisktime);
985 }
986 }
987
988 /*
989 * get averaged number of queues of RT/BE priority.
990 * average is updated, with a formula that gives more weight to higher numbers,
991 * to quickly follows sudden increases and decrease slowly
992 */
993
994 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
995 struct cfq_group *cfqg, bool rt)
996 {
997 unsigned min_q, max_q;
998 unsigned mult = cfq_hist_divisor - 1;
999 unsigned round = cfq_hist_divisor / 2;
1000 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1001
1002 min_q = min(cfqg->busy_queues_avg[rt], busy);
1003 max_q = max(cfqg->busy_queues_avg[rt], busy);
1004 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1005 cfq_hist_divisor;
1006 return cfqg->busy_queues_avg[rt];
1007 }
1008
1009 static inline unsigned
1010 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1011 {
1012 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1013 }
1014
1015 static inline unsigned
1016 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1017 {
1018 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
1019 if (cfqd->cfq_latency) {
1020 /*
1021 * interested queues (we consider only the ones with the same
1022 * priority class in the cfq group)
1023 */
1024 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1025 cfq_class_rt(cfqq));
1026 unsigned sync_slice = cfqd->cfq_slice[1];
1027 unsigned expect_latency = sync_slice * iq;
1028 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1029
1030 if (expect_latency > group_slice) {
1031 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
1032 /* scale low_slice according to IO priority
1033 * and sync vs async */
1034 unsigned low_slice =
1035 min(slice, base_low_slice * slice / sync_slice);
1036 /* the adapted slice value is scaled to fit all iqs
1037 * into the target latency */
1038 slice = max(slice * group_slice / expect_latency,
1039 low_slice);
1040 }
1041 }
1042 return slice;
1043 }
1044
1045 static inline void
1046 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1047 {
1048 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1049
1050 cfqq->slice_start = jiffies;
1051 cfqq->slice_end = jiffies + slice;
1052 cfqq->allocated_slice = slice;
1053 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
1054 }
1055
1056 /*
1057 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1058 * isn't valid until the first request from the dispatch is activated
1059 * and the slice time set.
1060 */
1061 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1062 {
1063 if (cfq_cfqq_slice_new(cfqq))
1064 return false;
1065 if (time_before(jiffies, cfqq->slice_end))
1066 return false;
1067
1068 return true;
1069 }
1070
1071 /*
1072 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1073 * We choose the request that is closest to the head right now. Distance
1074 * behind the head is penalized and only allowed to a certain extent.
1075 */
1076 static struct request *
1077 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1078 {
1079 sector_t s1, s2, d1 = 0, d2 = 0;
1080 unsigned long back_max;
1081 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1082 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1083 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1084
1085 if (rq1 == NULL || rq1 == rq2)
1086 return rq2;
1087 if (rq2 == NULL)
1088 return rq1;
1089
1090 if (rq_is_sync(rq1) != rq_is_sync(rq2))
1091 return rq_is_sync(rq1) ? rq1 : rq2;
1092
1093 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1094 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1095
1096 s1 = blk_rq_pos(rq1);
1097 s2 = blk_rq_pos(rq2);
1098
1099 /*
1100 * by definition, 1KiB is 2 sectors
1101 */
1102 back_max = cfqd->cfq_back_max * 2;
1103
1104 /*
1105 * Strict one way elevator _except_ in the case where we allow
1106 * short backward seeks which are biased as twice the cost of a
1107 * similar forward seek.
1108 */
1109 if (s1 >= last)
1110 d1 = s1 - last;
1111 else if (s1 + back_max >= last)
1112 d1 = (last - s1) * cfqd->cfq_back_penalty;
1113 else
1114 wrap |= CFQ_RQ1_WRAP;
1115
1116 if (s2 >= last)
1117 d2 = s2 - last;
1118 else if (s2 + back_max >= last)
1119 d2 = (last - s2) * cfqd->cfq_back_penalty;
1120 else
1121 wrap |= CFQ_RQ2_WRAP;
1122
1123 /* Found required data */
1124
1125 /*
1126 * By doing switch() on the bit mask "wrap" we avoid having to
1127 * check two variables for all permutations: --> faster!
1128 */
1129 switch (wrap) {
1130 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1131 if (d1 < d2)
1132 return rq1;
1133 else if (d2 < d1)
1134 return rq2;
1135 else {
1136 if (s1 >= s2)
1137 return rq1;
1138 else
1139 return rq2;
1140 }
1141
1142 case CFQ_RQ2_WRAP:
1143 return rq1;
1144 case CFQ_RQ1_WRAP:
1145 return rq2;
1146 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1147 default:
1148 /*
1149 * Since both rqs are wrapped,
1150 * start with the one that's further behind head
1151 * (--> only *one* back seek required),
1152 * since back seek takes more time than forward.
1153 */
1154 if (s1 <= s2)
1155 return rq1;
1156 else
1157 return rq2;
1158 }
1159 }
1160
1161 /*
1162 * The below is leftmost cache rbtree addon
1163 */
1164 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1165 {
1166 /* Service tree is empty */
1167 if (!root->count)
1168 return NULL;
1169
1170 if (!root->left)
1171 root->left = rb_first(&root->rb);
1172
1173 if (root->left)
1174 return rb_entry(root->left, struct cfq_queue, rb_node);
1175
1176 return NULL;
1177 }
1178
1179 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1180 {
1181 if (!root->left)
1182 root->left = rb_first(&root->rb);
1183
1184 if (root->left)
1185 return rb_entry_cfqg(root->left);
1186
1187 return NULL;
1188 }
1189
1190 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1191 {
1192 rb_erase(n, root);
1193 RB_CLEAR_NODE(n);
1194 }
1195
1196 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1197 {
1198 if (root->left == n)
1199 root->left = NULL;
1200 rb_erase_init(n, &root->rb);
1201 --root->count;
1202 }
1203
1204 /*
1205 * would be nice to take fifo expire time into account as well
1206 */
1207 static struct request *
1208 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1209 struct request *last)
1210 {
1211 struct rb_node *rbnext = rb_next(&last->rb_node);
1212 struct rb_node *rbprev = rb_prev(&last->rb_node);
1213 struct request *next = NULL, *prev = NULL;
1214
1215 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1216
1217 if (rbprev)
1218 prev = rb_entry_rq(rbprev);
1219
1220 if (rbnext)
1221 next = rb_entry_rq(rbnext);
1222 else {
1223 rbnext = rb_first(&cfqq->sort_list);
1224 if (rbnext && rbnext != &last->rb_node)
1225 next = rb_entry_rq(rbnext);
1226 }
1227
1228 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1229 }
1230
1231 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1232 struct cfq_queue *cfqq)
1233 {
1234 /*
1235 * just an approximation, should be ok.
1236 */
1237 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1238 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1239 }
1240
1241 static inline s64
1242 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1243 {
1244 return cfqg->vdisktime - st->min_vdisktime;
1245 }
1246
1247 static void
1248 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1249 {
1250 struct rb_node **node = &st->rb.rb_node;
1251 struct rb_node *parent = NULL;
1252 struct cfq_group *__cfqg;
1253 s64 key = cfqg_key(st, cfqg);
1254 int left = 1;
1255
1256 while (*node != NULL) {
1257 parent = *node;
1258 __cfqg = rb_entry_cfqg(parent);
1259
1260 if (key < cfqg_key(st, __cfqg))
1261 node = &parent->rb_left;
1262 else {
1263 node = &parent->rb_right;
1264 left = 0;
1265 }
1266 }
1267
1268 if (left)
1269 st->left = &cfqg->rb_node;
1270
1271 rb_link_node(&cfqg->rb_node, parent, node);
1272 rb_insert_color(&cfqg->rb_node, &st->rb);
1273 }
1274
1275 static void
1276 cfq_update_group_weight(struct cfq_group *cfqg)
1277 {
1278 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1279
1280 if (cfqg->new_weight) {
1281 cfqg->weight = cfqg->new_weight;
1282 cfqg->new_weight = 0;
1283 }
1284
1285 if (cfqg->new_leaf_weight) {
1286 cfqg->leaf_weight = cfqg->new_leaf_weight;
1287 cfqg->new_leaf_weight = 0;
1288 }
1289 }
1290
1291 static void
1292 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1293 {
1294 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1295 struct cfq_group *pos = cfqg;
1296 struct cfq_group *parent;
1297 bool propagate;
1298
1299 /* add to the service tree */
1300 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1301
1302 cfq_update_group_weight(cfqg);
1303 __cfq_group_service_tree_add(st, cfqg);
1304
1305 /*
1306 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1307 * entitled to. vfraction is calculated by walking the tree
1308 * towards the root calculating the fraction it has at each level.
1309 * The compounded ratio is how much vfraction @cfqg owns.
1310 *
1311 * Start with the proportion tasks in this cfqg has against active
1312 * children cfqgs - its leaf_weight against children_weight.
1313 */
1314 propagate = !pos->nr_active++;
1315 pos->children_weight += pos->leaf_weight;
1316 vfr = vfr * pos->leaf_weight / pos->children_weight;
1317
1318 /*
1319 * Compound ->weight walking up the tree. Both activation and
1320 * vfraction calculation are done in the same loop. Propagation
1321 * stops once an already activated node is met. vfraction
1322 * calculation should always continue to the root.
1323 */
1324 while ((parent = cfqg_parent(pos))) {
1325 if (propagate) {
1326 propagate = !parent->nr_active++;
1327 parent->children_weight += pos->weight;
1328 }
1329 vfr = vfr * pos->weight / parent->children_weight;
1330 pos = parent;
1331 }
1332
1333 cfqg->vfraction = max_t(unsigned, vfr, 1);
1334 }
1335
1336 static void
1337 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1338 {
1339 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1340 struct cfq_group *__cfqg;
1341 struct rb_node *n;
1342
1343 cfqg->nr_cfqq++;
1344 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1345 return;
1346
1347 /*
1348 * Currently put the group at the end. Later implement something
1349 * so that groups get lesser vtime based on their weights, so that
1350 * if group does not loose all if it was not continuously backlogged.
1351 */
1352 n = rb_last(&st->rb);
1353 if (n) {
1354 __cfqg = rb_entry_cfqg(n);
1355 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1356 } else
1357 cfqg->vdisktime = st->min_vdisktime;
1358 cfq_group_service_tree_add(st, cfqg);
1359 }
1360
1361 static void
1362 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1363 {
1364 struct cfq_group *pos = cfqg;
1365 bool propagate;
1366
1367 /*
1368 * Undo activation from cfq_group_service_tree_add(). Deactivate
1369 * @cfqg and propagate deactivation upwards.
1370 */
1371 propagate = !--pos->nr_active;
1372 pos->children_weight -= pos->leaf_weight;
1373
1374 while (propagate) {
1375 struct cfq_group *parent = cfqg_parent(pos);
1376
1377 /* @pos has 0 nr_active at this point */
1378 WARN_ON_ONCE(pos->children_weight);
1379 pos->vfraction = 0;
1380
1381 if (!parent)
1382 break;
1383
1384 propagate = !--parent->nr_active;
1385 parent->children_weight -= pos->weight;
1386 pos = parent;
1387 }
1388
1389 /* remove from the service tree */
1390 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1391 cfq_rb_erase(&cfqg->rb_node, st);
1392 }
1393
1394 static void
1395 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1396 {
1397 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1398
1399 BUG_ON(cfqg->nr_cfqq < 1);
1400 cfqg->nr_cfqq--;
1401
1402 /* If there are other cfq queues under this group, don't delete it */
1403 if (cfqg->nr_cfqq)
1404 return;
1405
1406 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1407 cfq_group_service_tree_del(st, cfqg);
1408 cfqg->saved_wl_slice = 0;
1409 cfqg_stats_update_dequeue(cfqg);
1410 }
1411
1412 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1413 unsigned int *unaccounted_time)
1414 {
1415 unsigned int slice_used;
1416
1417 /*
1418 * Queue got expired before even a single request completed or
1419 * got expired immediately after first request completion.
1420 */
1421 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1422 /*
1423 * Also charge the seek time incurred to the group, otherwise
1424 * if there are mutiple queues in the group, each can dispatch
1425 * a single request on seeky media and cause lots of seek time
1426 * and group will never know it.
1427 */
1428 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1429 1);
1430 } else {
1431 slice_used = jiffies - cfqq->slice_start;
1432 if (slice_used > cfqq->allocated_slice) {
1433 *unaccounted_time = slice_used - cfqq->allocated_slice;
1434 slice_used = cfqq->allocated_slice;
1435 }
1436 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1437 *unaccounted_time += cfqq->slice_start -
1438 cfqq->dispatch_start;
1439 }
1440
1441 return slice_used;
1442 }
1443
1444 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1445 struct cfq_queue *cfqq)
1446 {
1447 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1448 unsigned int used_sl, charge, unaccounted_sl = 0;
1449 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1450 - cfqg->service_tree_idle.count;
1451 unsigned int vfr;
1452
1453 BUG_ON(nr_sync < 0);
1454 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1455
1456 if (iops_mode(cfqd))
1457 charge = cfqq->slice_dispatch;
1458 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1459 charge = cfqq->allocated_slice;
1460
1461 /*
1462 * Can't update vdisktime while on service tree and cfqg->vfraction
1463 * is valid only while on it. Cache vfr, leave the service tree,
1464 * update vdisktime and go back on. The re-addition to the tree
1465 * will also update the weights as necessary.
1466 */
1467 vfr = cfqg->vfraction;
1468 cfq_group_service_tree_del(st, cfqg);
1469 cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1470 cfq_group_service_tree_add(st, cfqg);
1471
1472 /* This group is being expired. Save the context */
1473 if (time_after(cfqd->workload_expires, jiffies)) {
1474 cfqg->saved_wl_slice = cfqd->workload_expires
1475 - jiffies;
1476 cfqg->saved_wl_type = cfqd->serving_wl_type;
1477 cfqg->saved_wl_class = cfqd->serving_wl_class;
1478 } else
1479 cfqg->saved_wl_slice = 0;
1480
1481 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1482 st->min_vdisktime);
1483 cfq_log_cfqq(cfqq->cfqd, cfqq,
1484 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1485 used_sl, cfqq->slice_dispatch, charge,
1486 iops_mode(cfqd), cfqq->nr_sectors);
1487 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1488 cfqg_stats_set_start_empty_time(cfqg);
1489 }
1490
1491 /**
1492 * cfq_init_cfqg_base - initialize base part of a cfq_group
1493 * @cfqg: cfq_group to initialize
1494 *
1495 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1496 * is enabled or not.
1497 */
1498 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1499 {
1500 struct cfq_rb_root *st;
1501 int i, j;
1502
1503 for_each_cfqg_st(cfqg, i, j, st)
1504 *st = CFQ_RB_ROOT;
1505 RB_CLEAR_NODE(&cfqg->rb_node);
1506
1507 cfqg->ttime.last_end_request = jiffies;
1508 }
1509
1510 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1511 static void cfqg_stats_init(struct cfqg_stats *stats)
1512 {
1513 blkg_rwstat_init(&stats->service_bytes);
1514 blkg_rwstat_init(&stats->serviced);
1515 blkg_rwstat_init(&stats->merged);
1516 blkg_rwstat_init(&stats->service_time);
1517 blkg_rwstat_init(&stats->wait_time);
1518 blkg_rwstat_init(&stats->queued);
1519
1520 blkg_stat_init(&stats->sectors);
1521 blkg_stat_init(&stats->time);
1522
1523 #ifdef CONFIG_DEBUG_BLK_CGROUP
1524 blkg_stat_init(&stats->unaccounted_time);
1525 blkg_stat_init(&stats->avg_queue_size_sum);
1526 blkg_stat_init(&stats->avg_queue_size_samples);
1527 blkg_stat_init(&stats->dequeue);
1528 blkg_stat_init(&stats->group_wait_time);
1529 blkg_stat_init(&stats->idle_time);
1530 blkg_stat_init(&stats->empty_time);
1531 #endif
1532 }
1533
1534 static void cfq_pd_init(struct blkcg_gq *blkg)
1535 {
1536 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1537
1538 cfq_init_cfqg_base(cfqg);
1539 cfqg->weight = blkg->blkcg->cfq_weight;
1540 cfqg->leaf_weight = blkg->blkcg->cfq_leaf_weight;
1541 cfqg_stats_init(&cfqg->stats);
1542 cfqg_stats_init(&cfqg->dead_stats);
1543 }
1544
1545 static void cfq_pd_offline(struct blkcg_gq *blkg)
1546 {
1547 /*
1548 * @blkg is going offline and will be ignored by
1549 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1550 * that they don't get lost. If IOs complete after this point, the
1551 * stats for them will be lost. Oh well...
1552 */
1553 cfqg_stats_xfer_dead(blkg_to_cfqg(blkg));
1554 }
1555
1556 /* offset delta from cfqg->stats to cfqg->dead_stats */
1557 static const int dead_stats_off_delta = offsetof(struct cfq_group, dead_stats) -
1558 offsetof(struct cfq_group, stats);
1559
1560 /* to be used by recursive prfill, sums live and dead stats recursively */
1561 static u64 cfqg_stat_pd_recursive_sum(struct blkg_policy_data *pd, int off)
1562 {
1563 u64 sum = 0;
1564
1565 sum += blkg_stat_recursive_sum(pd, off);
1566 sum += blkg_stat_recursive_sum(pd, off + dead_stats_off_delta);
1567 return sum;
1568 }
1569
1570 /* to be used by recursive prfill, sums live and dead rwstats recursively */
1571 static struct blkg_rwstat cfqg_rwstat_pd_recursive_sum(struct blkg_policy_data *pd,
1572 int off)
1573 {
1574 struct blkg_rwstat a, b;
1575
1576 a = blkg_rwstat_recursive_sum(pd, off);
1577 b = blkg_rwstat_recursive_sum(pd, off + dead_stats_off_delta);
1578 blkg_rwstat_merge(&a, &b);
1579 return a;
1580 }
1581
1582 static void cfq_pd_reset_stats(struct blkcg_gq *blkg)
1583 {
1584 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1585
1586 cfqg_stats_reset(&cfqg->stats);
1587 cfqg_stats_reset(&cfqg->dead_stats);
1588 }
1589
1590 /*
1591 * Search for the cfq group current task belongs to. request_queue lock must
1592 * be held.
1593 */
1594 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1595 struct blkcg *blkcg)
1596 {
1597 struct request_queue *q = cfqd->queue;
1598 struct cfq_group *cfqg = NULL;
1599
1600 /* avoid lookup for the common case where there's no blkcg */
1601 if (blkcg == &blkcg_root) {
1602 cfqg = cfqd->root_group;
1603 } else {
1604 struct blkcg_gq *blkg;
1605
1606 blkg = blkg_lookup_create(blkcg, q);
1607 if (!IS_ERR(blkg))
1608 cfqg = blkg_to_cfqg(blkg);
1609 }
1610
1611 return cfqg;
1612 }
1613
1614 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1615 {
1616 /* Currently, all async queues are mapped to root group */
1617 if (!cfq_cfqq_sync(cfqq))
1618 cfqg = cfqq->cfqd->root_group;
1619
1620 cfqq->cfqg = cfqg;
1621 /* cfqq reference on cfqg */
1622 cfqg_get(cfqg);
1623 }
1624
1625 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1626 struct blkg_policy_data *pd, int off)
1627 {
1628 struct cfq_group *cfqg = pd_to_cfqg(pd);
1629
1630 if (!cfqg->dev_weight)
1631 return 0;
1632 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1633 }
1634
1635 static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1636 {
1637 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1638 cfqg_prfill_weight_device, &blkcg_policy_cfq,
1639 0, false);
1640 return 0;
1641 }
1642
1643 static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1644 struct blkg_policy_data *pd, int off)
1645 {
1646 struct cfq_group *cfqg = pd_to_cfqg(pd);
1647
1648 if (!cfqg->dev_leaf_weight)
1649 return 0;
1650 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1651 }
1652
1653 static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1654 {
1655 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1656 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1657 0, false);
1658 return 0;
1659 }
1660
1661 static int cfq_print_weight(struct seq_file *sf, void *v)
1662 {
1663 seq_printf(sf, "%u\n", css_to_blkcg(seq_css(sf))->cfq_weight);
1664 return 0;
1665 }
1666
1667 static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1668 {
1669 seq_printf(sf, "%u\n", css_to_blkcg(seq_css(sf))->cfq_leaf_weight);
1670 return 0;
1671 }
1672
1673 static int __cfqg_set_weight_device(struct cgroup_subsys_state *css,
1674 struct cftype *cft, const char *buf,
1675 bool is_leaf_weight)
1676 {
1677 struct blkcg *blkcg = css_to_blkcg(css);
1678 struct blkg_conf_ctx ctx;
1679 struct cfq_group *cfqg;
1680 int ret;
1681
1682 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1683 if (ret)
1684 return ret;
1685
1686 ret = -EINVAL;
1687 cfqg = blkg_to_cfqg(ctx.blkg);
1688 if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) {
1689 if (!is_leaf_weight) {
1690 cfqg->dev_weight = ctx.v;
1691 cfqg->new_weight = ctx.v ?: blkcg->cfq_weight;
1692 } else {
1693 cfqg->dev_leaf_weight = ctx.v;
1694 cfqg->new_leaf_weight = ctx.v ?: blkcg->cfq_leaf_weight;
1695 }
1696 ret = 0;
1697 }
1698
1699 blkg_conf_finish(&ctx);
1700 return ret;
1701 }
1702
1703 static int cfqg_set_weight_device(struct cgroup_subsys_state *css,
1704 struct cftype *cft, const char *buf)
1705 {
1706 return __cfqg_set_weight_device(css, cft, buf, false);
1707 }
1708
1709 static int cfqg_set_leaf_weight_device(struct cgroup_subsys_state *css,
1710 struct cftype *cft, const char *buf)
1711 {
1712 return __cfqg_set_weight_device(css, cft, buf, true);
1713 }
1714
1715 static int __cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1716 u64 val, bool is_leaf_weight)
1717 {
1718 struct blkcg *blkcg = css_to_blkcg(css);
1719 struct blkcg_gq *blkg;
1720
1721 if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
1722 return -EINVAL;
1723
1724 spin_lock_irq(&blkcg->lock);
1725
1726 if (!is_leaf_weight)
1727 blkcg->cfq_weight = val;
1728 else
1729 blkcg->cfq_leaf_weight = val;
1730
1731 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1732 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1733
1734 if (!cfqg)
1735 continue;
1736
1737 if (!is_leaf_weight) {
1738 if (!cfqg->dev_weight)
1739 cfqg->new_weight = blkcg->cfq_weight;
1740 } else {
1741 if (!cfqg->dev_leaf_weight)
1742 cfqg->new_leaf_weight = blkcg->cfq_leaf_weight;
1743 }
1744 }
1745
1746 spin_unlock_irq(&blkcg->lock);
1747 return 0;
1748 }
1749
1750 static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1751 u64 val)
1752 {
1753 return __cfq_set_weight(css, cft, val, false);
1754 }
1755
1756 static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1757 struct cftype *cft, u64 val)
1758 {
1759 return __cfq_set_weight(css, cft, val, true);
1760 }
1761
1762 static int cfqg_print_stat(struct seq_file *sf, void *v)
1763 {
1764 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1765 &blkcg_policy_cfq, seq_cft(sf)->private, false);
1766 return 0;
1767 }
1768
1769 static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1770 {
1771 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1772 &blkcg_policy_cfq, seq_cft(sf)->private, true);
1773 return 0;
1774 }
1775
1776 static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1777 struct blkg_policy_data *pd, int off)
1778 {
1779 u64 sum = cfqg_stat_pd_recursive_sum(pd, off);
1780
1781 return __blkg_prfill_u64(sf, pd, sum);
1782 }
1783
1784 static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1785 struct blkg_policy_data *pd, int off)
1786 {
1787 struct blkg_rwstat sum = cfqg_rwstat_pd_recursive_sum(pd, off);
1788
1789 return __blkg_prfill_rwstat(sf, pd, &sum);
1790 }
1791
1792 static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1793 {
1794 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1795 cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1796 seq_cft(sf)->private, false);
1797 return 0;
1798 }
1799
1800 static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1801 {
1802 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1803 cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1804 seq_cft(sf)->private, true);
1805 return 0;
1806 }
1807
1808 #ifdef CONFIG_DEBUG_BLK_CGROUP
1809 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1810 struct blkg_policy_data *pd, int off)
1811 {
1812 struct cfq_group *cfqg = pd_to_cfqg(pd);
1813 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1814 u64 v = 0;
1815
1816 if (samples) {
1817 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1818 v = div64_u64(v, samples);
1819 }
1820 __blkg_prfill_u64(sf, pd, v);
1821 return 0;
1822 }
1823
1824 /* print avg_queue_size */
1825 static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
1826 {
1827 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1828 cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
1829 0, false);
1830 return 0;
1831 }
1832 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1833
1834 static struct cftype cfq_blkcg_files[] = {
1835 /* on root, weight is mapped to leaf_weight */
1836 {
1837 .name = "weight_device",
1838 .flags = CFTYPE_ONLY_ON_ROOT,
1839 .seq_show = cfqg_print_leaf_weight_device,
1840 .write_string = cfqg_set_leaf_weight_device,
1841 .max_write_len = 256,
1842 },
1843 {
1844 .name = "weight",
1845 .flags = CFTYPE_ONLY_ON_ROOT,
1846 .seq_show = cfq_print_leaf_weight,
1847 .write_u64 = cfq_set_leaf_weight,
1848 },
1849
1850 /* no such mapping necessary for !roots */
1851 {
1852 .name = "weight_device",
1853 .flags = CFTYPE_NOT_ON_ROOT,
1854 .seq_show = cfqg_print_weight_device,
1855 .write_string = cfqg_set_weight_device,
1856 .max_write_len = 256,
1857 },
1858 {
1859 .name = "weight",
1860 .flags = CFTYPE_NOT_ON_ROOT,
1861 .seq_show = cfq_print_weight,
1862 .write_u64 = cfq_set_weight,
1863 },
1864
1865 {
1866 .name = "leaf_weight_device",
1867 .seq_show = cfqg_print_leaf_weight_device,
1868 .write_string = cfqg_set_leaf_weight_device,
1869 .max_write_len = 256,
1870 },
1871 {
1872 .name = "leaf_weight",
1873 .seq_show = cfq_print_leaf_weight,
1874 .write_u64 = cfq_set_leaf_weight,
1875 },
1876
1877 /* statistics, covers only the tasks in the cfqg */
1878 {
1879 .name = "time",
1880 .private = offsetof(struct cfq_group, stats.time),
1881 .seq_show = cfqg_print_stat,
1882 },
1883 {
1884 .name = "sectors",
1885 .private = offsetof(struct cfq_group, stats.sectors),
1886 .seq_show = cfqg_print_stat,
1887 },
1888 {
1889 .name = "io_service_bytes",
1890 .private = offsetof(struct cfq_group, stats.service_bytes),
1891 .seq_show = cfqg_print_rwstat,
1892 },
1893 {
1894 .name = "io_serviced",
1895 .private = offsetof(struct cfq_group, stats.serviced),
1896 .seq_show = cfqg_print_rwstat,
1897 },
1898 {
1899 .name = "io_service_time",
1900 .private = offsetof(struct cfq_group, stats.service_time),
1901 .seq_show = cfqg_print_rwstat,
1902 },
1903 {
1904 .name = "io_wait_time",
1905 .private = offsetof(struct cfq_group, stats.wait_time),
1906 .seq_show = cfqg_print_rwstat,
1907 },
1908 {
1909 .name = "io_merged",
1910 .private = offsetof(struct cfq_group, stats.merged),
1911 .seq_show = cfqg_print_rwstat,
1912 },
1913 {
1914 .name = "io_queued",
1915 .private = offsetof(struct cfq_group, stats.queued),
1916 .seq_show = cfqg_print_rwstat,
1917 },
1918
1919 /* the same statictics which cover the cfqg and its descendants */
1920 {
1921 .name = "time_recursive",
1922 .private = offsetof(struct cfq_group, stats.time),
1923 .seq_show = cfqg_print_stat_recursive,
1924 },
1925 {
1926 .name = "sectors_recursive",
1927 .private = offsetof(struct cfq_group, stats.sectors),
1928 .seq_show = cfqg_print_stat_recursive,
1929 },
1930 {
1931 .name = "io_service_bytes_recursive",
1932 .private = offsetof(struct cfq_group, stats.service_bytes),
1933 .seq_show = cfqg_print_rwstat_recursive,
1934 },
1935 {
1936 .name = "io_serviced_recursive",
1937 .private = offsetof(struct cfq_group, stats.serviced),
1938 .seq_show = cfqg_print_rwstat_recursive,
1939 },
1940 {
1941 .name = "io_service_time_recursive",
1942 .private = offsetof(struct cfq_group, stats.service_time),
1943 .seq_show = cfqg_print_rwstat_recursive,
1944 },
1945 {
1946 .name = "io_wait_time_recursive",
1947 .private = offsetof(struct cfq_group, stats.wait_time),
1948 .seq_show = cfqg_print_rwstat_recursive,
1949 },
1950 {
1951 .name = "io_merged_recursive",
1952 .private = offsetof(struct cfq_group, stats.merged),
1953 .seq_show = cfqg_print_rwstat_recursive,
1954 },
1955 {
1956 .name = "io_queued_recursive",
1957 .private = offsetof(struct cfq_group, stats.queued),
1958 .seq_show = cfqg_print_rwstat_recursive,
1959 },
1960 #ifdef CONFIG_DEBUG_BLK_CGROUP
1961 {
1962 .name = "avg_queue_size",
1963 .seq_show = cfqg_print_avg_queue_size,
1964 },
1965 {
1966 .name = "group_wait_time",
1967 .private = offsetof(struct cfq_group, stats.group_wait_time),
1968 .seq_show = cfqg_print_stat,
1969 },
1970 {
1971 .name = "idle_time",
1972 .private = offsetof(struct cfq_group, stats.idle_time),
1973 .seq_show = cfqg_print_stat,
1974 },
1975 {
1976 .name = "empty_time",
1977 .private = offsetof(struct cfq_group, stats.empty_time),
1978 .seq_show = cfqg_print_stat,
1979 },
1980 {
1981 .name = "dequeue",
1982 .private = offsetof(struct cfq_group, stats.dequeue),
1983 .seq_show = cfqg_print_stat,
1984 },
1985 {
1986 .name = "unaccounted_time",
1987 .private = offsetof(struct cfq_group, stats.unaccounted_time),
1988 .seq_show = cfqg_print_stat,
1989 },
1990 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1991 { } /* terminate */
1992 };
1993 #else /* GROUP_IOSCHED */
1994 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1995 struct blkcg *blkcg)
1996 {
1997 return cfqd->root_group;
1998 }
1999
2000 static inline void
2001 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2002 cfqq->cfqg = cfqg;
2003 }
2004
2005 #endif /* GROUP_IOSCHED */
2006
2007 /*
2008 * The cfqd->service_trees holds all pending cfq_queue's that have
2009 * requests waiting to be processed. It is sorted in the order that
2010 * we will service the queues.
2011 */
2012 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2013 bool add_front)
2014 {
2015 struct rb_node **p, *parent;
2016 struct cfq_queue *__cfqq;
2017 unsigned long rb_key;
2018 struct cfq_rb_root *st;
2019 int left;
2020 int new_cfqq = 1;
2021
2022 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2023 if (cfq_class_idle(cfqq)) {
2024 rb_key = CFQ_IDLE_DELAY;
2025 parent = rb_last(&st->rb);
2026 if (parent && parent != &cfqq->rb_node) {
2027 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2028 rb_key += __cfqq->rb_key;
2029 } else
2030 rb_key += jiffies;
2031 } else if (!add_front) {
2032 /*
2033 * Get our rb key offset. Subtract any residual slice
2034 * value carried from last service. A negative resid
2035 * count indicates slice overrun, and this should position
2036 * the next service time further away in the tree.
2037 */
2038 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
2039 rb_key -= cfqq->slice_resid;
2040 cfqq->slice_resid = 0;
2041 } else {
2042 rb_key = -HZ;
2043 __cfqq = cfq_rb_first(st);
2044 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
2045 }
2046
2047 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2048 new_cfqq = 0;
2049 /*
2050 * same position, nothing more to do
2051 */
2052 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2053 return;
2054
2055 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2056 cfqq->service_tree = NULL;
2057 }
2058
2059 left = 1;
2060 parent = NULL;
2061 cfqq->service_tree = st;
2062 p = &st->rb.rb_node;
2063 while (*p) {
2064 parent = *p;
2065 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2066
2067 /*
2068 * sort by key, that represents service time.
2069 */
2070 if (time_before(rb_key, __cfqq->rb_key))
2071 p = &parent->rb_left;
2072 else {
2073 p = &parent->rb_right;
2074 left = 0;
2075 }
2076 }
2077
2078 if (left)
2079 st->left = &cfqq->rb_node;
2080
2081 cfqq->rb_key = rb_key;
2082 rb_link_node(&cfqq->rb_node, parent, p);
2083 rb_insert_color(&cfqq->rb_node, &st->rb);
2084 st->count++;
2085 if (add_front || !new_cfqq)
2086 return;
2087 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2088 }
2089
2090 static struct cfq_queue *
2091 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2092 sector_t sector, struct rb_node **ret_parent,
2093 struct rb_node ***rb_link)
2094 {
2095 struct rb_node **p, *parent;
2096 struct cfq_queue *cfqq = NULL;
2097
2098 parent = NULL;
2099 p = &root->rb_node;
2100 while (*p) {
2101 struct rb_node **n;
2102
2103 parent = *p;
2104 cfqq = rb_entry(parent, struct cfq_queue, p_node);
2105
2106 /*
2107 * Sort strictly based on sector. Smallest to the left,
2108 * largest to the right.
2109 */
2110 if (sector > blk_rq_pos(cfqq->next_rq))
2111 n = &(*p)->rb_right;
2112 else if (sector < blk_rq_pos(cfqq->next_rq))
2113 n = &(*p)->rb_left;
2114 else
2115 break;
2116 p = n;
2117 cfqq = NULL;
2118 }
2119
2120 *ret_parent = parent;
2121 if (rb_link)
2122 *rb_link = p;
2123 return cfqq;
2124 }
2125
2126 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2127 {
2128 struct rb_node **p, *parent;
2129 struct cfq_queue *__cfqq;
2130
2131 if (cfqq->p_root) {
2132 rb_erase(&cfqq->p_node, cfqq->p_root);
2133 cfqq->p_root = NULL;
2134 }
2135
2136 if (cfq_class_idle(cfqq))
2137 return;
2138 if (!cfqq->next_rq)
2139 return;
2140
2141 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2142 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2143 blk_rq_pos(cfqq->next_rq), &parent, &p);
2144 if (!__cfqq) {
2145 rb_link_node(&cfqq->p_node, parent, p);
2146 rb_insert_color(&cfqq->p_node, cfqq->p_root);
2147 } else
2148 cfqq->p_root = NULL;
2149 }
2150
2151 /*
2152 * Update cfqq's position in the service tree.
2153 */
2154 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2155 {
2156 /*
2157 * Resorting requires the cfqq to be on the RR list already.
2158 */
2159 if (cfq_cfqq_on_rr(cfqq)) {
2160 cfq_service_tree_add(cfqd, cfqq, 0);
2161 cfq_prio_tree_add(cfqd, cfqq);
2162 }
2163 }
2164
2165 /*
2166 * add to busy list of queues for service, trying to be fair in ordering
2167 * the pending list according to last request service
2168 */
2169 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2170 {
2171 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2172 BUG_ON(cfq_cfqq_on_rr(cfqq));
2173 cfq_mark_cfqq_on_rr(cfqq);
2174 cfqd->busy_queues++;
2175 if (cfq_cfqq_sync(cfqq))
2176 cfqd->busy_sync_queues++;
2177
2178 cfq_resort_rr_list(cfqd, cfqq);
2179 }
2180
2181 /*
2182 * Called when the cfqq no longer has requests pending, remove it from
2183 * the service tree.
2184 */
2185 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2186 {
2187 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2188 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2189 cfq_clear_cfqq_on_rr(cfqq);
2190
2191 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2192 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2193 cfqq->service_tree = NULL;
2194 }
2195 if (cfqq->p_root) {
2196 rb_erase(&cfqq->p_node, cfqq->p_root);
2197 cfqq->p_root = NULL;
2198 }
2199
2200 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2201 BUG_ON(!cfqd->busy_queues);
2202 cfqd->busy_queues--;
2203 if (cfq_cfqq_sync(cfqq))
2204 cfqd->busy_sync_queues--;
2205 }
2206
2207 /*
2208 * rb tree support functions
2209 */
2210 static void cfq_del_rq_rb(struct request *rq)
2211 {
2212 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2213 const int sync = rq_is_sync(rq);
2214
2215 BUG_ON(!cfqq->queued[sync]);
2216 cfqq->queued[sync]--;
2217
2218 elv_rb_del(&cfqq->sort_list, rq);
2219
2220 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2221 /*
2222 * Queue will be deleted from service tree when we actually
2223 * expire it later. Right now just remove it from prio tree
2224 * as it is empty.
2225 */
2226 if (cfqq->p_root) {
2227 rb_erase(&cfqq->p_node, cfqq->p_root);
2228 cfqq->p_root = NULL;
2229 }
2230 }
2231 }
2232
2233 static void cfq_add_rq_rb(struct request *rq)
2234 {
2235 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2236 struct cfq_data *cfqd = cfqq->cfqd;
2237 struct request *prev;
2238
2239 cfqq->queued[rq_is_sync(rq)]++;
2240
2241 elv_rb_add(&cfqq->sort_list, rq);
2242
2243 if (!cfq_cfqq_on_rr(cfqq))
2244 cfq_add_cfqq_rr(cfqd, cfqq);
2245
2246 /*
2247 * check if this request is a better next-serve candidate
2248 */
2249 prev = cfqq->next_rq;
2250 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2251
2252 /*
2253 * adjust priority tree position, if ->next_rq changes
2254 */
2255 if (prev != cfqq->next_rq)
2256 cfq_prio_tree_add(cfqd, cfqq);
2257
2258 BUG_ON(!cfqq->next_rq);
2259 }
2260
2261 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2262 {
2263 elv_rb_del(&cfqq->sort_list, rq);
2264 cfqq->queued[rq_is_sync(rq)]--;
2265 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2266 cfq_add_rq_rb(rq);
2267 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2268 rq->cmd_flags);
2269 }
2270
2271 static struct request *
2272 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2273 {
2274 struct task_struct *tsk = current;
2275 struct cfq_io_cq *cic;
2276 struct cfq_queue *cfqq;
2277
2278 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2279 if (!cic)
2280 return NULL;
2281
2282 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2283 if (cfqq)
2284 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2285
2286 return NULL;
2287 }
2288
2289 static void cfq_activate_request(struct request_queue *q, struct request *rq)
2290 {
2291 struct cfq_data *cfqd = q->elevator->elevator_data;
2292
2293 cfqd->rq_in_driver++;
2294 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2295 cfqd->rq_in_driver);
2296
2297 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2298 }
2299
2300 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2301 {
2302 struct cfq_data *cfqd = q->elevator->elevator_data;
2303
2304 WARN_ON(!cfqd->rq_in_driver);
2305 cfqd->rq_in_driver--;
2306 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2307 cfqd->rq_in_driver);
2308 }
2309
2310 static void cfq_remove_request(struct request *rq)
2311 {
2312 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2313
2314 if (cfqq->next_rq == rq)
2315 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2316
2317 list_del_init(&rq->queuelist);
2318 cfq_del_rq_rb(rq);
2319
2320 cfqq->cfqd->rq_queued--;
2321 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2322 if (rq->cmd_flags & REQ_PRIO) {
2323 WARN_ON(!cfqq->prio_pending);
2324 cfqq->prio_pending--;
2325 }
2326 }
2327
2328 static int cfq_merge(struct request_queue *q, struct request **req,
2329 struct bio *bio)
2330 {
2331 struct cfq_data *cfqd = q->elevator->elevator_data;
2332 struct request *__rq;
2333
2334 __rq = cfq_find_rq_fmerge(cfqd, bio);
2335 if (__rq && elv_rq_merge_ok(__rq, bio)) {
2336 *req = __rq;
2337 return ELEVATOR_FRONT_MERGE;
2338 }
2339
2340 return ELEVATOR_NO_MERGE;
2341 }
2342
2343 static void cfq_merged_request(struct request_queue *q, struct request *req,
2344 int type)
2345 {
2346 if (type == ELEVATOR_FRONT_MERGE) {
2347 struct cfq_queue *cfqq = RQ_CFQQ(req);
2348
2349 cfq_reposition_rq_rb(cfqq, req);
2350 }
2351 }
2352
2353 static void cfq_bio_merged(struct request_queue *q, struct request *req,
2354 struct bio *bio)
2355 {
2356 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
2357 }
2358
2359 static void
2360 cfq_merged_requests(struct request_queue *q, struct request *rq,
2361 struct request *next)
2362 {
2363 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2364 struct cfq_data *cfqd = q->elevator->elevator_data;
2365
2366 /*
2367 * reposition in fifo if next is older than rq
2368 */
2369 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2370 time_before(next->fifo_time, rq->fifo_time) &&
2371 cfqq == RQ_CFQQ(next)) {
2372 list_move(&rq->queuelist, &next->queuelist);
2373 rq->fifo_time = next->fifo_time;
2374 }
2375
2376 if (cfqq->next_rq == next)
2377 cfqq->next_rq = rq;
2378 cfq_remove_request(next);
2379 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2380
2381 cfqq = RQ_CFQQ(next);
2382 /*
2383 * all requests of this queue are merged to other queues, delete it
2384 * from the service tree. If it's the active_queue,
2385 * cfq_dispatch_requests() will choose to expire it or do idle
2386 */
2387 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2388 cfqq != cfqd->active_queue)
2389 cfq_del_cfqq_rr(cfqd, cfqq);
2390 }
2391
2392 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
2393 struct bio *bio)
2394 {
2395 struct cfq_data *cfqd = q->elevator->elevator_data;
2396 struct cfq_io_cq *cic;
2397 struct cfq_queue *cfqq;
2398
2399 /*
2400 * Disallow merge of a sync bio into an async request.
2401 */
2402 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2403 return false;
2404
2405 /*
2406 * Lookup the cfqq that this bio will be queued with and allow
2407 * merge only if rq is queued there.
2408 */
2409 cic = cfq_cic_lookup(cfqd, current->io_context);
2410 if (!cic)
2411 return false;
2412
2413 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2414 return cfqq == RQ_CFQQ(rq);
2415 }
2416
2417 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2418 {
2419 del_timer(&cfqd->idle_slice_timer);
2420 cfqg_stats_update_idle_time(cfqq->cfqg);
2421 }
2422
2423 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2424 struct cfq_queue *cfqq)
2425 {
2426 if (cfqq) {
2427 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2428 cfqd->serving_wl_class, cfqd->serving_wl_type);
2429 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2430 cfqq->slice_start = 0;
2431 cfqq->dispatch_start = jiffies;
2432 cfqq->allocated_slice = 0;
2433 cfqq->slice_end = 0;
2434 cfqq->slice_dispatch = 0;
2435 cfqq->nr_sectors = 0;
2436
2437 cfq_clear_cfqq_wait_request(cfqq);
2438 cfq_clear_cfqq_must_dispatch(cfqq);
2439 cfq_clear_cfqq_must_alloc_slice(cfqq);
2440 cfq_clear_cfqq_fifo_expire(cfqq);
2441 cfq_mark_cfqq_slice_new(cfqq);
2442
2443 cfq_del_timer(cfqd, cfqq);
2444 }
2445
2446 cfqd->active_queue = cfqq;
2447 }
2448
2449 /*
2450 * current cfqq expired its slice (or was too idle), select new one
2451 */
2452 static void
2453 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2454 bool timed_out)
2455 {
2456 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2457
2458 if (cfq_cfqq_wait_request(cfqq))
2459 cfq_del_timer(cfqd, cfqq);
2460
2461 cfq_clear_cfqq_wait_request(cfqq);
2462 cfq_clear_cfqq_wait_busy(cfqq);
2463
2464 /*
2465 * If this cfqq is shared between multiple processes, check to
2466 * make sure that those processes are still issuing I/Os within
2467 * the mean seek distance. If not, it may be time to break the
2468 * queues apart again.
2469 */
2470 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2471 cfq_mark_cfqq_split_coop(cfqq);
2472
2473 /*
2474 * store what was left of this slice, if the queue idled/timed out
2475 */
2476 if (timed_out) {
2477 if (cfq_cfqq_slice_new(cfqq))
2478 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2479 else
2480 cfqq->slice_resid = cfqq->slice_end - jiffies;
2481 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2482 }
2483
2484 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2485
2486 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2487 cfq_del_cfqq_rr(cfqd, cfqq);
2488
2489 cfq_resort_rr_list(cfqd, cfqq);
2490
2491 if (cfqq == cfqd->active_queue)
2492 cfqd->active_queue = NULL;
2493
2494 if (cfqd->active_cic) {
2495 put_io_context(cfqd->active_cic->icq.ioc);
2496 cfqd->active_cic = NULL;
2497 }
2498 }
2499
2500 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2501 {
2502 struct cfq_queue *cfqq = cfqd->active_queue;
2503
2504 if (cfqq)
2505 __cfq_slice_expired(cfqd, cfqq, timed_out);
2506 }
2507
2508 /*
2509 * Get next queue for service. Unless we have a queue preemption,
2510 * we'll simply select the first cfqq in the service tree.
2511 */
2512 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2513 {
2514 struct cfq_rb_root *st = st_for(cfqd->serving_group,
2515 cfqd->serving_wl_class, cfqd->serving_wl_type);
2516
2517 if (!cfqd->rq_queued)
2518 return NULL;
2519
2520 /* There is nothing to dispatch */
2521 if (!st)
2522 return NULL;
2523 if (RB_EMPTY_ROOT(&st->rb))
2524 return NULL;
2525 return cfq_rb_first(st);
2526 }
2527
2528 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2529 {
2530 struct cfq_group *cfqg;
2531 struct cfq_queue *cfqq;
2532 int i, j;
2533 struct cfq_rb_root *st;
2534
2535 if (!cfqd->rq_queued)
2536 return NULL;
2537
2538 cfqg = cfq_get_next_cfqg(cfqd);
2539 if (!cfqg)
2540 return NULL;
2541
2542 for_each_cfqg_st(cfqg, i, j, st)
2543 if ((cfqq = cfq_rb_first(st)) != NULL)
2544 return cfqq;
2545 return NULL;
2546 }
2547
2548 /*
2549 * Get and set a new active queue for service.
2550 */
2551 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2552 struct cfq_queue *cfqq)
2553 {
2554 if (!cfqq)
2555 cfqq = cfq_get_next_queue(cfqd);
2556
2557 __cfq_set_active_queue(cfqd, cfqq);
2558 return cfqq;
2559 }
2560
2561 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2562 struct request *rq)
2563 {
2564 if (blk_rq_pos(rq) >= cfqd->last_position)
2565 return blk_rq_pos(rq) - cfqd->last_position;
2566 else
2567 return cfqd->last_position - blk_rq_pos(rq);
2568 }
2569
2570 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2571 struct request *rq)
2572 {
2573 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2574 }
2575
2576 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2577 struct cfq_queue *cur_cfqq)
2578 {
2579 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2580 struct rb_node *parent, *node;
2581 struct cfq_queue *__cfqq;
2582 sector_t sector = cfqd->last_position;
2583
2584 if (RB_EMPTY_ROOT(root))
2585 return NULL;
2586
2587 /*
2588 * First, if we find a request starting at the end of the last
2589 * request, choose it.
2590 */
2591 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2592 if (__cfqq)
2593 return __cfqq;
2594
2595 /*
2596 * If the exact sector wasn't found, the parent of the NULL leaf
2597 * will contain the closest sector.
2598 */
2599 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2600 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2601 return __cfqq;
2602
2603 if (blk_rq_pos(__cfqq->next_rq) < sector)
2604 node = rb_next(&__cfqq->p_node);
2605 else
2606 node = rb_prev(&__cfqq->p_node);
2607 if (!node)
2608 return NULL;
2609
2610 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2611 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2612 return __cfqq;
2613
2614 return NULL;
2615 }
2616
2617 /*
2618 * cfqd - obvious
2619 * cur_cfqq - passed in so that we don't decide that the current queue is
2620 * closely cooperating with itself.
2621 *
2622 * So, basically we're assuming that that cur_cfqq has dispatched at least
2623 * one request, and that cfqd->last_position reflects a position on the disk
2624 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2625 * assumption.
2626 */
2627 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2628 struct cfq_queue *cur_cfqq)
2629 {
2630 struct cfq_queue *cfqq;
2631
2632 if (cfq_class_idle(cur_cfqq))
2633 return NULL;
2634 if (!cfq_cfqq_sync(cur_cfqq))
2635 return NULL;
2636 if (CFQQ_SEEKY(cur_cfqq))
2637 return NULL;
2638
2639 /*
2640 * Don't search priority tree if it's the only queue in the group.
2641 */
2642 if (cur_cfqq->cfqg->nr_cfqq == 1)
2643 return NULL;
2644
2645 /*
2646 * We should notice if some of the queues are cooperating, eg
2647 * working closely on the same area of the disk. In that case,
2648 * we can group them together and don't waste time idling.
2649 */
2650 cfqq = cfqq_close(cfqd, cur_cfqq);
2651 if (!cfqq)
2652 return NULL;
2653
2654 /* If new queue belongs to different cfq_group, don't choose it */
2655 if (cur_cfqq->cfqg != cfqq->cfqg)
2656 return NULL;
2657
2658 /*
2659 * It only makes sense to merge sync queues.
2660 */
2661 if (!cfq_cfqq_sync(cfqq))
2662 return NULL;
2663 if (CFQQ_SEEKY(cfqq))
2664 return NULL;
2665
2666 /*
2667 * Do not merge queues of different priority classes
2668 */
2669 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2670 return NULL;
2671
2672 return cfqq;
2673 }
2674
2675 /*
2676 * Determine whether we should enforce idle window for this queue.
2677 */
2678
2679 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2680 {
2681 enum wl_class_t wl_class = cfqq_class(cfqq);
2682 struct cfq_rb_root *st = cfqq->service_tree;
2683
2684 BUG_ON(!st);
2685 BUG_ON(!st->count);
2686
2687 if (!cfqd->cfq_slice_idle)
2688 return false;
2689
2690 /* We never do for idle class queues. */
2691 if (wl_class == IDLE_WORKLOAD)
2692 return false;
2693
2694 /* We do for queues that were marked with idle window flag. */
2695 if (cfq_cfqq_idle_window(cfqq) &&
2696 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2697 return true;
2698
2699 /*
2700 * Otherwise, we do only if they are the last ones
2701 * in their service tree.
2702 */
2703 if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2704 !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2705 return true;
2706 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2707 return false;
2708 }
2709
2710 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2711 {
2712 struct cfq_queue *cfqq = cfqd->active_queue;
2713 struct cfq_io_cq *cic;
2714 unsigned long sl, group_idle = 0;
2715
2716 /*
2717 * SSD device without seek penalty, disable idling. But only do so
2718 * for devices that support queuing, otherwise we still have a problem
2719 * with sync vs async workloads.
2720 */
2721 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2722 return;
2723
2724 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2725 WARN_ON(cfq_cfqq_slice_new(cfqq));
2726
2727 /*
2728 * idle is disabled, either manually or by past process history
2729 */
2730 if (!cfq_should_idle(cfqd, cfqq)) {
2731 /* no queue idling. Check for group idling */
2732 if (cfqd->cfq_group_idle)
2733 group_idle = cfqd->cfq_group_idle;
2734 else
2735 return;
2736 }
2737
2738 /*
2739 * still active requests from this queue, don't idle
2740 */
2741 if (cfqq->dispatched)
2742 return;
2743
2744 /*
2745 * task has exited, don't wait
2746 */
2747 cic = cfqd->active_cic;
2748 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2749 return;
2750
2751 /*
2752 * If our average think time is larger than the remaining time
2753 * slice, then don't idle. This avoids overrunning the allotted
2754 * time slice.
2755 */
2756 if (sample_valid(cic->ttime.ttime_samples) &&
2757 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2758 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2759 cic->ttime.ttime_mean);
2760 return;
2761 }
2762
2763 /* There are other queues in the group, don't do group idle */
2764 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2765 return;
2766
2767 cfq_mark_cfqq_wait_request(cfqq);
2768
2769 if (group_idle)
2770 sl = cfqd->cfq_group_idle;
2771 else
2772 sl = cfqd->cfq_slice_idle;
2773
2774 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2775 cfqg_stats_set_start_idle_time(cfqq->cfqg);
2776 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2777 group_idle ? 1 : 0);
2778 }
2779
2780 /*
2781 * Move request from internal lists to the request queue dispatch list.
2782 */
2783 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2784 {
2785 struct cfq_data *cfqd = q->elevator->elevator_data;
2786 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2787
2788 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2789
2790 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2791 cfq_remove_request(rq);
2792 cfqq->dispatched++;
2793 (RQ_CFQG(rq))->dispatched++;
2794 elv_dispatch_sort(q, rq);
2795
2796 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2797 cfqq->nr_sectors += blk_rq_sectors(rq);
2798 cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
2799 }
2800
2801 /*
2802 * return expired entry, or NULL to just start from scratch in rbtree
2803 */
2804 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2805 {
2806 struct request *rq = NULL;
2807
2808 if (cfq_cfqq_fifo_expire(cfqq))
2809 return NULL;
2810
2811 cfq_mark_cfqq_fifo_expire(cfqq);
2812
2813 if (list_empty(&cfqq->fifo))
2814 return NULL;
2815
2816 rq = rq_entry_fifo(cfqq->fifo.next);
2817 if (time_before(jiffies, rq->fifo_time))
2818 rq = NULL;
2819
2820 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2821 return rq;
2822 }
2823
2824 static inline int
2825 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2826 {
2827 const int base_rq = cfqd->cfq_slice_async_rq;
2828
2829 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2830
2831 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2832 }
2833
2834 /*
2835 * Must be called with the queue_lock held.
2836 */
2837 static int cfqq_process_refs(struct cfq_queue *cfqq)
2838 {
2839 int process_refs, io_refs;
2840
2841 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2842 process_refs = cfqq->ref - io_refs;
2843 BUG_ON(process_refs < 0);
2844 return process_refs;
2845 }
2846
2847 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2848 {
2849 int process_refs, new_process_refs;
2850 struct cfq_queue *__cfqq;
2851
2852 /*
2853 * If there are no process references on the new_cfqq, then it is
2854 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2855 * chain may have dropped their last reference (not just their
2856 * last process reference).
2857 */
2858 if (!cfqq_process_refs(new_cfqq))
2859 return;
2860
2861 /* Avoid a circular list and skip interim queue merges */
2862 while ((__cfqq = new_cfqq->new_cfqq)) {
2863 if (__cfqq == cfqq)
2864 return;
2865 new_cfqq = __cfqq;
2866 }
2867
2868 process_refs = cfqq_process_refs(cfqq);
2869 new_process_refs = cfqq_process_refs(new_cfqq);
2870 /*
2871 * If the process for the cfqq has gone away, there is no
2872 * sense in merging the queues.
2873 */
2874 if (process_refs == 0 || new_process_refs == 0)
2875 return;
2876
2877 /*
2878 * Merge in the direction of the lesser amount of work.
2879 */
2880 if (new_process_refs >= process_refs) {
2881 cfqq->new_cfqq = new_cfqq;
2882 new_cfqq->ref += process_refs;
2883 } else {
2884 new_cfqq->new_cfqq = cfqq;
2885 cfqq->ref += new_process_refs;
2886 }
2887 }
2888
2889 static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
2890 struct cfq_group *cfqg, enum wl_class_t wl_class)
2891 {
2892 struct cfq_queue *queue;
2893 int i;
2894 bool key_valid = false;
2895 unsigned long lowest_key = 0;
2896 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2897
2898 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2899 /* select the one with lowest rb_key */
2900 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
2901 if (queue &&
2902 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2903 lowest_key = queue->rb_key;
2904 cur_best = i;
2905 key_valid = true;
2906 }
2907 }
2908
2909 return cur_best;
2910 }
2911
2912 static void
2913 choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
2914 {
2915 unsigned slice;
2916 unsigned count;
2917 struct cfq_rb_root *st;
2918 unsigned group_slice;
2919 enum wl_class_t original_class = cfqd->serving_wl_class;
2920
2921 /* Choose next priority. RT > BE > IDLE */
2922 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2923 cfqd->serving_wl_class = RT_WORKLOAD;
2924 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2925 cfqd->serving_wl_class = BE_WORKLOAD;
2926 else {
2927 cfqd->serving_wl_class = IDLE_WORKLOAD;
2928 cfqd->workload_expires = jiffies + 1;
2929 return;
2930 }
2931
2932 if (original_class != cfqd->serving_wl_class)
2933 goto new_workload;
2934
2935 /*
2936 * For RT and BE, we have to choose also the type
2937 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2938 * expiration time
2939 */
2940 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2941 count = st->count;
2942
2943 /*
2944 * check workload expiration, and that we still have other queues ready
2945 */
2946 if (count && !time_after(jiffies, cfqd->workload_expires))
2947 return;
2948
2949 new_workload:
2950 /* otherwise select new workload type */
2951 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
2952 cfqd->serving_wl_class);
2953 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2954 count = st->count;
2955
2956 /*
2957 * the workload slice is computed as a fraction of target latency
2958 * proportional to the number of queues in that workload, over
2959 * all the queues in the same priority class
2960 */
2961 group_slice = cfq_group_slice(cfqd, cfqg);
2962
2963 slice = group_slice * count /
2964 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
2965 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
2966 cfqg));
2967
2968 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
2969 unsigned int tmp;
2970
2971 /*
2972 * Async queues are currently system wide. Just taking
2973 * proportion of queues with-in same group will lead to higher
2974 * async ratio system wide as generally root group is going
2975 * to have higher weight. A more accurate thing would be to
2976 * calculate system wide asnc/sync ratio.
2977 */
2978 tmp = cfqd->cfq_target_latency *
2979 cfqg_busy_async_queues(cfqd, cfqg);
2980 tmp = tmp/cfqd->busy_queues;
2981 slice = min_t(unsigned, slice, tmp);
2982
2983 /* async workload slice is scaled down according to
2984 * the sync/async slice ratio. */
2985 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2986 } else
2987 /* sync workload slice is at least 2 * cfq_slice_idle */
2988 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2989
2990 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2991 cfq_log(cfqd, "workload slice:%d", slice);
2992 cfqd->workload_expires = jiffies + slice;
2993 }
2994
2995 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2996 {
2997 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2998 struct cfq_group *cfqg;
2999
3000 if (RB_EMPTY_ROOT(&st->rb))
3001 return NULL;
3002 cfqg = cfq_rb_first_group(st);
3003 update_min_vdisktime(st);
3004 return cfqg;
3005 }
3006
3007 static void cfq_choose_cfqg(struct cfq_data *cfqd)
3008 {
3009 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3010
3011 cfqd->serving_group = cfqg;
3012
3013 /* Restore the workload type data */
3014 if (cfqg->saved_wl_slice) {
3015 cfqd->workload_expires = jiffies + cfqg->saved_wl_slice;
3016 cfqd->serving_wl_type = cfqg->saved_wl_type;
3017 cfqd->serving_wl_class = cfqg->saved_wl_class;
3018 } else
3019 cfqd->workload_expires = jiffies - 1;
3020
3021 choose_wl_class_and_type(cfqd, cfqg);
3022 }
3023
3024 /*
3025 * Select a queue for service. If we have a current active queue,
3026 * check whether to continue servicing it, or retrieve and set a new one.
3027 */
3028 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3029 {
3030 struct cfq_queue *cfqq, *new_cfqq = NULL;
3031
3032 cfqq = cfqd->active_queue;
3033 if (!cfqq)
3034 goto new_queue;
3035
3036 if (!cfqd->rq_queued)
3037 return NULL;
3038
3039 /*
3040 * We were waiting for group to get backlogged. Expire the queue
3041 */
3042 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3043 goto expire;
3044
3045 /*
3046 * The active queue has run out of time, expire it and select new.
3047 */
3048 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3049 /*
3050 * If slice had not expired at the completion of last request
3051 * we might not have turned on wait_busy flag. Don't expire
3052 * the queue yet. Allow the group to get backlogged.
3053 *
3054 * The very fact that we have used the slice, that means we
3055 * have been idling all along on this queue and it should be
3056 * ok to wait for this request to complete.
3057 */
3058 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3059 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3060 cfqq = NULL;
3061 goto keep_queue;
3062 } else
3063 goto check_group_idle;
3064 }
3065
3066 /*
3067 * The active queue has requests and isn't expired, allow it to
3068 * dispatch.
3069 */
3070 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3071 goto keep_queue;
3072
3073 /*
3074 * If another queue has a request waiting within our mean seek
3075 * distance, let it run. The expire code will check for close
3076 * cooperators and put the close queue at the front of the service
3077 * tree. If possible, merge the expiring queue with the new cfqq.
3078 */
3079 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3080 if (new_cfqq) {
3081 if (!cfqq->new_cfqq)
3082 cfq_setup_merge(cfqq, new_cfqq);
3083 goto expire;
3084 }
3085
3086 /*
3087 * No requests pending. If the active queue still has requests in
3088 * flight or is idling for a new request, allow either of these
3089 * conditions to happen (or time out) before selecting a new queue.
3090 */
3091 if (timer_pending(&cfqd->idle_slice_timer)) {
3092 cfqq = NULL;
3093 goto keep_queue;
3094 }
3095
3096 /*
3097 * This is a deep seek queue, but the device is much faster than
3098 * the queue can deliver, don't idle
3099 **/
3100 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3101 (cfq_cfqq_slice_new(cfqq) ||
3102 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
3103 cfq_clear_cfqq_deep(cfqq);
3104 cfq_clear_cfqq_idle_window(cfqq);
3105 }
3106
3107 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3108 cfqq = NULL;
3109 goto keep_queue;
3110 }
3111
3112 /*
3113 * If group idle is enabled and there are requests dispatched from
3114 * this group, wait for requests to complete.
3115 */
3116 check_group_idle:
3117 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3118 cfqq->cfqg->dispatched &&
3119 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3120 cfqq = NULL;
3121 goto keep_queue;
3122 }
3123
3124 expire:
3125 cfq_slice_expired(cfqd, 0);
3126 new_queue:
3127 /*
3128 * Current queue expired. Check if we have to switch to a new
3129 * service tree
3130 */
3131 if (!new_cfqq)
3132 cfq_choose_cfqg(cfqd);
3133
3134 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3135 keep_queue:
3136 return cfqq;
3137 }
3138
3139 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3140 {
3141 int dispatched = 0;
3142
3143 while (cfqq->next_rq) {
3144 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3145 dispatched++;
3146 }
3147
3148 BUG_ON(!list_empty(&cfqq->fifo));
3149
3150 /* By default cfqq is not expired if it is empty. Do it explicitly */
3151 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3152 return dispatched;
3153 }
3154
3155 /*
3156 * Drain our current requests. Used for barriers and when switching
3157 * io schedulers on-the-fly.
3158 */
3159 static int cfq_forced_dispatch(struct cfq_data *cfqd)
3160 {
3161 struct cfq_queue *cfqq;
3162 int dispatched = 0;
3163
3164 /* Expire the timeslice of the current active queue first */
3165 cfq_slice_expired(cfqd, 0);
3166 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3167 __cfq_set_active_queue(cfqd, cfqq);
3168 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3169 }
3170
3171 BUG_ON(cfqd->busy_queues);
3172
3173 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3174 return dispatched;
3175 }
3176
3177 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3178 struct cfq_queue *cfqq)
3179 {
3180 /* the queue hasn't finished any request, can't estimate */
3181 if (cfq_cfqq_slice_new(cfqq))
3182 return true;
3183 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
3184 cfqq->slice_end))
3185 return true;
3186
3187 return false;
3188 }
3189
3190 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3191 {
3192 unsigned int max_dispatch;
3193
3194 /*
3195 * Drain async requests before we start sync IO
3196 */
3197 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3198 return false;
3199
3200 /*
3201 * If this is an async queue and we have sync IO in flight, let it wait
3202 */
3203 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3204 return false;
3205
3206 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3207 if (cfq_class_idle(cfqq))
3208 max_dispatch = 1;
3209
3210 /*
3211 * Does this cfqq already have too much IO in flight?
3212 */
3213 if (cfqq->dispatched >= max_dispatch) {
3214 bool promote_sync = false;
3215 /*
3216 * idle queue must always only have a single IO in flight
3217 */
3218 if (cfq_class_idle(cfqq))
3219 return false;
3220
3221 /*
3222 * If there is only one sync queue
3223 * we can ignore async queue here and give the sync
3224 * queue no dispatch limit. The reason is a sync queue can
3225 * preempt async queue, limiting the sync queue doesn't make
3226 * sense. This is useful for aiostress test.
3227 */
3228 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3229 promote_sync = true;
3230
3231 /*
3232 * We have other queues, don't allow more IO from this one
3233 */
3234 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3235 !promote_sync)
3236 return false;
3237
3238 /*
3239 * Sole queue user, no limit
3240 */
3241 if (cfqd->busy_queues == 1 || promote_sync)
3242 max_dispatch = -1;
3243 else
3244 /*
3245 * Normally we start throttling cfqq when cfq_quantum/2
3246 * requests have been dispatched. But we can drive
3247 * deeper queue depths at the beginning of slice
3248 * subjected to upper limit of cfq_quantum.
3249 * */
3250 max_dispatch = cfqd->cfq_quantum;
3251 }
3252
3253 /*
3254 * Async queues must wait a bit before being allowed dispatch.
3255 * We also ramp up the dispatch depth gradually for async IO,
3256 * based on the last sync IO we serviced
3257 */
3258 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3259 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
3260 unsigned int depth;
3261
3262 depth = last_sync / cfqd->cfq_slice[1];
3263 if (!depth && !cfqq->dispatched)
3264 depth = 1;
3265 if (depth < max_dispatch)
3266 max_dispatch = depth;
3267 }
3268
3269 /*
3270 * If we're below the current max, allow a dispatch
3271 */
3272 return cfqq->dispatched < max_dispatch;
3273 }
3274
3275 /*
3276 * Dispatch a request from cfqq, moving them to the request queue
3277 * dispatch list.
3278 */
3279 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3280 {
3281 struct request *rq;
3282
3283 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3284
3285 if (!cfq_may_dispatch(cfqd, cfqq))
3286 return false;
3287
3288 /*
3289 * follow expired path, else get first next available
3290 */
3291 rq = cfq_check_fifo(cfqq);
3292 if (!rq)
3293 rq = cfqq->next_rq;
3294
3295 /*
3296 * insert request into driver dispatch list
3297 */
3298 cfq_dispatch_insert(cfqd->queue, rq);
3299
3300 if (!cfqd->active_cic) {
3301 struct cfq_io_cq *cic = RQ_CIC(rq);
3302
3303 atomic_long_inc(&cic->icq.ioc->refcount);
3304 cfqd->active_cic = cic;
3305 }
3306
3307 return true;
3308 }
3309
3310 /*
3311 * Find the cfqq that we need to service and move a request from that to the
3312 * dispatch list
3313 */
3314 static int cfq_dispatch_requests(struct request_queue *q, int force)
3315 {
3316 struct cfq_data *cfqd = q->elevator->elevator_data;
3317 struct cfq_queue *cfqq;
3318
3319 if (!cfqd->busy_queues)
3320 return 0;
3321
3322 if (unlikely(force))
3323 return cfq_forced_dispatch(cfqd);
3324
3325 cfqq = cfq_select_queue(cfqd);
3326 if (!cfqq)
3327 return 0;
3328
3329 /*
3330 * Dispatch a request from this cfqq, if it is allowed
3331 */
3332 if (!cfq_dispatch_request(cfqd, cfqq))
3333 return 0;
3334
3335 cfqq->slice_dispatch++;
3336 cfq_clear_cfqq_must_dispatch(cfqq);
3337
3338 /*
3339 * expire an async queue immediately if it has used up its slice. idle
3340 * queue always expire after 1 dispatch round.
3341 */
3342 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3343 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3344 cfq_class_idle(cfqq))) {
3345 cfqq->slice_end = jiffies + 1;
3346 cfq_slice_expired(cfqd, 0);
3347 }
3348
3349 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3350 return 1;
3351 }
3352
3353 /*
3354 * task holds one reference to the queue, dropped when task exits. each rq
3355 * in-flight on this queue also holds a reference, dropped when rq is freed.
3356 *
3357 * Each cfq queue took a reference on the parent group. Drop it now.
3358 * queue lock must be held here.
3359 */
3360 static void cfq_put_queue(struct cfq_queue *cfqq)
3361 {
3362 struct cfq_data *cfqd = cfqq->cfqd;
3363 struct cfq_group *cfqg;
3364
3365 BUG_ON(cfqq->ref <= 0);
3366
3367 cfqq->ref--;
3368 if (cfqq->ref)
3369 return;
3370
3371 cfq_log_cfqq(cfqd, cfqq, "put_queue");
3372 BUG_ON(rb_first(&cfqq->sort_list));
3373 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3374 cfqg = cfqq->cfqg;
3375
3376 if (unlikely(cfqd->active_queue == cfqq)) {
3377 __cfq_slice_expired(cfqd, cfqq, 0);
3378 cfq_schedule_dispatch(cfqd);
3379 }
3380
3381 BUG_ON(cfq_cfqq_on_rr(cfqq));
3382 kmem_cache_free(cfq_pool, cfqq);
3383 cfqg_put(cfqg);
3384 }
3385
3386 static void cfq_put_cooperator(struct cfq_queue *cfqq)
3387 {
3388 struct cfq_queue *__cfqq, *next;
3389
3390 /*
3391 * If this queue was scheduled to merge with another queue, be
3392 * sure to drop the reference taken on that queue (and others in
3393 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3394 */
3395 __cfqq = cfqq->new_cfqq;
3396 while (__cfqq) {
3397 if (__cfqq == cfqq) {
3398 WARN(1, "cfqq->new_cfqq loop detected\n");
3399 break;
3400 }
3401 next = __cfqq->new_cfqq;
3402 cfq_put_queue(__cfqq);
3403 __cfqq = next;
3404 }
3405 }
3406
3407 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3408 {
3409 if (unlikely(cfqq == cfqd->active_queue)) {
3410 __cfq_slice_expired(cfqd, cfqq, 0);
3411 cfq_schedule_dispatch(cfqd);
3412 }
3413
3414 cfq_put_cooperator(cfqq);
3415
3416 cfq_put_queue(cfqq);
3417 }
3418
3419 static void cfq_init_icq(struct io_cq *icq)
3420 {
3421 struct cfq_io_cq *cic = icq_to_cic(icq);
3422
3423 cic->ttime.last_end_request = jiffies;
3424 }
3425
3426 static void cfq_exit_icq(struct io_cq *icq)
3427 {
3428 struct cfq_io_cq *cic = icq_to_cic(icq);
3429 struct cfq_data *cfqd = cic_to_cfqd(cic);
3430
3431 if (cic->cfqq[BLK_RW_ASYNC]) {
3432 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
3433 cic->cfqq[BLK_RW_ASYNC] = NULL;
3434 }
3435
3436 if (cic->cfqq[BLK_RW_SYNC]) {
3437 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
3438 cic->cfqq[BLK_RW_SYNC] = NULL;
3439 }
3440 }
3441
3442 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3443 {
3444 struct task_struct *tsk = current;
3445 int ioprio_class;
3446
3447 if (!cfq_cfqq_prio_changed(cfqq))
3448 return;
3449
3450 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3451 switch (ioprio_class) {
3452 default:
3453 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3454 case IOPRIO_CLASS_NONE:
3455 /*
3456 * no prio set, inherit CPU scheduling settings
3457 */
3458 cfqq->ioprio = task_nice_ioprio(tsk);
3459 cfqq->ioprio_class = task_nice_ioclass(tsk);
3460 break;
3461 case IOPRIO_CLASS_RT:
3462 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3463 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3464 break;
3465 case IOPRIO_CLASS_BE:
3466 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3467 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3468 break;
3469 case IOPRIO_CLASS_IDLE:
3470 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3471 cfqq->ioprio = 7;
3472 cfq_clear_cfqq_idle_window(cfqq);
3473 break;
3474 }
3475
3476 /*
3477 * keep track of original prio settings in case we have to temporarily
3478 * elevate the priority of this queue
3479 */
3480 cfqq->org_ioprio = cfqq->ioprio;
3481 cfq_clear_cfqq_prio_changed(cfqq);
3482 }
3483
3484 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3485 {
3486 int ioprio = cic->icq.ioc->ioprio;
3487 struct cfq_data *cfqd = cic_to_cfqd(cic);
3488 struct cfq_queue *cfqq;
3489
3490 /*
3491 * Check whether ioprio has changed. The condition may trigger
3492 * spuriously on a newly created cic but there's no harm.
3493 */
3494 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3495 return;
3496
3497 cfqq = cic->cfqq[BLK_RW_ASYNC];
3498 if (cfqq) {
3499 struct cfq_queue *new_cfqq;
3500 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
3501 GFP_ATOMIC);
3502 if (new_cfqq) {
3503 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
3504 cfq_put_queue(cfqq);
3505 }
3506 }
3507
3508 cfqq = cic->cfqq[BLK_RW_SYNC];
3509 if (cfqq)
3510 cfq_mark_cfqq_prio_changed(cfqq);
3511
3512 cic->ioprio = ioprio;
3513 }
3514
3515 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3516 pid_t pid, bool is_sync)
3517 {
3518 RB_CLEAR_NODE(&cfqq->rb_node);
3519 RB_CLEAR_NODE(&cfqq->p_node);
3520 INIT_LIST_HEAD(&cfqq->fifo);
3521
3522 cfqq->ref = 0;
3523 cfqq->cfqd = cfqd;
3524
3525 cfq_mark_cfqq_prio_changed(cfqq);
3526
3527 if (is_sync) {
3528 if (!cfq_class_idle(cfqq))
3529 cfq_mark_cfqq_idle_window(cfqq);
3530 cfq_mark_cfqq_sync(cfqq);
3531 }
3532 cfqq->pid = pid;
3533 }
3534
3535 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3536 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3537 {
3538 struct cfq_data *cfqd = cic_to_cfqd(cic);
3539 struct cfq_queue *sync_cfqq;
3540 uint64_t id;
3541
3542 rcu_read_lock();
3543 id = bio_blkcg(bio)->id;
3544 rcu_read_unlock();
3545
3546 /*
3547 * Check whether blkcg has changed. The condition may trigger
3548 * spuriously on a newly created cic but there's no harm.
3549 */
3550 if (unlikely(!cfqd) || likely(cic->blkcg_id == id))
3551 return;
3552
3553 sync_cfqq = cic_to_cfqq(cic, 1);
3554 if (sync_cfqq) {
3555 /*
3556 * Drop reference to sync queue. A new sync queue will be
3557 * assigned in new group upon arrival of a fresh request.
3558 */
3559 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
3560 cic_set_cfqq(cic, NULL, 1);
3561 cfq_put_queue(sync_cfqq);
3562 }
3563
3564 cic->blkcg_id = id;
3565 }
3566 #else
3567 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3568 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3569
3570 static struct cfq_queue *
3571 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3572 struct bio *bio, gfp_t gfp_mask)
3573 {
3574 struct blkcg *blkcg;
3575 struct cfq_queue *cfqq, *new_cfqq = NULL;
3576 struct cfq_group *cfqg;
3577
3578 retry:
3579 rcu_read_lock();
3580
3581 blkcg = bio_blkcg(bio);
3582 cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
3583 cfqq = cic_to_cfqq(cic, is_sync);
3584
3585 /*
3586 * Always try a new alloc if we fell back to the OOM cfqq
3587 * originally, since it should just be a temporary situation.
3588 */
3589 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3590 cfqq = NULL;
3591 if (new_cfqq) {
3592 cfqq = new_cfqq;
3593 new_cfqq = NULL;
3594 } else if (gfp_mask & __GFP_WAIT) {
3595 rcu_read_unlock();
3596 spin_unlock_irq(cfqd->queue->queue_lock);
3597 new_cfqq = kmem_cache_alloc_node(cfq_pool,
3598 gfp_mask | __GFP_ZERO,
3599 cfqd->queue->node);
3600 spin_lock_irq(cfqd->queue->queue_lock);
3601 if (new_cfqq)
3602 goto retry;
3603 else
3604 return &cfqd->oom_cfqq;
3605 } else {
3606 cfqq = kmem_cache_alloc_node(cfq_pool,
3607 gfp_mask | __GFP_ZERO,
3608 cfqd->queue->node);
3609 }
3610
3611 if (cfqq) {
3612 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3613 cfq_init_prio_data(cfqq, cic);
3614 cfq_link_cfqq_cfqg(cfqq, cfqg);
3615 cfq_log_cfqq(cfqd, cfqq, "alloced");
3616 } else
3617 cfqq = &cfqd->oom_cfqq;
3618 }
3619
3620 if (new_cfqq)
3621 kmem_cache_free(cfq_pool, new_cfqq);
3622
3623 rcu_read_unlock();
3624 return cfqq;
3625 }
3626
3627 static struct cfq_queue **
3628 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3629 {
3630 switch (ioprio_class) {
3631 case IOPRIO_CLASS_RT:
3632 return &cfqd->async_cfqq[0][ioprio];
3633 case IOPRIO_CLASS_NONE:
3634 ioprio = IOPRIO_NORM;
3635 /* fall through */
3636 case IOPRIO_CLASS_BE:
3637 return &cfqd->async_cfqq[1][ioprio];
3638 case IOPRIO_CLASS_IDLE:
3639 return &cfqd->async_idle_cfqq;
3640 default:
3641 BUG();
3642 }
3643 }
3644
3645 static struct cfq_queue *
3646 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3647 struct bio *bio, gfp_t gfp_mask)
3648 {
3649 const int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3650 const int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3651 struct cfq_queue **async_cfqq = NULL;
3652 struct cfq_queue *cfqq = NULL;
3653
3654 if (!is_sync) {
3655 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3656 cfqq = *async_cfqq;
3657 }
3658
3659 if (!cfqq)
3660 cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
3661
3662 /*
3663 * pin the queue now that it's allocated, scheduler exit will prune it
3664 */
3665 if (!is_sync && !(*async_cfqq)) {
3666 cfqq->ref++;
3667 *async_cfqq = cfqq;
3668 }
3669
3670 cfqq->ref++;
3671 return cfqq;
3672 }
3673
3674 static void
3675 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3676 {
3677 unsigned long elapsed = jiffies - ttime->last_end_request;
3678 elapsed = min(elapsed, 2UL * slice_idle);
3679
3680 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3681 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3682 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3683 }
3684
3685 static void
3686 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3687 struct cfq_io_cq *cic)
3688 {
3689 if (cfq_cfqq_sync(cfqq)) {
3690 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3691 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3692 cfqd->cfq_slice_idle);
3693 }
3694 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3695 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3696 #endif
3697 }
3698
3699 static void
3700 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3701 struct request *rq)
3702 {
3703 sector_t sdist = 0;
3704 sector_t n_sec = blk_rq_sectors(rq);
3705 if (cfqq->last_request_pos) {
3706 if (cfqq->last_request_pos < blk_rq_pos(rq))
3707 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3708 else
3709 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3710 }
3711
3712 cfqq->seek_history <<= 1;
3713 if (blk_queue_nonrot(cfqd->queue))
3714 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3715 else
3716 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3717 }
3718
3719 /*
3720 * Disable idle window if the process thinks too long or seeks so much that
3721 * it doesn't matter
3722 */
3723 static void
3724 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3725 struct cfq_io_cq *cic)
3726 {
3727 int old_idle, enable_idle;
3728
3729 /*
3730 * Don't idle for async or idle io prio class
3731 */
3732 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3733 return;
3734
3735 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3736
3737 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3738 cfq_mark_cfqq_deep(cfqq);
3739
3740 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3741 enable_idle = 0;
3742 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3743 !cfqd->cfq_slice_idle ||
3744 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3745 enable_idle = 0;
3746 else if (sample_valid(cic->ttime.ttime_samples)) {
3747 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3748 enable_idle = 0;
3749 else
3750 enable_idle = 1;
3751 }
3752
3753 if (old_idle != enable_idle) {
3754 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3755 if (enable_idle)
3756 cfq_mark_cfqq_idle_window(cfqq);
3757 else
3758 cfq_clear_cfqq_idle_window(cfqq);
3759 }
3760 }
3761
3762 /*
3763 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3764 * no or if we aren't sure, a 1 will cause a preempt.
3765 */
3766 static bool
3767 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3768 struct request *rq)
3769 {
3770 struct cfq_queue *cfqq;
3771
3772 cfqq = cfqd->active_queue;
3773 if (!cfqq)
3774 return false;
3775
3776 if (cfq_class_idle(new_cfqq))
3777 return false;
3778
3779 if (cfq_class_idle(cfqq))
3780 return true;
3781
3782 /*
3783 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3784 */
3785 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3786 return false;
3787
3788 /*
3789 * if the new request is sync, but the currently running queue is
3790 * not, let the sync request have priority.
3791 */
3792 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3793 return true;
3794
3795 if (new_cfqq->cfqg != cfqq->cfqg)
3796 return false;
3797
3798 if (cfq_slice_used(cfqq))
3799 return true;
3800
3801 /* Allow preemption only if we are idling on sync-noidle tree */
3802 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
3803 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3804 new_cfqq->service_tree->count == 2 &&
3805 RB_EMPTY_ROOT(&cfqq->sort_list))
3806 return true;
3807
3808 /*
3809 * So both queues are sync. Let the new request get disk time if
3810 * it's a metadata request and the current queue is doing regular IO.
3811 */
3812 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3813 return true;
3814
3815 /*
3816 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3817 */
3818 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3819 return true;
3820
3821 /* An idle queue should not be idle now for some reason */
3822 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3823 return true;
3824
3825 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3826 return false;
3827
3828 /*
3829 * if this request is as-good as one we would expect from the
3830 * current cfqq, let it preempt
3831 */
3832 if (cfq_rq_close(cfqd, cfqq, rq))
3833 return true;
3834
3835 return false;
3836 }
3837
3838 /*
3839 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3840 * let it have half of its nominal slice.
3841 */
3842 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3843 {
3844 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3845
3846 cfq_log_cfqq(cfqd, cfqq, "preempt");
3847 cfq_slice_expired(cfqd, 1);
3848
3849 /*
3850 * workload type is changed, don't save slice, otherwise preempt
3851 * doesn't happen
3852 */
3853 if (old_type != cfqq_type(cfqq))
3854 cfqq->cfqg->saved_wl_slice = 0;
3855
3856 /*
3857 * Put the new queue at the front of the of the current list,
3858 * so we know that it will be selected next.
3859 */
3860 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3861
3862 cfq_service_tree_add(cfqd, cfqq, 1);
3863
3864 cfqq->slice_end = 0;
3865 cfq_mark_cfqq_slice_new(cfqq);
3866 }
3867
3868 /*
3869 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3870 * something we should do about it
3871 */
3872 static void
3873 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3874 struct request *rq)
3875 {
3876 struct cfq_io_cq *cic = RQ_CIC(rq);
3877
3878 cfqd->rq_queued++;
3879 if (rq->cmd_flags & REQ_PRIO)
3880 cfqq->prio_pending++;
3881
3882 cfq_update_io_thinktime(cfqd, cfqq, cic);
3883 cfq_update_io_seektime(cfqd, cfqq, rq);
3884 cfq_update_idle_window(cfqd, cfqq, cic);
3885
3886 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3887
3888 if (cfqq == cfqd->active_queue) {
3889 /*
3890 * Remember that we saw a request from this process, but
3891 * don't start queuing just yet. Otherwise we risk seeing lots
3892 * of tiny requests, because we disrupt the normal plugging
3893 * and merging. If the request is already larger than a single
3894 * page, let it rip immediately. For that case we assume that
3895 * merging is already done. Ditto for a busy system that
3896 * has other work pending, don't risk delaying until the
3897 * idle timer unplug to continue working.
3898 */
3899 if (cfq_cfqq_wait_request(cfqq)) {
3900 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3901 cfqd->busy_queues > 1) {
3902 cfq_del_timer(cfqd, cfqq);
3903 cfq_clear_cfqq_wait_request(cfqq);
3904 __blk_run_queue(cfqd->queue);
3905 } else {
3906 cfqg_stats_update_idle_time(cfqq->cfqg);
3907 cfq_mark_cfqq_must_dispatch(cfqq);
3908 }
3909 }
3910 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3911 /*
3912 * not the active queue - expire current slice if it is
3913 * idle and has expired it's mean thinktime or this new queue
3914 * has some old slice time left and is of higher priority or
3915 * this new queue is RT and the current one is BE
3916 */
3917 cfq_preempt_queue(cfqd, cfqq);
3918 __blk_run_queue(cfqd->queue);
3919 }
3920 }
3921
3922 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3923 {
3924 struct cfq_data *cfqd = q->elevator->elevator_data;
3925 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3926
3927 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3928 cfq_init_prio_data(cfqq, RQ_CIC(rq));
3929
3930 rq->fifo_time = jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
3931 list_add_tail(&rq->queuelist, &cfqq->fifo);
3932 cfq_add_rq_rb(rq);
3933 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
3934 rq->cmd_flags);
3935 cfq_rq_enqueued(cfqd, cfqq, rq);
3936 }
3937
3938 /*
3939 * Update hw_tag based on peak queue depth over 50 samples under
3940 * sufficient load.
3941 */
3942 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3943 {
3944 struct cfq_queue *cfqq = cfqd->active_queue;
3945
3946 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3947 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3948
3949 if (cfqd->hw_tag == 1)
3950 return;
3951
3952 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3953 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3954 return;
3955
3956 /*
3957 * If active queue hasn't enough requests and can idle, cfq might not
3958 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3959 * case
3960 */
3961 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3962 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3963 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3964 return;
3965
3966 if (cfqd->hw_tag_samples++ < 50)
3967 return;
3968
3969 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3970 cfqd->hw_tag = 1;
3971 else
3972 cfqd->hw_tag = 0;
3973 }
3974
3975 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3976 {
3977 struct cfq_io_cq *cic = cfqd->active_cic;
3978
3979 /* If the queue already has requests, don't wait */
3980 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3981 return false;
3982
3983 /* If there are other queues in the group, don't wait */
3984 if (cfqq->cfqg->nr_cfqq > 1)
3985 return false;
3986
3987 /* the only queue in the group, but think time is big */
3988 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3989 return false;
3990
3991 if (cfq_slice_used(cfqq))
3992 return true;
3993
3994 /* if slice left is less than think time, wait busy */
3995 if (cic && sample_valid(cic->ttime.ttime_samples)
3996 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3997 return true;
3998
3999 /*
4000 * If think times is less than a jiffy than ttime_mean=0 and above
4001 * will not be true. It might happen that slice has not expired yet
4002 * but will expire soon (4-5 ns) during select_queue(). To cover the
4003 * case where think time is less than a jiffy, mark the queue wait
4004 * busy if only 1 jiffy is left in the slice.
4005 */
4006 if (cfqq->slice_end - jiffies == 1)
4007 return true;
4008
4009 return false;
4010 }
4011
4012 static void cfq_completed_request(struct request_queue *q, struct request *rq)
4013 {
4014 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4015 struct cfq_data *cfqd = cfqq->cfqd;
4016 const int sync = rq_is_sync(rq);
4017 unsigned long now;
4018
4019 now = jiffies;
4020 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
4021 !!(rq->cmd_flags & REQ_NOIDLE));
4022
4023 cfq_update_hw_tag(cfqd);
4024
4025 WARN_ON(!cfqd->rq_in_driver);
4026 WARN_ON(!cfqq->dispatched);
4027 cfqd->rq_in_driver--;
4028 cfqq->dispatched--;
4029 (RQ_CFQG(rq))->dispatched--;
4030 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4031 rq_io_start_time_ns(rq), rq->cmd_flags);
4032
4033 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4034
4035 if (sync) {
4036 struct cfq_rb_root *st;
4037
4038 RQ_CIC(rq)->ttime.last_end_request = now;
4039
4040 if (cfq_cfqq_on_rr(cfqq))
4041 st = cfqq->service_tree;
4042 else
4043 st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4044 cfqq_type(cfqq));
4045
4046 st->ttime.last_end_request = now;
4047 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
4048 cfqd->last_delayed_sync = now;
4049 }
4050
4051 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4052 cfqq->cfqg->ttime.last_end_request = now;
4053 #endif
4054
4055 /*
4056 * If this is the active queue, check if it needs to be expired,
4057 * or if we want to idle in case it has no pending requests.
4058 */
4059 if (cfqd->active_queue == cfqq) {
4060 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4061
4062 if (cfq_cfqq_slice_new(cfqq)) {
4063 cfq_set_prio_slice(cfqd, cfqq);
4064 cfq_clear_cfqq_slice_new(cfqq);
4065 }
4066
4067 /*
4068 * Should we wait for next request to come in before we expire
4069 * the queue.
4070 */
4071 if (cfq_should_wait_busy(cfqd, cfqq)) {
4072 unsigned long extend_sl = cfqd->cfq_slice_idle;
4073 if (!cfqd->cfq_slice_idle)
4074 extend_sl = cfqd->cfq_group_idle;
4075 cfqq->slice_end = jiffies + extend_sl;
4076 cfq_mark_cfqq_wait_busy(cfqq);
4077 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4078 }
4079
4080 /*
4081 * Idling is not enabled on:
4082 * - expired queues
4083 * - idle-priority queues
4084 * - async queues
4085 * - queues with still some requests queued
4086 * - when there is a close cooperator
4087 */
4088 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4089 cfq_slice_expired(cfqd, 1);
4090 else if (sync && cfqq_empty &&
4091 !cfq_close_cooperator(cfqd, cfqq)) {
4092 cfq_arm_slice_timer(cfqd);
4093 }
4094 }
4095
4096 if (!cfqd->rq_in_driver)
4097 cfq_schedule_dispatch(cfqd);
4098 }
4099
4100 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4101 {
4102 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4103 cfq_mark_cfqq_must_alloc_slice(cfqq);
4104 return ELV_MQUEUE_MUST;
4105 }
4106
4107 return ELV_MQUEUE_MAY;
4108 }
4109
4110 static int cfq_may_queue(struct request_queue *q, int rw)
4111 {
4112 struct cfq_data *cfqd = q->elevator->elevator_data;
4113 struct task_struct *tsk = current;
4114 struct cfq_io_cq *cic;
4115 struct cfq_queue *cfqq;
4116
4117 /*
4118 * don't force setup of a queue from here, as a call to may_queue
4119 * does not necessarily imply that a request actually will be queued.
4120 * so just lookup a possibly existing queue, or return 'may queue'
4121 * if that fails
4122 */
4123 cic = cfq_cic_lookup(cfqd, tsk->io_context);
4124 if (!cic)
4125 return ELV_MQUEUE_MAY;
4126
4127 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
4128 if (cfqq) {
4129 cfq_init_prio_data(cfqq, cic);
4130
4131 return __cfq_may_queue(cfqq);
4132 }
4133
4134 return ELV_MQUEUE_MAY;
4135 }
4136
4137 /*
4138 * queue lock held here
4139 */
4140 static void cfq_put_request(struct request *rq)
4141 {
4142 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4143
4144 if (cfqq) {
4145 const int rw = rq_data_dir(rq);
4146
4147 BUG_ON(!cfqq->allocated[rw]);
4148 cfqq->allocated[rw]--;
4149
4150 /* Put down rq reference on cfqg */
4151 cfqg_put(RQ_CFQG(rq));
4152 rq->elv.priv[0] = NULL;
4153 rq->elv.priv[1] = NULL;
4154
4155 cfq_put_queue(cfqq);
4156 }
4157 }
4158
4159 static struct cfq_queue *
4160 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4161 struct cfq_queue *cfqq)
4162 {
4163 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4164 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4165 cfq_mark_cfqq_coop(cfqq->new_cfqq);
4166 cfq_put_queue(cfqq);
4167 return cic_to_cfqq(cic, 1);
4168 }
4169
4170 /*
4171 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4172 * was the last process referring to said cfqq.
4173 */
4174 static struct cfq_queue *
4175 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4176 {
4177 if (cfqq_process_refs(cfqq) == 1) {
4178 cfqq->pid = current->pid;
4179 cfq_clear_cfqq_coop(cfqq);
4180 cfq_clear_cfqq_split_coop(cfqq);
4181 return cfqq;
4182 }
4183
4184 cic_set_cfqq(cic, NULL, 1);
4185
4186 cfq_put_cooperator(cfqq);
4187
4188 cfq_put_queue(cfqq);
4189 return NULL;
4190 }
4191 /*
4192 * Allocate cfq data structures associated with this request.
4193 */
4194 static int
4195 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4196 gfp_t gfp_mask)
4197 {
4198 struct cfq_data *cfqd = q->elevator->elevator_data;
4199 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4200 const int rw = rq_data_dir(rq);
4201 const bool is_sync = rq_is_sync(rq);
4202 struct cfq_queue *cfqq;
4203
4204 might_sleep_if(gfp_mask & __GFP_WAIT);
4205
4206 spin_lock_irq(q->queue_lock);
4207
4208 check_ioprio_changed(cic, bio);
4209 check_blkcg_changed(cic, bio);
4210 new_queue:
4211 cfqq = cic_to_cfqq(cic, is_sync);
4212 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4213 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
4214 cic_set_cfqq(cic, cfqq, is_sync);
4215 } else {
4216 /*
4217 * If the queue was seeky for too long, break it apart.
4218 */
4219 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4220 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4221 cfqq = split_cfqq(cic, cfqq);
4222 if (!cfqq)
4223 goto new_queue;
4224 }
4225
4226 /*
4227 * Check to see if this queue is scheduled to merge with
4228 * another, closely cooperating queue. The merging of
4229 * queues happens here as it must be done in process context.
4230 * The reference on new_cfqq was taken in merge_cfqqs.
4231 */
4232 if (cfqq->new_cfqq)
4233 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4234 }
4235
4236 cfqq->allocated[rw]++;
4237
4238 cfqq->ref++;
4239 cfqg_get(cfqq->cfqg);
4240 rq->elv.priv[0] = cfqq;
4241 rq->elv.priv[1] = cfqq->cfqg;
4242 spin_unlock_irq(q->queue_lock);
4243 return 0;
4244 }
4245
4246 static void cfq_kick_queue(struct work_struct *work)
4247 {
4248 struct cfq_data *cfqd =
4249 container_of(work, struct cfq_data, unplug_work);
4250 struct request_queue *q = cfqd->queue;
4251
4252 spin_lock_irq(q->queue_lock);
4253 __blk_run_queue(cfqd->queue);
4254 spin_unlock_irq(q->queue_lock);
4255 }
4256
4257 /*
4258 * Timer running if the active_queue is currently idling inside its time slice
4259 */
4260 static void cfq_idle_slice_timer(unsigned long data)
4261 {
4262 struct cfq_data *cfqd = (struct cfq_data *) data;
4263 struct cfq_queue *cfqq;
4264 unsigned long flags;
4265 int timed_out = 1;
4266
4267 cfq_log(cfqd, "idle timer fired");
4268
4269 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4270
4271 cfqq = cfqd->active_queue;
4272 if (cfqq) {
4273 timed_out = 0;
4274
4275 /*
4276 * We saw a request before the queue expired, let it through
4277 */
4278 if (cfq_cfqq_must_dispatch(cfqq))
4279 goto out_kick;
4280
4281 /*
4282 * expired
4283 */
4284 if (cfq_slice_used(cfqq))
4285 goto expire;
4286
4287 /*
4288 * only expire and reinvoke request handler, if there are
4289 * other queues with pending requests
4290 */
4291 if (!cfqd->busy_queues)
4292 goto out_cont;
4293
4294 /*
4295 * not expired and it has a request pending, let it dispatch
4296 */
4297 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4298 goto out_kick;
4299
4300 /*
4301 * Queue depth flag is reset only when the idle didn't succeed
4302 */
4303 cfq_clear_cfqq_deep(cfqq);
4304 }
4305 expire:
4306 cfq_slice_expired(cfqd, timed_out);
4307 out_kick:
4308 cfq_schedule_dispatch(cfqd);
4309 out_cont:
4310 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4311 }
4312
4313 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4314 {
4315 del_timer_sync(&cfqd->idle_slice_timer);
4316 cancel_work_sync(&cfqd->unplug_work);
4317 }
4318
4319 static void cfq_put_async_queues(struct cfq_data *cfqd)
4320 {
4321 int i;
4322
4323 for (i = 0; i < IOPRIO_BE_NR; i++) {
4324 if (cfqd->async_cfqq[0][i])
4325 cfq_put_queue(cfqd->async_cfqq[0][i]);
4326 if (cfqd->async_cfqq[1][i])
4327 cfq_put_queue(cfqd->async_cfqq[1][i]);
4328 }
4329
4330 if (cfqd->async_idle_cfqq)
4331 cfq_put_queue(cfqd->async_idle_cfqq);
4332 }
4333
4334 static void cfq_exit_queue(struct elevator_queue *e)
4335 {
4336 struct cfq_data *cfqd = e->elevator_data;
4337 struct request_queue *q = cfqd->queue;
4338
4339 cfq_shutdown_timer_wq(cfqd);
4340
4341 spin_lock_irq(q->queue_lock);
4342
4343 if (cfqd->active_queue)
4344 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4345
4346 cfq_put_async_queues(cfqd);
4347
4348 spin_unlock_irq(q->queue_lock);
4349
4350 cfq_shutdown_timer_wq(cfqd);
4351
4352 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4353 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4354 #else
4355 kfree(cfqd->root_group);
4356 #endif
4357 kfree(cfqd);
4358 }
4359
4360 static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4361 {
4362 struct cfq_data *cfqd;
4363 struct blkcg_gq *blkg __maybe_unused;
4364 int i, ret;
4365 struct elevator_queue *eq;
4366
4367 eq = elevator_alloc(q, e);
4368 if (!eq)
4369 return -ENOMEM;
4370
4371 cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4372 if (!cfqd) {
4373 kobject_put(&eq->kobj);
4374 return -ENOMEM;
4375 }
4376 eq->elevator_data = cfqd;
4377
4378 cfqd->queue = q;
4379 spin_lock_irq(q->queue_lock);
4380 q->elevator = eq;
4381 spin_unlock_irq(q->queue_lock);
4382
4383 /* Init root service tree */
4384 cfqd->grp_service_tree = CFQ_RB_ROOT;
4385
4386 /* Init root group and prefer root group over other groups by default */
4387 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4388 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4389 if (ret)
4390 goto out_free;
4391
4392 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4393 #else
4394 ret = -ENOMEM;
4395 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4396 GFP_KERNEL, cfqd->queue->node);
4397 if (!cfqd->root_group)
4398 goto out_free;
4399
4400 cfq_init_cfqg_base(cfqd->root_group);
4401 #endif
4402 cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
4403 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
4404
4405 /*
4406 * Not strictly needed (since RB_ROOT just clears the node and we
4407 * zeroed cfqd on alloc), but better be safe in case someone decides
4408 * to add magic to the rb code
4409 */
4410 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4411 cfqd->prio_trees[i] = RB_ROOT;
4412
4413 /*
4414 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4415 * Grab a permanent reference to it, so that the normal code flow
4416 * will not attempt to free it. oom_cfqq is linked to root_group
4417 * but shouldn't hold a reference as it'll never be unlinked. Lose
4418 * the reference from linking right away.
4419 */
4420 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4421 cfqd->oom_cfqq.ref++;
4422
4423 spin_lock_irq(q->queue_lock);
4424 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4425 cfqg_put(cfqd->root_group);
4426 spin_unlock_irq(q->queue_lock);
4427
4428 init_timer(&cfqd->idle_slice_timer);
4429 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4430 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4431
4432 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4433
4434 cfqd->cfq_quantum = cfq_quantum;
4435 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4436 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4437 cfqd->cfq_back_max = cfq_back_max;
4438 cfqd->cfq_back_penalty = cfq_back_penalty;
4439 cfqd->cfq_slice[0] = cfq_slice_async;
4440 cfqd->cfq_slice[1] = cfq_slice_sync;
4441 cfqd->cfq_target_latency = cfq_target_latency;
4442 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4443 cfqd->cfq_slice_idle = cfq_slice_idle;
4444 cfqd->cfq_group_idle = cfq_group_idle;
4445 cfqd->cfq_latency = 1;
4446 cfqd->hw_tag = -1;
4447 /*
4448 * we optimistically start assuming sync ops weren't delayed in last
4449 * second, in order to have larger depth for async operations.
4450 */
4451 cfqd->last_delayed_sync = jiffies - HZ;
4452 return 0;
4453
4454 out_free:
4455 kfree(cfqd);
4456 kobject_put(&eq->kobj);
4457 return ret;
4458 }
4459
4460 /*
4461 * sysfs parts below -->
4462 */
4463 static ssize_t
4464 cfq_var_show(unsigned int var, char *page)
4465 {
4466 return sprintf(page, "%d\n", var);
4467 }
4468
4469 static ssize_t
4470 cfq_var_store(unsigned int *var, const char *page, size_t count)
4471 {
4472 char *p = (char *) page;
4473
4474 *var = simple_strtoul(p, &p, 10);
4475 return count;
4476 }
4477
4478 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4479 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4480 { \
4481 struct cfq_data *cfqd = e->elevator_data; \
4482 unsigned int __data = __VAR; \
4483 if (__CONV) \
4484 __data = jiffies_to_msecs(__data); \
4485 return cfq_var_show(__data, (page)); \
4486 }
4487 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4488 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4489 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4490 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4491 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4492 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4493 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4494 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4495 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4496 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4497 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4498 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4499 #undef SHOW_FUNCTION
4500
4501 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4502 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4503 { \
4504 struct cfq_data *cfqd = e->elevator_data; \
4505 unsigned int __data; \
4506 int ret = cfq_var_store(&__data, (page), count); \
4507 if (__data < (MIN)) \
4508 __data = (MIN); \
4509 else if (__data > (MAX)) \
4510 __data = (MAX); \
4511 if (__CONV) \
4512 *(__PTR) = msecs_to_jiffies(__data); \
4513 else \
4514 *(__PTR) = __data; \
4515 return ret; \
4516 }
4517 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4518 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4519 UINT_MAX, 1);
4520 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4521 UINT_MAX, 1);
4522 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4523 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4524 UINT_MAX, 0);
4525 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4526 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4527 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4528 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4529 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4530 UINT_MAX, 0);
4531 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4532 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4533 #undef STORE_FUNCTION
4534
4535 #define CFQ_ATTR(name) \
4536 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4537
4538 static struct elv_fs_entry cfq_attrs[] = {
4539 CFQ_ATTR(quantum),
4540 CFQ_ATTR(fifo_expire_sync),
4541 CFQ_ATTR(fifo_expire_async),
4542 CFQ_ATTR(back_seek_max),
4543 CFQ_ATTR(back_seek_penalty),
4544 CFQ_ATTR(slice_sync),
4545 CFQ_ATTR(slice_async),
4546 CFQ_ATTR(slice_async_rq),
4547 CFQ_ATTR(slice_idle),
4548 CFQ_ATTR(group_idle),
4549 CFQ_ATTR(low_latency),
4550 CFQ_ATTR(target_latency),
4551 __ATTR_NULL
4552 };
4553
4554 static struct elevator_type iosched_cfq = {
4555 .ops = {
4556 .elevator_merge_fn = cfq_merge,
4557 .elevator_merged_fn = cfq_merged_request,
4558 .elevator_merge_req_fn = cfq_merged_requests,
4559 .elevator_allow_merge_fn = cfq_allow_merge,
4560 .elevator_bio_merged_fn = cfq_bio_merged,
4561 .elevator_dispatch_fn = cfq_dispatch_requests,
4562 .elevator_add_req_fn = cfq_insert_request,
4563 .elevator_activate_req_fn = cfq_activate_request,
4564 .elevator_deactivate_req_fn = cfq_deactivate_request,
4565 .elevator_completed_req_fn = cfq_completed_request,
4566 .elevator_former_req_fn = elv_rb_former_request,
4567 .elevator_latter_req_fn = elv_rb_latter_request,
4568 .elevator_init_icq_fn = cfq_init_icq,
4569 .elevator_exit_icq_fn = cfq_exit_icq,
4570 .elevator_set_req_fn = cfq_set_request,
4571 .elevator_put_req_fn = cfq_put_request,
4572 .elevator_may_queue_fn = cfq_may_queue,
4573 .elevator_init_fn = cfq_init_queue,
4574 .elevator_exit_fn = cfq_exit_queue,
4575 },
4576 .icq_size = sizeof(struct cfq_io_cq),
4577 .icq_align = __alignof__(struct cfq_io_cq),
4578 .elevator_attrs = cfq_attrs,
4579 .elevator_name = "cfq",
4580 .elevator_owner = THIS_MODULE,
4581 };
4582
4583 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4584 static struct blkcg_policy blkcg_policy_cfq = {
4585 .pd_size = sizeof(struct cfq_group),
4586 .cftypes = cfq_blkcg_files,
4587
4588 .pd_init_fn = cfq_pd_init,
4589 .pd_offline_fn = cfq_pd_offline,
4590 .pd_reset_stats_fn = cfq_pd_reset_stats,
4591 };
4592 #endif
4593
4594 static int __init cfq_init(void)
4595 {
4596 int ret;
4597
4598 /*
4599 * could be 0 on HZ < 1000 setups
4600 */
4601 if (!cfq_slice_async)
4602 cfq_slice_async = 1;
4603 if (!cfq_slice_idle)
4604 cfq_slice_idle = 1;
4605
4606 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4607 if (!cfq_group_idle)
4608 cfq_group_idle = 1;
4609
4610 ret = blkcg_policy_register(&blkcg_policy_cfq);
4611 if (ret)
4612 return ret;
4613 #else
4614 cfq_group_idle = 0;
4615 #endif
4616
4617 ret = -ENOMEM;
4618 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4619 if (!cfq_pool)
4620 goto err_pol_unreg;
4621
4622 ret = elv_register(&iosched_cfq);
4623 if (ret)
4624 goto err_free_pool;
4625
4626 return 0;
4627
4628 err_free_pool:
4629 kmem_cache_destroy(cfq_pool);
4630 err_pol_unreg:
4631 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4632 blkcg_policy_unregister(&blkcg_policy_cfq);
4633 #endif
4634 return ret;
4635 }
4636
4637 static void __exit cfq_exit(void)
4638 {
4639 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4640 blkcg_policy_unregister(&blkcg_policy_cfq);
4641 #endif
4642 elv_unregister(&iosched_cfq);
4643 kmem_cache_destroy(cfq_pool);
4644 }
4645
4646 module_init(cfq_init);
4647 module_exit(cfq_exit);
4648
4649 MODULE_AUTHOR("Jens Axboe");
4650 MODULE_LICENSE("GPL");
4651 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");