]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/cfq-iosched.c
loop: Do not call loop_unplug for not configured loop device.
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
15
16 /*
17 * tunables
18 */
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
30
31 /*
32 * offset from end of service tree
33 */
34 #define CFQ_IDLE_DELAY (HZ / 5)
35
36 /*
37 * below this threshold, we consider thinktime immediate
38 */
39 #define CFQ_MIN_TT (2)
40
41 #define CFQ_SLICE_SCALE (5)
42 #define CFQ_HW_QUEUE_MIN (5)
43
44 #define RQ_CIC(rq) \
45 ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
47
48 static struct kmem_cache *cfq_pool;
49 static struct kmem_cache *cfq_ioc_pool;
50
51 static DEFINE_PER_CPU(unsigned long, ioc_count);
52 static struct completion *ioc_gone;
53 static DEFINE_SPINLOCK(ioc_gone_lock);
54
55 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
59 #define ASYNC (0)
60 #define SYNC (1)
61
62 #define sample_valid(samples) ((samples) > 80)
63
64 /*
65 * Most of our rbtree usage is for sorting with min extraction, so
66 * if we cache the leftmost node we don't have to walk down the tree
67 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
68 * move this into the elevator for the rq sorting as well.
69 */
70 struct cfq_rb_root {
71 struct rb_root rb;
72 struct rb_node *left;
73 };
74 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
75
76 /*
77 * Per block device queue structure
78 */
79 struct cfq_data {
80 struct request_queue *queue;
81
82 /*
83 * rr list of queues with requests and the count of them
84 */
85 struct cfq_rb_root service_tree;
86 unsigned int busy_queues;
87
88 int rq_in_driver;
89 int sync_flight;
90
91 /*
92 * queue-depth detection
93 */
94 int rq_queued;
95 int hw_tag;
96 int hw_tag_samples;
97 int rq_in_driver_peak;
98
99 /*
100 * idle window management
101 */
102 struct timer_list idle_slice_timer;
103 struct work_struct unplug_work;
104
105 struct cfq_queue *active_queue;
106 struct cfq_io_context *active_cic;
107
108 /*
109 * async queue for each priority case
110 */
111 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
112 struct cfq_queue *async_idle_cfqq;
113
114 sector_t last_position;
115 unsigned long last_end_request;
116
117 /*
118 * tunables, see top of file
119 */
120 unsigned int cfq_quantum;
121 unsigned int cfq_fifo_expire[2];
122 unsigned int cfq_back_penalty;
123 unsigned int cfq_back_max;
124 unsigned int cfq_slice[2];
125 unsigned int cfq_slice_async_rq;
126 unsigned int cfq_slice_idle;
127
128 struct list_head cic_list;
129 };
130
131 /*
132 * Per process-grouping structure
133 */
134 struct cfq_queue {
135 /* reference count */
136 atomic_t ref;
137 /* various state flags, see below */
138 unsigned int flags;
139 /* parent cfq_data */
140 struct cfq_data *cfqd;
141 /* service_tree member */
142 struct rb_node rb_node;
143 /* service_tree key */
144 unsigned long rb_key;
145 /* sorted list of pending requests */
146 struct rb_root sort_list;
147 /* if fifo isn't expired, next request to serve */
148 struct request *next_rq;
149 /* requests queued in sort_list */
150 int queued[2];
151 /* currently allocated requests */
152 int allocated[2];
153 /* fifo list of requests in sort_list */
154 struct list_head fifo;
155
156 unsigned long slice_end;
157 long slice_resid;
158
159 /* pending metadata requests */
160 int meta_pending;
161 /* number of requests that are on the dispatch list or inside driver */
162 int dispatched;
163
164 /* io prio of this group */
165 unsigned short ioprio, org_ioprio;
166 unsigned short ioprio_class, org_ioprio_class;
167
168 pid_t pid;
169 };
170
171 enum cfqq_state_flags {
172 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
173 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
174 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
175 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
176 CFQ_CFQQ_FLAG_must_dispatch, /* must dispatch, even if expired */
177 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
178 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
179 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
180 CFQ_CFQQ_FLAG_queue_new, /* queue never been serviced */
181 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
182 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
183 };
184
185 #define CFQ_CFQQ_FNS(name) \
186 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
187 { \
188 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
189 } \
190 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
191 { \
192 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
193 } \
194 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
195 { \
196 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
197 }
198
199 CFQ_CFQQ_FNS(on_rr);
200 CFQ_CFQQ_FNS(wait_request);
201 CFQ_CFQQ_FNS(must_alloc);
202 CFQ_CFQQ_FNS(must_alloc_slice);
203 CFQ_CFQQ_FNS(must_dispatch);
204 CFQ_CFQQ_FNS(fifo_expire);
205 CFQ_CFQQ_FNS(idle_window);
206 CFQ_CFQQ_FNS(prio_changed);
207 CFQ_CFQQ_FNS(queue_new);
208 CFQ_CFQQ_FNS(slice_new);
209 CFQ_CFQQ_FNS(sync);
210 #undef CFQ_CFQQ_FNS
211
212 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
213 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
214 #define cfq_log(cfqd, fmt, args...) \
215 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
216
217 static void cfq_dispatch_insert(struct request_queue *, struct request *);
218 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
219 struct io_context *, gfp_t);
220 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
221 struct io_context *);
222
223 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
224 int is_sync)
225 {
226 return cic->cfqq[!!is_sync];
227 }
228
229 static inline void cic_set_cfqq(struct cfq_io_context *cic,
230 struct cfq_queue *cfqq, int is_sync)
231 {
232 cic->cfqq[!!is_sync] = cfqq;
233 }
234
235 /*
236 * We regard a request as SYNC, if it's either a read or has the SYNC bit
237 * set (in which case it could also be direct WRITE).
238 */
239 static inline int cfq_bio_sync(struct bio *bio)
240 {
241 if (bio_data_dir(bio) == READ || bio_sync(bio))
242 return 1;
243
244 return 0;
245 }
246
247 /*
248 * scheduler run of queue, if there are requests pending and no one in the
249 * driver that will restart queueing
250 */
251 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
252 {
253 if (cfqd->busy_queues) {
254 cfq_log(cfqd, "schedule dispatch");
255 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
256 }
257 }
258
259 static int cfq_queue_empty(struct request_queue *q)
260 {
261 struct cfq_data *cfqd = q->elevator->elevator_data;
262
263 return !cfqd->busy_queues;
264 }
265
266 /*
267 * Scale schedule slice based on io priority. Use the sync time slice only
268 * if a queue is marked sync and has sync io queued. A sync queue with async
269 * io only, should not get full sync slice length.
270 */
271 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
272 unsigned short prio)
273 {
274 const int base_slice = cfqd->cfq_slice[sync];
275
276 WARN_ON(prio >= IOPRIO_BE_NR);
277
278 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
279 }
280
281 static inline int
282 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
283 {
284 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
285 }
286
287 static inline void
288 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
289 {
290 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
291 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
292 }
293
294 /*
295 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
296 * isn't valid until the first request from the dispatch is activated
297 * and the slice time set.
298 */
299 static inline int cfq_slice_used(struct cfq_queue *cfqq)
300 {
301 if (cfq_cfqq_slice_new(cfqq))
302 return 0;
303 if (time_before(jiffies, cfqq->slice_end))
304 return 0;
305
306 return 1;
307 }
308
309 /*
310 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
311 * We choose the request that is closest to the head right now. Distance
312 * behind the head is penalized and only allowed to a certain extent.
313 */
314 static struct request *
315 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
316 {
317 sector_t last, s1, s2, d1 = 0, d2 = 0;
318 unsigned long back_max;
319 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
320 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
321 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
322
323 if (rq1 == NULL || rq1 == rq2)
324 return rq2;
325 if (rq2 == NULL)
326 return rq1;
327
328 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
329 return rq1;
330 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
331 return rq2;
332 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
333 return rq1;
334 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
335 return rq2;
336
337 s1 = rq1->sector;
338 s2 = rq2->sector;
339
340 last = cfqd->last_position;
341
342 /*
343 * by definition, 1KiB is 2 sectors
344 */
345 back_max = cfqd->cfq_back_max * 2;
346
347 /*
348 * Strict one way elevator _except_ in the case where we allow
349 * short backward seeks which are biased as twice the cost of a
350 * similar forward seek.
351 */
352 if (s1 >= last)
353 d1 = s1 - last;
354 else if (s1 + back_max >= last)
355 d1 = (last - s1) * cfqd->cfq_back_penalty;
356 else
357 wrap |= CFQ_RQ1_WRAP;
358
359 if (s2 >= last)
360 d2 = s2 - last;
361 else if (s2 + back_max >= last)
362 d2 = (last - s2) * cfqd->cfq_back_penalty;
363 else
364 wrap |= CFQ_RQ2_WRAP;
365
366 /* Found required data */
367
368 /*
369 * By doing switch() on the bit mask "wrap" we avoid having to
370 * check two variables for all permutations: --> faster!
371 */
372 switch (wrap) {
373 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
374 if (d1 < d2)
375 return rq1;
376 else if (d2 < d1)
377 return rq2;
378 else {
379 if (s1 >= s2)
380 return rq1;
381 else
382 return rq2;
383 }
384
385 case CFQ_RQ2_WRAP:
386 return rq1;
387 case CFQ_RQ1_WRAP:
388 return rq2;
389 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
390 default:
391 /*
392 * Since both rqs are wrapped,
393 * start with the one that's further behind head
394 * (--> only *one* back seek required),
395 * since back seek takes more time than forward.
396 */
397 if (s1 <= s2)
398 return rq1;
399 else
400 return rq2;
401 }
402 }
403
404 /*
405 * The below is leftmost cache rbtree addon
406 */
407 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
408 {
409 if (!root->left)
410 root->left = rb_first(&root->rb);
411
412 if (root->left)
413 return rb_entry(root->left, struct cfq_queue, rb_node);
414
415 return NULL;
416 }
417
418 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
419 {
420 if (root->left == n)
421 root->left = NULL;
422
423 rb_erase(n, &root->rb);
424 RB_CLEAR_NODE(n);
425 }
426
427 /*
428 * would be nice to take fifo expire time into account as well
429 */
430 static struct request *
431 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
432 struct request *last)
433 {
434 struct rb_node *rbnext = rb_next(&last->rb_node);
435 struct rb_node *rbprev = rb_prev(&last->rb_node);
436 struct request *next = NULL, *prev = NULL;
437
438 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
439
440 if (rbprev)
441 prev = rb_entry_rq(rbprev);
442
443 if (rbnext)
444 next = rb_entry_rq(rbnext);
445 else {
446 rbnext = rb_first(&cfqq->sort_list);
447 if (rbnext && rbnext != &last->rb_node)
448 next = rb_entry_rq(rbnext);
449 }
450
451 return cfq_choose_req(cfqd, next, prev);
452 }
453
454 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
455 struct cfq_queue *cfqq)
456 {
457 /*
458 * just an approximation, should be ok.
459 */
460 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
461 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
462 }
463
464 /*
465 * The cfqd->service_tree holds all pending cfq_queue's that have
466 * requests waiting to be processed. It is sorted in the order that
467 * we will service the queues.
468 */
469 static void cfq_service_tree_add(struct cfq_data *cfqd,
470 struct cfq_queue *cfqq, int add_front)
471 {
472 struct rb_node **p, *parent;
473 struct cfq_queue *__cfqq;
474 unsigned long rb_key;
475 int left;
476
477 if (cfq_class_idle(cfqq)) {
478 rb_key = CFQ_IDLE_DELAY;
479 parent = rb_last(&cfqd->service_tree.rb);
480 if (parent && parent != &cfqq->rb_node) {
481 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
482 rb_key += __cfqq->rb_key;
483 } else
484 rb_key += jiffies;
485 } else if (!add_front) {
486 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
487 rb_key += cfqq->slice_resid;
488 cfqq->slice_resid = 0;
489 } else
490 rb_key = 0;
491
492 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
493 /*
494 * same position, nothing more to do
495 */
496 if (rb_key == cfqq->rb_key)
497 return;
498
499 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
500 }
501
502 left = 1;
503 parent = NULL;
504 p = &cfqd->service_tree.rb.rb_node;
505 while (*p) {
506 struct rb_node **n;
507
508 parent = *p;
509 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
510
511 /*
512 * sort RT queues first, we always want to give
513 * preference to them. IDLE queues goes to the back.
514 * after that, sort on the next service time.
515 */
516 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
517 n = &(*p)->rb_left;
518 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
519 n = &(*p)->rb_right;
520 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
521 n = &(*p)->rb_left;
522 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
523 n = &(*p)->rb_right;
524 else if (rb_key < __cfqq->rb_key)
525 n = &(*p)->rb_left;
526 else
527 n = &(*p)->rb_right;
528
529 if (n == &(*p)->rb_right)
530 left = 0;
531
532 p = n;
533 }
534
535 if (left)
536 cfqd->service_tree.left = &cfqq->rb_node;
537
538 cfqq->rb_key = rb_key;
539 rb_link_node(&cfqq->rb_node, parent, p);
540 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
541 }
542
543 /*
544 * Update cfqq's position in the service tree.
545 */
546 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
547 {
548 /*
549 * Resorting requires the cfqq to be on the RR list already.
550 */
551 if (cfq_cfqq_on_rr(cfqq))
552 cfq_service_tree_add(cfqd, cfqq, 0);
553 }
554
555 /*
556 * add to busy list of queues for service, trying to be fair in ordering
557 * the pending list according to last request service
558 */
559 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
560 {
561 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
562 BUG_ON(cfq_cfqq_on_rr(cfqq));
563 cfq_mark_cfqq_on_rr(cfqq);
564 cfqd->busy_queues++;
565
566 cfq_resort_rr_list(cfqd, cfqq);
567 }
568
569 /*
570 * Called when the cfqq no longer has requests pending, remove it from
571 * the service tree.
572 */
573 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
574 {
575 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
576 BUG_ON(!cfq_cfqq_on_rr(cfqq));
577 cfq_clear_cfqq_on_rr(cfqq);
578
579 if (!RB_EMPTY_NODE(&cfqq->rb_node))
580 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
581
582 BUG_ON(!cfqd->busy_queues);
583 cfqd->busy_queues--;
584 }
585
586 /*
587 * rb tree support functions
588 */
589 static void cfq_del_rq_rb(struct request *rq)
590 {
591 struct cfq_queue *cfqq = RQ_CFQQ(rq);
592 struct cfq_data *cfqd = cfqq->cfqd;
593 const int sync = rq_is_sync(rq);
594
595 BUG_ON(!cfqq->queued[sync]);
596 cfqq->queued[sync]--;
597
598 elv_rb_del(&cfqq->sort_list, rq);
599
600 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
601 cfq_del_cfqq_rr(cfqd, cfqq);
602 }
603
604 static void cfq_add_rq_rb(struct request *rq)
605 {
606 struct cfq_queue *cfqq = RQ_CFQQ(rq);
607 struct cfq_data *cfqd = cfqq->cfqd;
608 struct request *__alias;
609
610 cfqq->queued[rq_is_sync(rq)]++;
611
612 /*
613 * looks a little odd, but the first insert might return an alias.
614 * if that happens, put the alias on the dispatch list
615 */
616 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
617 cfq_dispatch_insert(cfqd->queue, __alias);
618
619 if (!cfq_cfqq_on_rr(cfqq))
620 cfq_add_cfqq_rr(cfqd, cfqq);
621
622 /*
623 * check if this request is a better next-serve candidate
624 */
625 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
626 BUG_ON(!cfqq->next_rq);
627 }
628
629 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
630 {
631 elv_rb_del(&cfqq->sort_list, rq);
632 cfqq->queued[rq_is_sync(rq)]--;
633 cfq_add_rq_rb(rq);
634 }
635
636 static struct request *
637 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
638 {
639 struct task_struct *tsk = current;
640 struct cfq_io_context *cic;
641 struct cfq_queue *cfqq;
642
643 cic = cfq_cic_lookup(cfqd, tsk->io_context);
644 if (!cic)
645 return NULL;
646
647 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
648 if (cfqq) {
649 sector_t sector = bio->bi_sector + bio_sectors(bio);
650
651 return elv_rb_find(&cfqq->sort_list, sector);
652 }
653
654 return NULL;
655 }
656
657 static void cfq_activate_request(struct request_queue *q, struct request *rq)
658 {
659 struct cfq_data *cfqd = q->elevator->elevator_data;
660
661 cfqd->rq_in_driver++;
662 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
663 cfqd->rq_in_driver);
664
665 cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
666 }
667
668 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
669 {
670 struct cfq_data *cfqd = q->elevator->elevator_data;
671
672 WARN_ON(!cfqd->rq_in_driver);
673 cfqd->rq_in_driver--;
674 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
675 cfqd->rq_in_driver);
676 }
677
678 static void cfq_remove_request(struct request *rq)
679 {
680 struct cfq_queue *cfqq = RQ_CFQQ(rq);
681
682 if (cfqq->next_rq == rq)
683 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
684
685 list_del_init(&rq->queuelist);
686 cfq_del_rq_rb(rq);
687
688 cfqq->cfqd->rq_queued--;
689 if (rq_is_meta(rq)) {
690 WARN_ON(!cfqq->meta_pending);
691 cfqq->meta_pending--;
692 }
693 }
694
695 static int cfq_merge(struct request_queue *q, struct request **req,
696 struct bio *bio)
697 {
698 struct cfq_data *cfqd = q->elevator->elevator_data;
699 struct request *__rq;
700
701 __rq = cfq_find_rq_fmerge(cfqd, bio);
702 if (__rq && elv_rq_merge_ok(__rq, bio)) {
703 *req = __rq;
704 return ELEVATOR_FRONT_MERGE;
705 }
706
707 return ELEVATOR_NO_MERGE;
708 }
709
710 static void cfq_merged_request(struct request_queue *q, struct request *req,
711 int type)
712 {
713 if (type == ELEVATOR_FRONT_MERGE) {
714 struct cfq_queue *cfqq = RQ_CFQQ(req);
715
716 cfq_reposition_rq_rb(cfqq, req);
717 }
718 }
719
720 static void
721 cfq_merged_requests(struct request_queue *q, struct request *rq,
722 struct request *next)
723 {
724 /*
725 * reposition in fifo if next is older than rq
726 */
727 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
728 time_before(next->start_time, rq->start_time))
729 list_move(&rq->queuelist, &next->queuelist);
730
731 cfq_remove_request(next);
732 }
733
734 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
735 struct bio *bio)
736 {
737 struct cfq_data *cfqd = q->elevator->elevator_data;
738 struct cfq_io_context *cic;
739 struct cfq_queue *cfqq;
740
741 /*
742 * Disallow merge of a sync bio into an async request.
743 */
744 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
745 return 0;
746
747 /*
748 * Lookup the cfqq that this bio will be queued with. Allow
749 * merge only if rq is queued there.
750 */
751 cic = cfq_cic_lookup(cfqd, current->io_context);
752 if (!cic)
753 return 0;
754
755 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
756 if (cfqq == RQ_CFQQ(rq))
757 return 1;
758
759 return 0;
760 }
761
762 static void __cfq_set_active_queue(struct cfq_data *cfqd,
763 struct cfq_queue *cfqq)
764 {
765 if (cfqq) {
766 cfq_log_cfqq(cfqd, cfqq, "set_active");
767 cfqq->slice_end = 0;
768 cfq_clear_cfqq_must_alloc_slice(cfqq);
769 cfq_clear_cfqq_fifo_expire(cfqq);
770 cfq_mark_cfqq_slice_new(cfqq);
771 cfq_clear_cfqq_queue_new(cfqq);
772 }
773
774 cfqd->active_queue = cfqq;
775 }
776
777 /*
778 * current cfqq expired its slice (or was too idle), select new one
779 */
780 static void
781 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
782 int timed_out)
783 {
784 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
785
786 if (cfq_cfqq_wait_request(cfqq))
787 del_timer(&cfqd->idle_slice_timer);
788
789 cfq_clear_cfqq_must_dispatch(cfqq);
790 cfq_clear_cfqq_wait_request(cfqq);
791
792 /*
793 * store what was left of this slice, if the queue idled/timed out
794 */
795 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
796 cfqq->slice_resid = cfqq->slice_end - jiffies;
797 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
798 }
799
800 cfq_resort_rr_list(cfqd, cfqq);
801
802 if (cfqq == cfqd->active_queue)
803 cfqd->active_queue = NULL;
804
805 if (cfqd->active_cic) {
806 put_io_context(cfqd->active_cic->ioc);
807 cfqd->active_cic = NULL;
808 }
809 }
810
811 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
812 {
813 struct cfq_queue *cfqq = cfqd->active_queue;
814
815 if (cfqq)
816 __cfq_slice_expired(cfqd, cfqq, timed_out);
817 }
818
819 /*
820 * Get next queue for service. Unless we have a queue preemption,
821 * we'll simply select the first cfqq in the service tree.
822 */
823 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
824 {
825 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
826 return NULL;
827
828 return cfq_rb_first(&cfqd->service_tree);
829 }
830
831 /*
832 * Get and set a new active queue for service.
833 */
834 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
835 {
836 struct cfq_queue *cfqq;
837
838 cfqq = cfq_get_next_queue(cfqd);
839 __cfq_set_active_queue(cfqd, cfqq);
840 return cfqq;
841 }
842
843 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
844 struct request *rq)
845 {
846 if (rq->sector >= cfqd->last_position)
847 return rq->sector - cfqd->last_position;
848 else
849 return cfqd->last_position - rq->sector;
850 }
851
852 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
853 {
854 struct cfq_io_context *cic = cfqd->active_cic;
855
856 if (!sample_valid(cic->seek_samples))
857 return 0;
858
859 return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
860 }
861
862 static int cfq_close_cooperator(struct cfq_data *cfq_data,
863 struct cfq_queue *cfqq)
864 {
865 /*
866 * We should notice if some of the queues are cooperating, eg
867 * working closely on the same area of the disk. In that case,
868 * we can group them together and don't waste time idling.
869 */
870 return 0;
871 }
872
873 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
874
875 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
876 {
877 struct cfq_queue *cfqq = cfqd->active_queue;
878 struct cfq_io_context *cic;
879 unsigned long sl;
880
881 /*
882 * SSD device without seek penalty, disable idling. But only do so
883 * for devices that support queuing, otherwise we still have a problem
884 * with sync vs async workloads.
885 */
886 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
887 return;
888
889 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
890 WARN_ON(cfq_cfqq_slice_new(cfqq));
891
892 /*
893 * idle is disabled, either manually or by past process history
894 */
895 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
896 return;
897
898 /*
899 * still requests with the driver, don't idle
900 */
901 if (cfqd->rq_in_driver)
902 return;
903
904 /*
905 * task has exited, don't wait
906 */
907 cic = cfqd->active_cic;
908 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
909 return;
910
911 /*
912 * See if this prio level has a good candidate
913 */
914 if (cfq_close_cooperator(cfqd, cfqq) &&
915 (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
916 return;
917
918 cfq_mark_cfqq_must_dispatch(cfqq);
919 cfq_mark_cfqq_wait_request(cfqq);
920
921 /*
922 * we don't want to idle for seeks, but we do want to allow
923 * fair distribution of slice time for a process doing back-to-back
924 * seeks. so allow a little bit of time for him to submit a new rq
925 */
926 sl = cfqd->cfq_slice_idle;
927 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
928 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
929
930 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
931 cfq_log(cfqd, "arm_idle: %lu", sl);
932 }
933
934 /*
935 * Move request from internal lists to the request queue dispatch list.
936 */
937 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
938 {
939 struct cfq_data *cfqd = q->elevator->elevator_data;
940 struct cfq_queue *cfqq = RQ_CFQQ(rq);
941
942 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
943
944 cfq_remove_request(rq);
945 cfqq->dispatched++;
946 elv_dispatch_sort(q, rq);
947
948 if (cfq_cfqq_sync(cfqq))
949 cfqd->sync_flight++;
950 }
951
952 /*
953 * return expired entry, or NULL to just start from scratch in rbtree
954 */
955 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
956 {
957 struct cfq_data *cfqd = cfqq->cfqd;
958 struct request *rq;
959 int fifo;
960
961 if (cfq_cfqq_fifo_expire(cfqq))
962 return NULL;
963
964 cfq_mark_cfqq_fifo_expire(cfqq);
965
966 if (list_empty(&cfqq->fifo))
967 return NULL;
968
969 fifo = cfq_cfqq_sync(cfqq);
970 rq = rq_entry_fifo(cfqq->fifo.next);
971
972 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
973 rq = NULL;
974
975 cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
976 return rq;
977 }
978
979 static inline int
980 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
981 {
982 const int base_rq = cfqd->cfq_slice_async_rq;
983
984 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
985
986 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
987 }
988
989 /*
990 * Select a queue for service. If we have a current active queue,
991 * check whether to continue servicing it, or retrieve and set a new one.
992 */
993 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
994 {
995 struct cfq_queue *cfqq;
996
997 cfqq = cfqd->active_queue;
998 if (!cfqq)
999 goto new_queue;
1000
1001 /*
1002 * The active queue has run out of time, expire it and select new.
1003 */
1004 if (cfq_slice_used(cfqq))
1005 goto expire;
1006
1007 /*
1008 * The active queue has requests and isn't expired, allow it to
1009 * dispatch.
1010 */
1011 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1012 goto keep_queue;
1013
1014 /*
1015 * No requests pending. If the active queue still has requests in
1016 * flight or is idling for a new request, allow either of these
1017 * conditions to happen (or time out) before selecting a new queue.
1018 */
1019 if (timer_pending(&cfqd->idle_slice_timer) ||
1020 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1021 cfqq = NULL;
1022 goto keep_queue;
1023 }
1024
1025 expire:
1026 cfq_slice_expired(cfqd, 0);
1027 new_queue:
1028 cfqq = cfq_set_active_queue(cfqd);
1029 keep_queue:
1030 return cfqq;
1031 }
1032
1033 /*
1034 * Dispatch some requests from cfqq, moving them to the request queue
1035 * dispatch list.
1036 */
1037 static int
1038 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1039 int max_dispatch)
1040 {
1041 int dispatched = 0;
1042
1043 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1044
1045 do {
1046 struct request *rq;
1047
1048 /*
1049 * follow expired path, else get first next available
1050 */
1051 rq = cfq_check_fifo(cfqq);
1052 if (rq == NULL)
1053 rq = cfqq->next_rq;
1054
1055 /*
1056 * finally, insert request into driver dispatch list
1057 */
1058 cfq_dispatch_insert(cfqd->queue, rq);
1059
1060 dispatched++;
1061
1062 if (!cfqd->active_cic) {
1063 atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1064 cfqd->active_cic = RQ_CIC(rq);
1065 }
1066
1067 if (RB_EMPTY_ROOT(&cfqq->sort_list))
1068 break;
1069
1070 } while (dispatched < max_dispatch);
1071
1072 /*
1073 * expire an async queue immediately if it has used up its slice. idle
1074 * queue always expire after 1 dispatch round.
1075 */
1076 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1077 dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1078 cfq_class_idle(cfqq))) {
1079 cfqq->slice_end = jiffies + 1;
1080 cfq_slice_expired(cfqd, 0);
1081 }
1082
1083 return dispatched;
1084 }
1085
1086 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1087 {
1088 int dispatched = 0;
1089
1090 while (cfqq->next_rq) {
1091 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1092 dispatched++;
1093 }
1094
1095 BUG_ON(!list_empty(&cfqq->fifo));
1096 return dispatched;
1097 }
1098
1099 /*
1100 * Drain our current requests. Used for barriers and when switching
1101 * io schedulers on-the-fly.
1102 */
1103 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1104 {
1105 struct cfq_queue *cfqq;
1106 int dispatched = 0;
1107
1108 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1109 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1110
1111 cfq_slice_expired(cfqd, 0);
1112
1113 BUG_ON(cfqd->busy_queues);
1114
1115 cfq_log(cfqd, "forced_dispatch=%d\n", dispatched);
1116 return dispatched;
1117 }
1118
1119 static int cfq_dispatch_requests(struct request_queue *q, int force)
1120 {
1121 struct cfq_data *cfqd = q->elevator->elevator_data;
1122 struct cfq_queue *cfqq;
1123 int dispatched;
1124
1125 if (!cfqd->busy_queues)
1126 return 0;
1127
1128 if (unlikely(force))
1129 return cfq_forced_dispatch(cfqd);
1130
1131 dispatched = 0;
1132 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1133 int max_dispatch;
1134
1135 max_dispatch = cfqd->cfq_quantum;
1136 if (cfq_class_idle(cfqq))
1137 max_dispatch = 1;
1138
1139 if (cfqq->dispatched >= max_dispatch && cfqd->busy_queues > 1)
1140 break;
1141
1142 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1143 break;
1144
1145 cfq_clear_cfqq_must_dispatch(cfqq);
1146 cfq_clear_cfqq_wait_request(cfqq);
1147 del_timer(&cfqd->idle_slice_timer);
1148
1149 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1150 }
1151
1152 cfq_log(cfqd, "dispatched=%d", dispatched);
1153 return dispatched;
1154 }
1155
1156 /*
1157 * task holds one reference to the queue, dropped when task exits. each rq
1158 * in-flight on this queue also holds a reference, dropped when rq is freed.
1159 *
1160 * queue lock must be held here.
1161 */
1162 static void cfq_put_queue(struct cfq_queue *cfqq)
1163 {
1164 struct cfq_data *cfqd = cfqq->cfqd;
1165
1166 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1167
1168 if (!atomic_dec_and_test(&cfqq->ref))
1169 return;
1170
1171 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1172 BUG_ON(rb_first(&cfqq->sort_list));
1173 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1174 BUG_ON(cfq_cfqq_on_rr(cfqq));
1175
1176 if (unlikely(cfqd->active_queue == cfqq)) {
1177 __cfq_slice_expired(cfqd, cfqq, 0);
1178 cfq_schedule_dispatch(cfqd);
1179 }
1180
1181 kmem_cache_free(cfq_pool, cfqq);
1182 }
1183
1184 /*
1185 * Must always be called with the rcu_read_lock() held
1186 */
1187 static void
1188 __call_for_each_cic(struct io_context *ioc,
1189 void (*func)(struct io_context *, struct cfq_io_context *))
1190 {
1191 struct cfq_io_context *cic;
1192 struct hlist_node *n;
1193
1194 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1195 func(ioc, cic);
1196 }
1197
1198 /*
1199 * Call func for each cic attached to this ioc.
1200 */
1201 static void
1202 call_for_each_cic(struct io_context *ioc,
1203 void (*func)(struct io_context *, struct cfq_io_context *))
1204 {
1205 rcu_read_lock();
1206 __call_for_each_cic(ioc, func);
1207 rcu_read_unlock();
1208 }
1209
1210 static void cfq_cic_free_rcu(struct rcu_head *head)
1211 {
1212 struct cfq_io_context *cic;
1213
1214 cic = container_of(head, struct cfq_io_context, rcu_head);
1215
1216 kmem_cache_free(cfq_ioc_pool, cic);
1217 elv_ioc_count_dec(ioc_count);
1218
1219 if (ioc_gone) {
1220 /*
1221 * CFQ scheduler is exiting, grab exit lock and check
1222 * the pending io context count. If it hits zero,
1223 * complete ioc_gone and set it back to NULL
1224 */
1225 spin_lock(&ioc_gone_lock);
1226 if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1227 complete(ioc_gone);
1228 ioc_gone = NULL;
1229 }
1230 spin_unlock(&ioc_gone_lock);
1231 }
1232 }
1233
1234 static void cfq_cic_free(struct cfq_io_context *cic)
1235 {
1236 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1237 }
1238
1239 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1240 {
1241 unsigned long flags;
1242
1243 BUG_ON(!cic->dead_key);
1244
1245 spin_lock_irqsave(&ioc->lock, flags);
1246 radix_tree_delete(&ioc->radix_root, cic->dead_key);
1247 hlist_del_rcu(&cic->cic_list);
1248 spin_unlock_irqrestore(&ioc->lock, flags);
1249
1250 cfq_cic_free(cic);
1251 }
1252
1253 /*
1254 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1255 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1256 * and ->trim() which is called with the task lock held
1257 */
1258 static void cfq_free_io_context(struct io_context *ioc)
1259 {
1260 /*
1261 * ioc->refcount is zero here, or we are called from elv_unregister(),
1262 * so no more cic's are allowed to be linked into this ioc. So it
1263 * should be ok to iterate over the known list, we will see all cic's
1264 * since no new ones are added.
1265 */
1266 __call_for_each_cic(ioc, cic_free_func);
1267 }
1268
1269 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1270 {
1271 if (unlikely(cfqq == cfqd->active_queue)) {
1272 __cfq_slice_expired(cfqd, cfqq, 0);
1273 cfq_schedule_dispatch(cfqd);
1274 }
1275
1276 cfq_put_queue(cfqq);
1277 }
1278
1279 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1280 struct cfq_io_context *cic)
1281 {
1282 struct io_context *ioc = cic->ioc;
1283
1284 list_del_init(&cic->queue_list);
1285
1286 /*
1287 * Make sure key == NULL is seen for dead queues
1288 */
1289 smp_wmb();
1290 cic->dead_key = (unsigned long) cic->key;
1291 cic->key = NULL;
1292
1293 if (ioc->ioc_data == cic)
1294 rcu_assign_pointer(ioc->ioc_data, NULL);
1295
1296 if (cic->cfqq[ASYNC]) {
1297 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1298 cic->cfqq[ASYNC] = NULL;
1299 }
1300
1301 if (cic->cfqq[SYNC]) {
1302 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1303 cic->cfqq[SYNC] = NULL;
1304 }
1305 }
1306
1307 static void cfq_exit_single_io_context(struct io_context *ioc,
1308 struct cfq_io_context *cic)
1309 {
1310 struct cfq_data *cfqd = cic->key;
1311
1312 if (cfqd) {
1313 struct request_queue *q = cfqd->queue;
1314 unsigned long flags;
1315
1316 spin_lock_irqsave(q->queue_lock, flags);
1317 __cfq_exit_single_io_context(cfqd, cic);
1318 spin_unlock_irqrestore(q->queue_lock, flags);
1319 }
1320 }
1321
1322 /*
1323 * The process that ioc belongs to has exited, we need to clean up
1324 * and put the internal structures we have that belongs to that process.
1325 */
1326 static void cfq_exit_io_context(struct io_context *ioc)
1327 {
1328 call_for_each_cic(ioc, cfq_exit_single_io_context);
1329 }
1330
1331 static struct cfq_io_context *
1332 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1333 {
1334 struct cfq_io_context *cic;
1335
1336 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1337 cfqd->queue->node);
1338 if (cic) {
1339 cic->last_end_request = jiffies;
1340 INIT_LIST_HEAD(&cic->queue_list);
1341 INIT_HLIST_NODE(&cic->cic_list);
1342 cic->dtor = cfq_free_io_context;
1343 cic->exit = cfq_exit_io_context;
1344 elv_ioc_count_inc(ioc_count);
1345 }
1346
1347 return cic;
1348 }
1349
1350 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1351 {
1352 struct task_struct *tsk = current;
1353 int ioprio_class;
1354
1355 if (!cfq_cfqq_prio_changed(cfqq))
1356 return;
1357
1358 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1359 switch (ioprio_class) {
1360 default:
1361 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1362 case IOPRIO_CLASS_NONE:
1363 /*
1364 * no prio set, inherit CPU scheduling settings
1365 */
1366 cfqq->ioprio = task_nice_ioprio(tsk);
1367 cfqq->ioprio_class = task_nice_ioclass(tsk);
1368 break;
1369 case IOPRIO_CLASS_RT:
1370 cfqq->ioprio = task_ioprio(ioc);
1371 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1372 break;
1373 case IOPRIO_CLASS_BE:
1374 cfqq->ioprio = task_ioprio(ioc);
1375 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1376 break;
1377 case IOPRIO_CLASS_IDLE:
1378 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1379 cfqq->ioprio = 7;
1380 cfq_clear_cfqq_idle_window(cfqq);
1381 break;
1382 }
1383
1384 /*
1385 * keep track of original prio settings in case we have to temporarily
1386 * elevate the priority of this queue
1387 */
1388 cfqq->org_ioprio = cfqq->ioprio;
1389 cfqq->org_ioprio_class = cfqq->ioprio_class;
1390 cfq_clear_cfqq_prio_changed(cfqq);
1391 }
1392
1393 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1394 {
1395 struct cfq_data *cfqd = cic->key;
1396 struct cfq_queue *cfqq;
1397 unsigned long flags;
1398
1399 if (unlikely(!cfqd))
1400 return;
1401
1402 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1403
1404 cfqq = cic->cfqq[ASYNC];
1405 if (cfqq) {
1406 struct cfq_queue *new_cfqq;
1407 new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc, GFP_ATOMIC);
1408 if (new_cfqq) {
1409 cic->cfqq[ASYNC] = new_cfqq;
1410 cfq_put_queue(cfqq);
1411 }
1412 }
1413
1414 cfqq = cic->cfqq[SYNC];
1415 if (cfqq)
1416 cfq_mark_cfqq_prio_changed(cfqq);
1417
1418 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1419 }
1420
1421 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1422 {
1423 call_for_each_cic(ioc, changed_ioprio);
1424 ioc->ioprio_changed = 0;
1425 }
1426
1427 static struct cfq_queue *
1428 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1429 struct io_context *ioc, gfp_t gfp_mask)
1430 {
1431 struct cfq_queue *cfqq, *new_cfqq = NULL;
1432 struct cfq_io_context *cic;
1433
1434 retry:
1435 cic = cfq_cic_lookup(cfqd, ioc);
1436 /* cic always exists here */
1437 cfqq = cic_to_cfqq(cic, is_sync);
1438
1439 if (!cfqq) {
1440 if (new_cfqq) {
1441 cfqq = new_cfqq;
1442 new_cfqq = NULL;
1443 } else if (gfp_mask & __GFP_WAIT) {
1444 /*
1445 * Inform the allocator of the fact that we will
1446 * just repeat this allocation if it fails, to allow
1447 * the allocator to do whatever it needs to attempt to
1448 * free memory.
1449 */
1450 spin_unlock_irq(cfqd->queue->queue_lock);
1451 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1452 gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1453 cfqd->queue->node);
1454 spin_lock_irq(cfqd->queue->queue_lock);
1455 goto retry;
1456 } else {
1457 cfqq = kmem_cache_alloc_node(cfq_pool,
1458 gfp_mask | __GFP_ZERO,
1459 cfqd->queue->node);
1460 if (!cfqq)
1461 goto out;
1462 }
1463
1464 RB_CLEAR_NODE(&cfqq->rb_node);
1465 INIT_LIST_HEAD(&cfqq->fifo);
1466
1467 atomic_set(&cfqq->ref, 0);
1468 cfqq->cfqd = cfqd;
1469
1470 cfq_mark_cfqq_prio_changed(cfqq);
1471 cfq_mark_cfqq_queue_new(cfqq);
1472
1473 cfq_init_prio_data(cfqq, ioc);
1474
1475 if (is_sync) {
1476 if (!cfq_class_idle(cfqq))
1477 cfq_mark_cfqq_idle_window(cfqq);
1478 cfq_mark_cfqq_sync(cfqq);
1479 }
1480 cfqq->pid = current->pid;
1481 cfq_log_cfqq(cfqd, cfqq, "alloced");
1482 }
1483
1484 if (new_cfqq)
1485 kmem_cache_free(cfq_pool, new_cfqq);
1486
1487 out:
1488 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1489 return cfqq;
1490 }
1491
1492 static struct cfq_queue **
1493 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1494 {
1495 switch (ioprio_class) {
1496 case IOPRIO_CLASS_RT:
1497 return &cfqd->async_cfqq[0][ioprio];
1498 case IOPRIO_CLASS_BE:
1499 return &cfqd->async_cfqq[1][ioprio];
1500 case IOPRIO_CLASS_IDLE:
1501 return &cfqd->async_idle_cfqq;
1502 default:
1503 BUG();
1504 }
1505 }
1506
1507 static struct cfq_queue *
1508 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1509 gfp_t gfp_mask)
1510 {
1511 const int ioprio = task_ioprio(ioc);
1512 const int ioprio_class = task_ioprio_class(ioc);
1513 struct cfq_queue **async_cfqq = NULL;
1514 struct cfq_queue *cfqq = NULL;
1515
1516 if (!is_sync) {
1517 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1518 cfqq = *async_cfqq;
1519 }
1520
1521 if (!cfqq) {
1522 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1523 if (!cfqq)
1524 return NULL;
1525 }
1526
1527 /*
1528 * pin the queue now that it's allocated, scheduler exit will prune it
1529 */
1530 if (!is_sync && !(*async_cfqq)) {
1531 atomic_inc(&cfqq->ref);
1532 *async_cfqq = cfqq;
1533 }
1534
1535 atomic_inc(&cfqq->ref);
1536 return cfqq;
1537 }
1538
1539 /*
1540 * We drop cfq io contexts lazily, so we may find a dead one.
1541 */
1542 static void
1543 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1544 struct cfq_io_context *cic)
1545 {
1546 unsigned long flags;
1547
1548 WARN_ON(!list_empty(&cic->queue_list));
1549
1550 spin_lock_irqsave(&ioc->lock, flags);
1551
1552 BUG_ON(ioc->ioc_data == cic);
1553
1554 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1555 hlist_del_rcu(&cic->cic_list);
1556 spin_unlock_irqrestore(&ioc->lock, flags);
1557
1558 cfq_cic_free(cic);
1559 }
1560
1561 static struct cfq_io_context *
1562 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1563 {
1564 struct cfq_io_context *cic;
1565 unsigned long flags;
1566 void *k;
1567
1568 if (unlikely(!ioc))
1569 return NULL;
1570
1571 rcu_read_lock();
1572
1573 /*
1574 * we maintain a last-hit cache, to avoid browsing over the tree
1575 */
1576 cic = rcu_dereference(ioc->ioc_data);
1577 if (cic && cic->key == cfqd) {
1578 rcu_read_unlock();
1579 return cic;
1580 }
1581
1582 do {
1583 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1584 rcu_read_unlock();
1585 if (!cic)
1586 break;
1587 /* ->key must be copied to avoid race with cfq_exit_queue() */
1588 k = cic->key;
1589 if (unlikely(!k)) {
1590 cfq_drop_dead_cic(cfqd, ioc, cic);
1591 rcu_read_lock();
1592 continue;
1593 }
1594
1595 spin_lock_irqsave(&ioc->lock, flags);
1596 rcu_assign_pointer(ioc->ioc_data, cic);
1597 spin_unlock_irqrestore(&ioc->lock, flags);
1598 break;
1599 } while (1);
1600
1601 return cic;
1602 }
1603
1604 /*
1605 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1606 * the process specific cfq io context when entered from the block layer.
1607 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1608 */
1609 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1610 struct cfq_io_context *cic, gfp_t gfp_mask)
1611 {
1612 unsigned long flags;
1613 int ret;
1614
1615 ret = radix_tree_preload(gfp_mask);
1616 if (!ret) {
1617 cic->ioc = ioc;
1618 cic->key = cfqd;
1619
1620 spin_lock_irqsave(&ioc->lock, flags);
1621 ret = radix_tree_insert(&ioc->radix_root,
1622 (unsigned long) cfqd, cic);
1623 if (!ret)
1624 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1625 spin_unlock_irqrestore(&ioc->lock, flags);
1626
1627 radix_tree_preload_end();
1628
1629 if (!ret) {
1630 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1631 list_add(&cic->queue_list, &cfqd->cic_list);
1632 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1633 }
1634 }
1635
1636 if (ret)
1637 printk(KERN_ERR "cfq: cic link failed!\n");
1638
1639 return ret;
1640 }
1641
1642 /*
1643 * Setup general io context and cfq io context. There can be several cfq
1644 * io contexts per general io context, if this process is doing io to more
1645 * than one device managed by cfq.
1646 */
1647 static struct cfq_io_context *
1648 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1649 {
1650 struct io_context *ioc = NULL;
1651 struct cfq_io_context *cic;
1652
1653 might_sleep_if(gfp_mask & __GFP_WAIT);
1654
1655 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1656 if (!ioc)
1657 return NULL;
1658
1659 cic = cfq_cic_lookup(cfqd, ioc);
1660 if (cic)
1661 goto out;
1662
1663 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1664 if (cic == NULL)
1665 goto err;
1666
1667 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1668 goto err_free;
1669
1670 out:
1671 smp_read_barrier_depends();
1672 if (unlikely(ioc->ioprio_changed))
1673 cfq_ioc_set_ioprio(ioc);
1674
1675 return cic;
1676 err_free:
1677 cfq_cic_free(cic);
1678 err:
1679 put_io_context(ioc);
1680 return NULL;
1681 }
1682
1683 static void
1684 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1685 {
1686 unsigned long elapsed = jiffies - cic->last_end_request;
1687 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1688
1689 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1690 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1691 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1692 }
1693
1694 static void
1695 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1696 struct request *rq)
1697 {
1698 sector_t sdist;
1699 u64 total;
1700
1701 if (cic->last_request_pos < rq->sector)
1702 sdist = rq->sector - cic->last_request_pos;
1703 else
1704 sdist = cic->last_request_pos - rq->sector;
1705
1706 /*
1707 * Don't allow the seek distance to get too large from the
1708 * odd fragment, pagein, etc
1709 */
1710 if (cic->seek_samples <= 60) /* second&third seek */
1711 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1712 else
1713 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1714
1715 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1716 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1717 total = cic->seek_total + (cic->seek_samples/2);
1718 do_div(total, cic->seek_samples);
1719 cic->seek_mean = (sector_t)total;
1720 }
1721
1722 /*
1723 * Disable idle window if the process thinks too long or seeks so much that
1724 * it doesn't matter
1725 */
1726 static void
1727 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1728 struct cfq_io_context *cic)
1729 {
1730 int old_idle, enable_idle;
1731
1732 /*
1733 * Don't idle for async or idle io prio class
1734 */
1735 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1736 return;
1737
1738 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1739
1740 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1741 (cfqd->hw_tag && CIC_SEEKY(cic)))
1742 enable_idle = 0;
1743 else if (sample_valid(cic->ttime_samples)) {
1744 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1745 enable_idle = 0;
1746 else
1747 enable_idle = 1;
1748 }
1749
1750 if (old_idle != enable_idle) {
1751 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1752 if (enable_idle)
1753 cfq_mark_cfqq_idle_window(cfqq);
1754 else
1755 cfq_clear_cfqq_idle_window(cfqq);
1756 }
1757 }
1758
1759 /*
1760 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1761 * no or if we aren't sure, a 1 will cause a preempt.
1762 */
1763 static int
1764 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1765 struct request *rq)
1766 {
1767 struct cfq_queue *cfqq;
1768
1769 cfqq = cfqd->active_queue;
1770 if (!cfqq)
1771 return 0;
1772
1773 if (cfq_slice_used(cfqq))
1774 return 1;
1775
1776 if (cfq_class_idle(new_cfqq))
1777 return 0;
1778
1779 if (cfq_class_idle(cfqq))
1780 return 1;
1781
1782 /*
1783 * if the new request is sync, but the currently running queue is
1784 * not, let the sync request have priority.
1785 */
1786 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1787 return 1;
1788
1789 /*
1790 * So both queues are sync. Let the new request get disk time if
1791 * it's a metadata request and the current queue is doing regular IO.
1792 */
1793 if (rq_is_meta(rq) && !cfqq->meta_pending)
1794 return 1;
1795
1796 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1797 return 0;
1798
1799 /*
1800 * if this request is as-good as one we would expect from the
1801 * current cfqq, let it preempt
1802 */
1803 if (cfq_rq_close(cfqd, rq))
1804 return 1;
1805
1806 return 0;
1807 }
1808
1809 /*
1810 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1811 * let it have half of its nominal slice.
1812 */
1813 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1814 {
1815 cfq_log_cfqq(cfqd, cfqq, "preempt");
1816 cfq_slice_expired(cfqd, 1);
1817
1818 /*
1819 * Put the new queue at the front of the of the current list,
1820 * so we know that it will be selected next.
1821 */
1822 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1823
1824 cfq_service_tree_add(cfqd, cfqq, 1);
1825
1826 cfqq->slice_end = 0;
1827 cfq_mark_cfqq_slice_new(cfqq);
1828 }
1829
1830 /*
1831 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1832 * something we should do about it
1833 */
1834 static void
1835 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1836 struct request *rq)
1837 {
1838 struct cfq_io_context *cic = RQ_CIC(rq);
1839
1840 cfqd->rq_queued++;
1841 if (rq_is_meta(rq))
1842 cfqq->meta_pending++;
1843
1844 cfq_update_io_thinktime(cfqd, cic);
1845 cfq_update_io_seektime(cfqd, cic, rq);
1846 cfq_update_idle_window(cfqd, cfqq, cic);
1847
1848 cic->last_request_pos = rq->sector + rq->nr_sectors;
1849
1850 if (cfqq == cfqd->active_queue) {
1851 /*
1852 * if we are waiting for a request for this queue, let it rip
1853 * immediately and flag that we must not expire this queue
1854 * just now
1855 */
1856 if (cfq_cfqq_wait_request(cfqq)) {
1857 cfq_mark_cfqq_must_dispatch(cfqq);
1858 del_timer(&cfqd->idle_slice_timer);
1859 blk_start_queueing(cfqd->queue);
1860 }
1861 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1862 /*
1863 * not the active queue - expire current slice if it is
1864 * idle and has expired it's mean thinktime or this new queue
1865 * has some old slice time left and is of higher priority
1866 */
1867 cfq_preempt_queue(cfqd, cfqq);
1868 cfq_mark_cfqq_must_dispatch(cfqq);
1869 blk_start_queueing(cfqd->queue);
1870 }
1871 }
1872
1873 static void cfq_insert_request(struct request_queue *q, struct request *rq)
1874 {
1875 struct cfq_data *cfqd = q->elevator->elevator_data;
1876 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1877
1878 cfq_log_cfqq(cfqd, cfqq, "insert_request");
1879 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1880
1881 cfq_add_rq_rb(rq);
1882
1883 list_add_tail(&rq->queuelist, &cfqq->fifo);
1884
1885 cfq_rq_enqueued(cfqd, cfqq, rq);
1886 }
1887
1888 /*
1889 * Update hw_tag based on peak queue depth over 50 samples under
1890 * sufficient load.
1891 */
1892 static void cfq_update_hw_tag(struct cfq_data *cfqd)
1893 {
1894 if (cfqd->rq_in_driver > cfqd->rq_in_driver_peak)
1895 cfqd->rq_in_driver_peak = cfqd->rq_in_driver;
1896
1897 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
1898 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
1899 return;
1900
1901 if (cfqd->hw_tag_samples++ < 50)
1902 return;
1903
1904 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
1905 cfqd->hw_tag = 1;
1906 else
1907 cfqd->hw_tag = 0;
1908
1909 cfqd->hw_tag_samples = 0;
1910 cfqd->rq_in_driver_peak = 0;
1911 }
1912
1913 static void cfq_completed_request(struct request_queue *q, struct request *rq)
1914 {
1915 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1916 struct cfq_data *cfqd = cfqq->cfqd;
1917 const int sync = rq_is_sync(rq);
1918 unsigned long now;
1919
1920 now = jiffies;
1921 cfq_log_cfqq(cfqd, cfqq, "complete");
1922
1923 cfq_update_hw_tag(cfqd);
1924
1925 WARN_ON(!cfqd->rq_in_driver);
1926 WARN_ON(!cfqq->dispatched);
1927 cfqd->rq_in_driver--;
1928 cfqq->dispatched--;
1929
1930 if (cfq_cfqq_sync(cfqq))
1931 cfqd->sync_flight--;
1932
1933 if (!cfq_class_idle(cfqq))
1934 cfqd->last_end_request = now;
1935
1936 if (sync)
1937 RQ_CIC(rq)->last_end_request = now;
1938
1939 /*
1940 * If this is the active queue, check if it needs to be expired,
1941 * or if we want to idle in case it has no pending requests.
1942 */
1943 if (cfqd->active_queue == cfqq) {
1944 if (cfq_cfqq_slice_new(cfqq)) {
1945 cfq_set_prio_slice(cfqd, cfqq);
1946 cfq_clear_cfqq_slice_new(cfqq);
1947 }
1948 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
1949 cfq_slice_expired(cfqd, 1);
1950 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1951 cfq_arm_slice_timer(cfqd);
1952 }
1953
1954 if (!cfqd->rq_in_driver)
1955 cfq_schedule_dispatch(cfqd);
1956 }
1957
1958 /*
1959 * we temporarily boost lower priority queues if they are holding fs exclusive
1960 * resources. they are boosted to normal prio (CLASS_BE/4)
1961 */
1962 static void cfq_prio_boost(struct cfq_queue *cfqq)
1963 {
1964 if (has_fs_excl()) {
1965 /*
1966 * boost idle prio on transactions that would lock out other
1967 * users of the filesystem
1968 */
1969 if (cfq_class_idle(cfqq))
1970 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1971 if (cfqq->ioprio > IOPRIO_NORM)
1972 cfqq->ioprio = IOPRIO_NORM;
1973 } else {
1974 /*
1975 * check if we need to unboost the queue
1976 */
1977 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1978 cfqq->ioprio_class = cfqq->org_ioprio_class;
1979 if (cfqq->ioprio != cfqq->org_ioprio)
1980 cfqq->ioprio = cfqq->org_ioprio;
1981 }
1982 }
1983
1984 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1985 {
1986 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1987 !cfq_cfqq_must_alloc_slice(cfqq)) {
1988 cfq_mark_cfqq_must_alloc_slice(cfqq);
1989 return ELV_MQUEUE_MUST;
1990 }
1991
1992 return ELV_MQUEUE_MAY;
1993 }
1994
1995 static int cfq_may_queue(struct request_queue *q, int rw)
1996 {
1997 struct cfq_data *cfqd = q->elevator->elevator_data;
1998 struct task_struct *tsk = current;
1999 struct cfq_io_context *cic;
2000 struct cfq_queue *cfqq;
2001
2002 /*
2003 * don't force setup of a queue from here, as a call to may_queue
2004 * does not necessarily imply that a request actually will be queued.
2005 * so just lookup a possibly existing queue, or return 'may queue'
2006 * if that fails
2007 */
2008 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2009 if (!cic)
2010 return ELV_MQUEUE_MAY;
2011
2012 cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
2013 if (cfqq) {
2014 cfq_init_prio_data(cfqq, cic->ioc);
2015 cfq_prio_boost(cfqq);
2016
2017 return __cfq_may_queue(cfqq);
2018 }
2019
2020 return ELV_MQUEUE_MAY;
2021 }
2022
2023 /*
2024 * queue lock held here
2025 */
2026 static void cfq_put_request(struct request *rq)
2027 {
2028 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2029
2030 if (cfqq) {
2031 const int rw = rq_data_dir(rq);
2032
2033 BUG_ON(!cfqq->allocated[rw]);
2034 cfqq->allocated[rw]--;
2035
2036 put_io_context(RQ_CIC(rq)->ioc);
2037
2038 rq->elevator_private = NULL;
2039 rq->elevator_private2 = NULL;
2040
2041 cfq_put_queue(cfqq);
2042 }
2043 }
2044
2045 /*
2046 * Allocate cfq data structures associated with this request.
2047 */
2048 static int
2049 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2050 {
2051 struct cfq_data *cfqd = q->elevator->elevator_data;
2052 struct cfq_io_context *cic;
2053 const int rw = rq_data_dir(rq);
2054 const int is_sync = rq_is_sync(rq);
2055 struct cfq_queue *cfqq;
2056 unsigned long flags;
2057
2058 might_sleep_if(gfp_mask & __GFP_WAIT);
2059
2060 cic = cfq_get_io_context(cfqd, gfp_mask);
2061
2062 spin_lock_irqsave(q->queue_lock, flags);
2063
2064 if (!cic)
2065 goto queue_fail;
2066
2067 cfqq = cic_to_cfqq(cic, is_sync);
2068 if (!cfqq) {
2069 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2070
2071 if (!cfqq)
2072 goto queue_fail;
2073
2074 cic_set_cfqq(cic, cfqq, is_sync);
2075 }
2076
2077 cfqq->allocated[rw]++;
2078 cfq_clear_cfqq_must_alloc(cfqq);
2079 atomic_inc(&cfqq->ref);
2080
2081 spin_unlock_irqrestore(q->queue_lock, flags);
2082
2083 rq->elevator_private = cic;
2084 rq->elevator_private2 = cfqq;
2085 return 0;
2086
2087 queue_fail:
2088 if (cic)
2089 put_io_context(cic->ioc);
2090
2091 cfq_schedule_dispatch(cfqd);
2092 spin_unlock_irqrestore(q->queue_lock, flags);
2093 cfq_log(cfqd, "set_request fail");
2094 return 1;
2095 }
2096
2097 static void cfq_kick_queue(struct work_struct *work)
2098 {
2099 struct cfq_data *cfqd =
2100 container_of(work, struct cfq_data, unplug_work);
2101 struct request_queue *q = cfqd->queue;
2102 unsigned long flags;
2103
2104 spin_lock_irqsave(q->queue_lock, flags);
2105 blk_start_queueing(q);
2106 spin_unlock_irqrestore(q->queue_lock, flags);
2107 }
2108
2109 /*
2110 * Timer running if the active_queue is currently idling inside its time slice
2111 */
2112 static void cfq_idle_slice_timer(unsigned long data)
2113 {
2114 struct cfq_data *cfqd = (struct cfq_data *) data;
2115 struct cfq_queue *cfqq;
2116 unsigned long flags;
2117 int timed_out = 1;
2118
2119 cfq_log(cfqd, "idle timer fired");
2120
2121 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2122
2123 cfqq = cfqd->active_queue;
2124 if (cfqq) {
2125 timed_out = 0;
2126
2127 /*
2128 * expired
2129 */
2130 if (cfq_slice_used(cfqq))
2131 goto expire;
2132
2133 /*
2134 * only expire and reinvoke request handler, if there are
2135 * other queues with pending requests
2136 */
2137 if (!cfqd->busy_queues)
2138 goto out_cont;
2139
2140 /*
2141 * not expired and it has a request pending, let it dispatch
2142 */
2143 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
2144 cfq_mark_cfqq_must_dispatch(cfqq);
2145 goto out_kick;
2146 }
2147 }
2148 expire:
2149 cfq_slice_expired(cfqd, timed_out);
2150 out_kick:
2151 cfq_schedule_dispatch(cfqd);
2152 out_cont:
2153 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2154 }
2155
2156 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2157 {
2158 del_timer_sync(&cfqd->idle_slice_timer);
2159 cancel_work_sync(&cfqd->unplug_work);
2160 }
2161
2162 static void cfq_put_async_queues(struct cfq_data *cfqd)
2163 {
2164 int i;
2165
2166 for (i = 0; i < IOPRIO_BE_NR; i++) {
2167 if (cfqd->async_cfqq[0][i])
2168 cfq_put_queue(cfqd->async_cfqq[0][i]);
2169 if (cfqd->async_cfqq[1][i])
2170 cfq_put_queue(cfqd->async_cfqq[1][i]);
2171 }
2172
2173 if (cfqd->async_idle_cfqq)
2174 cfq_put_queue(cfqd->async_idle_cfqq);
2175 }
2176
2177 static void cfq_exit_queue(struct elevator_queue *e)
2178 {
2179 struct cfq_data *cfqd = e->elevator_data;
2180 struct request_queue *q = cfqd->queue;
2181
2182 cfq_shutdown_timer_wq(cfqd);
2183
2184 spin_lock_irq(q->queue_lock);
2185
2186 if (cfqd->active_queue)
2187 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2188
2189 while (!list_empty(&cfqd->cic_list)) {
2190 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2191 struct cfq_io_context,
2192 queue_list);
2193
2194 __cfq_exit_single_io_context(cfqd, cic);
2195 }
2196
2197 cfq_put_async_queues(cfqd);
2198
2199 spin_unlock_irq(q->queue_lock);
2200
2201 cfq_shutdown_timer_wq(cfqd);
2202
2203 kfree(cfqd);
2204 }
2205
2206 static void *cfq_init_queue(struct request_queue *q)
2207 {
2208 struct cfq_data *cfqd;
2209
2210 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2211 if (!cfqd)
2212 return NULL;
2213
2214 cfqd->service_tree = CFQ_RB_ROOT;
2215 INIT_LIST_HEAD(&cfqd->cic_list);
2216
2217 cfqd->queue = q;
2218
2219 init_timer(&cfqd->idle_slice_timer);
2220 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2221 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2222
2223 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2224
2225 cfqd->last_end_request = jiffies;
2226 cfqd->cfq_quantum = cfq_quantum;
2227 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2228 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2229 cfqd->cfq_back_max = cfq_back_max;
2230 cfqd->cfq_back_penalty = cfq_back_penalty;
2231 cfqd->cfq_slice[0] = cfq_slice_async;
2232 cfqd->cfq_slice[1] = cfq_slice_sync;
2233 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2234 cfqd->cfq_slice_idle = cfq_slice_idle;
2235 cfqd->hw_tag = 1;
2236
2237 return cfqd;
2238 }
2239
2240 static void cfq_slab_kill(void)
2241 {
2242 /*
2243 * Caller already ensured that pending RCU callbacks are completed,
2244 * so we should have no busy allocations at this point.
2245 */
2246 if (cfq_pool)
2247 kmem_cache_destroy(cfq_pool);
2248 if (cfq_ioc_pool)
2249 kmem_cache_destroy(cfq_ioc_pool);
2250 }
2251
2252 static int __init cfq_slab_setup(void)
2253 {
2254 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2255 if (!cfq_pool)
2256 goto fail;
2257
2258 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2259 if (!cfq_ioc_pool)
2260 goto fail;
2261
2262 return 0;
2263 fail:
2264 cfq_slab_kill();
2265 return -ENOMEM;
2266 }
2267
2268 /*
2269 * sysfs parts below -->
2270 */
2271 static ssize_t
2272 cfq_var_show(unsigned int var, char *page)
2273 {
2274 return sprintf(page, "%d\n", var);
2275 }
2276
2277 static ssize_t
2278 cfq_var_store(unsigned int *var, const char *page, size_t count)
2279 {
2280 char *p = (char *) page;
2281
2282 *var = simple_strtoul(p, &p, 10);
2283 return count;
2284 }
2285
2286 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2287 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
2288 { \
2289 struct cfq_data *cfqd = e->elevator_data; \
2290 unsigned int __data = __VAR; \
2291 if (__CONV) \
2292 __data = jiffies_to_msecs(__data); \
2293 return cfq_var_show(__data, (page)); \
2294 }
2295 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2296 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2297 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2298 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2299 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2300 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2301 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2302 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2303 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2304 #undef SHOW_FUNCTION
2305
2306 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2307 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2308 { \
2309 struct cfq_data *cfqd = e->elevator_data; \
2310 unsigned int __data; \
2311 int ret = cfq_var_store(&__data, (page), count); \
2312 if (__data < (MIN)) \
2313 __data = (MIN); \
2314 else if (__data > (MAX)) \
2315 __data = (MAX); \
2316 if (__CONV) \
2317 *(__PTR) = msecs_to_jiffies(__data); \
2318 else \
2319 *(__PTR) = __data; \
2320 return ret; \
2321 }
2322 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2323 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2324 UINT_MAX, 1);
2325 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2326 UINT_MAX, 1);
2327 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2328 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2329 UINT_MAX, 0);
2330 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2331 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2332 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2333 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2334 UINT_MAX, 0);
2335 #undef STORE_FUNCTION
2336
2337 #define CFQ_ATTR(name) \
2338 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2339
2340 static struct elv_fs_entry cfq_attrs[] = {
2341 CFQ_ATTR(quantum),
2342 CFQ_ATTR(fifo_expire_sync),
2343 CFQ_ATTR(fifo_expire_async),
2344 CFQ_ATTR(back_seek_max),
2345 CFQ_ATTR(back_seek_penalty),
2346 CFQ_ATTR(slice_sync),
2347 CFQ_ATTR(slice_async),
2348 CFQ_ATTR(slice_async_rq),
2349 CFQ_ATTR(slice_idle),
2350 __ATTR_NULL
2351 };
2352
2353 static struct elevator_type iosched_cfq = {
2354 .ops = {
2355 .elevator_merge_fn = cfq_merge,
2356 .elevator_merged_fn = cfq_merged_request,
2357 .elevator_merge_req_fn = cfq_merged_requests,
2358 .elevator_allow_merge_fn = cfq_allow_merge,
2359 .elevator_dispatch_fn = cfq_dispatch_requests,
2360 .elevator_add_req_fn = cfq_insert_request,
2361 .elevator_activate_req_fn = cfq_activate_request,
2362 .elevator_deactivate_req_fn = cfq_deactivate_request,
2363 .elevator_queue_empty_fn = cfq_queue_empty,
2364 .elevator_completed_req_fn = cfq_completed_request,
2365 .elevator_former_req_fn = elv_rb_former_request,
2366 .elevator_latter_req_fn = elv_rb_latter_request,
2367 .elevator_set_req_fn = cfq_set_request,
2368 .elevator_put_req_fn = cfq_put_request,
2369 .elevator_may_queue_fn = cfq_may_queue,
2370 .elevator_init_fn = cfq_init_queue,
2371 .elevator_exit_fn = cfq_exit_queue,
2372 .trim = cfq_free_io_context,
2373 },
2374 .elevator_attrs = cfq_attrs,
2375 .elevator_name = "cfq",
2376 .elevator_owner = THIS_MODULE,
2377 };
2378
2379 static int __init cfq_init(void)
2380 {
2381 /*
2382 * could be 0 on HZ < 1000 setups
2383 */
2384 if (!cfq_slice_async)
2385 cfq_slice_async = 1;
2386 if (!cfq_slice_idle)
2387 cfq_slice_idle = 1;
2388
2389 if (cfq_slab_setup())
2390 return -ENOMEM;
2391
2392 elv_register(&iosched_cfq);
2393
2394 return 0;
2395 }
2396
2397 static void __exit cfq_exit(void)
2398 {
2399 DECLARE_COMPLETION_ONSTACK(all_gone);
2400 elv_unregister(&iosched_cfq);
2401 ioc_gone = &all_gone;
2402 /* ioc_gone's update must be visible before reading ioc_count */
2403 smp_wmb();
2404
2405 /*
2406 * this also protects us from entering cfq_slab_kill() with
2407 * pending RCU callbacks
2408 */
2409 if (elv_ioc_count_read(ioc_count))
2410 wait_for_completion(&all_gone);
2411 cfq_slab_kill();
2412 }
2413
2414 module_init(cfq_init);
2415 module_exit(cfq_exit);
2416
2417 MODULE_AUTHOR("Jens Axboe");
2418 MODULE_LICENSE("GPL");
2419 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");