]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/cfq-iosched.c
Merge branch 'for-2.6.25' of git://git.kernel.dk/linux-2.6-block
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14
15 /*
16 * tunables
17 */
18 static const int cfq_quantum = 4; /* max queue in one round of service */
19 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
20 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
21 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
22
23 static const int cfq_slice_sync = HZ / 10;
24 static int cfq_slice_async = HZ / 25;
25 static const int cfq_slice_async_rq = 2;
26 static int cfq_slice_idle = HZ / 125;
27
28 /*
29 * offset from end of service tree
30 */
31 #define CFQ_IDLE_DELAY (HZ / 5)
32
33 /*
34 * below this threshold, we consider thinktime immediate
35 */
36 #define CFQ_MIN_TT (2)
37
38 #define CFQ_SLICE_SCALE (5)
39
40 #define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
41 #define RQ_CFQQ(rq) ((rq)->elevator_private2)
42
43 static struct kmem_cache *cfq_pool;
44 static struct kmem_cache *cfq_ioc_pool;
45
46 static DEFINE_PER_CPU(unsigned long, ioc_count);
47 static struct completion *ioc_gone;
48
49 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
50 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
51 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
52
53 #define ASYNC (0)
54 #define SYNC (1)
55
56 #define sample_valid(samples) ((samples) > 80)
57
58 /*
59 * Most of our rbtree usage is for sorting with min extraction, so
60 * if we cache the leftmost node we don't have to walk down the tree
61 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
62 * move this into the elevator for the rq sorting as well.
63 */
64 struct cfq_rb_root {
65 struct rb_root rb;
66 struct rb_node *left;
67 };
68 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
69
70 /*
71 * Per block device queue structure
72 */
73 struct cfq_data {
74 struct request_queue *queue;
75
76 /*
77 * rr list of queues with requests and the count of them
78 */
79 struct cfq_rb_root service_tree;
80 unsigned int busy_queues;
81
82 int rq_in_driver;
83 int sync_flight;
84 int hw_tag;
85
86 /*
87 * idle window management
88 */
89 struct timer_list idle_slice_timer;
90 struct work_struct unplug_work;
91
92 struct cfq_queue *active_queue;
93 struct cfq_io_context *active_cic;
94
95 /*
96 * async queue for each priority case
97 */
98 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
99 struct cfq_queue *async_idle_cfqq;
100
101 sector_t last_position;
102 unsigned long last_end_request;
103
104 /*
105 * tunables, see top of file
106 */
107 unsigned int cfq_quantum;
108 unsigned int cfq_fifo_expire[2];
109 unsigned int cfq_back_penalty;
110 unsigned int cfq_back_max;
111 unsigned int cfq_slice[2];
112 unsigned int cfq_slice_async_rq;
113 unsigned int cfq_slice_idle;
114
115 struct list_head cic_list;
116 };
117
118 /*
119 * Per process-grouping structure
120 */
121 struct cfq_queue {
122 /* reference count */
123 atomic_t ref;
124 /* parent cfq_data */
125 struct cfq_data *cfqd;
126 /* service_tree member */
127 struct rb_node rb_node;
128 /* service_tree key */
129 unsigned long rb_key;
130 /* sorted list of pending requests */
131 struct rb_root sort_list;
132 /* if fifo isn't expired, next request to serve */
133 struct request *next_rq;
134 /* requests queued in sort_list */
135 int queued[2];
136 /* currently allocated requests */
137 int allocated[2];
138 /* pending metadata requests */
139 int meta_pending;
140 /* fifo list of requests in sort_list */
141 struct list_head fifo;
142
143 unsigned long slice_end;
144 long slice_resid;
145
146 /* number of requests that are on the dispatch list or inside driver */
147 int dispatched;
148
149 /* io prio of this group */
150 unsigned short ioprio, org_ioprio;
151 unsigned short ioprio_class, org_ioprio_class;
152
153 /* various state flags, see below */
154 unsigned int flags;
155 };
156
157 enum cfqq_state_flags {
158 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
159 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
160 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
161 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
162 CFQ_CFQQ_FLAG_must_dispatch, /* must dispatch, even if expired */
163 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
164 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
165 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
166 CFQ_CFQQ_FLAG_queue_new, /* queue never been serviced */
167 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
168 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
169 };
170
171 #define CFQ_CFQQ_FNS(name) \
172 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
173 { \
174 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
175 } \
176 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
177 { \
178 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
179 } \
180 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
181 { \
182 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
183 }
184
185 CFQ_CFQQ_FNS(on_rr);
186 CFQ_CFQQ_FNS(wait_request);
187 CFQ_CFQQ_FNS(must_alloc);
188 CFQ_CFQQ_FNS(must_alloc_slice);
189 CFQ_CFQQ_FNS(must_dispatch);
190 CFQ_CFQQ_FNS(fifo_expire);
191 CFQ_CFQQ_FNS(idle_window);
192 CFQ_CFQQ_FNS(prio_changed);
193 CFQ_CFQQ_FNS(queue_new);
194 CFQ_CFQQ_FNS(slice_new);
195 CFQ_CFQQ_FNS(sync);
196 #undef CFQ_CFQQ_FNS
197
198 static void cfq_dispatch_insert(struct request_queue *, struct request *);
199 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
200 struct io_context *, gfp_t);
201 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
202 struct io_context *);
203
204 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
205 int is_sync)
206 {
207 return cic->cfqq[!!is_sync];
208 }
209
210 static inline void cic_set_cfqq(struct cfq_io_context *cic,
211 struct cfq_queue *cfqq, int is_sync)
212 {
213 cic->cfqq[!!is_sync] = cfqq;
214 }
215
216 /*
217 * We regard a request as SYNC, if it's either a read or has the SYNC bit
218 * set (in which case it could also be direct WRITE).
219 */
220 static inline int cfq_bio_sync(struct bio *bio)
221 {
222 if (bio_data_dir(bio) == READ || bio_sync(bio))
223 return 1;
224
225 return 0;
226 }
227
228 /*
229 * scheduler run of queue, if there are requests pending and no one in the
230 * driver that will restart queueing
231 */
232 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
233 {
234 if (cfqd->busy_queues)
235 kblockd_schedule_work(&cfqd->unplug_work);
236 }
237
238 static int cfq_queue_empty(struct request_queue *q)
239 {
240 struct cfq_data *cfqd = q->elevator->elevator_data;
241
242 return !cfqd->busy_queues;
243 }
244
245 /*
246 * Scale schedule slice based on io priority. Use the sync time slice only
247 * if a queue is marked sync and has sync io queued. A sync queue with async
248 * io only, should not get full sync slice length.
249 */
250 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
251 unsigned short prio)
252 {
253 const int base_slice = cfqd->cfq_slice[sync];
254
255 WARN_ON(prio >= IOPRIO_BE_NR);
256
257 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
258 }
259
260 static inline int
261 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
262 {
263 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
264 }
265
266 static inline void
267 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
268 {
269 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
270 }
271
272 /*
273 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
274 * isn't valid until the first request from the dispatch is activated
275 * and the slice time set.
276 */
277 static inline int cfq_slice_used(struct cfq_queue *cfqq)
278 {
279 if (cfq_cfqq_slice_new(cfqq))
280 return 0;
281 if (time_before(jiffies, cfqq->slice_end))
282 return 0;
283
284 return 1;
285 }
286
287 /*
288 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
289 * We choose the request that is closest to the head right now. Distance
290 * behind the head is penalized and only allowed to a certain extent.
291 */
292 static struct request *
293 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
294 {
295 sector_t last, s1, s2, d1 = 0, d2 = 0;
296 unsigned long back_max;
297 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
298 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
299 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
300
301 if (rq1 == NULL || rq1 == rq2)
302 return rq2;
303 if (rq2 == NULL)
304 return rq1;
305
306 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
307 return rq1;
308 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
309 return rq2;
310 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
311 return rq1;
312 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
313 return rq2;
314
315 s1 = rq1->sector;
316 s2 = rq2->sector;
317
318 last = cfqd->last_position;
319
320 /*
321 * by definition, 1KiB is 2 sectors
322 */
323 back_max = cfqd->cfq_back_max * 2;
324
325 /*
326 * Strict one way elevator _except_ in the case where we allow
327 * short backward seeks which are biased as twice the cost of a
328 * similar forward seek.
329 */
330 if (s1 >= last)
331 d1 = s1 - last;
332 else if (s1 + back_max >= last)
333 d1 = (last - s1) * cfqd->cfq_back_penalty;
334 else
335 wrap |= CFQ_RQ1_WRAP;
336
337 if (s2 >= last)
338 d2 = s2 - last;
339 else if (s2 + back_max >= last)
340 d2 = (last - s2) * cfqd->cfq_back_penalty;
341 else
342 wrap |= CFQ_RQ2_WRAP;
343
344 /* Found required data */
345
346 /*
347 * By doing switch() on the bit mask "wrap" we avoid having to
348 * check two variables for all permutations: --> faster!
349 */
350 switch (wrap) {
351 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
352 if (d1 < d2)
353 return rq1;
354 else if (d2 < d1)
355 return rq2;
356 else {
357 if (s1 >= s2)
358 return rq1;
359 else
360 return rq2;
361 }
362
363 case CFQ_RQ2_WRAP:
364 return rq1;
365 case CFQ_RQ1_WRAP:
366 return rq2;
367 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
368 default:
369 /*
370 * Since both rqs are wrapped,
371 * start with the one that's further behind head
372 * (--> only *one* back seek required),
373 * since back seek takes more time than forward.
374 */
375 if (s1 <= s2)
376 return rq1;
377 else
378 return rq2;
379 }
380 }
381
382 /*
383 * The below is leftmost cache rbtree addon
384 */
385 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
386 {
387 if (!root->left)
388 root->left = rb_first(&root->rb);
389
390 if (root->left)
391 return rb_entry(root->left, struct cfq_queue, rb_node);
392
393 return NULL;
394 }
395
396 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
397 {
398 if (root->left == n)
399 root->left = NULL;
400
401 rb_erase(n, &root->rb);
402 RB_CLEAR_NODE(n);
403 }
404
405 /*
406 * would be nice to take fifo expire time into account as well
407 */
408 static struct request *
409 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
410 struct request *last)
411 {
412 struct rb_node *rbnext = rb_next(&last->rb_node);
413 struct rb_node *rbprev = rb_prev(&last->rb_node);
414 struct request *next = NULL, *prev = NULL;
415
416 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
417
418 if (rbprev)
419 prev = rb_entry_rq(rbprev);
420
421 if (rbnext)
422 next = rb_entry_rq(rbnext);
423 else {
424 rbnext = rb_first(&cfqq->sort_list);
425 if (rbnext && rbnext != &last->rb_node)
426 next = rb_entry_rq(rbnext);
427 }
428
429 return cfq_choose_req(cfqd, next, prev);
430 }
431
432 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
433 struct cfq_queue *cfqq)
434 {
435 /*
436 * just an approximation, should be ok.
437 */
438 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
439 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
440 }
441
442 /*
443 * The cfqd->service_tree holds all pending cfq_queue's that have
444 * requests waiting to be processed. It is sorted in the order that
445 * we will service the queues.
446 */
447 static void cfq_service_tree_add(struct cfq_data *cfqd,
448 struct cfq_queue *cfqq, int add_front)
449 {
450 struct rb_node **p, *parent;
451 struct cfq_queue *__cfqq;
452 unsigned long rb_key;
453 int left;
454
455 if (cfq_class_idle(cfqq)) {
456 rb_key = CFQ_IDLE_DELAY;
457 parent = rb_last(&cfqd->service_tree.rb);
458 if (parent && parent != &cfqq->rb_node) {
459 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
460 rb_key += __cfqq->rb_key;
461 } else
462 rb_key += jiffies;
463 } else if (!add_front) {
464 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
465 rb_key += cfqq->slice_resid;
466 cfqq->slice_resid = 0;
467 } else
468 rb_key = 0;
469
470 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
471 /*
472 * same position, nothing more to do
473 */
474 if (rb_key == cfqq->rb_key)
475 return;
476
477 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
478 }
479
480 left = 1;
481 parent = NULL;
482 p = &cfqd->service_tree.rb.rb_node;
483 while (*p) {
484 struct rb_node **n;
485
486 parent = *p;
487 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
488
489 /*
490 * sort RT queues first, we always want to give
491 * preference to them. IDLE queues goes to the back.
492 * after that, sort on the next service time.
493 */
494 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
495 n = &(*p)->rb_left;
496 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
497 n = &(*p)->rb_right;
498 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
499 n = &(*p)->rb_left;
500 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
501 n = &(*p)->rb_right;
502 else if (rb_key < __cfqq->rb_key)
503 n = &(*p)->rb_left;
504 else
505 n = &(*p)->rb_right;
506
507 if (n == &(*p)->rb_right)
508 left = 0;
509
510 p = n;
511 }
512
513 if (left)
514 cfqd->service_tree.left = &cfqq->rb_node;
515
516 cfqq->rb_key = rb_key;
517 rb_link_node(&cfqq->rb_node, parent, p);
518 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
519 }
520
521 /*
522 * Update cfqq's position in the service tree.
523 */
524 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
525 {
526 /*
527 * Resorting requires the cfqq to be on the RR list already.
528 */
529 if (cfq_cfqq_on_rr(cfqq))
530 cfq_service_tree_add(cfqd, cfqq, 0);
531 }
532
533 /*
534 * add to busy list of queues for service, trying to be fair in ordering
535 * the pending list according to last request service
536 */
537 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
538 {
539 BUG_ON(cfq_cfqq_on_rr(cfqq));
540 cfq_mark_cfqq_on_rr(cfqq);
541 cfqd->busy_queues++;
542
543 cfq_resort_rr_list(cfqd, cfqq);
544 }
545
546 /*
547 * Called when the cfqq no longer has requests pending, remove it from
548 * the service tree.
549 */
550 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
551 {
552 BUG_ON(!cfq_cfqq_on_rr(cfqq));
553 cfq_clear_cfqq_on_rr(cfqq);
554
555 if (!RB_EMPTY_NODE(&cfqq->rb_node))
556 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
557
558 BUG_ON(!cfqd->busy_queues);
559 cfqd->busy_queues--;
560 }
561
562 /*
563 * rb tree support functions
564 */
565 static void cfq_del_rq_rb(struct request *rq)
566 {
567 struct cfq_queue *cfqq = RQ_CFQQ(rq);
568 struct cfq_data *cfqd = cfqq->cfqd;
569 const int sync = rq_is_sync(rq);
570
571 BUG_ON(!cfqq->queued[sync]);
572 cfqq->queued[sync]--;
573
574 elv_rb_del(&cfqq->sort_list, rq);
575
576 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
577 cfq_del_cfqq_rr(cfqd, cfqq);
578 }
579
580 static void cfq_add_rq_rb(struct request *rq)
581 {
582 struct cfq_queue *cfqq = RQ_CFQQ(rq);
583 struct cfq_data *cfqd = cfqq->cfqd;
584 struct request *__alias;
585
586 cfqq->queued[rq_is_sync(rq)]++;
587
588 /*
589 * looks a little odd, but the first insert might return an alias.
590 * if that happens, put the alias on the dispatch list
591 */
592 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
593 cfq_dispatch_insert(cfqd->queue, __alias);
594
595 if (!cfq_cfqq_on_rr(cfqq))
596 cfq_add_cfqq_rr(cfqd, cfqq);
597
598 /*
599 * check if this request is a better next-serve candidate
600 */
601 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
602 BUG_ON(!cfqq->next_rq);
603 }
604
605 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
606 {
607 elv_rb_del(&cfqq->sort_list, rq);
608 cfqq->queued[rq_is_sync(rq)]--;
609 cfq_add_rq_rb(rq);
610 }
611
612 static struct request *
613 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
614 {
615 struct task_struct *tsk = current;
616 struct cfq_io_context *cic;
617 struct cfq_queue *cfqq;
618
619 cic = cfq_cic_lookup(cfqd, tsk->io_context);
620 if (!cic)
621 return NULL;
622
623 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
624 if (cfqq) {
625 sector_t sector = bio->bi_sector + bio_sectors(bio);
626
627 return elv_rb_find(&cfqq->sort_list, sector);
628 }
629
630 return NULL;
631 }
632
633 static void cfq_activate_request(struct request_queue *q, struct request *rq)
634 {
635 struct cfq_data *cfqd = q->elevator->elevator_data;
636
637 cfqd->rq_in_driver++;
638
639 /*
640 * If the depth is larger 1, it really could be queueing. But lets
641 * make the mark a little higher - idling could still be good for
642 * low queueing, and a low queueing number could also just indicate
643 * a SCSI mid layer like behaviour where limit+1 is often seen.
644 */
645 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
646 cfqd->hw_tag = 1;
647
648 cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
649 }
650
651 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
652 {
653 struct cfq_data *cfqd = q->elevator->elevator_data;
654
655 WARN_ON(!cfqd->rq_in_driver);
656 cfqd->rq_in_driver--;
657 }
658
659 static void cfq_remove_request(struct request *rq)
660 {
661 struct cfq_queue *cfqq = RQ_CFQQ(rq);
662
663 if (cfqq->next_rq == rq)
664 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
665
666 list_del_init(&rq->queuelist);
667 cfq_del_rq_rb(rq);
668
669 if (rq_is_meta(rq)) {
670 WARN_ON(!cfqq->meta_pending);
671 cfqq->meta_pending--;
672 }
673 }
674
675 static int cfq_merge(struct request_queue *q, struct request **req,
676 struct bio *bio)
677 {
678 struct cfq_data *cfqd = q->elevator->elevator_data;
679 struct request *__rq;
680
681 __rq = cfq_find_rq_fmerge(cfqd, bio);
682 if (__rq && elv_rq_merge_ok(__rq, bio)) {
683 *req = __rq;
684 return ELEVATOR_FRONT_MERGE;
685 }
686
687 return ELEVATOR_NO_MERGE;
688 }
689
690 static void cfq_merged_request(struct request_queue *q, struct request *req,
691 int type)
692 {
693 if (type == ELEVATOR_FRONT_MERGE) {
694 struct cfq_queue *cfqq = RQ_CFQQ(req);
695
696 cfq_reposition_rq_rb(cfqq, req);
697 }
698 }
699
700 static void
701 cfq_merged_requests(struct request_queue *q, struct request *rq,
702 struct request *next)
703 {
704 /*
705 * reposition in fifo if next is older than rq
706 */
707 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
708 time_before(next->start_time, rq->start_time))
709 list_move(&rq->queuelist, &next->queuelist);
710
711 cfq_remove_request(next);
712 }
713
714 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
715 struct bio *bio)
716 {
717 struct cfq_data *cfqd = q->elevator->elevator_data;
718 struct cfq_io_context *cic;
719 struct cfq_queue *cfqq;
720
721 /*
722 * Disallow merge of a sync bio into an async request.
723 */
724 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
725 return 0;
726
727 /*
728 * Lookup the cfqq that this bio will be queued with. Allow
729 * merge only if rq is queued there.
730 */
731 cic = cfq_cic_lookup(cfqd, current->io_context);
732 if (!cic)
733 return 0;
734
735 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
736 if (cfqq == RQ_CFQQ(rq))
737 return 1;
738
739 return 0;
740 }
741
742 static void __cfq_set_active_queue(struct cfq_data *cfqd,
743 struct cfq_queue *cfqq)
744 {
745 if (cfqq) {
746 cfqq->slice_end = 0;
747 cfq_clear_cfqq_must_alloc_slice(cfqq);
748 cfq_clear_cfqq_fifo_expire(cfqq);
749 cfq_mark_cfqq_slice_new(cfqq);
750 cfq_clear_cfqq_queue_new(cfqq);
751 }
752
753 cfqd->active_queue = cfqq;
754 }
755
756 /*
757 * current cfqq expired its slice (or was too idle), select new one
758 */
759 static void
760 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
761 int timed_out)
762 {
763 if (cfq_cfqq_wait_request(cfqq))
764 del_timer(&cfqd->idle_slice_timer);
765
766 cfq_clear_cfqq_must_dispatch(cfqq);
767 cfq_clear_cfqq_wait_request(cfqq);
768
769 /*
770 * store what was left of this slice, if the queue idled/timed out
771 */
772 if (timed_out && !cfq_cfqq_slice_new(cfqq))
773 cfqq->slice_resid = cfqq->slice_end - jiffies;
774
775 cfq_resort_rr_list(cfqd, cfqq);
776
777 if (cfqq == cfqd->active_queue)
778 cfqd->active_queue = NULL;
779
780 if (cfqd->active_cic) {
781 put_io_context(cfqd->active_cic->ioc);
782 cfqd->active_cic = NULL;
783 }
784 }
785
786 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
787 {
788 struct cfq_queue *cfqq = cfqd->active_queue;
789
790 if (cfqq)
791 __cfq_slice_expired(cfqd, cfqq, timed_out);
792 }
793
794 /*
795 * Get next queue for service. Unless we have a queue preemption,
796 * we'll simply select the first cfqq in the service tree.
797 */
798 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
799 {
800 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
801 return NULL;
802
803 return cfq_rb_first(&cfqd->service_tree);
804 }
805
806 /*
807 * Get and set a new active queue for service.
808 */
809 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
810 {
811 struct cfq_queue *cfqq;
812
813 cfqq = cfq_get_next_queue(cfqd);
814 __cfq_set_active_queue(cfqd, cfqq);
815 return cfqq;
816 }
817
818 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
819 struct request *rq)
820 {
821 if (rq->sector >= cfqd->last_position)
822 return rq->sector - cfqd->last_position;
823 else
824 return cfqd->last_position - rq->sector;
825 }
826
827 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
828 {
829 struct cfq_io_context *cic = cfqd->active_cic;
830
831 if (!sample_valid(cic->seek_samples))
832 return 0;
833
834 return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
835 }
836
837 static int cfq_close_cooperator(struct cfq_data *cfq_data,
838 struct cfq_queue *cfqq)
839 {
840 /*
841 * We should notice if some of the queues are cooperating, eg
842 * working closely on the same area of the disk. In that case,
843 * we can group them together and don't waste time idling.
844 */
845 return 0;
846 }
847
848 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
849
850 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
851 {
852 struct cfq_queue *cfqq = cfqd->active_queue;
853 struct cfq_io_context *cic;
854 unsigned long sl;
855
856 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
857 WARN_ON(cfq_cfqq_slice_new(cfqq));
858
859 /*
860 * idle is disabled, either manually or by past process history
861 */
862 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
863 return;
864
865 /*
866 * task has exited, don't wait
867 */
868 cic = cfqd->active_cic;
869 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
870 return;
871
872 /*
873 * See if this prio level has a good candidate
874 */
875 if (cfq_close_cooperator(cfqd, cfqq) &&
876 (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
877 return;
878
879 cfq_mark_cfqq_must_dispatch(cfqq);
880 cfq_mark_cfqq_wait_request(cfqq);
881
882 /*
883 * we don't want to idle for seeks, but we do want to allow
884 * fair distribution of slice time for a process doing back-to-back
885 * seeks. so allow a little bit of time for him to submit a new rq
886 */
887 sl = cfqd->cfq_slice_idle;
888 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
889 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
890
891 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
892 }
893
894 /*
895 * Move request from internal lists to the request queue dispatch list.
896 */
897 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
898 {
899 struct cfq_data *cfqd = q->elevator->elevator_data;
900 struct cfq_queue *cfqq = RQ_CFQQ(rq);
901
902 cfq_remove_request(rq);
903 cfqq->dispatched++;
904 elv_dispatch_sort(q, rq);
905
906 if (cfq_cfqq_sync(cfqq))
907 cfqd->sync_flight++;
908 }
909
910 /*
911 * return expired entry, or NULL to just start from scratch in rbtree
912 */
913 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
914 {
915 struct cfq_data *cfqd = cfqq->cfqd;
916 struct request *rq;
917 int fifo;
918
919 if (cfq_cfqq_fifo_expire(cfqq))
920 return NULL;
921
922 cfq_mark_cfqq_fifo_expire(cfqq);
923
924 if (list_empty(&cfqq->fifo))
925 return NULL;
926
927 fifo = cfq_cfqq_sync(cfqq);
928 rq = rq_entry_fifo(cfqq->fifo.next);
929
930 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
931 return NULL;
932
933 return rq;
934 }
935
936 static inline int
937 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
938 {
939 const int base_rq = cfqd->cfq_slice_async_rq;
940
941 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
942
943 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
944 }
945
946 /*
947 * Select a queue for service. If we have a current active queue,
948 * check whether to continue servicing it, or retrieve and set a new one.
949 */
950 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
951 {
952 struct cfq_queue *cfqq;
953
954 cfqq = cfqd->active_queue;
955 if (!cfqq)
956 goto new_queue;
957
958 /*
959 * The active queue has run out of time, expire it and select new.
960 */
961 if (cfq_slice_used(cfqq))
962 goto expire;
963
964 /*
965 * The active queue has requests and isn't expired, allow it to
966 * dispatch.
967 */
968 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
969 goto keep_queue;
970
971 /*
972 * No requests pending. If the active queue still has requests in
973 * flight or is idling for a new request, allow either of these
974 * conditions to happen (or time out) before selecting a new queue.
975 */
976 if (timer_pending(&cfqd->idle_slice_timer) ||
977 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
978 cfqq = NULL;
979 goto keep_queue;
980 }
981
982 expire:
983 cfq_slice_expired(cfqd, 0);
984 new_queue:
985 cfqq = cfq_set_active_queue(cfqd);
986 keep_queue:
987 return cfqq;
988 }
989
990 /*
991 * Dispatch some requests from cfqq, moving them to the request queue
992 * dispatch list.
993 */
994 static int
995 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
996 int max_dispatch)
997 {
998 int dispatched = 0;
999
1000 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1001
1002 do {
1003 struct request *rq;
1004
1005 /*
1006 * follow expired path, else get first next available
1007 */
1008 if ((rq = cfq_check_fifo(cfqq)) == NULL)
1009 rq = cfqq->next_rq;
1010
1011 /*
1012 * finally, insert request into driver dispatch list
1013 */
1014 cfq_dispatch_insert(cfqd->queue, rq);
1015
1016 dispatched++;
1017
1018 if (!cfqd->active_cic) {
1019 atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1020 cfqd->active_cic = RQ_CIC(rq);
1021 }
1022
1023 if (RB_EMPTY_ROOT(&cfqq->sort_list))
1024 break;
1025
1026 } while (dispatched < max_dispatch);
1027
1028 /*
1029 * expire an async queue immediately if it has used up its slice. idle
1030 * queue always expire after 1 dispatch round.
1031 */
1032 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1033 dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1034 cfq_class_idle(cfqq))) {
1035 cfqq->slice_end = jiffies + 1;
1036 cfq_slice_expired(cfqd, 0);
1037 }
1038
1039 return dispatched;
1040 }
1041
1042 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1043 {
1044 int dispatched = 0;
1045
1046 while (cfqq->next_rq) {
1047 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1048 dispatched++;
1049 }
1050
1051 BUG_ON(!list_empty(&cfqq->fifo));
1052 return dispatched;
1053 }
1054
1055 /*
1056 * Drain our current requests. Used for barriers and when switching
1057 * io schedulers on-the-fly.
1058 */
1059 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1060 {
1061 struct cfq_queue *cfqq;
1062 int dispatched = 0;
1063
1064 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1065 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1066
1067 cfq_slice_expired(cfqd, 0);
1068
1069 BUG_ON(cfqd->busy_queues);
1070
1071 return dispatched;
1072 }
1073
1074 static int cfq_dispatch_requests(struct request_queue *q, int force)
1075 {
1076 struct cfq_data *cfqd = q->elevator->elevator_data;
1077 struct cfq_queue *cfqq;
1078 int dispatched;
1079
1080 if (!cfqd->busy_queues)
1081 return 0;
1082
1083 if (unlikely(force))
1084 return cfq_forced_dispatch(cfqd);
1085
1086 dispatched = 0;
1087 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1088 int max_dispatch;
1089
1090 max_dispatch = cfqd->cfq_quantum;
1091 if (cfq_class_idle(cfqq))
1092 max_dispatch = 1;
1093
1094 if (cfqq->dispatched >= max_dispatch) {
1095 if (cfqd->busy_queues > 1)
1096 break;
1097 if (cfqq->dispatched >= 4 * max_dispatch)
1098 break;
1099 }
1100
1101 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1102 break;
1103
1104 cfq_clear_cfqq_must_dispatch(cfqq);
1105 cfq_clear_cfqq_wait_request(cfqq);
1106 del_timer(&cfqd->idle_slice_timer);
1107
1108 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1109 }
1110
1111 return dispatched;
1112 }
1113
1114 /*
1115 * task holds one reference to the queue, dropped when task exits. each rq
1116 * in-flight on this queue also holds a reference, dropped when rq is freed.
1117 *
1118 * queue lock must be held here.
1119 */
1120 static void cfq_put_queue(struct cfq_queue *cfqq)
1121 {
1122 struct cfq_data *cfqd = cfqq->cfqd;
1123
1124 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1125
1126 if (!atomic_dec_and_test(&cfqq->ref))
1127 return;
1128
1129 BUG_ON(rb_first(&cfqq->sort_list));
1130 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1131 BUG_ON(cfq_cfqq_on_rr(cfqq));
1132
1133 if (unlikely(cfqd->active_queue == cfqq)) {
1134 __cfq_slice_expired(cfqd, cfqq, 0);
1135 cfq_schedule_dispatch(cfqd);
1136 }
1137
1138 kmem_cache_free(cfq_pool, cfqq);
1139 }
1140
1141 /*
1142 * Call func for each cic attached to this ioc. Returns number of cic's seen.
1143 */
1144 #define CIC_GANG_NR 16
1145 static unsigned int
1146 call_for_each_cic(struct io_context *ioc,
1147 void (*func)(struct io_context *, struct cfq_io_context *))
1148 {
1149 struct cfq_io_context *cics[CIC_GANG_NR];
1150 unsigned long index = 0;
1151 unsigned int called = 0;
1152 int nr;
1153
1154 rcu_read_lock();
1155
1156 do {
1157 int i;
1158
1159 /*
1160 * Perhaps there's a better way - this just gang lookups from
1161 * 0 to the end, restarting after each CIC_GANG_NR from the
1162 * last key + 1.
1163 */
1164 nr = radix_tree_gang_lookup(&ioc->radix_root, (void **) cics,
1165 index, CIC_GANG_NR);
1166 if (!nr)
1167 break;
1168
1169 called += nr;
1170 index = 1 + (unsigned long) cics[nr - 1]->key;
1171
1172 for (i = 0; i < nr; i++)
1173 func(ioc, cics[i]);
1174 } while (nr == CIC_GANG_NR);
1175
1176 rcu_read_unlock();
1177
1178 return called;
1179 }
1180
1181 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1182 {
1183 unsigned long flags;
1184
1185 BUG_ON(!cic->dead_key);
1186
1187 spin_lock_irqsave(&ioc->lock, flags);
1188 radix_tree_delete(&ioc->radix_root, cic->dead_key);
1189 spin_unlock_irqrestore(&ioc->lock, flags);
1190
1191 kmem_cache_free(cfq_ioc_pool, cic);
1192 }
1193
1194 static void cfq_free_io_context(struct io_context *ioc)
1195 {
1196 int freed;
1197
1198 /*
1199 * ioc->refcount is zero here, so no more cic's are allowed to be
1200 * linked into this ioc. So it should be ok to iterate over the known
1201 * list, we will see all cic's since no new ones are added.
1202 */
1203 freed = call_for_each_cic(ioc, cic_free_func);
1204
1205 elv_ioc_count_mod(ioc_count, -freed);
1206
1207 if (ioc_gone && !elv_ioc_count_read(ioc_count))
1208 complete(ioc_gone);
1209 }
1210
1211 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1212 {
1213 if (unlikely(cfqq == cfqd->active_queue)) {
1214 __cfq_slice_expired(cfqd, cfqq, 0);
1215 cfq_schedule_dispatch(cfqd);
1216 }
1217
1218 cfq_put_queue(cfqq);
1219 }
1220
1221 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1222 struct cfq_io_context *cic)
1223 {
1224 list_del_init(&cic->queue_list);
1225
1226 /*
1227 * Make sure key == NULL is seen for dead queues
1228 */
1229 smp_wmb();
1230 cic->dead_key = (unsigned long) cic->key;
1231 cic->key = NULL;
1232
1233 if (cic->cfqq[ASYNC]) {
1234 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1235 cic->cfqq[ASYNC] = NULL;
1236 }
1237
1238 if (cic->cfqq[SYNC]) {
1239 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1240 cic->cfqq[SYNC] = NULL;
1241 }
1242 }
1243
1244 static void cfq_exit_single_io_context(struct io_context *ioc,
1245 struct cfq_io_context *cic)
1246 {
1247 struct cfq_data *cfqd = cic->key;
1248
1249 if (cfqd) {
1250 struct request_queue *q = cfqd->queue;
1251 unsigned long flags;
1252
1253 spin_lock_irqsave(q->queue_lock, flags);
1254 __cfq_exit_single_io_context(cfqd, cic);
1255 spin_unlock_irqrestore(q->queue_lock, flags);
1256 }
1257 }
1258
1259 /*
1260 * The process that ioc belongs to has exited, we need to clean up
1261 * and put the internal structures we have that belongs to that process.
1262 */
1263 static void cfq_exit_io_context(struct io_context *ioc)
1264 {
1265 rcu_assign_pointer(ioc->ioc_data, NULL);
1266 call_for_each_cic(ioc, cfq_exit_single_io_context);
1267 }
1268
1269 static struct cfq_io_context *
1270 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1271 {
1272 struct cfq_io_context *cic;
1273
1274 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1275 cfqd->queue->node);
1276 if (cic) {
1277 cic->last_end_request = jiffies;
1278 INIT_LIST_HEAD(&cic->queue_list);
1279 cic->dtor = cfq_free_io_context;
1280 cic->exit = cfq_exit_io_context;
1281 elv_ioc_count_inc(ioc_count);
1282 }
1283
1284 return cic;
1285 }
1286
1287 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1288 {
1289 struct task_struct *tsk = current;
1290 int ioprio_class;
1291
1292 if (!cfq_cfqq_prio_changed(cfqq))
1293 return;
1294
1295 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1296 switch (ioprio_class) {
1297 default:
1298 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1299 case IOPRIO_CLASS_NONE:
1300 /*
1301 * no prio set, place us in the middle of the BE classes
1302 */
1303 cfqq->ioprio = task_nice_ioprio(tsk);
1304 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1305 break;
1306 case IOPRIO_CLASS_RT:
1307 cfqq->ioprio = task_ioprio(ioc);
1308 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1309 break;
1310 case IOPRIO_CLASS_BE:
1311 cfqq->ioprio = task_ioprio(ioc);
1312 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1313 break;
1314 case IOPRIO_CLASS_IDLE:
1315 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1316 cfqq->ioprio = 7;
1317 cfq_clear_cfqq_idle_window(cfqq);
1318 break;
1319 }
1320
1321 /*
1322 * keep track of original prio settings in case we have to temporarily
1323 * elevate the priority of this queue
1324 */
1325 cfqq->org_ioprio = cfqq->ioprio;
1326 cfqq->org_ioprio_class = cfqq->ioprio_class;
1327 cfq_clear_cfqq_prio_changed(cfqq);
1328 }
1329
1330 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1331 {
1332 struct cfq_data *cfqd = cic->key;
1333 struct cfq_queue *cfqq;
1334 unsigned long flags;
1335
1336 if (unlikely(!cfqd))
1337 return;
1338
1339 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1340
1341 cfqq = cic->cfqq[ASYNC];
1342 if (cfqq) {
1343 struct cfq_queue *new_cfqq;
1344 new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc, GFP_ATOMIC);
1345 if (new_cfqq) {
1346 cic->cfqq[ASYNC] = new_cfqq;
1347 cfq_put_queue(cfqq);
1348 }
1349 }
1350
1351 cfqq = cic->cfqq[SYNC];
1352 if (cfqq)
1353 cfq_mark_cfqq_prio_changed(cfqq);
1354
1355 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1356 }
1357
1358 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1359 {
1360 call_for_each_cic(ioc, changed_ioprio);
1361 ioc->ioprio_changed = 0;
1362 }
1363
1364 static struct cfq_queue *
1365 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1366 struct io_context *ioc, gfp_t gfp_mask)
1367 {
1368 struct cfq_queue *cfqq, *new_cfqq = NULL;
1369 struct cfq_io_context *cic;
1370
1371 retry:
1372 cic = cfq_cic_lookup(cfqd, ioc);
1373 /* cic always exists here */
1374 cfqq = cic_to_cfqq(cic, is_sync);
1375
1376 if (!cfqq) {
1377 if (new_cfqq) {
1378 cfqq = new_cfqq;
1379 new_cfqq = NULL;
1380 } else if (gfp_mask & __GFP_WAIT) {
1381 /*
1382 * Inform the allocator of the fact that we will
1383 * just repeat this allocation if it fails, to allow
1384 * the allocator to do whatever it needs to attempt to
1385 * free memory.
1386 */
1387 spin_unlock_irq(cfqd->queue->queue_lock);
1388 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1389 gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1390 cfqd->queue->node);
1391 spin_lock_irq(cfqd->queue->queue_lock);
1392 goto retry;
1393 } else {
1394 cfqq = kmem_cache_alloc_node(cfq_pool,
1395 gfp_mask | __GFP_ZERO,
1396 cfqd->queue->node);
1397 if (!cfqq)
1398 goto out;
1399 }
1400
1401 RB_CLEAR_NODE(&cfqq->rb_node);
1402 INIT_LIST_HEAD(&cfqq->fifo);
1403
1404 atomic_set(&cfqq->ref, 0);
1405 cfqq->cfqd = cfqd;
1406
1407 cfq_mark_cfqq_prio_changed(cfqq);
1408 cfq_mark_cfqq_queue_new(cfqq);
1409
1410 cfq_init_prio_data(cfqq, ioc);
1411
1412 if (is_sync) {
1413 if (!cfq_class_idle(cfqq))
1414 cfq_mark_cfqq_idle_window(cfqq);
1415 cfq_mark_cfqq_sync(cfqq);
1416 }
1417 }
1418
1419 if (new_cfqq)
1420 kmem_cache_free(cfq_pool, new_cfqq);
1421
1422 out:
1423 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1424 return cfqq;
1425 }
1426
1427 static struct cfq_queue **
1428 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1429 {
1430 switch(ioprio_class) {
1431 case IOPRIO_CLASS_RT:
1432 return &cfqd->async_cfqq[0][ioprio];
1433 case IOPRIO_CLASS_BE:
1434 return &cfqd->async_cfqq[1][ioprio];
1435 case IOPRIO_CLASS_IDLE:
1436 return &cfqd->async_idle_cfqq;
1437 default:
1438 BUG();
1439 }
1440 }
1441
1442 static struct cfq_queue *
1443 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1444 gfp_t gfp_mask)
1445 {
1446 const int ioprio = task_ioprio(ioc);
1447 const int ioprio_class = task_ioprio_class(ioc);
1448 struct cfq_queue **async_cfqq = NULL;
1449 struct cfq_queue *cfqq = NULL;
1450
1451 if (!is_sync) {
1452 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1453 cfqq = *async_cfqq;
1454 }
1455
1456 if (!cfqq) {
1457 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1458 if (!cfqq)
1459 return NULL;
1460 }
1461
1462 /*
1463 * pin the queue now that it's allocated, scheduler exit will prune it
1464 */
1465 if (!is_sync && !(*async_cfqq)) {
1466 atomic_inc(&cfqq->ref);
1467 *async_cfqq = cfqq;
1468 }
1469
1470 atomic_inc(&cfqq->ref);
1471 return cfqq;
1472 }
1473
1474 static void cfq_cic_free(struct cfq_io_context *cic)
1475 {
1476 kmem_cache_free(cfq_ioc_pool, cic);
1477 elv_ioc_count_dec(ioc_count);
1478
1479 if (ioc_gone && !elv_ioc_count_read(ioc_count))
1480 complete(ioc_gone);
1481 }
1482
1483 /*
1484 * We drop cfq io contexts lazily, so we may find a dead one.
1485 */
1486 static void
1487 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1488 struct cfq_io_context *cic)
1489 {
1490 unsigned long flags;
1491
1492 WARN_ON(!list_empty(&cic->queue_list));
1493
1494 spin_lock_irqsave(&ioc->lock, flags);
1495
1496 if (ioc->ioc_data == cic)
1497 rcu_assign_pointer(ioc->ioc_data, NULL);
1498
1499 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1500 spin_unlock_irqrestore(&ioc->lock, flags);
1501
1502 cfq_cic_free(cic);
1503 }
1504
1505 static struct cfq_io_context *
1506 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1507 {
1508 struct cfq_io_context *cic;
1509 void *k;
1510
1511 if (unlikely(!ioc))
1512 return NULL;
1513
1514 /*
1515 * we maintain a last-hit cache, to avoid browsing over the tree
1516 */
1517 cic = rcu_dereference(ioc->ioc_data);
1518 if (cic && cic->key == cfqd)
1519 return cic;
1520
1521 do {
1522 rcu_read_lock();
1523 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1524 rcu_read_unlock();
1525 if (!cic)
1526 break;
1527 /* ->key must be copied to avoid race with cfq_exit_queue() */
1528 k = cic->key;
1529 if (unlikely(!k)) {
1530 cfq_drop_dead_cic(cfqd, ioc, cic);
1531 continue;
1532 }
1533
1534 rcu_assign_pointer(ioc->ioc_data, cic);
1535 break;
1536 } while (1);
1537
1538 return cic;
1539 }
1540
1541 /*
1542 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1543 * the process specific cfq io context when entered from the block layer.
1544 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1545 */
1546 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1547 struct cfq_io_context *cic, gfp_t gfp_mask)
1548 {
1549 unsigned long flags;
1550 int ret;
1551
1552 ret = radix_tree_preload(gfp_mask);
1553 if (!ret) {
1554 cic->ioc = ioc;
1555 cic->key = cfqd;
1556
1557 spin_lock_irqsave(&ioc->lock, flags);
1558 ret = radix_tree_insert(&ioc->radix_root,
1559 (unsigned long) cfqd, cic);
1560 spin_unlock_irqrestore(&ioc->lock, flags);
1561
1562 radix_tree_preload_end();
1563
1564 if (!ret) {
1565 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1566 list_add(&cic->queue_list, &cfqd->cic_list);
1567 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1568 }
1569 }
1570
1571 if (ret)
1572 printk(KERN_ERR "cfq: cic link failed!\n");
1573
1574 return ret;
1575 }
1576
1577 /*
1578 * Setup general io context and cfq io context. There can be several cfq
1579 * io contexts per general io context, if this process is doing io to more
1580 * than one device managed by cfq.
1581 */
1582 static struct cfq_io_context *
1583 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1584 {
1585 struct io_context *ioc = NULL;
1586 struct cfq_io_context *cic;
1587
1588 might_sleep_if(gfp_mask & __GFP_WAIT);
1589
1590 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1591 if (!ioc)
1592 return NULL;
1593
1594 cic = cfq_cic_lookup(cfqd, ioc);
1595 if (cic)
1596 goto out;
1597
1598 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1599 if (cic == NULL)
1600 goto err;
1601
1602 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1603 goto err_free;
1604
1605 out:
1606 smp_read_barrier_depends();
1607 if (unlikely(ioc->ioprio_changed))
1608 cfq_ioc_set_ioprio(ioc);
1609
1610 return cic;
1611 err_free:
1612 cfq_cic_free(cic);
1613 err:
1614 put_io_context(ioc);
1615 return NULL;
1616 }
1617
1618 static void
1619 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1620 {
1621 unsigned long elapsed = jiffies - cic->last_end_request;
1622 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1623
1624 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1625 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1626 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1627 }
1628
1629 static void
1630 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1631 struct request *rq)
1632 {
1633 sector_t sdist;
1634 u64 total;
1635
1636 if (cic->last_request_pos < rq->sector)
1637 sdist = rq->sector - cic->last_request_pos;
1638 else
1639 sdist = cic->last_request_pos - rq->sector;
1640
1641 /*
1642 * Don't allow the seek distance to get too large from the
1643 * odd fragment, pagein, etc
1644 */
1645 if (cic->seek_samples <= 60) /* second&third seek */
1646 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1647 else
1648 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1649
1650 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1651 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1652 total = cic->seek_total + (cic->seek_samples/2);
1653 do_div(total, cic->seek_samples);
1654 cic->seek_mean = (sector_t)total;
1655 }
1656
1657 /*
1658 * Disable idle window if the process thinks too long or seeks so much that
1659 * it doesn't matter
1660 */
1661 static void
1662 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1663 struct cfq_io_context *cic)
1664 {
1665 int enable_idle;
1666
1667 /*
1668 * Don't idle for async or idle io prio class
1669 */
1670 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1671 return;
1672
1673 enable_idle = cfq_cfqq_idle_window(cfqq);
1674
1675 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1676 (cfqd->hw_tag && CIC_SEEKY(cic)))
1677 enable_idle = 0;
1678 else if (sample_valid(cic->ttime_samples)) {
1679 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1680 enable_idle = 0;
1681 else
1682 enable_idle = 1;
1683 }
1684
1685 if (enable_idle)
1686 cfq_mark_cfqq_idle_window(cfqq);
1687 else
1688 cfq_clear_cfqq_idle_window(cfqq);
1689 }
1690
1691 /*
1692 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1693 * no or if we aren't sure, a 1 will cause a preempt.
1694 */
1695 static int
1696 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1697 struct request *rq)
1698 {
1699 struct cfq_queue *cfqq;
1700
1701 cfqq = cfqd->active_queue;
1702 if (!cfqq)
1703 return 0;
1704
1705 if (cfq_slice_used(cfqq))
1706 return 1;
1707
1708 if (cfq_class_idle(new_cfqq))
1709 return 0;
1710
1711 if (cfq_class_idle(cfqq))
1712 return 1;
1713
1714 /*
1715 * if the new request is sync, but the currently running queue is
1716 * not, let the sync request have priority.
1717 */
1718 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1719 return 1;
1720
1721 /*
1722 * So both queues are sync. Let the new request get disk time if
1723 * it's a metadata request and the current queue is doing regular IO.
1724 */
1725 if (rq_is_meta(rq) && !cfqq->meta_pending)
1726 return 1;
1727
1728 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1729 return 0;
1730
1731 /*
1732 * if this request is as-good as one we would expect from the
1733 * current cfqq, let it preempt
1734 */
1735 if (cfq_rq_close(cfqd, rq))
1736 return 1;
1737
1738 return 0;
1739 }
1740
1741 /*
1742 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1743 * let it have half of its nominal slice.
1744 */
1745 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1746 {
1747 cfq_slice_expired(cfqd, 1);
1748
1749 /*
1750 * Put the new queue at the front of the of the current list,
1751 * so we know that it will be selected next.
1752 */
1753 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1754
1755 cfq_service_tree_add(cfqd, cfqq, 1);
1756
1757 cfqq->slice_end = 0;
1758 cfq_mark_cfqq_slice_new(cfqq);
1759 }
1760
1761 /*
1762 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1763 * something we should do about it
1764 */
1765 static void
1766 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1767 struct request *rq)
1768 {
1769 struct cfq_io_context *cic = RQ_CIC(rq);
1770
1771 if (rq_is_meta(rq))
1772 cfqq->meta_pending++;
1773
1774 cfq_update_io_thinktime(cfqd, cic);
1775 cfq_update_io_seektime(cfqd, cic, rq);
1776 cfq_update_idle_window(cfqd, cfqq, cic);
1777
1778 cic->last_request_pos = rq->sector + rq->nr_sectors;
1779
1780 if (cfqq == cfqd->active_queue) {
1781 /*
1782 * if we are waiting for a request for this queue, let it rip
1783 * immediately and flag that we must not expire this queue
1784 * just now
1785 */
1786 if (cfq_cfqq_wait_request(cfqq)) {
1787 cfq_mark_cfqq_must_dispatch(cfqq);
1788 del_timer(&cfqd->idle_slice_timer);
1789 blk_start_queueing(cfqd->queue);
1790 }
1791 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1792 /*
1793 * not the active queue - expire current slice if it is
1794 * idle and has expired it's mean thinktime or this new queue
1795 * has some old slice time left and is of higher priority
1796 */
1797 cfq_preempt_queue(cfqd, cfqq);
1798 cfq_mark_cfqq_must_dispatch(cfqq);
1799 blk_start_queueing(cfqd->queue);
1800 }
1801 }
1802
1803 static void cfq_insert_request(struct request_queue *q, struct request *rq)
1804 {
1805 struct cfq_data *cfqd = q->elevator->elevator_data;
1806 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1807
1808 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1809
1810 cfq_add_rq_rb(rq);
1811
1812 list_add_tail(&rq->queuelist, &cfqq->fifo);
1813
1814 cfq_rq_enqueued(cfqd, cfqq, rq);
1815 }
1816
1817 static void cfq_completed_request(struct request_queue *q, struct request *rq)
1818 {
1819 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1820 struct cfq_data *cfqd = cfqq->cfqd;
1821 const int sync = rq_is_sync(rq);
1822 unsigned long now;
1823
1824 now = jiffies;
1825
1826 WARN_ON(!cfqd->rq_in_driver);
1827 WARN_ON(!cfqq->dispatched);
1828 cfqd->rq_in_driver--;
1829 cfqq->dispatched--;
1830
1831 if (cfq_cfqq_sync(cfqq))
1832 cfqd->sync_flight--;
1833
1834 if (!cfq_class_idle(cfqq))
1835 cfqd->last_end_request = now;
1836
1837 if (sync)
1838 RQ_CIC(rq)->last_end_request = now;
1839
1840 /*
1841 * If this is the active queue, check if it needs to be expired,
1842 * or if we want to idle in case it has no pending requests.
1843 */
1844 if (cfqd->active_queue == cfqq) {
1845 if (cfq_cfqq_slice_new(cfqq)) {
1846 cfq_set_prio_slice(cfqd, cfqq);
1847 cfq_clear_cfqq_slice_new(cfqq);
1848 }
1849 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
1850 cfq_slice_expired(cfqd, 1);
1851 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1852 cfq_arm_slice_timer(cfqd);
1853 }
1854
1855 if (!cfqd->rq_in_driver)
1856 cfq_schedule_dispatch(cfqd);
1857 }
1858
1859 /*
1860 * we temporarily boost lower priority queues if they are holding fs exclusive
1861 * resources. they are boosted to normal prio (CLASS_BE/4)
1862 */
1863 static void cfq_prio_boost(struct cfq_queue *cfqq)
1864 {
1865 if (has_fs_excl()) {
1866 /*
1867 * boost idle prio on transactions that would lock out other
1868 * users of the filesystem
1869 */
1870 if (cfq_class_idle(cfqq))
1871 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1872 if (cfqq->ioprio > IOPRIO_NORM)
1873 cfqq->ioprio = IOPRIO_NORM;
1874 } else {
1875 /*
1876 * check if we need to unboost the queue
1877 */
1878 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1879 cfqq->ioprio_class = cfqq->org_ioprio_class;
1880 if (cfqq->ioprio != cfqq->org_ioprio)
1881 cfqq->ioprio = cfqq->org_ioprio;
1882 }
1883 }
1884
1885 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1886 {
1887 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1888 !cfq_cfqq_must_alloc_slice(cfqq)) {
1889 cfq_mark_cfqq_must_alloc_slice(cfqq);
1890 return ELV_MQUEUE_MUST;
1891 }
1892
1893 return ELV_MQUEUE_MAY;
1894 }
1895
1896 static int cfq_may_queue(struct request_queue *q, int rw)
1897 {
1898 struct cfq_data *cfqd = q->elevator->elevator_data;
1899 struct task_struct *tsk = current;
1900 struct cfq_io_context *cic;
1901 struct cfq_queue *cfqq;
1902
1903 /*
1904 * don't force setup of a queue from here, as a call to may_queue
1905 * does not necessarily imply that a request actually will be queued.
1906 * so just lookup a possibly existing queue, or return 'may queue'
1907 * if that fails
1908 */
1909 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1910 if (!cic)
1911 return ELV_MQUEUE_MAY;
1912
1913 cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
1914 if (cfqq) {
1915 cfq_init_prio_data(cfqq, cic->ioc);
1916 cfq_prio_boost(cfqq);
1917
1918 return __cfq_may_queue(cfqq);
1919 }
1920
1921 return ELV_MQUEUE_MAY;
1922 }
1923
1924 /*
1925 * queue lock held here
1926 */
1927 static void cfq_put_request(struct request *rq)
1928 {
1929 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1930
1931 if (cfqq) {
1932 const int rw = rq_data_dir(rq);
1933
1934 BUG_ON(!cfqq->allocated[rw]);
1935 cfqq->allocated[rw]--;
1936
1937 put_io_context(RQ_CIC(rq)->ioc);
1938
1939 rq->elevator_private = NULL;
1940 rq->elevator_private2 = NULL;
1941
1942 cfq_put_queue(cfqq);
1943 }
1944 }
1945
1946 /*
1947 * Allocate cfq data structures associated with this request.
1948 */
1949 static int
1950 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1951 {
1952 struct cfq_data *cfqd = q->elevator->elevator_data;
1953 struct cfq_io_context *cic;
1954 const int rw = rq_data_dir(rq);
1955 const int is_sync = rq_is_sync(rq);
1956 struct cfq_queue *cfqq;
1957 unsigned long flags;
1958
1959 might_sleep_if(gfp_mask & __GFP_WAIT);
1960
1961 cic = cfq_get_io_context(cfqd, gfp_mask);
1962
1963 spin_lock_irqsave(q->queue_lock, flags);
1964
1965 if (!cic)
1966 goto queue_fail;
1967
1968 cfqq = cic_to_cfqq(cic, is_sync);
1969 if (!cfqq) {
1970 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
1971
1972 if (!cfqq)
1973 goto queue_fail;
1974
1975 cic_set_cfqq(cic, cfqq, is_sync);
1976 }
1977
1978 cfqq->allocated[rw]++;
1979 cfq_clear_cfqq_must_alloc(cfqq);
1980 atomic_inc(&cfqq->ref);
1981
1982 spin_unlock_irqrestore(q->queue_lock, flags);
1983
1984 rq->elevator_private = cic;
1985 rq->elevator_private2 = cfqq;
1986 return 0;
1987
1988 queue_fail:
1989 if (cic)
1990 put_io_context(cic->ioc);
1991
1992 cfq_schedule_dispatch(cfqd);
1993 spin_unlock_irqrestore(q->queue_lock, flags);
1994 return 1;
1995 }
1996
1997 static void cfq_kick_queue(struct work_struct *work)
1998 {
1999 struct cfq_data *cfqd =
2000 container_of(work, struct cfq_data, unplug_work);
2001 struct request_queue *q = cfqd->queue;
2002 unsigned long flags;
2003
2004 spin_lock_irqsave(q->queue_lock, flags);
2005 blk_start_queueing(q);
2006 spin_unlock_irqrestore(q->queue_lock, flags);
2007 }
2008
2009 /*
2010 * Timer running if the active_queue is currently idling inside its time slice
2011 */
2012 static void cfq_idle_slice_timer(unsigned long data)
2013 {
2014 struct cfq_data *cfqd = (struct cfq_data *) data;
2015 struct cfq_queue *cfqq;
2016 unsigned long flags;
2017 int timed_out = 1;
2018
2019 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2020
2021 if ((cfqq = cfqd->active_queue) != NULL) {
2022 timed_out = 0;
2023
2024 /*
2025 * expired
2026 */
2027 if (cfq_slice_used(cfqq))
2028 goto expire;
2029
2030 /*
2031 * only expire and reinvoke request handler, if there are
2032 * other queues with pending requests
2033 */
2034 if (!cfqd->busy_queues)
2035 goto out_cont;
2036
2037 /*
2038 * not expired and it has a request pending, let it dispatch
2039 */
2040 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
2041 cfq_mark_cfqq_must_dispatch(cfqq);
2042 goto out_kick;
2043 }
2044 }
2045 expire:
2046 cfq_slice_expired(cfqd, timed_out);
2047 out_kick:
2048 cfq_schedule_dispatch(cfqd);
2049 out_cont:
2050 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2051 }
2052
2053 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2054 {
2055 del_timer_sync(&cfqd->idle_slice_timer);
2056 kblockd_flush_work(&cfqd->unplug_work);
2057 }
2058
2059 static void cfq_put_async_queues(struct cfq_data *cfqd)
2060 {
2061 int i;
2062
2063 for (i = 0; i < IOPRIO_BE_NR; i++) {
2064 if (cfqd->async_cfqq[0][i])
2065 cfq_put_queue(cfqd->async_cfqq[0][i]);
2066 if (cfqd->async_cfqq[1][i])
2067 cfq_put_queue(cfqd->async_cfqq[1][i]);
2068 }
2069
2070 if (cfqd->async_idle_cfqq)
2071 cfq_put_queue(cfqd->async_idle_cfqq);
2072 }
2073
2074 static void cfq_exit_queue(elevator_t *e)
2075 {
2076 struct cfq_data *cfqd = e->elevator_data;
2077 struct request_queue *q = cfqd->queue;
2078
2079 cfq_shutdown_timer_wq(cfqd);
2080
2081 spin_lock_irq(q->queue_lock);
2082
2083 if (cfqd->active_queue)
2084 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2085
2086 while (!list_empty(&cfqd->cic_list)) {
2087 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2088 struct cfq_io_context,
2089 queue_list);
2090
2091 __cfq_exit_single_io_context(cfqd, cic);
2092 }
2093
2094 cfq_put_async_queues(cfqd);
2095
2096 spin_unlock_irq(q->queue_lock);
2097
2098 cfq_shutdown_timer_wq(cfqd);
2099
2100 kfree(cfqd);
2101 }
2102
2103 static void *cfq_init_queue(struct request_queue *q)
2104 {
2105 struct cfq_data *cfqd;
2106
2107 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2108 if (!cfqd)
2109 return NULL;
2110
2111 cfqd->service_tree = CFQ_RB_ROOT;
2112 INIT_LIST_HEAD(&cfqd->cic_list);
2113
2114 cfqd->queue = q;
2115
2116 init_timer(&cfqd->idle_slice_timer);
2117 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2118 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2119
2120 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2121
2122 cfqd->last_end_request = jiffies;
2123 cfqd->cfq_quantum = cfq_quantum;
2124 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2125 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2126 cfqd->cfq_back_max = cfq_back_max;
2127 cfqd->cfq_back_penalty = cfq_back_penalty;
2128 cfqd->cfq_slice[0] = cfq_slice_async;
2129 cfqd->cfq_slice[1] = cfq_slice_sync;
2130 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2131 cfqd->cfq_slice_idle = cfq_slice_idle;
2132
2133 return cfqd;
2134 }
2135
2136 static void cfq_slab_kill(void)
2137 {
2138 if (cfq_pool)
2139 kmem_cache_destroy(cfq_pool);
2140 if (cfq_ioc_pool)
2141 kmem_cache_destroy(cfq_ioc_pool);
2142 }
2143
2144 static int __init cfq_slab_setup(void)
2145 {
2146 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2147 if (!cfq_pool)
2148 goto fail;
2149
2150 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, SLAB_DESTROY_BY_RCU);
2151 if (!cfq_ioc_pool)
2152 goto fail;
2153
2154 return 0;
2155 fail:
2156 cfq_slab_kill();
2157 return -ENOMEM;
2158 }
2159
2160 /*
2161 * sysfs parts below -->
2162 */
2163 static ssize_t
2164 cfq_var_show(unsigned int var, char *page)
2165 {
2166 return sprintf(page, "%d\n", var);
2167 }
2168
2169 static ssize_t
2170 cfq_var_store(unsigned int *var, const char *page, size_t count)
2171 {
2172 char *p = (char *) page;
2173
2174 *var = simple_strtoul(p, &p, 10);
2175 return count;
2176 }
2177
2178 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2179 static ssize_t __FUNC(elevator_t *e, char *page) \
2180 { \
2181 struct cfq_data *cfqd = e->elevator_data; \
2182 unsigned int __data = __VAR; \
2183 if (__CONV) \
2184 __data = jiffies_to_msecs(__data); \
2185 return cfq_var_show(__data, (page)); \
2186 }
2187 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2188 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2189 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2190 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2191 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2192 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2193 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2194 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2195 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2196 #undef SHOW_FUNCTION
2197
2198 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2199 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2200 { \
2201 struct cfq_data *cfqd = e->elevator_data; \
2202 unsigned int __data; \
2203 int ret = cfq_var_store(&__data, (page), count); \
2204 if (__data < (MIN)) \
2205 __data = (MIN); \
2206 else if (__data > (MAX)) \
2207 __data = (MAX); \
2208 if (__CONV) \
2209 *(__PTR) = msecs_to_jiffies(__data); \
2210 else \
2211 *(__PTR) = __data; \
2212 return ret; \
2213 }
2214 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2215 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2216 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2217 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2218 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2219 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2220 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2221 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2222 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2223 #undef STORE_FUNCTION
2224
2225 #define CFQ_ATTR(name) \
2226 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2227
2228 static struct elv_fs_entry cfq_attrs[] = {
2229 CFQ_ATTR(quantum),
2230 CFQ_ATTR(fifo_expire_sync),
2231 CFQ_ATTR(fifo_expire_async),
2232 CFQ_ATTR(back_seek_max),
2233 CFQ_ATTR(back_seek_penalty),
2234 CFQ_ATTR(slice_sync),
2235 CFQ_ATTR(slice_async),
2236 CFQ_ATTR(slice_async_rq),
2237 CFQ_ATTR(slice_idle),
2238 __ATTR_NULL
2239 };
2240
2241 static struct elevator_type iosched_cfq = {
2242 .ops = {
2243 .elevator_merge_fn = cfq_merge,
2244 .elevator_merged_fn = cfq_merged_request,
2245 .elevator_merge_req_fn = cfq_merged_requests,
2246 .elevator_allow_merge_fn = cfq_allow_merge,
2247 .elevator_dispatch_fn = cfq_dispatch_requests,
2248 .elevator_add_req_fn = cfq_insert_request,
2249 .elevator_activate_req_fn = cfq_activate_request,
2250 .elevator_deactivate_req_fn = cfq_deactivate_request,
2251 .elevator_queue_empty_fn = cfq_queue_empty,
2252 .elevator_completed_req_fn = cfq_completed_request,
2253 .elevator_former_req_fn = elv_rb_former_request,
2254 .elevator_latter_req_fn = elv_rb_latter_request,
2255 .elevator_set_req_fn = cfq_set_request,
2256 .elevator_put_req_fn = cfq_put_request,
2257 .elevator_may_queue_fn = cfq_may_queue,
2258 .elevator_init_fn = cfq_init_queue,
2259 .elevator_exit_fn = cfq_exit_queue,
2260 .trim = cfq_free_io_context,
2261 },
2262 .elevator_attrs = cfq_attrs,
2263 .elevator_name = "cfq",
2264 .elevator_owner = THIS_MODULE,
2265 };
2266
2267 static int __init cfq_init(void)
2268 {
2269 /*
2270 * could be 0 on HZ < 1000 setups
2271 */
2272 if (!cfq_slice_async)
2273 cfq_slice_async = 1;
2274 if (!cfq_slice_idle)
2275 cfq_slice_idle = 1;
2276
2277 if (cfq_slab_setup())
2278 return -ENOMEM;
2279
2280 elv_register(&iosched_cfq);
2281
2282 return 0;
2283 }
2284
2285 static void __exit cfq_exit(void)
2286 {
2287 DECLARE_COMPLETION_ONSTACK(all_gone);
2288 elv_unregister(&iosched_cfq);
2289 ioc_gone = &all_gone;
2290 /* ioc_gone's update must be visible before reading ioc_count */
2291 smp_wmb();
2292 if (elv_ioc_count_read(ioc_count))
2293 wait_for_completion(ioc_gone);
2294 synchronize_rcu();
2295 cfq_slab_kill();
2296 }
2297
2298 module_init(cfq_init);
2299 module_exit(cfq_exit);
2300
2301 MODULE_AUTHOR("Jens Axboe");
2302 MODULE_LICENSE("GPL");
2303 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");