]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/cfq-iosched.c
cfq-iosched: idling on deep seeky sync queues
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16
17 /*
18 * tunables
19 */
20 /* max queue in one round of service */
21 static const int cfq_quantum = 4;
22 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23 /* maximum backwards seek, in KiB */
24 static const int cfq_back_max = 16 * 1024;
25 /* penalty of a backwards seek */
26 static const int cfq_back_penalty = 2;
27 static const int cfq_slice_sync = HZ / 10;
28 static int cfq_slice_async = HZ / 25;
29 static const int cfq_slice_async_rq = 2;
30 static int cfq_slice_idle = HZ / 125;
31 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
32 static const int cfq_hist_divisor = 4;
33
34 /*
35 * offset from end of service tree
36 */
37 #define CFQ_IDLE_DELAY (HZ / 5)
38
39 /*
40 * below this threshold, we consider thinktime immediate
41 */
42 #define CFQ_MIN_TT (2)
43
44 /*
45 * Allow merged cfqqs to perform this amount of seeky I/O before
46 * deciding to break the queues up again.
47 */
48 #define CFQQ_COOP_TOUT (HZ)
49
50 #define CFQ_SLICE_SCALE (5)
51 #define CFQ_HW_QUEUE_MIN (5)
52
53 #define RQ_CIC(rq) \
54 ((struct cfq_io_context *) (rq)->elevator_private)
55 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
56
57 static struct kmem_cache *cfq_pool;
58 static struct kmem_cache *cfq_ioc_pool;
59
60 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
61 static struct completion *ioc_gone;
62 static DEFINE_SPINLOCK(ioc_gone_lock);
63
64 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
65 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
66 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67
68 #define sample_valid(samples) ((samples) > 80)
69
70 /*
71 * Most of our rbtree usage is for sorting with min extraction, so
72 * if we cache the leftmost node we don't have to walk down the tree
73 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
74 * move this into the elevator for the rq sorting as well.
75 */
76 struct cfq_rb_root {
77 struct rb_root rb;
78 struct rb_node *left;
79 unsigned count;
80 };
81 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, }
82
83 /*
84 * Per process-grouping structure
85 */
86 struct cfq_queue {
87 /* reference count */
88 atomic_t ref;
89 /* various state flags, see below */
90 unsigned int flags;
91 /* parent cfq_data */
92 struct cfq_data *cfqd;
93 /* service_tree member */
94 struct rb_node rb_node;
95 /* service_tree key */
96 unsigned long rb_key;
97 /* prio tree member */
98 struct rb_node p_node;
99 /* prio tree root we belong to, if any */
100 struct rb_root *p_root;
101 /* sorted list of pending requests */
102 struct rb_root sort_list;
103 /* if fifo isn't expired, next request to serve */
104 struct request *next_rq;
105 /* requests queued in sort_list */
106 int queued[2];
107 /* currently allocated requests */
108 int allocated[2];
109 /* fifo list of requests in sort_list */
110 struct list_head fifo;
111
112 unsigned long slice_end;
113 long slice_resid;
114 unsigned int slice_dispatch;
115
116 /* pending metadata requests */
117 int meta_pending;
118 /* number of requests that are on the dispatch list or inside driver */
119 int dispatched;
120
121 /* io prio of this group */
122 unsigned short ioprio, org_ioprio;
123 unsigned short ioprio_class, org_ioprio_class;
124
125 unsigned int seek_samples;
126 u64 seek_total;
127 sector_t seek_mean;
128 sector_t last_request_pos;
129 unsigned long seeky_start;
130
131 pid_t pid;
132
133 struct cfq_rb_root *service_tree;
134 struct cfq_queue *new_cfqq;
135 };
136
137 /*
138 * First index in the service_trees.
139 * IDLE is handled separately, so it has negative index
140 */
141 enum wl_prio_t {
142 IDLE_WORKLOAD = -1,
143 BE_WORKLOAD = 0,
144 RT_WORKLOAD = 1
145 };
146
147 /*
148 * Second index in the service_trees.
149 */
150 enum wl_type_t {
151 ASYNC_WORKLOAD = 0,
152 SYNC_NOIDLE_WORKLOAD = 1,
153 SYNC_WORKLOAD = 2
154 };
155
156
157 /*
158 * Per block device queue structure
159 */
160 struct cfq_data {
161 struct request_queue *queue;
162
163 /*
164 * rr lists of queues with requests, onle rr for each priority class.
165 * Counts are embedded in the cfq_rb_root
166 */
167 struct cfq_rb_root service_trees[2][3];
168 struct cfq_rb_root service_tree_idle;
169 /*
170 * The priority currently being served
171 */
172 enum wl_prio_t serving_prio;
173 enum wl_type_t serving_type;
174 unsigned long workload_expires;
175
176 /*
177 * Each priority tree is sorted by next_request position. These
178 * trees are used when determining if two or more queues are
179 * interleaving requests (see cfq_close_cooperator).
180 */
181 struct rb_root prio_trees[CFQ_PRIO_LISTS];
182
183 unsigned int busy_queues;
184 unsigned int busy_queues_avg[2];
185
186 int rq_in_driver[2];
187 int sync_flight;
188
189 /*
190 * queue-depth detection
191 */
192 int rq_queued;
193 int hw_tag;
194 /*
195 * hw_tag can be
196 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
197 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
198 * 0 => no NCQ
199 */
200 int hw_tag_est_depth;
201 unsigned int hw_tag_samples;
202
203 /*
204 * idle window management
205 */
206 struct timer_list idle_slice_timer;
207 struct work_struct unplug_work;
208
209 struct cfq_queue *active_queue;
210 struct cfq_io_context *active_cic;
211
212 /*
213 * async queue for each priority case
214 */
215 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
216 struct cfq_queue *async_idle_cfqq;
217
218 sector_t last_position;
219
220 /*
221 * tunables, see top of file
222 */
223 unsigned int cfq_quantum;
224 unsigned int cfq_fifo_expire[2];
225 unsigned int cfq_back_penalty;
226 unsigned int cfq_back_max;
227 unsigned int cfq_slice[2];
228 unsigned int cfq_slice_async_rq;
229 unsigned int cfq_slice_idle;
230 unsigned int cfq_latency;
231
232 struct list_head cic_list;
233
234 /*
235 * Fallback dummy cfqq for extreme OOM conditions
236 */
237 struct cfq_queue oom_cfqq;
238
239 unsigned long last_end_sync_rq;
240 };
241
242 static struct cfq_rb_root *service_tree_for(enum wl_prio_t prio,
243 enum wl_type_t type,
244 struct cfq_data *cfqd)
245 {
246 if (prio == IDLE_WORKLOAD)
247 return &cfqd->service_tree_idle;
248
249 return &cfqd->service_trees[prio][type];
250 }
251
252 enum cfqq_state_flags {
253 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
254 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
255 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
256 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
257 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
258 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
259 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
260 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
261 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
262 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
263 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
264 };
265
266 #define CFQ_CFQQ_FNS(name) \
267 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
268 { \
269 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
270 } \
271 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
272 { \
273 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
274 } \
275 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
276 { \
277 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
278 }
279
280 CFQ_CFQQ_FNS(on_rr);
281 CFQ_CFQQ_FNS(wait_request);
282 CFQ_CFQQ_FNS(must_dispatch);
283 CFQ_CFQQ_FNS(must_alloc_slice);
284 CFQ_CFQQ_FNS(fifo_expire);
285 CFQ_CFQQ_FNS(idle_window);
286 CFQ_CFQQ_FNS(prio_changed);
287 CFQ_CFQQ_FNS(slice_new);
288 CFQ_CFQQ_FNS(sync);
289 CFQ_CFQQ_FNS(coop);
290 CFQ_CFQQ_FNS(deep);
291 #undef CFQ_CFQQ_FNS
292
293 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
294 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
295 #define cfq_log(cfqd, fmt, args...) \
296 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
297
298 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
299 {
300 if (cfq_class_idle(cfqq))
301 return IDLE_WORKLOAD;
302 if (cfq_class_rt(cfqq))
303 return RT_WORKLOAD;
304 return BE_WORKLOAD;
305 }
306
307
308 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
309 {
310 if (!cfq_cfqq_sync(cfqq))
311 return ASYNC_WORKLOAD;
312 if (!cfq_cfqq_idle_window(cfqq))
313 return SYNC_NOIDLE_WORKLOAD;
314 return SYNC_WORKLOAD;
315 }
316
317 static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
318 {
319 if (wl == IDLE_WORKLOAD)
320 return cfqd->service_tree_idle.count;
321
322 return cfqd->service_trees[wl][ASYNC_WORKLOAD].count
323 + cfqd->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
324 + cfqd->service_trees[wl][SYNC_WORKLOAD].count;
325 }
326
327 static void cfq_dispatch_insert(struct request_queue *, struct request *);
328 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
329 struct io_context *, gfp_t);
330 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
331 struct io_context *);
332
333 static inline int rq_in_driver(struct cfq_data *cfqd)
334 {
335 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
336 }
337
338 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
339 bool is_sync)
340 {
341 return cic->cfqq[is_sync];
342 }
343
344 static inline void cic_set_cfqq(struct cfq_io_context *cic,
345 struct cfq_queue *cfqq, bool is_sync)
346 {
347 cic->cfqq[is_sync] = cfqq;
348 }
349
350 /*
351 * We regard a request as SYNC, if it's either a read or has the SYNC bit
352 * set (in which case it could also be direct WRITE).
353 */
354 static inline bool cfq_bio_sync(struct bio *bio)
355 {
356 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
357 }
358
359 /*
360 * scheduler run of queue, if there are requests pending and no one in the
361 * driver that will restart queueing
362 */
363 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
364 {
365 if (cfqd->busy_queues) {
366 cfq_log(cfqd, "schedule dispatch");
367 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
368 }
369 }
370
371 static int cfq_queue_empty(struct request_queue *q)
372 {
373 struct cfq_data *cfqd = q->elevator->elevator_data;
374
375 return !cfqd->busy_queues;
376 }
377
378 /*
379 * Scale schedule slice based on io priority. Use the sync time slice only
380 * if a queue is marked sync and has sync io queued. A sync queue with async
381 * io only, should not get full sync slice length.
382 */
383 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
384 unsigned short prio)
385 {
386 const int base_slice = cfqd->cfq_slice[sync];
387
388 WARN_ON(prio >= IOPRIO_BE_NR);
389
390 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
391 }
392
393 static inline int
394 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
395 {
396 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
397 }
398
399 /*
400 * get averaged number of queues of RT/BE priority.
401 * average is updated, with a formula that gives more weight to higher numbers,
402 * to quickly follows sudden increases and decrease slowly
403 */
404
405 static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
406 {
407 unsigned min_q, max_q;
408 unsigned mult = cfq_hist_divisor - 1;
409 unsigned round = cfq_hist_divisor / 2;
410 unsigned busy = cfq_busy_queues_wl(rt, cfqd);
411
412 min_q = min(cfqd->busy_queues_avg[rt], busy);
413 max_q = max(cfqd->busy_queues_avg[rt], busy);
414 cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
415 cfq_hist_divisor;
416 return cfqd->busy_queues_avg[rt];
417 }
418
419 static inline void
420 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
421 {
422 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
423 if (cfqd->cfq_latency) {
424 /* interested queues (we consider only the ones with the same
425 * priority class) */
426 unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
427 unsigned sync_slice = cfqd->cfq_slice[1];
428 unsigned expect_latency = sync_slice * iq;
429 if (expect_latency > cfq_target_latency) {
430 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
431 /* scale low_slice according to IO priority
432 * and sync vs async */
433 unsigned low_slice =
434 min(slice, base_low_slice * slice / sync_slice);
435 /* the adapted slice value is scaled to fit all iqs
436 * into the target latency */
437 slice = max(slice * cfq_target_latency / expect_latency,
438 low_slice);
439 }
440 }
441 cfqq->slice_end = jiffies + slice;
442 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
443 }
444
445 /*
446 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
447 * isn't valid until the first request from the dispatch is activated
448 * and the slice time set.
449 */
450 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
451 {
452 if (cfq_cfqq_slice_new(cfqq))
453 return 0;
454 if (time_before(jiffies, cfqq->slice_end))
455 return 0;
456
457 return 1;
458 }
459
460 /*
461 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
462 * We choose the request that is closest to the head right now. Distance
463 * behind the head is penalized and only allowed to a certain extent.
464 */
465 static struct request *
466 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
467 {
468 sector_t s1, s2, d1 = 0, d2 = 0;
469 unsigned long back_max;
470 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
471 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
472 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
473
474 if (rq1 == NULL || rq1 == rq2)
475 return rq2;
476 if (rq2 == NULL)
477 return rq1;
478
479 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
480 return rq1;
481 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
482 return rq2;
483 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
484 return rq1;
485 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
486 return rq2;
487
488 s1 = blk_rq_pos(rq1);
489 s2 = blk_rq_pos(rq2);
490
491 /*
492 * by definition, 1KiB is 2 sectors
493 */
494 back_max = cfqd->cfq_back_max * 2;
495
496 /*
497 * Strict one way elevator _except_ in the case where we allow
498 * short backward seeks which are biased as twice the cost of a
499 * similar forward seek.
500 */
501 if (s1 >= last)
502 d1 = s1 - last;
503 else if (s1 + back_max >= last)
504 d1 = (last - s1) * cfqd->cfq_back_penalty;
505 else
506 wrap |= CFQ_RQ1_WRAP;
507
508 if (s2 >= last)
509 d2 = s2 - last;
510 else if (s2 + back_max >= last)
511 d2 = (last - s2) * cfqd->cfq_back_penalty;
512 else
513 wrap |= CFQ_RQ2_WRAP;
514
515 /* Found required data */
516
517 /*
518 * By doing switch() on the bit mask "wrap" we avoid having to
519 * check two variables for all permutations: --> faster!
520 */
521 switch (wrap) {
522 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
523 if (d1 < d2)
524 return rq1;
525 else if (d2 < d1)
526 return rq2;
527 else {
528 if (s1 >= s2)
529 return rq1;
530 else
531 return rq2;
532 }
533
534 case CFQ_RQ2_WRAP:
535 return rq1;
536 case CFQ_RQ1_WRAP:
537 return rq2;
538 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
539 default:
540 /*
541 * Since both rqs are wrapped,
542 * start with the one that's further behind head
543 * (--> only *one* back seek required),
544 * since back seek takes more time than forward.
545 */
546 if (s1 <= s2)
547 return rq1;
548 else
549 return rq2;
550 }
551 }
552
553 /*
554 * The below is leftmost cache rbtree addon
555 */
556 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
557 {
558 if (!root->left)
559 root->left = rb_first(&root->rb);
560
561 if (root->left)
562 return rb_entry(root->left, struct cfq_queue, rb_node);
563
564 return NULL;
565 }
566
567 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
568 {
569 rb_erase(n, root);
570 RB_CLEAR_NODE(n);
571 }
572
573 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
574 {
575 if (root->left == n)
576 root->left = NULL;
577 rb_erase_init(n, &root->rb);
578 --root->count;
579 }
580
581 /*
582 * would be nice to take fifo expire time into account as well
583 */
584 static struct request *
585 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
586 struct request *last)
587 {
588 struct rb_node *rbnext = rb_next(&last->rb_node);
589 struct rb_node *rbprev = rb_prev(&last->rb_node);
590 struct request *next = NULL, *prev = NULL;
591
592 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
593
594 if (rbprev)
595 prev = rb_entry_rq(rbprev);
596
597 if (rbnext)
598 next = rb_entry_rq(rbnext);
599 else {
600 rbnext = rb_first(&cfqq->sort_list);
601 if (rbnext && rbnext != &last->rb_node)
602 next = rb_entry_rq(rbnext);
603 }
604
605 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
606 }
607
608 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
609 struct cfq_queue *cfqq)
610 {
611 struct cfq_rb_root *service_tree;
612
613 service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);
614
615 /*
616 * just an approximation, should be ok.
617 */
618 return service_tree->count * (cfq_prio_slice(cfqd, 1, 0) -
619 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
620 }
621
622 /*
623 * The cfqd->service_trees holds all pending cfq_queue's that have
624 * requests waiting to be processed. It is sorted in the order that
625 * we will service the queues.
626 */
627 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
628 bool add_front)
629 {
630 struct rb_node **p, *parent;
631 struct cfq_queue *__cfqq;
632 unsigned long rb_key;
633 struct cfq_rb_root *service_tree;
634 int left;
635
636 service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);
637 if (cfq_class_idle(cfqq)) {
638 rb_key = CFQ_IDLE_DELAY;
639 parent = rb_last(&service_tree->rb);
640 if (parent && parent != &cfqq->rb_node) {
641 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
642 rb_key += __cfqq->rb_key;
643 } else
644 rb_key += jiffies;
645 } else if (!add_front) {
646 /*
647 * Get our rb key offset. Subtract any residual slice
648 * value carried from last service. A negative resid
649 * count indicates slice overrun, and this should position
650 * the next service time further away in the tree.
651 */
652 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
653 rb_key -= cfqq->slice_resid;
654 cfqq->slice_resid = 0;
655 } else {
656 rb_key = -HZ;
657 __cfqq = cfq_rb_first(service_tree);
658 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
659 }
660
661 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
662 /*
663 * same position, nothing more to do
664 */
665 if (rb_key == cfqq->rb_key &&
666 cfqq->service_tree == service_tree)
667 return;
668
669 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
670 cfqq->service_tree = NULL;
671 }
672
673 left = 1;
674 parent = NULL;
675 cfqq->service_tree = service_tree;
676 p = &service_tree->rb.rb_node;
677 while (*p) {
678 struct rb_node **n;
679
680 parent = *p;
681 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
682
683 /*
684 * sort by key, that represents service time.
685 */
686 if (time_before(rb_key, __cfqq->rb_key))
687 n = &(*p)->rb_left;
688 else {
689 n = &(*p)->rb_right;
690 left = 0;
691 }
692
693 p = n;
694 }
695
696 if (left)
697 service_tree->left = &cfqq->rb_node;
698
699 cfqq->rb_key = rb_key;
700 rb_link_node(&cfqq->rb_node, parent, p);
701 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
702 service_tree->count++;
703 }
704
705 static struct cfq_queue *
706 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
707 sector_t sector, struct rb_node **ret_parent,
708 struct rb_node ***rb_link)
709 {
710 struct rb_node **p, *parent;
711 struct cfq_queue *cfqq = NULL;
712
713 parent = NULL;
714 p = &root->rb_node;
715 while (*p) {
716 struct rb_node **n;
717
718 parent = *p;
719 cfqq = rb_entry(parent, struct cfq_queue, p_node);
720
721 /*
722 * Sort strictly based on sector. Smallest to the left,
723 * largest to the right.
724 */
725 if (sector > blk_rq_pos(cfqq->next_rq))
726 n = &(*p)->rb_right;
727 else if (sector < blk_rq_pos(cfqq->next_rq))
728 n = &(*p)->rb_left;
729 else
730 break;
731 p = n;
732 cfqq = NULL;
733 }
734
735 *ret_parent = parent;
736 if (rb_link)
737 *rb_link = p;
738 return cfqq;
739 }
740
741 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
742 {
743 struct rb_node **p, *parent;
744 struct cfq_queue *__cfqq;
745
746 if (cfqq->p_root) {
747 rb_erase(&cfqq->p_node, cfqq->p_root);
748 cfqq->p_root = NULL;
749 }
750
751 if (cfq_class_idle(cfqq))
752 return;
753 if (!cfqq->next_rq)
754 return;
755
756 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
757 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
758 blk_rq_pos(cfqq->next_rq), &parent, &p);
759 if (!__cfqq) {
760 rb_link_node(&cfqq->p_node, parent, p);
761 rb_insert_color(&cfqq->p_node, cfqq->p_root);
762 } else
763 cfqq->p_root = NULL;
764 }
765
766 /*
767 * Update cfqq's position in the service tree.
768 */
769 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
770 {
771 /*
772 * Resorting requires the cfqq to be on the RR list already.
773 */
774 if (cfq_cfqq_on_rr(cfqq)) {
775 cfq_service_tree_add(cfqd, cfqq, 0);
776 cfq_prio_tree_add(cfqd, cfqq);
777 }
778 }
779
780 /*
781 * add to busy list of queues for service, trying to be fair in ordering
782 * the pending list according to last request service
783 */
784 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
785 {
786 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
787 BUG_ON(cfq_cfqq_on_rr(cfqq));
788 cfq_mark_cfqq_on_rr(cfqq);
789 cfqd->busy_queues++;
790
791 cfq_resort_rr_list(cfqd, cfqq);
792 }
793
794 /*
795 * Called when the cfqq no longer has requests pending, remove it from
796 * the service tree.
797 */
798 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
799 {
800 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
801 BUG_ON(!cfq_cfqq_on_rr(cfqq));
802 cfq_clear_cfqq_on_rr(cfqq);
803
804 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
805 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
806 cfqq->service_tree = NULL;
807 }
808 if (cfqq->p_root) {
809 rb_erase(&cfqq->p_node, cfqq->p_root);
810 cfqq->p_root = NULL;
811 }
812
813 BUG_ON(!cfqd->busy_queues);
814 cfqd->busy_queues--;
815 }
816
817 /*
818 * rb tree support functions
819 */
820 static void cfq_del_rq_rb(struct request *rq)
821 {
822 struct cfq_queue *cfqq = RQ_CFQQ(rq);
823 struct cfq_data *cfqd = cfqq->cfqd;
824 const int sync = rq_is_sync(rq);
825
826 BUG_ON(!cfqq->queued[sync]);
827 cfqq->queued[sync]--;
828
829 elv_rb_del(&cfqq->sort_list, rq);
830
831 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
832 cfq_del_cfqq_rr(cfqd, cfqq);
833 }
834
835 static void cfq_add_rq_rb(struct request *rq)
836 {
837 struct cfq_queue *cfqq = RQ_CFQQ(rq);
838 struct cfq_data *cfqd = cfqq->cfqd;
839 struct request *__alias, *prev;
840
841 cfqq->queued[rq_is_sync(rq)]++;
842
843 /*
844 * looks a little odd, but the first insert might return an alias.
845 * if that happens, put the alias on the dispatch list
846 */
847 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
848 cfq_dispatch_insert(cfqd->queue, __alias);
849
850 if (!cfq_cfqq_on_rr(cfqq))
851 cfq_add_cfqq_rr(cfqd, cfqq);
852
853 /*
854 * check if this request is a better next-serve candidate
855 */
856 prev = cfqq->next_rq;
857 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
858
859 /*
860 * adjust priority tree position, if ->next_rq changes
861 */
862 if (prev != cfqq->next_rq)
863 cfq_prio_tree_add(cfqd, cfqq);
864
865 BUG_ON(!cfqq->next_rq);
866 }
867
868 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
869 {
870 elv_rb_del(&cfqq->sort_list, rq);
871 cfqq->queued[rq_is_sync(rq)]--;
872 cfq_add_rq_rb(rq);
873 }
874
875 static struct request *
876 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
877 {
878 struct task_struct *tsk = current;
879 struct cfq_io_context *cic;
880 struct cfq_queue *cfqq;
881
882 cic = cfq_cic_lookup(cfqd, tsk->io_context);
883 if (!cic)
884 return NULL;
885
886 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
887 if (cfqq) {
888 sector_t sector = bio->bi_sector + bio_sectors(bio);
889
890 return elv_rb_find(&cfqq->sort_list, sector);
891 }
892
893 return NULL;
894 }
895
896 static void cfq_activate_request(struct request_queue *q, struct request *rq)
897 {
898 struct cfq_data *cfqd = q->elevator->elevator_data;
899
900 cfqd->rq_in_driver[rq_is_sync(rq)]++;
901 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
902 rq_in_driver(cfqd));
903
904 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
905 }
906
907 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
908 {
909 struct cfq_data *cfqd = q->elevator->elevator_data;
910 const int sync = rq_is_sync(rq);
911
912 WARN_ON(!cfqd->rq_in_driver[sync]);
913 cfqd->rq_in_driver[sync]--;
914 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
915 rq_in_driver(cfqd));
916 }
917
918 static void cfq_remove_request(struct request *rq)
919 {
920 struct cfq_queue *cfqq = RQ_CFQQ(rq);
921
922 if (cfqq->next_rq == rq)
923 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
924
925 list_del_init(&rq->queuelist);
926 cfq_del_rq_rb(rq);
927
928 cfqq->cfqd->rq_queued--;
929 if (rq_is_meta(rq)) {
930 WARN_ON(!cfqq->meta_pending);
931 cfqq->meta_pending--;
932 }
933 }
934
935 static int cfq_merge(struct request_queue *q, struct request **req,
936 struct bio *bio)
937 {
938 struct cfq_data *cfqd = q->elevator->elevator_data;
939 struct request *__rq;
940
941 __rq = cfq_find_rq_fmerge(cfqd, bio);
942 if (__rq && elv_rq_merge_ok(__rq, bio)) {
943 *req = __rq;
944 return ELEVATOR_FRONT_MERGE;
945 }
946
947 return ELEVATOR_NO_MERGE;
948 }
949
950 static void cfq_merged_request(struct request_queue *q, struct request *req,
951 int type)
952 {
953 if (type == ELEVATOR_FRONT_MERGE) {
954 struct cfq_queue *cfqq = RQ_CFQQ(req);
955
956 cfq_reposition_rq_rb(cfqq, req);
957 }
958 }
959
960 static void
961 cfq_merged_requests(struct request_queue *q, struct request *rq,
962 struct request *next)
963 {
964 struct cfq_queue *cfqq = RQ_CFQQ(rq);
965 /*
966 * reposition in fifo if next is older than rq
967 */
968 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
969 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
970 list_move(&rq->queuelist, &next->queuelist);
971 rq_set_fifo_time(rq, rq_fifo_time(next));
972 }
973
974 if (cfqq->next_rq == next)
975 cfqq->next_rq = rq;
976 cfq_remove_request(next);
977 }
978
979 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
980 struct bio *bio)
981 {
982 struct cfq_data *cfqd = q->elevator->elevator_data;
983 struct cfq_io_context *cic;
984 struct cfq_queue *cfqq;
985
986 /*
987 * Disallow merge of a sync bio into an async request.
988 */
989 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
990 return false;
991
992 /*
993 * Lookup the cfqq that this bio will be queued with. Allow
994 * merge only if rq is queued there.
995 */
996 cic = cfq_cic_lookup(cfqd, current->io_context);
997 if (!cic)
998 return false;
999
1000 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1001 return cfqq == RQ_CFQQ(rq);
1002 }
1003
1004 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1005 struct cfq_queue *cfqq)
1006 {
1007 if (cfqq) {
1008 cfq_log_cfqq(cfqd, cfqq, "set_active");
1009 cfqq->slice_end = 0;
1010 cfqq->slice_dispatch = 0;
1011
1012 cfq_clear_cfqq_wait_request(cfqq);
1013 cfq_clear_cfqq_must_dispatch(cfqq);
1014 cfq_clear_cfqq_must_alloc_slice(cfqq);
1015 cfq_clear_cfqq_fifo_expire(cfqq);
1016 cfq_mark_cfqq_slice_new(cfqq);
1017
1018 del_timer(&cfqd->idle_slice_timer);
1019 }
1020
1021 cfqd->active_queue = cfqq;
1022 }
1023
1024 /*
1025 * current cfqq expired its slice (or was too idle), select new one
1026 */
1027 static void
1028 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1029 bool timed_out)
1030 {
1031 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1032
1033 if (cfq_cfqq_wait_request(cfqq))
1034 del_timer(&cfqd->idle_slice_timer);
1035
1036 cfq_clear_cfqq_wait_request(cfqq);
1037
1038 /*
1039 * store what was left of this slice, if the queue idled/timed out
1040 */
1041 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1042 cfqq->slice_resid = cfqq->slice_end - jiffies;
1043 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1044 }
1045
1046 cfq_resort_rr_list(cfqd, cfqq);
1047
1048 if (cfqq == cfqd->active_queue)
1049 cfqd->active_queue = NULL;
1050
1051 if (cfqd->active_cic) {
1052 put_io_context(cfqd->active_cic->ioc);
1053 cfqd->active_cic = NULL;
1054 }
1055 }
1056
1057 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1058 {
1059 struct cfq_queue *cfqq = cfqd->active_queue;
1060
1061 if (cfqq)
1062 __cfq_slice_expired(cfqd, cfqq, timed_out);
1063 }
1064
1065 /*
1066 * Get next queue for service. Unless we have a queue preemption,
1067 * we'll simply select the first cfqq in the service tree.
1068 */
1069 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1070 {
1071 struct cfq_rb_root *service_tree =
1072 service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd);
1073
1074 if (RB_EMPTY_ROOT(&service_tree->rb))
1075 return NULL;
1076 return cfq_rb_first(service_tree);
1077 }
1078
1079 /*
1080 * Get and set a new active queue for service.
1081 */
1082 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1083 struct cfq_queue *cfqq)
1084 {
1085 if (!cfqq)
1086 cfqq = cfq_get_next_queue(cfqd);
1087
1088 __cfq_set_active_queue(cfqd, cfqq);
1089 return cfqq;
1090 }
1091
1092 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1093 struct request *rq)
1094 {
1095 if (blk_rq_pos(rq) >= cfqd->last_position)
1096 return blk_rq_pos(rq) - cfqd->last_position;
1097 else
1098 return cfqd->last_position - blk_rq_pos(rq);
1099 }
1100
1101 #define CFQQ_SEEK_THR 8 * 1024
1102 #define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1103
1104 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1105 struct request *rq)
1106 {
1107 sector_t sdist = cfqq->seek_mean;
1108
1109 if (!sample_valid(cfqq->seek_samples))
1110 sdist = CFQQ_SEEK_THR;
1111
1112 return cfq_dist_from_last(cfqd, rq) <= sdist;
1113 }
1114
1115 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1116 struct cfq_queue *cur_cfqq)
1117 {
1118 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1119 struct rb_node *parent, *node;
1120 struct cfq_queue *__cfqq;
1121 sector_t sector = cfqd->last_position;
1122
1123 if (RB_EMPTY_ROOT(root))
1124 return NULL;
1125
1126 /*
1127 * First, if we find a request starting at the end of the last
1128 * request, choose it.
1129 */
1130 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1131 if (__cfqq)
1132 return __cfqq;
1133
1134 /*
1135 * If the exact sector wasn't found, the parent of the NULL leaf
1136 * will contain the closest sector.
1137 */
1138 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1139 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1140 return __cfqq;
1141
1142 if (blk_rq_pos(__cfqq->next_rq) < sector)
1143 node = rb_next(&__cfqq->p_node);
1144 else
1145 node = rb_prev(&__cfqq->p_node);
1146 if (!node)
1147 return NULL;
1148
1149 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1150 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1151 return __cfqq;
1152
1153 return NULL;
1154 }
1155
1156 /*
1157 * cfqd - obvious
1158 * cur_cfqq - passed in so that we don't decide that the current queue is
1159 * closely cooperating with itself.
1160 *
1161 * So, basically we're assuming that that cur_cfqq has dispatched at least
1162 * one request, and that cfqd->last_position reflects a position on the disk
1163 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1164 * assumption.
1165 */
1166 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1167 struct cfq_queue *cur_cfqq)
1168 {
1169 struct cfq_queue *cfqq;
1170
1171 if (!cfq_cfqq_sync(cur_cfqq))
1172 return NULL;
1173 if (CFQQ_SEEKY(cur_cfqq))
1174 return NULL;
1175
1176 /*
1177 * We should notice if some of the queues are cooperating, eg
1178 * working closely on the same area of the disk. In that case,
1179 * we can group them together and don't waste time idling.
1180 */
1181 cfqq = cfqq_close(cfqd, cur_cfqq);
1182 if (!cfqq)
1183 return NULL;
1184
1185 /*
1186 * It only makes sense to merge sync queues.
1187 */
1188 if (!cfq_cfqq_sync(cfqq))
1189 return NULL;
1190 if (CFQQ_SEEKY(cfqq))
1191 return NULL;
1192
1193 /*
1194 * Do not merge queues of different priority classes
1195 */
1196 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1197 return NULL;
1198
1199 return cfqq;
1200 }
1201
1202 /*
1203 * Determine whether we should enforce idle window for this queue.
1204 */
1205
1206 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1207 {
1208 enum wl_prio_t prio = cfqq_prio(cfqq);
1209 struct cfq_rb_root *service_tree = cfqq->service_tree;
1210
1211 /* We never do for idle class queues. */
1212 if (prio == IDLE_WORKLOAD)
1213 return false;
1214
1215 /* We do for queues that were marked with idle window flag. */
1216 if (cfq_cfqq_idle_window(cfqq))
1217 return true;
1218
1219 /*
1220 * Otherwise, we do only if they are the last ones
1221 * in their service tree.
1222 */
1223 if (!service_tree)
1224 service_tree = service_tree_for(prio, cfqq_type(cfqq), cfqd);
1225
1226 if (service_tree->count == 0)
1227 return true;
1228
1229 return (service_tree->count == 1 && cfq_rb_first(service_tree) == cfqq);
1230 }
1231
1232 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1233 {
1234 struct cfq_queue *cfqq = cfqd->active_queue;
1235 struct cfq_io_context *cic;
1236 unsigned long sl;
1237
1238 /*
1239 * SSD device without seek penalty, disable idling. But only do so
1240 * for devices that support queuing, otherwise we still have a problem
1241 * with sync vs async workloads.
1242 */
1243 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1244 return;
1245
1246 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1247 WARN_ON(cfq_cfqq_slice_new(cfqq));
1248
1249 /*
1250 * idle is disabled, either manually or by past process history
1251 */
1252 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1253 return;
1254
1255 /*
1256 * still requests with the driver, don't idle
1257 */
1258 if (rq_in_driver(cfqd))
1259 return;
1260
1261 /*
1262 * task has exited, don't wait
1263 */
1264 cic = cfqd->active_cic;
1265 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1266 return;
1267
1268 /*
1269 * If our average think time is larger than the remaining time
1270 * slice, then don't idle. This avoids overrunning the allotted
1271 * time slice.
1272 */
1273 if (sample_valid(cic->ttime_samples) &&
1274 (cfqq->slice_end - jiffies < cic->ttime_mean))
1275 return;
1276
1277 cfq_mark_cfqq_wait_request(cfqq);
1278
1279 sl = cfqd->cfq_slice_idle;
1280
1281 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1282 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1283 }
1284
1285 /*
1286 * Move request from internal lists to the request queue dispatch list.
1287 */
1288 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1289 {
1290 struct cfq_data *cfqd = q->elevator->elevator_data;
1291 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1292
1293 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1294
1295 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1296 cfq_remove_request(rq);
1297 cfqq->dispatched++;
1298 elv_dispatch_sort(q, rq);
1299
1300 if (cfq_cfqq_sync(cfqq))
1301 cfqd->sync_flight++;
1302 }
1303
1304 /*
1305 * return expired entry, or NULL to just start from scratch in rbtree
1306 */
1307 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1308 {
1309 struct request *rq = NULL;
1310
1311 if (cfq_cfqq_fifo_expire(cfqq))
1312 return NULL;
1313
1314 cfq_mark_cfqq_fifo_expire(cfqq);
1315
1316 if (list_empty(&cfqq->fifo))
1317 return NULL;
1318
1319 rq = rq_entry_fifo(cfqq->fifo.next);
1320 if (time_before(jiffies, rq_fifo_time(rq)))
1321 rq = NULL;
1322
1323 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1324 return rq;
1325 }
1326
1327 static inline int
1328 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1329 {
1330 const int base_rq = cfqd->cfq_slice_async_rq;
1331
1332 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1333
1334 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1335 }
1336
1337 /*
1338 * Must be called with the queue_lock held.
1339 */
1340 static int cfqq_process_refs(struct cfq_queue *cfqq)
1341 {
1342 int process_refs, io_refs;
1343
1344 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1345 process_refs = atomic_read(&cfqq->ref) - io_refs;
1346 BUG_ON(process_refs < 0);
1347 return process_refs;
1348 }
1349
1350 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1351 {
1352 int process_refs, new_process_refs;
1353 struct cfq_queue *__cfqq;
1354
1355 /* Avoid a circular list and skip interim queue merges */
1356 while ((__cfqq = new_cfqq->new_cfqq)) {
1357 if (__cfqq == cfqq)
1358 return;
1359 new_cfqq = __cfqq;
1360 }
1361
1362 process_refs = cfqq_process_refs(cfqq);
1363 /*
1364 * If the process for the cfqq has gone away, there is no
1365 * sense in merging the queues.
1366 */
1367 if (process_refs == 0)
1368 return;
1369
1370 /*
1371 * Merge in the direction of the lesser amount of work.
1372 */
1373 new_process_refs = cfqq_process_refs(new_cfqq);
1374 if (new_process_refs >= process_refs) {
1375 cfqq->new_cfqq = new_cfqq;
1376 atomic_add(process_refs, &new_cfqq->ref);
1377 } else {
1378 new_cfqq->new_cfqq = cfqq;
1379 atomic_add(new_process_refs, &cfqq->ref);
1380 }
1381 }
1382
1383 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd, enum wl_prio_t prio,
1384 bool prio_changed)
1385 {
1386 struct cfq_queue *queue;
1387 int i;
1388 bool key_valid = false;
1389 unsigned long lowest_key = 0;
1390 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1391
1392 if (prio_changed) {
1393 /*
1394 * When priorities switched, we prefer starting
1395 * from SYNC_NOIDLE (first choice), or just SYNC
1396 * over ASYNC
1397 */
1398 if (service_tree_for(prio, cur_best, cfqd)->count)
1399 return cur_best;
1400 cur_best = SYNC_WORKLOAD;
1401 if (service_tree_for(prio, cur_best, cfqd)->count)
1402 return cur_best;
1403
1404 return ASYNC_WORKLOAD;
1405 }
1406
1407 for (i = 0; i < 3; ++i) {
1408 /* otherwise, select the one with lowest rb_key */
1409 queue = cfq_rb_first(service_tree_for(prio, i, cfqd));
1410 if (queue &&
1411 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1412 lowest_key = queue->rb_key;
1413 cur_best = i;
1414 key_valid = true;
1415 }
1416 }
1417
1418 return cur_best;
1419 }
1420
1421 static void choose_service_tree(struct cfq_data *cfqd)
1422 {
1423 enum wl_prio_t previous_prio = cfqd->serving_prio;
1424 bool prio_changed;
1425 unsigned slice;
1426 unsigned count;
1427
1428 /* Choose next priority. RT > BE > IDLE */
1429 if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
1430 cfqd->serving_prio = RT_WORKLOAD;
1431 else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
1432 cfqd->serving_prio = BE_WORKLOAD;
1433 else {
1434 cfqd->serving_prio = IDLE_WORKLOAD;
1435 cfqd->workload_expires = jiffies + 1;
1436 return;
1437 }
1438
1439 /*
1440 * For RT and BE, we have to choose also the type
1441 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1442 * expiration time
1443 */
1444 prio_changed = (cfqd->serving_prio != previous_prio);
1445 count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
1446 ->count;
1447
1448 /*
1449 * If priority didn't change, check workload expiration,
1450 * and that we still have other queues ready
1451 */
1452 if (!prio_changed && count &&
1453 !time_after(jiffies, cfqd->workload_expires))
1454 return;
1455
1456 /* otherwise select new workload type */
1457 cfqd->serving_type =
1458 cfq_choose_wl(cfqd, cfqd->serving_prio, prio_changed);
1459 count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
1460 ->count;
1461
1462 /*
1463 * the workload slice is computed as a fraction of target latency
1464 * proportional to the number of queues in that workload, over
1465 * all the queues in the same priority class
1466 */
1467 slice = cfq_target_latency * count /
1468 max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
1469 cfq_busy_queues_wl(cfqd->serving_prio, cfqd));
1470
1471 if (cfqd->serving_type == ASYNC_WORKLOAD)
1472 /* async workload slice is scaled down according to
1473 * the sync/async slice ratio. */
1474 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
1475 else
1476 /* sync workload slice is at least 2 * cfq_slice_idle */
1477 slice = max(slice, 2 * cfqd->cfq_slice_idle);
1478
1479 slice = max_t(unsigned, slice, CFQ_MIN_TT);
1480 cfqd->workload_expires = jiffies + slice;
1481 }
1482
1483 /*
1484 * Select a queue for service. If we have a current active queue,
1485 * check whether to continue servicing it, or retrieve and set a new one.
1486 */
1487 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1488 {
1489 struct cfq_queue *cfqq, *new_cfqq = NULL;
1490
1491 cfqq = cfqd->active_queue;
1492 if (!cfqq)
1493 goto new_queue;
1494
1495 /*
1496 * The active queue has run out of time, expire it and select new.
1497 */
1498 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1499 goto expire;
1500
1501 /*
1502 * The active queue has requests and isn't expired, allow it to
1503 * dispatch.
1504 */
1505 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1506 goto keep_queue;
1507
1508 /*
1509 * If another queue has a request waiting within our mean seek
1510 * distance, let it run. The expire code will check for close
1511 * cooperators and put the close queue at the front of the service
1512 * tree. If possible, merge the expiring queue with the new cfqq.
1513 */
1514 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
1515 if (new_cfqq) {
1516 if (!cfqq->new_cfqq)
1517 cfq_setup_merge(cfqq, new_cfqq);
1518 goto expire;
1519 }
1520
1521 /*
1522 * No requests pending. If the active queue still has requests in
1523 * flight or is idling for a new request, allow either of these
1524 * conditions to happen (or time out) before selecting a new queue.
1525 */
1526 if (timer_pending(&cfqd->idle_slice_timer) ||
1527 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
1528 cfqq = NULL;
1529 goto keep_queue;
1530 }
1531
1532 expire:
1533 cfq_slice_expired(cfqd, 0);
1534 new_queue:
1535 /*
1536 * Current queue expired. Check if we have to switch to a new
1537 * service tree
1538 */
1539 if (!new_cfqq)
1540 choose_service_tree(cfqd);
1541
1542 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1543 keep_queue:
1544 return cfqq;
1545 }
1546
1547 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1548 {
1549 int dispatched = 0;
1550
1551 while (cfqq->next_rq) {
1552 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1553 dispatched++;
1554 }
1555
1556 BUG_ON(!list_empty(&cfqq->fifo));
1557 return dispatched;
1558 }
1559
1560 /*
1561 * Drain our current requests. Used for barriers and when switching
1562 * io schedulers on-the-fly.
1563 */
1564 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1565 {
1566 struct cfq_queue *cfqq;
1567 int dispatched = 0;
1568 int i, j;
1569 for (i = 0; i < 2; ++i)
1570 for (j = 0; j < 3; ++j)
1571 while ((cfqq = cfq_rb_first(&cfqd->service_trees[i][j]))
1572 != NULL)
1573 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1574
1575 while ((cfqq = cfq_rb_first(&cfqd->service_tree_idle)) != NULL)
1576 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1577
1578 cfq_slice_expired(cfqd, 0);
1579
1580 BUG_ON(cfqd->busy_queues);
1581
1582 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1583 return dispatched;
1584 }
1585
1586 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1587 {
1588 unsigned int max_dispatch;
1589
1590 /*
1591 * Drain async requests before we start sync IO
1592 */
1593 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1594 return false;
1595
1596 /*
1597 * If this is an async queue and we have sync IO in flight, let it wait
1598 */
1599 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1600 return false;
1601
1602 max_dispatch = cfqd->cfq_quantum;
1603 if (cfq_class_idle(cfqq))
1604 max_dispatch = 1;
1605
1606 /*
1607 * Does this cfqq already have too much IO in flight?
1608 */
1609 if (cfqq->dispatched >= max_dispatch) {
1610 /*
1611 * idle queue must always only have a single IO in flight
1612 */
1613 if (cfq_class_idle(cfqq))
1614 return false;
1615
1616 /*
1617 * We have other queues, don't allow more IO from this one
1618 */
1619 if (cfqd->busy_queues > 1)
1620 return false;
1621
1622 /*
1623 * Sole queue user, allow bigger slice
1624 */
1625 max_dispatch *= 4;
1626 }
1627
1628 /*
1629 * Async queues must wait a bit before being allowed dispatch.
1630 * We also ramp up the dispatch depth gradually for async IO,
1631 * based on the last sync IO we serviced
1632 */
1633 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1634 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1635 unsigned int depth;
1636
1637 depth = last_sync / cfqd->cfq_slice[1];
1638 if (!depth && !cfqq->dispatched)
1639 depth = 1;
1640 if (depth < max_dispatch)
1641 max_dispatch = depth;
1642 }
1643
1644 /*
1645 * If we're below the current max, allow a dispatch
1646 */
1647 return cfqq->dispatched < max_dispatch;
1648 }
1649
1650 /*
1651 * Dispatch a request from cfqq, moving them to the request queue
1652 * dispatch list.
1653 */
1654 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1655 {
1656 struct request *rq;
1657
1658 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1659
1660 if (!cfq_may_dispatch(cfqd, cfqq))
1661 return false;
1662
1663 /*
1664 * follow expired path, else get first next available
1665 */
1666 rq = cfq_check_fifo(cfqq);
1667 if (!rq)
1668 rq = cfqq->next_rq;
1669
1670 /*
1671 * insert request into driver dispatch list
1672 */
1673 cfq_dispatch_insert(cfqd->queue, rq);
1674
1675 if (!cfqd->active_cic) {
1676 struct cfq_io_context *cic = RQ_CIC(rq);
1677
1678 atomic_long_inc(&cic->ioc->refcount);
1679 cfqd->active_cic = cic;
1680 }
1681
1682 return true;
1683 }
1684
1685 /*
1686 * Find the cfqq that we need to service and move a request from that to the
1687 * dispatch list
1688 */
1689 static int cfq_dispatch_requests(struct request_queue *q, int force)
1690 {
1691 struct cfq_data *cfqd = q->elevator->elevator_data;
1692 struct cfq_queue *cfqq;
1693
1694 if (!cfqd->busy_queues)
1695 return 0;
1696
1697 if (unlikely(force))
1698 return cfq_forced_dispatch(cfqd);
1699
1700 cfqq = cfq_select_queue(cfqd);
1701 if (!cfqq)
1702 return 0;
1703
1704 /*
1705 * Dispatch a request from this cfqq, if it is allowed
1706 */
1707 if (!cfq_dispatch_request(cfqd, cfqq))
1708 return 0;
1709
1710 cfqq->slice_dispatch++;
1711 cfq_clear_cfqq_must_dispatch(cfqq);
1712
1713 /*
1714 * expire an async queue immediately if it has used up its slice. idle
1715 * queue always expire after 1 dispatch round.
1716 */
1717 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1718 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1719 cfq_class_idle(cfqq))) {
1720 cfqq->slice_end = jiffies + 1;
1721 cfq_slice_expired(cfqd, 0);
1722 }
1723
1724 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1725 return 1;
1726 }
1727
1728 /*
1729 * task holds one reference to the queue, dropped when task exits. each rq
1730 * in-flight on this queue also holds a reference, dropped when rq is freed.
1731 *
1732 * queue lock must be held here.
1733 */
1734 static void cfq_put_queue(struct cfq_queue *cfqq)
1735 {
1736 struct cfq_data *cfqd = cfqq->cfqd;
1737
1738 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1739
1740 if (!atomic_dec_and_test(&cfqq->ref))
1741 return;
1742
1743 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1744 BUG_ON(rb_first(&cfqq->sort_list));
1745 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1746 BUG_ON(cfq_cfqq_on_rr(cfqq));
1747
1748 if (unlikely(cfqd->active_queue == cfqq)) {
1749 __cfq_slice_expired(cfqd, cfqq, 0);
1750 cfq_schedule_dispatch(cfqd);
1751 }
1752
1753 kmem_cache_free(cfq_pool, cfqq);
1754 }
1755
1756 /*
1757 * Must always be called with the rcu_read_lock() held
1758 */
1759 static void
1760 __call_for_each_cic(struct io_context *ioc,
1761 void (*func)(struct io_context *, struct cfq_io_context *))
1762 {
1763 struct cfq_io_context *cic;
1764 struct hlist_node *n;
1765
1766 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1767 func(ioc, cic);
1768 }
1769
1770 /*
1771 * Call func for each cic attached to this ioc.
1772 */
1773 static void
1774 call_for_each_cic(struct io_context *ioc,
1775 void (*func)(struct io_context *, struct cfq_io_context *))
1776 {
1777 rcu_read_lock();
1778 __call_for_each_cic(ioc, func);
1779 rcu_read_unlock();
1780 }
1781
1782 static void cfq_cic_free_rcu(struct rcu_head *head)
1783 {
1784 struct cfq_io_context *cic;
1785
1786 cic = container_of(head, struct cfq_io_context, rcu_head);
1787
1788 kmem_cache_free(cfq_ioc_pool, cic);
1789 elv_ioc_count_dec(cfq_ioc_count);
1790
1791 if (ioc_gone) {
1792 /*
1793 * CFQ scheduler is exiting, grab exit lock and check
1794 * the pending io context count. If it hits zero,
1795 * complete ioc_gone and set it back to NULL
1796 */
1797 spin_lock(&ioc_gone_lock);
1798 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1799 complete(ioc_gone);
1800 ioc_gone = NULL;
1801 }
1802 spin_unlock(&ioc_gone_lock);
1803 }
1804 }
1805
1806 static void cfq_cic_free(struct cfq_io_context *cic)
1807 {
1808 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1809 }
1810
1811 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1812 {
1813 unsigned long flags;
1814
1815 BUG_ON(!cic->dead_key);
1816
1817 spin_lock_irqsave(&ioc->lock, flags);
1818 radix_tree_delete(&ioc->radix_root, cic->dead_key);
1819 hlist_del_rcu(&cic->cic_list);
1820 spin_unlock_irqrestore(&ioc->lock, flags);
1821
1822 cfq_cic_free(cic);
1823 }
1824
1825 /*
1826 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1827 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1828 * and ->trim() which is called with the task lock held
1829 */
1830 static void cfq_free_io_context(struct io_context *ioc)
1831 {
1832 /*
1833 * ioc->refcount is zero here, or we are called from elv_unregister(),
1834 * so no more cic's are allowed to be linked into this ioc. So it
1835 * should be ok to iterate over the known list, we will see all cic's
1836 * since no new ones are added.
1837 */
1838 __call_for_each_cic(ioc, cic_free_func);
1839 }
1840
1841 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1842 {
1843 struct cfq_queue *__cfqq, *next;
1844
1845 if (unlikely(cfqq == cfqd->active_queue)) {
1846 __cfq_slice_expired(cfqd, cfqq, 0);
1847 cfq_schedule_dispatch(cfqd);
1848 }
1849
1850 /*
1851 * If this queue was scheduled to merge with another queue, be
1852 * sure to drop the reference taken on that queue (and others in
1853 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
1854 */
1855 __cfqq = cfqq->new_cfqq;
1856 while (__cfqq) {
1857 if (__cfqq == cfqq) {
1858 WARN(1, "cfqq->new_cfqq loop detected\n");
1859 break;
1860 }
1861 next = __cfqq->new_cfqq;
1862 cfq_put_queue(__cfqq);
1863 __cfqq = next;
1864 }
1865
1866 cfq_put_queue(cfqq);
1867 }
1868
1869 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1870 struct cfq_io_context *cic)
1871 {
1872 struct io_context *ioc = cic->ioc;
1873
1874 list_del_init(&cic->queue_list);
1875
1876 /*
1877 * Make sure key == NULL is seen for dead queues
1878 */
1879 smp_wmb();
1880 cic->dead_key = (unsigned long) cic->key;
1881 cic->key = NULL;
1882
1883 if (ioc->ioc_data == cic)
1884 rcu_assign_pointer(ioc->ioc_data, NULL);
1885
1886 if (cic->cfqq[BLK_RW_ASYNC]) {
1887 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1888 cic->cfqq[BLK_RW_ASYNC] = NULL;
1889 }
1890
1891 if (cic->cfqq[BLK_RW_SYNC]) {
1892 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1893 cic->cfqq[BLK_RW_SYNC] = NULL;
1894 }
1895 }
1896
1897 static void cfq_exit_single_io_context(struct io_context *ioc,
1898 struct cfq_io_context *cic)
1899 {
1900 struct cfq_data *cfqd = cic->key;
1901
1902 if (cfqd) {
1903 struct request_queue *q = cfqd->queue;
1904 unsigned long flags;
1905
1906 spin_lock_irqsave(q->queue_lock, flags);
1907
1908 /*
1909 * Ensure we get a fresh copy of the ->key to prevent
1910 * race between exiting task and queue
1911 */
1912 smp_read_barrier_depends();
1913 if (cic->key)
1914 __cfq_exit_single_io_context(cfqd, cic);
1915
1916 spin_unlock_irqrestore(q->queue_lock, flags);
1917 }
1918 }
1919
1920 /*
1921 * The process that ioc belongs to has exited, we need to clean up
1922 * and put the internal structures we have that belongs to that process.
1923 */
1924 static void cfq_exit_io_context(struct io_context *ioc)
1925 {
1926 call_for_each_cic(ioc, cfq_exit_single_io_context);
1927 }
1928
1929 static struct cfq_io_context *
1930 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1931 {
1932 struct cfq_io_context *cic;
1933
1934 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1935 cfqd->queue->node);
1936 if (cic) {
1937 cic->last_end_request = jiffies;
1938 INIT_LIST_HEAD(&cic->queue_list);
1939 INIT_HLIST_NODE(&cic->cic_list);
1940 cic->dtor = cfq_free_io_context;
1941 cic->exit = cfq_exit_io_context;
1942 elv_ioc_count_inc(cfq_ioc_count);
1943 }
1944
1945 return cic;
1946 }
1947
1948 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1949 {
1950 struct task_struct *tsk = current;
1951 int ioprio_class;
1952
1953 if (!cfq_cfqq_prio_changed(cfqq))
1954 return;
1955
1956 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1957 switch (ioprio_class) {
1958 default:
1959 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1960 case IOPRIO_CLASS_NONE:
1961 /*
1962 * no prio set, inherit CPU scheduling settings
1963 */
1964 cfqq->ioprio = task_nice_ioprio(tsk);
1965 cfqq->ioprio_class = task_nice_ioclass(tsk);
1966 break;
1967 case IOPRIO_CLASS_RT:
1968 cfqq->ioprio = task_ioprio(ioc);
1969 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1970 break;
1971 case IOPRIO_CLASS_BE:
1972 cfqq->ioprio = task_ioprio(ioc);
1973 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1974 break;
1975 case IOPRIO_CLASS_IDLE:
1976 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1977 cfqq->ioprio = 7;
1978 cfq_clear_cfqq_idle_window(cfqq);
1979 break;
1980 }
1981
1982 /*
1983 * keep track of original prio settings in case we have to temporarily
1984 * elevate the priority of this queue
1985 */
1986 cfqq->org_ioprio = cfqq->ioprio;
1987 cfqq->org_ioprio_class = cfqq->ioprio_class;
1988 cfq_clear_cfqq_prio_changed(cfqq);
1989 }
1990
1991 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1992 {
1993 struct cfq_data *cfqd = cic->key;
1994 struct cfq_queue *cfqq;
1995 unsigned long flags;
1996
1997 if (unlikely(!cfqd))
1998 return;
1999
2000 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2001
2002 cfqq = cic->cfqq[BLK_RW_ASYNC];
2003 if (cfqq) {
2004 struct cfq_queue *new_cfqq;
2005 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2006 GFP_ATOMIC);
2007 if (new_cfqq) {
2008 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2009 cfq_put_queue(cfqq);
2010 }
2011 }
2012
2013 cfqq = cic->cfqq[BLK_RW_SYNC];
2014 if (cfqq)
2015 cfq_mark_cfqq_prio_changed(cfqq);
2016
2017 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2018 }
2019
2020 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2021 {
2022 call_for_each_cic(ioc, changed_ioprio);
2023 ioc->ioprio_changed = 0;
2024 }
2025
2026 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2027 pid_t pid, bool is_sync)
2028 {
2029 RB_CLEAR_NODE(&cfqq->rb_node);
2030 RB_CLEAR_NODE(&cfqq->p_node);
2031 INIT_LIST_HEAD(&cfqq->fifo);
2032
2033 atomic_set(&cfqq->ref, 0);
2034 cfqq->cfqd = cfqd;
2035
2036 cfq_mark_cfqq_prio_changed(cfqq);
2037
2038 if (is_sync) {
2039 if (!cfq_class_idle(cfqq))
2040 cfq_mark_cfqq_idle_window(cfqq);
2041 cfq_mark_cfqq_sync(cfqq);
2042 }
2043 cfqq->pid = pid;
2044 }
2045
2046 static struct cfq_queue *
2047 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2048 struct io_context *ioc, gfp_t gfp_mask)
2049 {
2050 struct cfq_queue *cfqq, *new_cfqq = NULL;
2051 struct cfq_io_context *cic;
2052
2053 retry:
2054 cic = cfq_cic_lookup(cfqd, ioc);
2055 /* cic always exists here */
2056 cfqq = cic_to_cfqq(cic, is_sync);
2057
2058 /*
2059 * Always try a new alloc if we fell back to the OOM cfqq
2060 * originally, since it should just be a temporary situation.
2061 */
2062 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2063 cfqq = NULL;
2064 if (new_cfqq) {
2065 cfqq = new_cfqq;
2066 new_cfqq = NULL;
2067 } else if (gfp_mask & __GFP_WAIT) {
2068 spin_unlock_irq(cfqd->queue->queue_lock);
2069 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2070 gfp_mask | __GFP_ZERO,
2071 cfqd->queue->node);
2072 spin_lock_irq(cfqd->queue->queue_lock);
2073 if (new_cfqq)
2074 goto retry;
2075 } else {
2076 cfqq = kmem_cache_alloc_node(cfq_pool,
2077 gfp_mask | __GFP_ZERO,
2078 cfqd->queue->node);
2079 }
2080
2081 if (cfqq) {
2082 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2083 cfq_init_prio_data(cfqq, ioc);
2084 cfq_log_cfqq(cfqd, cfqq, "alloced");
2085 } else
2086 cfqq = &cfqd->oom_cfqq;
2087 }
2088
2089 if (new_cfqq)
2090 kmem_cache_free(cfq_pool, new_cfqq);
2091
2092 return cfqq;
2093 }
2094
2095 static struct cfq_queue **
2096 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2097 {
2098 switch (ioprio_class) {
2099 case IOPRIO_CLASS_RT:
2100 return &cfqd->async_cfqq[0][ioprio];
2101 case IOPRIO_CLASS_BE:
2102 return &cfqd->async_cfqq[1][ioprio];
2103 case IOPRIO_CLASS_IDLE:
2104 return &cfqd->async_idle_cfqq;
2105 default:
2106 BUG();
2107 }
2108 }
2109
2110 static struct cfq_queue *
2111 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2112 gfp_t gfp_mask)
2113 {
2114 const int ioprio = task_ioprio(ioc);
2115 const int ioprio_class = task_ioprio_class(ioc);
2116 struct cfq_queue **async_cfqq = NULL;
2117 struct cfq_queue *cfqq = NULL;
2118
2119 if (!is_sync) {
2120 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2121 cfqq = *async_cfqq;
2122 }
2123
2124 if (!cfqq)
2125 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2126
2127 /*
2128 * pin the queue now that it's allocated, scheduler exit will prune it
2129 */
2130 if (!is_sync && !(*async_cfqq)) {
2131 atomic_inc(&cfqq->ref);
2132 *async_cfqq = cfqq;
2133 }
2134
2135 atomic_inc(&cfqq->ref);
2136 return cfqq;
2137 }
2138
2139 /*
2140 * We drop cfq io contexts lazily, so we may find a dead one.
2141 */
2142 static void
2143 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2144 struct cfq_io_context *cic)
2145 {
2146 unsigned long flags;
2147
2148 WARN_ON(!list_empty(&cic->queue_list));
2149
2150 spin_lock_irqsave(&ioc->lock, flags);
2151
2152 BUG_ON(ioc->ioc_data == cic);
2153
2154 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2155 hlist_del_rcu(&cic->cic_list);
2156 spin_unlock_irqrestore(&ioc->lock, flags);
2157
2158 cfq_cic_free(cic);
2159 }
2160
2161 static struct cfq_io_context *
2162 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2163 {
2164 struct cfq_io_context *cic;
2165 unsigned long flags;
2166 void *k;
2167
2168 if (unlikely(!ioc))
2169 return NULL;
2170
2171 rcu_read_lock();
2172
2173 /*
2174 * we maintain a last-hit cache, to avoid browsing over the tree
2175 */
2176 cic = rcu_dereference(ioc->ioc_data);
2177 if (cic && cic->key == cfqd) {
2178 rcu_read_unlock();
2179 return cic;
2180 }
2181
2182 do {
2183 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2184 rcu_read_unlock();
2185 if (!cic)
2186 break;
2187 /* ->key must be copied to avoid race with cfq_exit_queue() */
2188 k = cic->key;
2189 if (unlikely(!k)) {
2190 cfq_drop_dead_cic(cfqd, ioc, cic);
2191 rcu_read_lock();
2192 continue;
2193 }
2194
2195 spin_lock_irqsave(&ioc->lock, flags);
2196 rcu_assign_pointer(ioc->ioc_data, cic);
2197 spin_unlock_irqrestore(&ioc->lock, flags);
2198 break;
2199 } while (1);
2200
2201 return cic;
2202 }
2203
2204 /*
2205 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2206 * the process specific cfq io context when entered from the block layer.
2207 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2208 */
2209 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2210 struct cfq_io_context *cic, gfp_t gfp_mask)
2211 {
2212 unsigned long flags;
2213 int ret;
2214
2215 ret = radix_tree_preload(gfp_mask);
2216 if (!ret) {
2217 cic->ioc = ioc;
2218 cic->key = cfqd;
2219
2220 spin_lock_irqsave(&ioc->lock, flags);
2221 ret = radix_tree_insert(&ioc->radix_root,
2222 (unsigned long) cfqd, cic);
2223 if (!ret)
2224 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2225 spin_unlock_irqrestore(&ioc->lock, flags);
2226
2227 radix_tree_preload_end();
2228
2229 if (!ret) {
2230 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2231 list_add(&cic->queue_list, &cfqd->cic_list);
2232 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2233 }
2234 }
2235
2236 if (ret)
2237 printk(KERN_ERR "cfq: cic link failed!\n");
2238
2239 return ret;
2240 }
2241
2242 /*
2243 * Setup general io context and cfq io context. There can be several cfq
2244 * io contexts per general io context, if this process is doing io to more
2245 * than one device managed by cfq.
2246 */
2247 static struct cfq_io_context *
2248 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2249 {
2250 struct io_context *ioc = NULL;
2251 struct cfq_io_context *cic;
2252
2253 might_sleep_if(gfp_mask & __GFP_WAIT);
2254
2255 ioc = get_io_context(gfp_mask, cfqd->queue->node);
2256 if (!ioc)
2257 return NULL;
2258
2259 cic = cfq_cic_lookup(cfqd, ioc);
2260 if (cic)
2261 goto out;
2262
2263 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2264 if (cic == NULL)
2265 goto err;
2266
2267 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2268 goto err_free;
2269
2270 out:
2271 smp_read_barrier_depends();
2272 if (unlikely(ioc->ioprio_changed))
2273 cfq_ioc_set_ioprio(ioc);
2274
2275 return cic;
2276 err_free:
2277 cfq_cic_free(cic);
2278 err:
2279 put_io_context(ioc);
2280 return NULL;
2281 }
2282
2283 static void
2284 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2285 {
2286 unsigned long elapsed = jiffies - cic->last_end_request;
2287 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2288
2289 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2290 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2291 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2292 }
2293
2294 static void
2295 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2296 struct request *rq)
2297 {
2298 sector_t sdist;
2299 u64 total;
2300
2301 if (!cfqq->last_request_pos)
2302 sdist = 0;
2303 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2304 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2305 else
2306 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2307
2308 /*
2309 * Don't allow the seek distance to get too large from the
2310 * odd fragment, pagein, etc
2311 */
2312 if (cfqq->seek_samples <= 60) /* second&third seek */
2313 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2314 else
2315 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2316
2317 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2318 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2319 total = cfqq->seek_total + (cfqq->seek_samples/2);
2320 do_div(total, cfqq->seek_samples);
2321 cfqq->seek_mean = (sector_t)total;
2322
2323 /*
2324 * If this cfqq is shared between multiple processes, check to
2325 * make sure that those processes are still issuing I/Os within
2326 * the mean seek distance. If not, it may be time to break the
2327 * queues apart again.
2328 */
2329 if (cfq_cfqq_coop(cfqq)) {
2330 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2331 cfqq->seeky_start = jiffies;
2332 else if (!CFQQ_SEEKY(cfqq))
2333 cfqq->seeky_start = 0;
2334 }
2335 }
2336
2337 /*
2338 * Disable idle window if the process thinks too long or seeks so much that
2339 * it doesn't matter
2340 */
2341 static void
2342 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2343 struct cfq_io_context *cic)
2344 {
2345 int old_idle, enable_idle;
2346
2347 /*
2348 * Don't idle for async or idle io prio class
2349 */
2350 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2351 return;
2352
2353 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2354
2355 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2356 cfq_mark_cfqq_deep(cfqq);
2357
2358 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2359 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
2360 && CFQQ_SEEKY(cfqq)))
2361 enable_idle = 0;
2362 else if (sample_valid(cic->ttime_samples)) {
2363 if (cic->ttime_mean > cfqd->cfq_slice_idle)
2364 enable_idle = 0;
2365 else
2366 enable_idle = 1;
2367 }
2368
2369 if (old_idle != enable_idle) {
2370 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2371 if (enable_idle)
2372 cfq_mark_cfqq_idle_window(cfqq);
2373 else
2374 cfq_clear_cfqq_idle_window(cfqq);
2375 }
2376 }
2377
2378 /*
2379 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2380 * no or if we aren't sure, a 1 will cause a preempt.
2381 */
2382 static bool
2383 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2384 struct request *rq)
2385 {
2386 struct cfq_queue *cfqq;
2387
2388 cfqq = cfqd->active_queue;
2389 if (!cfqq)
2390 return false;
2391
2392 if (cfq_slice_used(cfqq))
2393 return true;
2394
2395 if (cfq_class_idle(new_cfqq))
2396 return false;
2397
2398 if (cfq_class_idle(cfqq))
2399 return true;
2400
2401 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
2402 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
2403 new_cfqq->service_tree->count == 1)
2404 return true;
2405
2406 /*
2407 * if the new request is sync, but the currently running queue is
2408 * not, let the sync request have priority.
2409 */
2410 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2411 return true;
2412
2413 /*
2414 * So both queues are sync. Let the new request get disk time if
2415 * it's a metadata request and the current queue is doing regular IO.
2416 */
2417 if (rq_is_meta(rq) && !cfqq->meta_pending)
2418 return true;
2419
2420 /*
2421 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2422 */
2423 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2424 return true;
2425
2426 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2427 return false;
2428
2429 /*
2430 * if this request is as-good as one we would expect from the
2431 * current cfqq, let it preempt
2432 */
2433 if (cfq_rq_close(cfqd, cfqq, rq))
2434 return true;
2435
2436 return false;
2437 }
2438
2439 /*
2440 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2441 * let it have half of its nominal slice.
2442 */
2443 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2444 {
2445 cfq_log_cfqq(cfqd, cfqq, "preempt");
2446 cfq_slice_expired(cfqd, 1);
2447
2448 /*
2449 * Put the new queue at the front of the of the current list,
2450 * so we know that it will be selected next.
2451 */
2452 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2453
2454 cfq_service_tree_add(cfqd, cfqq, 1);
2455
2456 cfqq->slice_end = 0;
2457 cfq_mark_cfqq_slice_new(cfqq);
2458 }
2459
2460 /*
2461 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2462 * something we should do about it
2463 */
2464 static void
2465 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2466 struct request *rq)
2467 {
2468 struct cfq_io_context *cic = RQ_CIC(rq);
2469
2470 cfqd->rq_queued++;
2471 if (rq_is_meta(rq))
2472 cfqq->meta_pending++;
2473
2474 cfq_update_io_thinktime(cfqd, cic);
2475 cfq_update_io_seektime(cfqd, cfqq, rq);
2476 cfq_update_idle_window(cfqd, cfqq, cic);
2477
2478 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2479
2480 if (cfqq == cfqd->active_queue) {
2481 /*
2482 * Remember that we saw a request from this process, but
2483 * don't start queuing just yet. Otherwise we risk seeing lots
2484 * of tiny requests, because we disrupt the normal plugging
2485 * and merging. If the request is already larger than a single
2486 * page, let it rip immediately. For that case we assume that
2487 * merging is already done. Ditto for a busy system that
2488 * has other work pending, don't risk delaying until the
2489 * idle timer unplug to continue working.
2490 */
2491 if (cfq_cfqq_wait_request(cfqq)) {
2492 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2493 cfqd->busy_queues > 1) {
2494 del_timer(&cfqd->idle_slice_timer);
2495 __blk_run_queue(cfqd->queue);
2496 }
2497 cfq_mark_cfqq_must_dispatch(cfqq);
2498 }
2499 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2500 /*
2501 * not the active queue - expire current slice if it is
2502 * idle and has expired it's mean thinktime or this new queue
2503 * has some old slice time left and is of higher priority or
2504 * this new queue is RT and the current one is BE
2505 */
2506 cfq_preempt_queue(cfqd, cfqq);
2507 __blk_run_queue(cfqd->queue);
2508 }
2509 }
2510
2511 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2512 {
2513 struct cfq_data *cfqd = q->elevator->elevator_data;
2514 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2515
2516 cfq_log_cfqq(cfqd, cfqq, "insert_request");
2517 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2518
2519 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2520 list_add_tail(&rq->queuelist, &cfqq->fifo);
2521 cfq_add_rq_rb(rq);
2522
2523 cfq_rq_enqueued(cfqd, cfqq, rq);
2524 }
2525
2526 /*
2527 * Update hw_tag based on peak queue depth over 50 samples under
2528 * sufficient load.
2529 */
2530 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2531 {
2532 struct cfq_queue *cfqq = cfqd->active_queue;
2533
2534 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
2535 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
2536
2537 if (cfqd->hw_tag == 1)
2538 return;
2539
2540 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2541 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2542 return;
2543
2544 /*
2545 * If active queue hasn't enough requests and can idle, cfq might not
2546 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2547 * case
2548 */
2549 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2550 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2551 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2552 return;
2553
2554 if (cfqd->hw_tag_samples++ < 50)
2555 return;
2556
2557 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
2558 cfqd->hw_tag = 1;
2559 else
2560 cfqd->hw_tag = 0;
2561 }
2562
2563 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2564 {
2565 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2566 struct cfq_data *cfqd = cfqq->cfqd;
2567 const int sync = rq_is_sync(rq);
2568 unsigned long now;
2569
2570 now = jiffies;
2571 cfq_log_cfqq(cfqd, cfqq, "complete");
2572
2573 cfq_update_hw_tag(cfqd);
2574
2575 WARN_ON(!cfqd->rq_in_driver[sync]);
2576 WARN_ON(!cfqq->dispatched);
2577 cfqd->rq_in_driver[sync]--;
2578 cfqq->dispatched--;
2579
2580 if (cfq_cfqq_sync(cfqq))
2581 cfqd->sync_flight--;
2582
2583 if (sync) {
2584 RQ_CIC(rq)->last_end_request = now;
2585 cfqd->last_end_sync_rq = now;
2586 }
2587
2588 /*
2589 * If this is the active queue, check if it needs to be expired,
2590 * or if we want to idle in case it has no pending requests.
2591 */
2592 if (cfqd->active_queue == cfqq) {
2593 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2594
2595 if (cfq_cfqq_slice_new(cfqq)) {
2596 cfq_set_prio_slice(cfqd, cfqq);
2597 cfq_clear_cfqq_slice_new(cfqq);
2598 }
2599 /*
2600 * If there are no requests waiting in this queue, and
2601 * there are other queues ready to issue requests, AND
2602 * those other queues are issuing requests within our
2603 * mean seek distance, give them a chance to run instead
2604 * of idling.
2605 */
2606 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2607 cfq_slice_expired(cfqd, 1);
2608 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq) &&
2609 sync && !rq_noidle(rq))
2610 cfq_arm_slice_timer(cfqd);
2611 }
2612
2613 if (!rq_in_driver(cfqd))
2614 cfq_schedule_dispatch(cfqd);
2615 }
2616
2617 /*
2618 * we temporarily boost lower priority queues if they are holding fs exclusive
2619 * resources. they are boosted to normal prio (CLASS_BE/4)
2620 */
2621 static void cfq_prio_boost(struct cfq_queue *cfqq)
2622 {
2623 if (has_fs_excl()) {
2624 /*
2625 * boost idle prio on transactions that would lock out other
2626 * users of the filesystem
2627 */
2628 if (cfq_class_idle(cfqq))
2629 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2630 if (cfqq->ioprio > IOPRIO_NORM)
2631 cfqq->ioprio = IOPRIO_NORM;
2632 } else {
2633 /*
2634 * unboost the queue (if needed)
2635 */
2636 cfqq->ioprio_class = cfqq->org_ioprio_class;
2637 cfqq->ioprio = cfqq->org_ioprio;
2638 }
2639 }
2640
2641 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2642 {
2643 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
2644 cfq_mark_cfqq_must_alloc_slice(cfqq);
2645 return ELV_MQUEUE_MUST;
2646 }
2647
2648 return ELV_MQUEUE_MAY;
2649 }
2650
2651 static int cfq_may_queue(struct request_queue *q, int rw)
2652 {
2653 struct cfq_data *cfqd = q->elevator->elevator_data;
2654 struct task_struct *tsk = current;
2655 struct cfq_io_context *cic;
2656 struct cfq_queue *cfqq;
2657
2658 /*
2659 * don't force setup of a queue from here, as a call to may_queue
2660 * does not necessarily imply that a request actually will be queued.
2661 * so just lookup a possibly existing queue, or return 'may queue'
2662 * if that fails
2663 */
2664 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2665 if (!cic)
2666 return ELV_MQUEUE_MAY;
2667
2668 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2669 if (cfqq) {
2670 cfq_init_prio_data(cfqq, cic->ioc);
2671 cfq_prio_boost(cfqq);
2672
2673 return __cfq_may_queue(cfqq);
2674 }
2675
2676 return ELV_MQUEUE_MAY;
2677 }
2678
2679 /*
2680 * queue lock held here
2681 */
2682 static void cfq_put_request(struct request *rq)
2683 {
2684 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2685
2686 if (cfqq) {
2687 const int rw = rq_data_dir(rq);
2688
2689 BUG_ON(!cfqq->allocated[rw]);
2690 cfqq->allocated[rw]--;
2691
2692 put_io_context(RQ_CIC(rq)->ioc);
2693
2694 rq->elevator_private = NULL;
2695 rq->elevator_private2 = NULL;
2696
2697 cfq_put_queue(cfqq);
2698 }
2699 }
2700
2701 static struct cfq_queue *
2702 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2703 struct cfq_queue *cfqq)
2704 {
2705 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2706 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2707 cfq_mark_cfqq_coop(cfqq->new_cfqq);
2708 cfq_put_queue(cfqq);
2709 return cic_to_cfqq(cic, 1);
2710 }
2711
2712 static int should_split_cfqq(struct cfq_queue *cfqq)
2713 {
2714 if (cfqq->seeky_start &&
2715 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2716 return 1;
2717 return 0;
2718 }
2719
2720 /*
2721 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2722 * was the last process referring to said cfqq.
2723 */
2724 static struct cfq_queue *
2725 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2726 {
2727 if (cfqq_process_refs(cfqq) == 1) {
2728 cfqq->seeky_start = 0;
2729 cfqq->pid = current->pid;
2730 cfq_clear_cfqq_coop(cfqq);
2731 return cfqq;
2732 }
2733
2734 cic_set_cfqq(cic, NULL, 1);
2735 cfq_put_queue(cfqq);
2736 return NULL;
2737 }
2738 /*
2739 * Allocate cfq data structures associated with this request.
2740 */
2741 static int
2742 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2743 {
2744 struct cfq_data *cfqd = q->elevator->elevator_data;
2745 struct cfq_io_context *cic;
2746 const int rw = rq_data_dir(rq);
2747 const bool is_sync = rq_is_sync(rq);
2748 struct cfq_queue *cfqq;
2749 unsigned long flags;
2750
2751 might_sleep_if(gfp_mask & __GFP_WAIT);
2752
2753 cic = cfq_get_io_context(cfqd, gfp_mask);
2754
2755 spin_lock_irqsave(q->queue_lock, flags);
2756
2757 if (!cic)
2758 goto queue_fail;
2759
2760 new_queue:
2761 cfqq = cic_to_cfqq(cic, is_sync);
2762 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2763 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2764 cic_set_cfqq(cic, cfqq, is_sync);
2765 } else {
2766 /*
2767 * If the queue was seeky for too long, break it apart.
2768 */
2769 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
2770 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
2771 cfqq = split_cfqq(cic, cfqq);
2772 if (!cfqq)
2773 goto new_queue;
2774 }
2775
2776 /*
2777 * Check to see if this queue is scheduled to merge with
2778 * another, closely cooperating queue. The merging of
2779 * queues happens here as it must be done in process context.
2780 * The reference on new_cfqq was taken in merge_cfqqs.
2781 */
2782 if (cfqq->new_cfqq)
2783 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
2784 }
2785
2786 cfqq->allocated[rw]++;
2787 atomic_inc(&cfqq->ref);
2788
2789 spin_unlock_irqrestore(q->queue_lock, flags);
2790
2791 rq->elevator_private = cic;
2792 rq->elevator_private2 = cfqq;
2793 return 0;
2794
2795 queue_fail:
2796 if (cic)
2797 put_io_context(cic->ioc);
2798
2799 cfq_schedule_dispatch(cfqd);
2800 spin_unlock_irqrestore(q->queue_lock, flags);
2801 cfq_log(cfqd, "set_request fail");
2802 return 1;
2803 }
2804
2805 static void cfq_kick_queue(struct work_struct *work)
2806 {
2807 struct cfq_data *cfqd =
2808 container_of(work, struct cfq_data, unplug_work);
2809 struct request_queue *q = cfqd->queue;
2810
2811 spin_lock_irq(q->queue_lock);
2812 __blk_run_queue(cfqd->queue);
2813 spin_unlock_irq(q->queue_lock);
2814 }
2815
2816 /*
2817 * Timer running if the active_queue is currently idling inside its time slice
2818 */
2819 static void cfq_idle_slice_timer(unsigned long data)
2820 {
2821 struct cfq_data *cfqd = (struct cfq_data *) data;
2822 struct cfq_queue *cfqq;
2823 unsigned long flags;
2824 int timed_out = 1;
2825
2826 cfq_log(cfqd, "idle timer fired");
2827
2828 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2829
2830 cfqq = cfqd->active_queue;
2831 if (cfqq) {
2832 timed_out = 0;
2833
2834 /*
2835 * We saw a request before the queue expired, let it through
2836 */
2837 if (cfq_cfqq_must_dispatch(cfqq))
2838 goto out_kick;
2839
2840 /*
2841 * expired
2842 */
2843 if (cfq_slice_used(cfqq))
2844 goto expire;
2845
2846 /*
2847 * only expire and reinvoke request handler, if there are
2848 * other queues with pending requests
2849 */
2850 if (!cfqd->busy_queues)
2851 goto out_cont;
2852
2853 /*
2854 * not expired and it has a request pending, let it dispatch
2855 */
2856 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2857 goto out_kick;
2858
2859 /*
2860 * Queue depth flag is reset only when the idle didn't succeed
2861 */
2862 cfq_clear_cfqq_deep(cfqq);
2863 }
2864 expire:
2865 cfq_slice_expired(cfqd, timed_out);
2866 out_kick:
2867 cfq_schedule_dispatch(cfqd);
2868 out_cont:
2869 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2870 }
2871
2872 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2873 {
2874 del_timer_sync(&cfqd->idle_slice_timer);
2875 cancel_work_sync(&cfqd->unplug_work);
2876 }
2877
2878 static void cfq_put_async_queues(struct cfq_data *cfqd)
2879 {
2880 int i;
2881
2882 for (i = 0; i < IOPRIO_BE_NR; i++) {
2883 if (cfqd->async_cfqq[0][i])
2884 cfq_put_queue(cfqd->async_cfqq[0][i]);
2885 if (cfqd->async_cfqq[1][i])
2886 cfq_put_queue(cfqd->async_cfqq[1][i]);
2887 }
2888
2889 if (cfqd->async_idle_cfqq)
2890 cfq_put_queue(cfqd->async_idle_cfqq);
2891 }
2892
2893 static void cfq_exit_queue(struct elevator_queue *e)
2894 {
2895 struct cfq_data *cfqd = e->elevator_data;
2896 struct request_queue *q = cfqd->queue;
2897
2898 cfq_shutdown_timer_wq(cfqd);
2899
2900 spin_lock_irq(q->queue_lock);
2901
2902 if (cfqd->active_queue)
2903 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2904
2905 while (!list_empty(&cfqd->cic_list)) {
2906 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2907 struct cfq_io_context,
2908 queue_list);
2909
2910 __cfq_exit_single_io_context(cfqd, cic);
2911 }
2912
2913 cfq_put_async_queues(cfqd);
2914
2915 spin_unlock_irq(q->queue_lock);
2916
2917 cfq_shutdown_timer_wq(cfqd);
2918
2919 kfree(cfqd);
2920 }
2921
2922 static void *cfq_init_queue(struct request_queue *q)
2923 {
2924 struct cfq_data *cfqd;
2925 int i, j;
2926
2927 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2928 if (!cfqd)
2929 return NULL;
2930
2931 for (i = 0; i < 2; ++i)
2932 for (j = 0; j < 3; ++j)
2933 cfqd->service_trees[i][j] = CFQ_RB_ROOT;
2934 cfqd->service_tree_idle = CFQ_RB_ROOT;
2935
2936 /*
2937 * Not strictly needed (since RB_ROOT just clears the node and we
2938 * zeroed cfqd on alloc), but better be safe in case someone decides
2939 * to add magic to the rb code
2940 */
2941 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2942 cfqd->prio_trees[i] = RB_ROOT;
2943
2944 /*
2945 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2946 * Grab a permanent reference to it, so that the normal code flow
2947 * will not attempt to free it.
2948 */
2949 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2950 atomic_inc(&cfqd->oom_cfqq.ref);
2951
2952 INIT_LIST_HEAD(&cfqd->cic_list);
2953
2954 cfqd->queue = q;
2955
2956 init_timer(&cfqd->idle_slice_timer);
2957 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2958 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2959
2960 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2961
2962 cfqd->cfq_quantum = cfq_quantum;
2963 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2964 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2965 cfqd->cfq_back_max = cfq_back_max;
2966 cfqd->cfq_back_penalty = cfq_back_penalty;
2967 cfqd->cfq_slice[0] = cfq_slice_async;
2968 cfqd->cfq_slice[1] = cfq_slice_sync;
2969 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2970 cfqd->cfq_slice_idle = cfq_slice_idle;
2971 cfqd->cfq_latency = 1;
2972 cfqd->hw_tag = -1;
2973 cfqd->last_end_sync_rq = jiffies;
2974 return cfqd;
2975 }
2976
2977 static void cfq_slab_kill(void)
2978 {
2979 /*
2980 * Caller already ensured that pending RCU callbacks are completed,
2981 * so we should have no busy allocations at this point.
2982 */
2983 if (cfq_pool)
2984 kmem_cache_destroy(cfq_pool);
2985 if (cfq_ioc_pool)
2986 kmem_cache_destroy(cfq_ioc_pool);
2987 }
2988
2989 static int __init cfq_slab_setup(void)
2990 {
2991 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2992 if (!cfq_pool)
2993 goto fail;
2994
2995 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2996 if (!cfq_ioc_pool)
2997 goto fail;
2998
2999 return 0;
3000 fail:
3001 cfq_slab_kill();
3002 return -ENOMEM;
3003 }
3004
3005 /*
3006 * sysfs parts below -->
3007 */
3008 static ssize_t
3009 cfq_var_show(unsigned int var, char *page)
3010 {
3011 return sprintf(page, "%d\n", var);
3012 }
3013
3014 static ssize_t
3015 cfq_var_store(unsigned int *var, const char *page, size_t count)
3016 {
3017 char *p = (char *) page;
3018
3019 *var = simple_strtoul(p, &p, 10);
3020 return count;
3021 }
3022
3023 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3024 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3025 { \
3026 struct cfq_data *cfqd = e->elevator_data; \
3027 unsigned int __data = __VAR; \
3028 if (__CONV) \
3029 __data = jiffies_to_msecs(__data); \
3030 return cfq_var_show(__data, (page)); \
3031 }
3032 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3033 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3034 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3035 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3036 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3037 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3038 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3039 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3040 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3041 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3042 #undef SHOW_FUNCTION
3043
3044 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3045 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3046 { \
3047 struct cfq_data *cfqd = e->elevator_data; \
3048 unsigned int __data; \
3049 int ret = cfq_var_store(&__data, (page), count); \
3050 if (__data < (MIN)) \
3051 __data = (MIN); \
3052 else if (__data > (MAX)) \
3053 __data = (MAX); \
3054 if (__CONV) \
3055 *(__PTR) = msecs_to_jiffies(__data); \
3056 else \
3057 *(__PTR) = __data; \
3058 return ret; \
3059 }
3060 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3061 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3062 UINT_MAX, 1);
3063 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3064 UINT_MAX, 1);
3065 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3066 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3067 UINT_MAX, 0);
3068 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3069 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3070 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3071 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3072 UINT_MAX, 0);
3073 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3074 #undef STORE_FUNCTION
3075
3076 #define CFQ_ATTR(name) \
3077 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3078
3079 static struct elv_fs_entry cfq_attrs[] = {
3080 CFQ_ATTR(quantum),
3081 CFQ_ATTR(fifo_expire_sync),
3082 CFQ_ATTR(fifo_expire_async),
3083 CFQ_ATTR(back_seek_max),
3084 CFQ_ATTR(back_seek_penalty),
3085 CFQ_ATTR(slice_sync),
3086 CFQ_ATTR(slice_async),
3087 CFQ_ATTR(slice_async_rq),
3088 CFQ_ATTR(slice_idle),
3089 CFQ_ATTR(low_latency),
3090 __ATTR_NULL
3091 };
3092
3093 static struct elevator_type iosched_cfq = {
3094 .ops = {
3095 .elevator_merge_fn = cfq_merge,
3096 .elevator_merged_fn = cfq_merged_request,
3097 .elevator_merge_req_fn = cfq_merged_requests,
3098 .elevator_allow_merge_fn = cfq_allow_merge,
3099 .elevator_dispatch_fn = cfq_dispatch_requests,
3100 .elevator_add_req_fn = cfq_insert_request,
3101 .elevator_activate_req_fn = cfq_activate_request,
3102 .elevator_deactivate_req_fn = cfq_deactivate_request,
3103 .elevator_queue_empty_fn = cfq_queue_empty,
3104 .elevator_completed_req_fn = cfq_completed_request,
3105 .elevator_former_req_fn = elv_rb_former_request,
3106 .elevator_latter_req_fn = elv_rb_latter_request,
3107 .elevator_set_req_fn = cfq_set_request,
3108 .elevator_put_req_fn = cfq_put_request,
3109 .elevator_may_queue_fn = cfq_may_queue,
3110 .elevator_init_fn = cfq_init_queue,
3111 .elevator_exit_fn = cfq_exit_queue,
3112 .trim = cfq_free_io_context,
3113 },
3114 .elevator_attrs = cfq_attrs,
3115 .elevator_name = "cfq",
3116 .elevator_owner = THIS_MODULE,
3117 };
3118
3119 static int __init cfq_init(void)
3120 {
3121 /*
3122 * could be 0 on HZ < 1000 setups
3123 */
3124 if (!cfq_slice_async)
3125 cfq_slice_async = 1;
3126 if (!cfq_slice_idle)
3127 cfq_slice_idle = 1;
3128
3129 if (cfq_slab_setup())
3130 return -ENOMEM;
3131
3132 elv_register(&iosched_cfq);
3133
3134 return 0;
3135 }
3136
3137 static void __exit cfq_exit(void)
3138 {
3139 DECLARE_COMPLETION_ONSTACK(all_gone);
3140 elv_unregister(&iosched_cfq);
3141 ioc_gone = &all_gone;
3142 /* ioc_gone's update must be visible before reading ioc_count */
3143 smp_wmb();
3144
3145 /*
3146 * this also protects us from entering cfq_slab_kill() with
3147 * pending RCU callbacks
3148 */
3149 if (elv_ioc_count_read(cfq_ioc_count))
3150 wait_for_completion(&all_gone);
3151 cfq_slab_kill();
3152 }
3153
3154 module_init(cfq_init);
3155 module_exit(cfq_exit);
3156
3157 MODULE_AUTHOR("Jens Axboe");
3158 MODULE_LICENSE("GPL");
3159 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");