]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/cfq-iosched.c
pipe: make F_{GET,SET}PIPE_SZ deal with byte sizes
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk-cgroup.h"
18
19 /*
20 * tunables
21 */
22 /* max queue in one round of service */
23 static const int cfq_quantum = 8;
24 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max = 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty = 2;
29 static const int cfq_slice_sync = HZ / 10;
30 static int cfq_slice_async = HZ / 25;
31 static const int cfq_slice_async_rq = 2;
32 static int cfq_slice_idle = HZ / 125;
33 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
34 static const int cfq_hist_divisor = 4;
35
36 /*
37 * offset from end of service tree
38 */
39 #define CFQ_IDLE_DELAY (HZ / 5)
40
41 /*
42 * below this threshold, we consider thinktime immediate
43 */
44 #define CFQ_MIN_TT (2)
45
46 #define CFQ_SLICE_SCALE (5)
47 #define CFQ_HW_QUEUE_MIN (5)
48 #define CFQ_SERVICE_SHIFT 12
49
50 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
51 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
52 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
53 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
54
55 #define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
57 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
58 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
59
60 static struct kmem_cache *cfq_pool;
61 static struct kmem_cache *cfq_ioc_pool;
62
63 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
64 static struct completion *ioc_gone;
65 static DEFINE_SPINLOCK(ioc_gone_lock);
66
67 static DEFINE_SPINLOCK(cic_index_lock);
68 static DEFINE_IDA(cic_index_ida);
69
70 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
71 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
72 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
73
74 #define sample_valid(samples) ((samples) > 80)
75 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
76
77 /*
78 * Most of our rbtree usage is for sorting with min extraction, so
79 * if we cache the leftmost node we don't have to walk down the tree
80 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
81 * move this into the elevator for the rq sorting as well.
82 */
83 struct cfq_rb_root {
84 struct rb_root rb;
85 struct rb_node *left;
86 unsigned count;
87 unsigned total_weight;
88 u64 min_vdisktime;
89 struct rb_node *active;
90 };
91 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
93
94 /*
95 * Per process-grouping structure
96 */
97 struct cfq_queue {
98 /* reference count */
99 atomic_t ref;
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
122
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
125 unsigned int allocated_slice;
126 unsigned int slice_dispatch;
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
129 unsigned long slice_end;
130 long slice_resid;
131
132 /* pending metadata requests */
133 int meta_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
136
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class, org_ioprio_class;
140
141 pid_t pid;
142
143 u32 seek_history;
144 sector_t last_request_pos;
145
146 struct cfq_rb_root *service_tree;
147 struct cfq_queue *new_cfqq;
148 struct cfq_group *cfqg;
149 struct cfq_group *orig_cfqg;
150 };
151
152 /*
153 * First index in the service_trees.
154 * IDLE is handled separately, so it has negative index
155 */
156 enum wl_prio_t {
157 BE_WORKLOAD = 0,
158 RT_WORKLOAD = 1,
159 IDLE_WORKLOAD = 2,
160 };
161
162 /*
163 * Second index in the service_trees.
164 */
165 enum wl_type_t {
166 ASYNC_WORKLOAD = 0,
167 SYNC_NOIDLE_WORKLOAD = 1,
168 SYNC_WORKLOAD = 2
169 };
170
171 /* This is per cgroup per device grouping structure */
172 struct cfq_group {
173 /* group service_tree member */
174 struct rb_node rb_node;
175
176 /* group service_tree key */
177 u64 vdisktime;
178 unsigned int weight;
179 bool on_st;
180
181 /* number of cfqq currently on this group */
182 int nr_cfqq;
183
184 /* Per group busy queus average. Useful for workload slice calc. */
185 unsigned int busy_queues_avg[2];
186 /*
187 * rr lists of queues with requests, onle rr for each priority class.
188 * Counts are embedded in the cfq_rb_root
189 */
190 struct cfq_rb_root service_trees[2][3];
191 struct cfq_rb_root service_tree_idle;
192
193 unsigned long saved_workload_slice;
194 enum wl_type_t saved_workload;
195 enum wl_prio_t saved_serving_prio;
196 struct blkio_group blkg;
197 #ifdef CONFIG_CFQ_GROUP_IOSCHED
198 struct hlist_node cfqd_node;
199 atomic_t ref;
200 #endif
201 };
202
203 /*
204 * Per block device queue structure
205 */
206 struct cfq_data {
207 struct request_queue *queue;
208 /* Root service tree for cfq_groups */
209 struct cfq_rb_root grp_service_tree;
210 struct cfq_group root_group;
211
212 /*
213 * The priority currently being served
214 */
215 enum wl_prio_t serving_prio;
216 enum wl_type_t serving_type;
217 unsigned long workload_expires;
218 struct cfq_group *serving_group;
219 bool noidle_tree_requires_idle;
220
221 /*
222 * Each priority tree is sorted by next_request position. These
223 * trees are used when determining if two or more queues are
224 * interleaving requests (see cfq_close_cooperator).
225 */
226 struct rb_root prio_trees[CFQ_PRIO_LISTS];
227
228 unsigned int busy_queues;
229
230 int rq_in_driver;
231 int rq_in_flight[2];
232
233 /*
234 * queue-depth detection
235 */
236 int rq_queued;
237 int hw_tag;
238 /*
239 * hw_tag can be
240 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
241 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
242 * 0 => no NCQ
243 */
244 int hw_tag_est_depth;
245 unsigned int hw_tag_samples;
246
247 /*
248 * idle window management
249 */
250 struct timer_list idle_slice_timer;
251 struct work_struct unplug_work;
252
253 struct cfq_queue *active_queue;
254 struct cfq_io_context *active_cic;
255
256 /*
257 * async queue for each priority case
258 */
259 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
260 struct cfq_queue *async_idle_cfqq;
261
262 sector_t last_position;
263
264 /*
265 * tunables, see top of file
266 */
267 unsigned int cfq_quantum;
268 unsigned int cfq_fifo_expire[2];
269 unsigned int cfq_back_penalty;
270 unsigned int cfq_back_max;
271 unsigned int cfq_slice[2];
272 unsigned int cfq_slice_async_rq;
273 unsigned int cfq_slice_idle;
274 unsigned int cfq_latency;
275 unsigned int cfq_group_isolation;
276
277 unsigned int cic_index;
278 struct list_head cic_list;
279
280 /*
281 * Fallback dummy cfqq for extreme OOM conditions
282 */
283 struct cfq_queue oom_cfqq;
284
285 unsigned long last_delayed_sync;
286
287 /* List of cfq groups being managed on this device*/
288 struct hlist_head cfqg_list;
289 struct rcu_head rcu;
290 };
291
292 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
293
294 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
295 enum wl_prio_t prio,
296 enum wl_type_t type)
297 {
298 if (!cfqg)
299 return NULL;
300
301 if (prio == IDLE_WORKLOAD)
302 return &cfqg->service_tree_idle;
303
304 return &cfqg->service_trees[prio][type];
305 }
306
307 enum cfqq_state_flags {
308 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
309 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
310 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
311 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
312 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
313 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
314 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
315 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
316 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
317 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
318 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
319 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
320 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
321 };
322
323 #define CFQ_CFQQ_FNS(name) \
324 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
325 { \
326 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
327 } \
328 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
329 { \
330 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
331 } \
332 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
333 { \
334 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
335 }
336
337 CFQ_CFQQ_FNS(on_rr);
338 CFQ_CFQQ_FNS(wait_request);
339 CFQ_CFQQ_FNS(must_dispatch);
340 CFQ_CFQQ_FNS(must_alloc_slice);
341 CFQ_CFQQ_FNS(fifo_expire);
342 CFQ_CFQQ_FNS(idle_window);
343 CFQ_CFQQ_FNS(prio_changed);
344 CFQ_CFQQ_FNS(slice_new);
345 CFQ_CFQQ_FNS(sync);
346 CFQ_CFQQ_FNS(coop);
347 CFQ_CFQQ_FNS(split_coop);
348 CFQ_CFQQ_FNS(deep);
349 CFQ_CFQQ_FNS(wait_busy);
350 #undef CFQ_CFQQ_FNS
351
352 #ifdef CONFIG_CFQ_GROUP_IOSCHED
353 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
354 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
355 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
356 blkg_path(&(cfqq)->cfqg->blkg), ##args);
357
358 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
359 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
360 blkg_path(&(cfqg)->blkg), ##args); \
361
362 #else
363 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
364 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
365 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
366 #endif
367 #define cfq_log(cfqd, fmt, args...) \
368 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
369
370 /* Traverses through cfq group service trees */
371 #define for_each_cfqg_st(cfqg, i, j, st) \
372 for (i = 0; i <= IDLE_WORKLOAD; i++) \
373 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
374 : &cfqg->service_tree_idle; \
375 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
376 (i == IDLE_WORKLOAD && j == 0); \
377 j++, st = i < IDLE_WORKLOAD ? \
378 &cfqg->service_trees[i][j]: NULL) \
379
380
381 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
382 {
383 if (cfq_class_idle(cfqq))
384 return IDLE_WORKLOAD;
385 if (cfq_class_rt(cfqq))
386 return RT_WORKLOAD;
387 return BE_WORKLOAD;
388 }
389
390
391 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
392 {
393 if (!cfq_cfqq_sync(cfqq))
394 return ASYNC_WORKLOAD;
395 if (!cfq_cfqq_idle_window(cfqq))
396 return SYNC_NOIDLE_WORKLOAD;
397 return SYNC_WORKLOAD;
398 }
399
400 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
401 struct cfq_data *cfqd,
402 struct cfq_group *cfqg)
403 {
404 if (wl == IDLE_WORKLOAD)
405 return cfqg->service_tree_idle.count;
406
407 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
408 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
409 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
410 }
411
412 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
413 struct cfq_group *cfqg)
414 {
415 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
416 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
417 }
418
419 static void cfq_dispatch_insert(struct request_queue *, struct request *);
420 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
421 struct io_context *, gfp_t);
422 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
423 struct io_context *);
424
425 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
426 bool is_sync)
427 {
428 return cic->cfqq[is_sync];
429 }
430
431 static inline void cic_set_cfqq(struct cfq_io_context *cic,
432 struct cfq_queue *cfqq, bool is_sync)
433 {
434 cic->cfqq[is_sync] = cfqq;
435 }
436
437 #define CIC_DEAD_KEY 1ul
438 #define CIC_DEAD_INDEX_SHIFT 1
439
440 static inline void *cfqd_dead_key(struct cfq_data *cfqd)
441 {
442 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
443 }
444
445 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
446 {
447 struct cfq_data *cfqd = cic->key;
448
449 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
450 return NULL;
451
452 return cfqd;
453 }
454
455 /*
456 * We regard a request as SYNC, if it's either a read or has the SYNC bit
457 * set (in which case it could also be direct WRITE).
458 */
459 static inline bool cfq_bio_sync(struct bio *bio)
460 {
461 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
462 }
463
464 /*
465 * scheduler run of queue, if there are requests pending and no one in the
466 * driver that will restart queueing
467 */
468 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
469 {
470 if (cfqd->busy_queues) {
471 cfq_log(cfqd, "schedule dispatch");
472 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
473 }
474 }
475
476 static int cfq_queue_empty(struct request_queue *q)
477 {
478 struct cfq_data *cfqd = q->elevator->elevator_data;
479
480 return !cfqd->rq_queued;
481 }
482
483 /*
484 * Scale schedule slice based on io priority. Use the sync time slice only
485 * if a queue is marked sync and has sync io queued. A sync queue with async
486 * io only, should not get full sync slice length.
487 */
488 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
489 unsigned short prio)
490 {
491 const int base_slice = cfqd->cfq_slice[sync];
492
493 WARN_ON(prio >= IOPRIO_BE_NR);
494
495 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
496 }
497
498 static inline int
499 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
500 {
501 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
502 }
503
504 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
505 {
506 u64 d = delta << CFQ_SERVICE_SHIFT;
507
508 d = d * BLKIO_WEIGHT_DEFAULT;
509 do_div(d, cfqg->weight);
510 return d;
511 }
512
513 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
514 {
515 s64 delta = (s64)(vdisktime - min_vdisktime);
516 if (delta > 0)
517 min_vdisktime = vdisktime;
518
519 return min_vdisktime;
520 }
521
522 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
523 {
524 s64 delta = (s64)(vdisktime - min_vdisktime);
525 if (delta < 0)
526 min_vdisktime = vdisktime;
527
528 return min_vdisktime;
529 }
530
531 static void update_min_vdisktime(struct cfq_rb_root *st)
532 {
533 u64 vdisktime = st->min_vdisktime;
534 struct cfq_group *cfqg;
535
536 if (st->active) {
537 cfqg = rb_entry_cfqg(st->active);
538 vdisktime = cfqg->vdisktime;
539 }
540
541 if (st->left) {
542 cfqg = rb_entry_cfqg(st->left);
543 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
544 }
545
546 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
547 }
548
549 /*
550 * get averaged number of queues of RT/BE priority.
551 * average is updated, with a formula that gives more weight to higher numbers,
552 * to quickly follows sudden increases and decrease slowly
553 */
554
555 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
556 struct cfq_group *cfqg, bool rt)
557 {
558 unsigned min_q, max_q;
559 unsigned mult = cfq_hist_divisor - 1;
560 unsigned round = cfq_hist_divisor / 2;
561 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
562
563 min_q = min(cfqg->busy_queues_avg[rt], busy);
564 max_q = max(cfqg->busy_queues_avg[rt], busy);
565 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
566 cfq_hist_divisor;
567 return cfqg->busy_queues_avg[rt];
568 }
569
570 static inline unsigned
571 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
572 {
573 struct cfq_rb_root *st = &cfqd->grp_service_tree;
574
575 return cfq_target_latency * cfqg->weight / st->total_weight;
576 }
577
578 static inline void
579 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
580 {
581 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
582 if (cfqd->cfq_latency) {
583 /*
584 * interested queues (we consider only the ones with the same
585 * priority class in the cfq group)
586 */
587 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
588 cfq_class_rt(cfqq));
589 unsigned sync_slice = cfqd->cfq_slice[1];
590 unsigned expect_latency = sync_slice * iq;
591 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
592
593 if (expect_latency > group_slice) {
594 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
595 /* scale low_slice according to IO priority
596 * and sync vs async */
597 unsigned low_slice =
598 min(slice, base_low_slice * slice / sync_slice);
599 /* the adapted slice value is scaled to fit all iqs
600 * into the target latency */
601 slice = max(slice * group_slice / expect_latency,
602 low_slice);
603 }
604 }
605 cfqq->slice_start = jiffies;
606 cfqq->slice_end = jiffies + slice;
607 cfqq->allocated_slice = slice;
608 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
609 }
610
611 /*
612 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
613 * isn't valid until the first request from the dispatch is activated
614 * and the slice time set.
615 */
616 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
617 {
618 if (cfq_cfqq_slice_new(cfqq))
619 return 0;
620 if (time_before(jiffies, cfqq->slice_end))
621 return 0;
622
623 return 1;
624 }
625
626 /*
627 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
628 * We choose the request that is closest to the head right now. Distance
629 * behind the head is penalized and only allowed to a certain extent.
630 */
631 static struct request *
632 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
633 {
634 sector_t s1, s2, d1 = 0, d2 = 0;
635 unsigned long back_max;
636 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
637 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
638 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
639
640 if (rq1 == NULL || rq1 == rq2)
641 return rq2;
642 if (rq2 == NULL)
643 return rq1;
644
645 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
646 return rq1;
647 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
648 return rq2;
649 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
650 return rq1;
651 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
652 return rq2;
653
654 s1 = blk_rq_pos(rq1);
655 s2 = blk_rq_pos(rq2);
656
657 /*
658 * by definition, 1KiB is 2 sectors
659 */
660 back_max = cfqd->cfq_back_max * 2;
661
662 /*
663 * Strict one way elevator _except_ in the case where we allow
664 * short backward seeks which are biased as twice the cost of a
665 * similar forward seek.
666 */
667 if (s1 >= last)
668 d1 = s1 - last;
669 else if (s1 + back_max >= last)
670 d1 = (last - s1) * cfqd->cfq_back_penalty;
671 else
672 wrap |= CFQ_RQ1_WRAP;
673
674 if (s2 >= last)
675 d2 = s2 - last;
676 else if (s2 + back_max >= last)
677 d2 = (last - s2) * cfqd->cfq_back_penalty;
678 else
679 wrap |= CFQ_RQ2_WRAP;
680
681 /* Found required data */
682
683 /*
684 * By doing switch() on the bit mask "wrap" we avoid having to
685 * check two variables for all permutations: --> faster!
686 */
687 switch (wrap) {
688 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
689 if (d1 < d2)
690 return rq1;
691 else if (d2 < d1)
692 return rq2;
693 else {
694 if (s1 >= s2)
695 return rq1;
696 else
697 return rq2;
698 }
699
700 case CFQ_RQ2_WRAP:
701 return rq1;
702 case CFQ_RQ1_WRAP:
703 return rq2;
704 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
705 default:
706 /*
707 * Since both rqs are wrapped,
708 * start with the one that's further behind head
709 * (--> only *one* back seek required),
710 * since back seek takes more time than forward.
711 */
712 if (s1 <= s2)
713 return rq1;
714 else
715 return rq2;
716 }
717 }
718
719 /*
720 * The below is leftmost cache rbtree addon
721 */
722 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
723 {
724 /* Service tree is empty */
725 if (!root->count)
726 return NULL;
727
728 if (!root->left)
729 root->left = rb_first(&root->rb);
730
731 if (root->left)
732 return rb_entry(root->left, struct cfq_queue, rb_node);
733
734 return NULL;
735 }
736
737 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
738 {
739 if (!root->left)
740 root->left = rb_first(&root->rb);
741
742 if (root->left)
743 return rb_entry_cfqg(root->left);
744
745 return NULL;
746 }
747
748 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
749 {
750 rb_erase(n, root);
751 RB_CLEAR_NODE(n);
752 }
753
754 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
755 {
756 if (root->left == n)
757 root->left = NULL;
758 rb_erase_init(n, &root->rb);
759 --root->count;
760 }
761
762 /*
763 * would be nice to take fifo expire time into account as well
764 */
765 static struct request *
766 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
767 struct request *last)
768 {
769 struct rb_node *rbnext = rb_next(&last->rb_node);
770 struct rb_node *rbprev = rb_prev(&last->rb_node);
771 struct request *next = NULL, *prev = NULL;
772
773 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
774
775 if (rbprev)
776 prev = rb_entry_rq(rbprev);
777
778 if (rbnext)
779 next = rb_entry_rq(rbnext);
780 else {
781 rbnext = rb_first(&cfqq->sort_list);
782 if (rbnext && rbnext != &last->rb_node)
783 next = rb_entry_rq(rbnext);
784 }
785
786 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
787 }
788
789 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
790 struct cfq_queue *cfqq)
791 {
792 /*
793 * just an approximation, should be ok.
794 */
795 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
796 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
797 }
798
799 static inline s64
800 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
801 {
802 return cfqg->vdisktime - st->min_vdisktime;
803 }
804
805 static void
806 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
807 {
808 struct rb_node **node = &st->rb.rb_node;
809 struct rb_node *parent = NULL;
810 struct cfq_group *__cfqg;
811 s64 key = cfqg_key(st, cfqg);
812 int left = 1;
813
814 while (*node != NULL) {
815 parent = *node;
816 __cfqg = rb_entry_cfqg(parent);
817
818 if (key < cfqg_key(st, __cfqg))
819 node = &parent->rb_left;
820 else {
821 node = &parent->rb_right;
822 left = 0;
823 }
824 }
825
826 if (left)
827 st->left = &cfqg->rb_node;
828
829 rb_link_node(&cfqg->rb_node, parent, node);
830 rb_insert_color(&cfqg->rb_node, &st->rb);
831 }
832
833 static void
834 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
835 {
836 struct cfq_rb_root *st = &cfqd->grp_service_tree;
837 struct cfq_group *__cfqg;
838 struct rb_node *n;
839
840 cfqg->nr_cfqq++;
841 if (cfqg->on_st)
842 return;
843
844 /*
845 * Currently put the group at the end. Later implement something
846 * so that groups get lesser vtime based on their weights, so that
847 * if group does not loose all if it was not continously backlogged.
848 */
849 n = rb_last(&st->rb);
850 if (n) {
851 __cfqg = rb_entry_cfqg(n);
852 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
853 } else
854 cfqg->vdisktime = st->min_vdisktime;
855
856 __cfq_group_service_tree_add(st, cfqg);
857 cfqg->on_st = true;
858 st->total_weight += cfqg->weight;
859 }
860
861 static void
862 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
863 {
864 struct cfq_rb_root *st = &cfqd->grp_service_tree;
865
866 if (st->active == &cfqg->rb_node)
867 st->active = NULL;
868
869 BUG_ON(cfqg->nr_cfqq < 1);
870 cfqg->nr_cfqq--;
871
872 /* If there are other cfq queues under this group, don't delete it */
873 if (cfqg->nr_cfqq)
874 return;
875
876 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
877 cfqg->on_st = false;
878 st->total_weight -= cfqg->weight;
879 if (!RB_EMPTY_NODE(&cfqg->rb_node))
880 cfq_rb_erase(&cfqg->rb_node, st);
881 cfqg->saved_workload_slice = 0;
882 blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
883 }
884
885 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
886 {
887 unsigned int slice_used;
888
889 /*
890 * Queue got expired before even a single request completed or
891 * got expired immediately after first request completion.
892 */
893 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
894 /*
895 * Also charge the seek time incurred to the group, otherwise
896 * if there are mutiple queues in the group, each can dispatch
897 * a single request on seeky media and cause lots of seek time
898 * and group will never know it.
899 */
900 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
901 1);
902 } else {
903 slice_used = jiffies - cfqq->slice_start;
904 if (slice_used > cfqq->allocated_slice)
905 slice_used = cfqq->allocated_slice;
906 }
907
908 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
909 return slice_used;
910 }
911
912 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
913 struct cfq_queue *cfqq)
914 {
915 struct cfq_rb_root *st = &cfqd->grp_service_tree;
916 unsigned int used_sl, charge_sl;
917 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
918 - cfqg->service_tree_idle.count;
919
920 BUG_ON(nr_sync < 0);
921 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
922
923 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
924 charge_sl = cfqq->allocated_slice;
925
926 /* Can't update vdisktime while group is on service tree */
927 cfq_rb_erase(&cfqg->rb_node, st);
928 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
929 __cfq_group_service_tree_add(st, cfqg);
930
931 /* This group is being expired. Save the context */
932 if (time_after(cfqd->workload_expires, jiffies)) {
933 cfqg->saved_workload_slice = cfqd->workload_expires
934 - jiffies;
935 cfqg->saved_workload = cfqd->serving_type;
936 cfqg->saved_serving_prio = cfqd->serving_prio;
937 } else
938 cfqg->saved_workload_slice = 0;
939
940 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
941 st->min_vdisktime);
942 blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
943 blkiocg_set_start_empty_time(&cfqg->blkg);
944 }
945
946 #ifdef CONFIG_CFQ_GROUP_IOSCHED
947 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
948 {
949 if (blkg)
950 return container_of(blkg, struct cfq_group, blkg);
951 return NULL;
952 }
953
954 void
955 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
956 {
957 cfqg_of_blkg(blkg)->weight = weight;
958 }
959
960 static struct cfq_group *
961 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
962 {
963 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
964 struct cfq_group *cfqg = NULL;
965 void *key = cfqd;
966 int i, j;
967 struct cfq_rb_root *st;
968 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
969 unsigned int major, minor;
970
971 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
972 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
973 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
974 cfqg->blkg.dev = MKDEV(major, minor);
975 goto done;
976 }
977 if (cfqg || !create)
978 goto done;
979
980 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
981 if (!cfqg)
982 goto done;
983
984 for_each_cfqg_st(cfqg, i, j, st)
985 *st = CFQ_RB_ROOT;
986 RB_CLEAR_NODE(&cfqg->rb_node);
987
988 /*
989 * Take the initial reference that will be released on destroy
990 * This can be thought of a joint reference by cgroup and
991 * elevator which will be dropped by either elevator exit
992 * or cgroup deletion path depending on who is exiting first.
993 */
994 atomic_set(&cfqg->ref, 1);
995
996 /* Add group onto cgroup list */
997 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
998 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
999 MKDEV(major, minor));
1000 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1001
1002 /* Add group on cfqd list */
1003 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1004
1005 done:
1006 return cfqg;
1007 }
1008
1009 /*
1010 * Search for the cfq group current task belongs to. If create = 1, then also
1011 * create the cfq group if it does not exist. request_queue lock must be held.
1012 */
1013 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1014 {
1015 struct cgroup *cgroup;
1016 struct cfq_group *cfqg = NULL;
1017
1018 rcu_read_lock();
1019 cgroup = task_cgroup(current, blkio_subsys_id);
1020 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1021 if (!cfqg && create)
1022 cfqg = &cfqd->root_group;
1023 rcu_read_unlock();
1024 return cfqg;
1025 }
1026
1027 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1028 {
1029 atomic_inc(&cfqg->ref);
1030 return cfqg;
1031 }
1032
1033 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1034 {
1035 /* Currently, all async queues are mapped to root group */
1036 if (!cfq_cfqq_sync(cfqq))
1037 cfqg = &cfqq->cfqd->root_group;
1038
1039 cfqq->cfqg = cfqg;
1040 /* cfqq reference on cfqg */
1041 atomic_inc(&cfqq->cfqg->ref);
1042 }
1043
1044 static void cfq_put_cfqg(struct cfq_group *cfqg)
1045 {
1046 struct cfq_rb_root *st;
1047 int i, j;
1048
1049 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1050 if (!atomic_dec_and_test(&cfqg->ref))
1051 return;
1052 for_each_cfqg_st(cfqg, i, j, st)
1053 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1054 kfree(cfqg);
1055 }
1056
1057 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1058 {
1059 /* Something wrong if we are trying to remove same group twice */
1060 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1061
1062 hlist_del_init(&cfqg->cfqd_node);
1063
1064 /*
1065 * Put the reference taken at the time of creation so that when all
1066 * queues are gone, group can be destroyed.
1067 */
1068 cfq_put_cfqg(cfqg);
1069 }
1070
1071 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1072 {
1073 struct hlist_node *pos, *n;
1074 struct cfq_group *cfqg;
1075
1076 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1077 /*
1078 * If cgroup removal path got to blk_group first and removed
1079 * it from cgroup list, then it will take care of destroying
1080 * cfqg also.
1081 */
1082 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1083 cfq_destroy_cfqg(cfqd, cfqg);
1084 }
1085 }
1086
1087 /*
1088 * Blk cgroup controller notification saying that blkio_group object is being
1089 * delinked as associated cgroup object is going away. That also means that
1090 * no new IO will come in this group. So get rid of this group as soon as
1091 * any pending IO in the group is finished.
1092 *
1093 * This function is called under rcu_read_lock(). key is the rcu protected
1094 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1095 * read lock.
1096 *
1097 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1098 * it should not be NULL as even if elevator was exiting, cgroup deltion
1099 * path got to it first.
1100 */
1101 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1102 {
1103 unsigned long flags;
1104 struct cfq_data *cfqd = key;
1105
1106 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1107 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1108 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1109 }
1110
1111 #else /* GROUP_IOSCHED */
1112 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1113 {
1114 return &cfqd->root_group;
1115 }
1116
1117 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1118 {
1119 return cfqg;
1120 }
1121
1122 static inline void
1123 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1124 cfqq->cfqg = cfqg;
1125 }
1126
1127 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1128 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1129
1130 #endif /* GROUP_IOSCHED */
1131
1132 /*
1133 * The cfqd->service_trees holds all pending cfq_queue's that have
1134 * requests waiting to be processed. It is sorted in the order that
1135 * we will service the queues.
1136 */
1137 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1138 bool add_front)
1139 {
1140 struct rb_node **p, *parent;
1141 struct cfq_queue *__cfqq;
1142 unsigned long rb_key;
1143 struct cfq_rb_root *service_tree;
1144 int left;
1145 int new_cfqq = 1;
1146 int group_changed = 0;
1147
1148 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1149 if (!cfqd->cfq_group_isolation
1150 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1151 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1152 /* Move this cfq to root group */
1153 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1154 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1155 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1156 cfqq->orig_cfqg = cfqq->cfqg;
1157 cfqq->cfqg = &cfqd->root_group;
1158 atomic_inc(&cfqd->root_group.ref);
1159 group_changed = 1;
1160 } else if (!cfqd->cfq_group_isolation
1161 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1162 /* cfqq is sequential now needs to go to its original group */
1163 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1164 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1165 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1166 cfq_put_cfqg(cfqq->cfqg);
1167 cfqq->cfqg = cfqq->orig_cfqg;
1168 cfqq->orig_cfqg = NULL;
1169 group_changed = 1;
1170 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1171 }
1172 #endif
1173
1174 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1175 cfqq_type(cfqq));
1176 if (cfq_class_idle(cfqq)) {
1177 rb_key = CFQ_IDLE_DELAY;
1178 parent = rb_last(&service_tree->rb);
1179 if (parent && parent != &cfqq->rb_node) {
1180 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1181 rb_key += __cfqq->rb_key;
1182 } else
1183 rb_key += jiffies;
1184 } else if (!add_front) {
1185 /*
1186 * Get our rb key offset. Subtract any residual slice
1187 * value carried from last service. A negative resid
1188 * count indicates slice overrun, and this should position
1189 * the next service time further away in the tree.
1190 */
1191 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1192 rb_key -= cfqq->slice_resid;
1193 cfqq->slice_resid = 0;
1194 } else {
1195 rb_key = -HZ;
1196 __cfqq = cfq_rb_first(service_tree);
1197 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1198 }
1199
1200 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1201 new_cfqq = 0;
1202 /*
1203 * same position, nothing more to do
1204 */
1205 if (rb_key == cfqq->rb_key &&
1206 cfqq->service_tree == service_tree)
1207 return;
1208
1209 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1210 cfqq->service_tree = NULL;
1211 }
1212
1213 left = 1;
1214 parent = NULL;
1215 cfqq->service_tree = service_tree;
1216 p = &service_tree->rb.rb_node;
1217 while (*p) {
1218 struct rb_node **n;
1219
1220 parent = *p;
1221 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1222
1223 /*
1224 * sort by key, that represents service time.
1225 */
1226 if (time_before(rb_key, __cfqq->rb_key))
1227 n = &(*p)->rb_left;
1228 else {
1229 n = &(*p)->rb_right;
1230 left = 0;
1231 }
1232
1233 p = n;
1234 }
1235
1236 if (left)
1237 service_tree->left = &cfqq->rb_node;
1238
1239 cfqq->rb_key = rb_key;
1240 rb_link_node(&cfqq->rb_node, parent, p);
1241 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1242 service_tree->count++;
1243 if ((add_front || !new_cfqq) && !group_changed)
1244 return;
1245 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1246 }
1247
1248 static struct cfq_queue *
1249 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1250 sector_t sector, struct rb_node **ret_parent,
1251 struct rb_node ***rb_link)
1252 {
1253 struct rb_node **p, *parent;
1254 struct cfq_queue *cfqq = NULL;
1255
1256 parent = NULL;
1257 p = &root->rb_node;
1258 while (*p) {
1259 struct rb_node **n;
1260
1261 parent = *p;
1262 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1263
1264 /*
1265 * Sort strictly based on sector. Smallest to the left,
1266 * largest to the right.
1267 */
1268 if (sector > blk_rq_pos(cfqq->next_rq))
1269 n = &(*p)->rb_right;
1270 else if (sector < blk_rq_pos(cfqq->next_rq))
1271 n = &(*p)->rb_left;
1272 else
1273 break;
1274 p = n;
1275 cfqq = NULL;
1276 }
1277
1278 *ret_parent = parent;
1279 if (rb_link)
1280 *rb_link = p;
1281 return cfqq;
1282 }
1283
1284 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1285 {
1286 struct rb_node **p, *parent;
1287 struct cfq_queue *__cfqq;
1288
1289 if (cfqq->p_root) {
1290 rb_erase(&cfqq->p_node, cfqq->p_root);
1291 cfqq->p_root = NULL;
1292 }
1293
1294 if (cfq_class_idle(cfqq))
1295 return;
1296 if (!cfqq->next_rq)
1297 return;
1298
1299 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1300 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1301 blk_rq_pos(cfqq->next_rq), &parent, &p);
1302 if (!__cfqq) {
1303 rb_link_node(&cfqq->p_node, parent, p);
1304 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1305 } else
1306 cfqq->p_root = NULL;
1307 }
1308
1309 /*
1310 * Update cfqq's position in the service tree.
1311 */
1312 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1313 {
1314 /*
1315 * Resorting requires the cfqq to be on the RR list already.
1316 */
1317 if (cfq_cfqq_on_rr(cfqq)) {
1318 cfq_service_tree_add(cfqd, cfqq, 0);
1319 cfq_prio_tree_add(cfqd, cfqq);
1320 }
1321 }
1322
1323 /*
1324 * add to busy list of queues for service, trying to be fair in ordering
1325 * the pending list according to last request service
1326 */
1327 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1328 {
1329 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1330 BUG_ON(cfq_cfqq_on_rr(cfqq));
1331 cfq_mark_cfqq_on_rr(cfqq);
1332 cfqd->busy_queues++;
1333
1334 cfq_resort_rr_list(cfqd, cfqq);
1335 }
1336
1337 /*
1338 * Called when the cfqq no longer has requests pending, remove it from
1339 * the service tree.
1340 */
1341 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1342 {
1343 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1344 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1345 cfq_clear_cfqq_on_rr(cfqq);
1346
1347 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1348 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1349 cfqq->service_tree = NULL;
1350 }
1351 if (cfqq->p_root) {
1352 rb_erase(&cfqq->p_node, cfqq->p_root);
1353 cfqq->p_root = NULL;
1354 }
1355
1356 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1357 BUG_ON(!cfqd->busy_queues);
1358 cfqd->busy_queues--;
1359 }
1360
1361 /*
1362 * rb tree support functions
1363 */
1364 static void cfq_del_rq_rb(struct request *rq)
1365 {
1366 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1367 const int sync = rq_is_sync(rq);
1368
1369 BUG_ON(!cfqq->queued[sync]);
1370 cfqq->queued[sync]--;
1371
1372 elv_rb_del(&cfqq->sort_list, rq);
1373
1374 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1375 /*
1376 * Queue will be deleted from service tree when we actually
1377 * expire it later. Right now just remove it from prio tree
1378 * as it is empty.
1379 */
1380 if (cfqq->p_root) {
1381 rb_erase(&cfqq->p_node, cfqq->p_root);
1382 cfqq->p_root = NULL;
1383 }
1384 }
1385 }
1386
1387 static void cfq_add_rq_rb(struct request *rq)
1388 {
1389 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1390 struct cfq_data *cfqd = cfqq->cfqd;
1391 struct request *__alias, *prev;
1392
1393 cfqq->queued[rq_is_sync(rq)]++;
1394
1395 /*
1396 * looks a little odd, but the first insert might return an alias.
1397 * if that happens, put the alias on the dispatch list
1398 */
1399 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1400 cfq_dispatch_insert(cfqd->queue, __alias);
1401
1402 if (!cfq_cfqq_on_rr(cfqq))
1403 cfq_add_cfqq_rr(cfqd, cfqq);
1404
1405 /*
1406 * check if this request is a better next-serve candidate
1407 */
1408 prev = cfqq->next_rq;
1409 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1410
1411 /*
1412 * adjust priority tree position, if ->next_rq changes
1413 */
1414 if (prev != cfqq->next_rq)
1415 cfq_prio_tree_add(cfqd, cfqq);
1416
1417 BUG_ON(!cfqq->next_rq);
1418 }
1419
1420 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1421 {
1422 elv_rb_del(&cfqq->sort_list, rq);
1423 cfqq->queued[rq_is_sync(rq)]--;
1424 blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg, rq_data_dir(rq),
1425 rq_is_sync(rq));
1426 cfq_add_rq_rb(rq);
1427 blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1428 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1429 rq_is_sync(rq));
1430 }
1431
1432 static struct request *
1433 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1434 {
1435 struct task_struct *tsk = current;
1436 struct cfq_io_context *cic;
1437 struct cfq_queue *cfqq;
1438
1439 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1440 if (!cic)
1441 return NULL;
1442
1443 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1444 if (cfqq) {
1445 sector_t sector = bio->bi_sector + bio_sectors(bio);
1446
1447 return elv_rb_find(&cfqq->sort_list, sector);
1448 }
1449
1450 return NULL;
1451 }
1452
1453 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1454 {
1455 struct cfq_data *cfqd = q->elevator->elevator_data;
1456
1457 cfqd->rq_in_driver++;
1458 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1459 cfqd->rq_in_driver);
1460
1461 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1462 }
1463
1464 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1465 {
1466 struct cfq_data *cfqd = q->elevator->elevator_data;
1467
1468 WARN_ON(!cfqd->rq_in_driver);
1469 cfqd->rq_in_driver--;
1470 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1471 cfqd->rq_in_driver);
1472 }
1473
1474 static void cfq_remove_request(struct request *rq)
1475 {
1476 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1477
1478 if (cfqq->next_rq == rq)
1479 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1480
1481 list_del_init(&rq->queuelist);
1482 cfq_del_rq_rb(rq);
1483
1484 cfqq->cfqd->rq_queued--;
1485 blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg, rq_data_dir(rq),
1486 rq_is_sync(rq));
1487 if (rq_is_meta(rq)) {
1488 WARN_ON(!cfqq->meta_pending);
1489 cfqq->meta_pending--;
1490 }
1491 }
1492
1493 static int cfq_merge(struct request_queue *q, struct request **req,
1494 struct bio *bio)
1495 {
1496 struct cfq_data *cfqd = q->elevator->elevator_data;
1497 struct request *__rq;
1498
1499 __rq = cfq_find_rq_fmerge(cfqd, bio);
1500 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1501 *req = __rq;
1502 return ELEVATOR_FRONT_MERGE;
1503 }
1504
1505 return ELEVATOR_NO_MERGE;
1506 }
1507
1508 static void cfq_merged_request(struct request_queue *q, struct request *req,
1509 int type)
1510 {
1511 if (type == ELEVATOR_FRONT_MERGE) {
1512 struct cfq_queue *cfqq = RQ_CFQQ(req);
1513
1514 cfq_reposition_rq_rb(cfqq, req);
1515 }
1516 }
1517
1518 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1519 struct bio *bio)
1520 {
1521 blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg, bio_data_dir(bio),
1522 cfq_bio_sync(bio));
1523 }
1524
1525 static void
1526 cfq_merged_requests(struct request_queue *q, struct request *rq,
1527 struct request *next)
1528 {
1529 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1530 /*
1531 * reposition in fifo if next is older than rq
1532 */
1533 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1534 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1535 list_move(&rq->queuelist, &next->queuelist);
1536 rq_set_fifo_time(rq, rq_fifo_time(next));
1537 }
1538
1539 if (cfqq->next_rq == next)
1540 cfqq->next_rq = rq;
1541 cfq_remove_request(next);
1542 blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg, rq_data_dir(next),
1543 rq_is_sync(next));
1544 }
1545
1546 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1547 struct bio *bio)
1548 {
1549 struct cfq_data *cfqd = q->elevator->elevator_data;
1550 struct cfq_io_context *cic;
1551 struct cfq_queue *cfqq;
1552
1553 /*
1554 * Disallow merge of a sync bio into an async request.
1555 */
1556 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1557 return false;
1558
1559 /*
1560 * Lookup the cfqq that this bio will be queued with. Allow
1561 * merge only if rq is queued there.
1562 */
1563 cic = cfq_cic_lookup(cfqd, current->io_context);
1564 if (!cic)
1565 return false;
1566
1567 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1568 return cfqq == RQ_CFQQ(rq);
1569 }
1570
1571 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1572 {
1573 del_timer(&cfqd->idle_slice_timer);
1574 blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1575 }
1576
1577 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1578 struct cfq_queue *cfqq)
1579 {
1580 if (cfqq) {
1581 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1582 cfqd->serving_prio, cfqd->serving_type);
1583 blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1584 cfqq->slice_start = 0;
1585 cfqq->dispatch_start = jiffies;
1586 cfqq->allocated_slice = 0;
1587 cfqq->slice_end = 0;
1588 cfqq->slice_dispatch = 0;
1589
1590 cfq_clear_cfqq_wait_request(cfqq);
1591 cfq_clear_cfqq_must_dispatch(cfqq);
1592 cfq_clear_cfqq_must_alloc_slice(cfqq);
1593 cfq_clear_cfqq_fifo_expire(cfqq);
1594 cfq_mark_cfqq_slice_new(cfqq);
1595
1596 cfq_del_timer(cfqd, cfqq);
1597 }
1598
1599 cfqd->active_queue = cfqq;
1600 }
1601
1602 /*
1603 * current cfqq expired its slice (or was too idle), select new one
1604 */
1605 static void
1606 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1607 bool timed_out)
1608 {
1609 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1610
1611 if (cfq_cfqq_wait_request(cfqq))
1612 cfq_del_timer(cfqd, cfqq);
1613
1614 cfq_clear_cfqq_wait_request(cfqq);
1615 cfq_clear_cfqq_wait_busy(cfqq);
1616
1617 /*
1618 * If this cfqq is shared between multiple processes, check to
1619 * make sure that those processes are still issuing I/Os within
1620 * the mean seek distance. If not, it may be time to break the
1621 * queues apart again.
1622 */
1623 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1624 cfq_mark_cfqq_split_coop(cfqq);
1625
1626 /*
1627 * store what was left of this slice, if the queue idled/timed out
1628 */
1629 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1630 cfqq->slice_resid = cfqq->slice_end - jiffies;
1631 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1632 }
1633
1634 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1635
1636 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1637 cfq_del_cfqq_rr(cfqd, cfqq);
1638
1639 cfq_resort_rr_list(cfqd, cfqq);
1640
1641 if (cfqq == cfqd->active_queue)
1642 cfqd->active_queue = NULL;
1643
1644 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1645 cfqd->grp_service_tree.active = NULL;
1646
1647 if (cfqd->active_cic) {
1648 put_io_context(cfqd->active_cic->ioc);
1649 cfqd->active_cic = NULL;
1650 }
1651 }
1652
1653 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1654 {
1655 struct cfq_queue *cfqq = cfqd->active_queue;
1656
1657 if (cfqq)
1658 __cfq_slice_expired(cfqd, cfqq, timed_out);
1659 }
1660
1661 /*
1662 * Get next queue for service. Unless we have a queue preemption,
1663 * we'll simply select the first cfqq in the service tree.
1664 */
1665 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1666 {
1667 struct cfq_rb_root *service_tree =
1668 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1669 cfqd->serving_type);
1670
1671 if (!cfqd->rq_queued)
1672 return NULL;
1673
1674 /* There is nothing to dispatch */
1675 if (!service_tree)
1676 return NULL;
1677 if (RB_EMPTY_ROOT(&service_tree->rb))
1678 return NULL;
1679 return cfq_rb_first(service_tree);
1680 }
1681
1682 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1683 {
1684 struct cfq_group *cfqg;
1685 struct cfq_queue *cfqq;
1686 int i, j;
1687 struct cfq_rb_root *st;
1688
1689 if (!cfqd->rq_queued)
1690 return NULL;
1691
1692 cfqg = cfq_get_next_cfqg(cfqd);
1693 if (!cfqg)
1694 return NULL;
1695
1696 for_each_cfqg_st(cfqg, i, j, st)
1697 if ((cfqq = cfq_rb_first(st)) != NULL)
1698 return cfqq;
1699 return NULL;
1700 }
1701
1702 /*
1703 * Get and set a new active queue for service.
1704 */
1705 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1706 struct cfq_queue *cfqq)
1707 {
1708 if (!cfqq)
1709 cfqq = cfq_get_next_queue(cfqd);
1710
1711 __cfq_set_active_queue(cfqd, cfqq);
1712 return cfqq;
1713 }
1714
1715 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1716 struct request *rq)
1717 {
1718 if (blk_rq_pos(rq) >= cfqd->last_position)
1719 return blk_rq_pos(rq) - cfqd->last_position;
1720 else
1721 return cfqd->last_position - blk_rq_pos(rq);
1722 }
1723
1724 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1725 struct request *rq)
1726 {
1727 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1728 }
1729
1730 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1731 struct cfq_queue *cur_cfqq)
1732 {
1733 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1734 struct rb_node *parent, *node;
1735 struct cfq_queue *__cfqq;
1736 sector_t sector = cfqd->last_position;
1737
1738 if (RB_EMPTY_ROOT(root))
1739 return NULL;
1740
1741 /*
1742 * First, if we find a request starting at the end of the last
1743 * request, choose it.
1744 */
1745 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1746 if (__cfqq)
1747 return __cfqq;
1748
1749 /*
1750 * If the exact sector wasn't found, the parent of the NULL leaf
1751 * will contain the closest sector.
1752 */
1753 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1754 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1755 return __cfqq;
1756
1757 if (blk_rq_pos(__cfqq->next_rq) < sector)
1758 node = rb_next(&__cfqq->p_node);
1759 else
1760 node = rb_prev(&__cfqq->p_node);
1761 if (!node)
1762 return NULL;
1763
1764 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1765 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1766 return __cfqq;
1767
1768 return NULL;
1769 }
1770
1771 /*
1772 * cfqd - obvious
1773 * cur_cfqq - passed in so that we don't decide that the current queue is
1774 * closely cooperating with itself.
1775 *
1776 * So, basically we're assuming that that cur_cfqq has dispatched at least
1777 * one request, and that cfqd->last_position reflects a position on the disk
1778 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1779 * assumption.
1780 */
1781 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1782 struct cfq_queue *cur_cfqq)
1783 {
1784 struct cfq_queue *cfqq;
1785
1786 if (cfq_class_idle(cur_cfqq))
1787 return NULL;
1788 if (!cfq_cfqq_sync(cur_cfqq))
1789 return NULL;
1790 if (CFQQ_SEEKY(cur_cfqq))
1791 return NULL;
1792
1793 /*
1794 * Don't search priority tree if it's the only queue in the group.
1795 */
1796 if (cur_cfqq->cfqg->nr_cfqq == 1)
1797 return NULL;
1798
1799 /*
1800 * We should notice if some of the queues are cooperating, eg
1801 * working closely on the same area of the disk. In that case,
1802 * we can group them together and don't waste time idling.
1803 */
1804 cfqq = cfqq_close(cfqd, cur_cfqq);
1805 if (!cfqq)
1806 return NULL;
1807
1808 /* If new queue belongs to different cfq_group, don't choose it */
1809 if (cur_cfqq->cfqg != cfqq->cfqg)
1810 return NULL;
1811
1812 /*
1813 * It only makes sense to merge sync queues.
1814 */
1815 if (!cfq_cfqq_sync(cfqq))
1816 return NULL;
1817 if (CFQQ_SEEKY(cfqq))
1818 return NULL;
1819
1820 /*
1821 * Do not merge queues of different priority classes
1822 */
1823 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1824 return NULL;
1825
1826 return cfqq;
1827 }
1828
1829 /*
1830 * Determine whether we should enforce idle window for this queue.
1831 */
1832
1833 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1834 {
1835 enum wl_prio_t prio = cfqq_prio(cfqq);
1836 struct cfq_rb_root *service_tree = cfqq->service_tree;
1837
1838 BUG_ON(!service_tree);
1839 BUG_ON(!service_tree->count);
1840
1841 /* We never do for idle class queues. */
1842 if (prio == IDLE_WORKLOAD)
1843 return false;
1844
1845 /* We do for queues that were marked with idle window flag. */
1846 if (cfq_cfqq_idle_window(cfqq) &&
1847 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1848 return true;
1849
1850 /*
1851 * Otherwise, we do only if they are the last ones
1852 * in their service tree.
1853 */
1854 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1855 return 1;
1856 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1857 service_tree->count);
1858 return 0;
1859 }
1860
1861 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1862 {
1863 struct cfq_queue *cfqq = cfqd->active_queue;
1864 struct cfq_io_context *cic;
1865 unsigned long sl;
1866
1867 /*
1868 * SSD device without seek penalty, disable idling. But only do so
1869 * for devices that support queuing, otherwise we still have a problem
1870 * with sync vs async workloads.
1871 */
1872 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1873 return;
1874
1875 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1876 WARN_ON(cfq_cfqq_slice_new(cfqq));
1877
1878 /*
1879 * idle is disabled, either manually or by past process history
1880 */
1881 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1882 return;
1883
1884 /*
1885 * still active requests from this queue, don't idle
1886 */
1887 if (cfqq->dispatched)
1888 return;
1889
1890 /*
1891 * task has exited, don't wait
1892 */
1893 cic = cfqd->active_cic;
1894 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1895 return;
1896
1897 /*
1898 * If our average think time is larger than the remaining time
1899 * slice, then don't idle. This avoids overrunning the allotted
1900 * time slice.
1901 */
1902 if (sample_valid(cic->ttime_samples) &&
1903 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1904 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1905 cic->ttime_mean);
1906 return;
1907 }
1908
1909 cfq_mark_cfqq_wait_request(cfqq);
1910
1911 sl = cfqd->cfq_slice_idle;
1912
1913 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1914 blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
1915 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1916 }
1917
1918 /*
1919 * Move request from internal lists to the request queue dispatch list.
1920 */
1921 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1922 {
1923 struct cfq_data *cfqd = q->elevator->elevator_data;
1924 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1925
1926 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1927
1928 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1929 cfq_remove_request(rq);
1930 cfqq->dispatched++;
1931 elv_dispatch_sort(q, rq);
1932
1933 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1934 blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
1935 rq_data_dir(rq), rq_is_sync(rq));
1936 }
1937
1938 /*
1939 * return expired entry, or NULL to just start from scratch in rbtree
1940 */
1941 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1942 {
1943 struct request *rq = NULL;
1944
1945 if (cfq_cfqq_fifo_expire(cfqq))
1946 return NULL;
1947
1948 cfq_mark_cfqq_fifo_expire(cfqq);
1949
1950 if (list_empty(&cfqq->fifo))
1951 return NULL;
1952
1953 rq = rq_entry_fifo(cfqq->fifo.next);
1954 if (time_before(jiffies, rq_fifo_time(rq)))
1955 rq = NULL;
1956
1957 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1958 return rq;
1959 }
1960
1961 static inline int
1962 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1963 {
1964 const int base_rq = cfqd->cfq_slice_async_rq;
1965
1966 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1967
1968 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1969 }
1970
1971 /*
1972 * Must be called with the queue_lock held.
1973 */
1974 static int cfqq_process_refs(struct cfq_queue *cfqq)
1975 {
1976 int process_refs, io_refs;
1977
1978 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1979 process_refs = atomic_read(&cfqq->ref) - io_refs;
1980 BUG_ON(process_refs < 0);
1981 return process_refs;
1982 }
1983
1984 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1985 {
1986 int process_refs, new_process_refs;
1987 struct cfq_queue *__cfqq;
1988
1989 /* Avoid a circular list and skip interim queue merges */
1990 while ((__cfqq = new_cfqq->new_cfqq)) {
1991 if (__cfqq == cfqq)
1992 return;
1993 new_cfqq = __cfqq;
1994 }
1995
1996 process_refs = cfqq_process_refs(cfqq);
1997 /*
1998 * If the process for the cfqq has gone away, there is no
1999 * sense in merging the queues.
2000 */
2001 if (process_refs == 0)
2002 return;
2003
2004 /*
2005 * Merge in the direction of the lesser amount of work.
2006 */
2007 new_process_refs = cfqq_process_refs(new_cfqq);
2008 if (new_process_refs >= process_refs) {
2009 cfqq->new_cfqq = new_cfqq;
2010 atomic_add(process_refs, &new_cfqq->ref);
2011 } else {
2012 new_cfqq->new_cfqq = cfqq;
2013 atomic_add(new_process_refs, &cfqq->ref);
2014 }
2015 }
2016
2017 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2018 struct cfq_group *cfqg, enum wl_prio_t prio)
2019 {
2020 struct cfq_queue *queue;
2021 int i;
2022 bool key_valid = false;
2023 unsigned long lowest_key = 0;
2024 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2025
2026 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2027 /* select the one with lowest rb_key */
2028 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2029 if (queue &&
2030 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2031 lowest_key = queue->rb_key;
2032 cur_best = i;
2033 key_valid = true;
2034 }
2035 }
2036
2037 return cur_best;
2038 }
2039
2040 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2041 {
2042 unsigned slice;
2043 unsigned count;
2044 struct cfq_rb_root *st;
2045 unsigned group_slice;
2046
2047 if (!cfqg) {
2048 cfqd->serving_prio = IDLE_WORKLOAD;
2049 cfqd->workload_expires = jiffies + 1;
2050 return;
2051 }
2052
2053 /* Choose next priority. RT > BE > IDLE */
2054 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2055 cfqd->serving_prio = RT_WORKLOAD;
2056 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2057 cfqd->serving_prio = BE_WORKLOAD;
2058 else {
2059 cfqd->serving_prio = IDLE_WORKLOAD;
2060 cfqd->workload_expires = jiffies + 1;
2061 return;
2062 }
2063
2064 /*
2065 * For RT and BE, we have to choose also the type
2066 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2067 * expiration time
2068 */
2069 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2070 count = st->count;
2071
2072 /*
2073 * check workload expiration, and that we still have other queues ready
2074 */
2075 if (count && !time_after(jiffies, cfqd->workload_expires))
2076 return;
2077
2078 /* otherwise select new workload type */
2079 cfqd->serving_type =
2080 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2081 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2082 count = st->count;
2083
2084 /*
2085 * the workload slice is computed as a fraction of target latency
2086 * proportional to the number of queues in that workload, over
2087 * all the queues in the same priority class
2088 */
2089 group_slice = cfq_group_slice(cfqd, cfqg);
2090
2091 slice = group_slice * count /
2092 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2093 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2094
2095 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2096 unsigned int tmp;
2097
2098 /*
2099 * Async queues are currently system wide. Just taking
2100 * proportion of queues with-in same group will lead to higher
2101 * async ratio system wide as generally root group is going
2102 * to have higher weight. A more accurate thing would be to
2103 * calculate system wide asnc/sync ratio.
2104 */
2105 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2106 tmp = tmp/cfqd->busy_queues;
2107 slice = min_t(unsigned, slice, tmp);
2108
2109 /* async workload slice is scaled down according to
2110 * the sync/async slice ratio. */
2111 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2112 } else
2113 /* sync workload slice is at least 2 * cfq_slice_idle */
2114 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2115
2116 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2117 cfq_log(cfqd, "workload slice:%d", slice);
2118 cfqd->workload_expires = jiffies + slice;
2119 cfqd->noidle_tree_requires_idle = false;
2120 }
2121
2122 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2123 {
2124 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2125 struct cfq_group *cfqg;
2126
2127 if (RB_EMPTY_ROOT(&st->rb))
2128 return NULL;
2129 cfqg = cfq_rb_first_group(st);
2130 st->active = &cfqg->rb_node;
2131 update_min_vdisktime(st);
2132 return cfqg;
2133 }
2134
2135 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2136 {
2137 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2138
2139 cfqd->serving_group = cfqg;
2140
2141 /* Restore the workload type data */
2142 if (cfqg->saved_workload_slice) {
2143 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2144 cfqd->serving_type = cfqg->saved_workload;
2145 cfqd->serving_prio = cfqg->saved_serving_prio;
2146 } else
2147 cfqd->workload_expires = jiffies - 1;
2148
2149 choose_service_tree(cfqd, cfqg);
2150 }
2151
2152 /*
2153 * Select a queue for service. If we have a current active queue,
2154 * check whether to continue servicing it, or retrieve and set a new one.
2155 */
2156 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2157 {
2158 struct cfq_queue *cfqq, *new_cfqq = NULL;
2159
2160 cfqq = cfqd->active_queue;
2161 if (!cfqq)
2162 goto new_queue;
2163
2164 if (!cfqd->rq_queued)
2165 return NULL;
2166
2167 /*
2168 * We were waiting for group to get backlogged. Expire the queue
2169 */
2170 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2171 goto expire;
2172
2173 /*
2174 * The active queue has run out of time, expire it and select new.
2175 */
2176 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2177 /*
2178 * If slice had not expired at the completion of last request
2179 * we might not have turned on wait_busy flag. Don't expire
2180 * the queue yet. Allow the group to get backlogged.
2181 *
2182 * The very fact that we have used the slice, that means we
2183 * have been idling all along on this queue and it should be
2184 * ok to wait for this request to complete.
2185 */
2186 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2187 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2188 cfqq = NULL;
2189 goto keep_queue;
2190 } else
2191 goto expire;
2192 }
2193
2194 /*
2195 * The active queue has requests and isn't expired, allow it to
2196 * dispatch.
2197 */
2198 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2199 goto keep_queue;
2200
2201 /*
2202 * If another queue has a request waiting within our mean seek
2203 * distance, let it run. The expire code will check for close
2204 * cooperators and put the close queue at the front of the service
2205 * tree. If possible, merge the expiring queue with the new cfqq.
2206 */
2207 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2208 if (new_cfqq) {
2209 if (!cfqq->new_cfqq)
2210 cfq_setup_merge(cfqq, new_cfqq);
2211 goto expire;
2212 }
2213
2214 /*
2215 * No requests pending. If the active queue still has requests in
2216 * flight or is idling for a new request, allow either of these
2217 * conditions to happen (or time out) before selecting a new queue.
2218 */
2219 if (timer_pending(&cfqd->idle_slice_timer) ||
2220 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2221 cfqq = NULL;
2222 goto keep_queue;
2223 }
2224
2225 expire:
2226 cfq_slice_expired(cfqd, 0);
2227 new_queue:
2228 /*
2229 * Current queue expired. Check if we have to switch to a new
2230 * service tree
2231 */
2232 if (!new_cfqq)
2233 cfq_choose_cfqg(cfqd);
2234
2235 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2236 keep_queue:
2237 return cfqq;
2238 }
2239
2240 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2241 {
2242 int dispatched = 0;
2243
2244 while (cfqq->next_rq) {
2245 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2246 dispatched++;
2247 }
2248
2249 BUG_ON(!list_empty(&cfqq->fifo));
2250
2251 /* By default cfqq is not expired if it is empty. Do it explicitly */
2252 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2253 return dispatched;
2254 }
2255
2256 /*
2257 * Drain our current requests. Used for barriers and when switching
2258 * io schedulers on-the-fly.
2259 */
2260 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2261 {
2262 struct cfq_queue *cfqq;
2263 int dispatched = 0;
2264
2265 /* Expire the timeslice of the current active queue first */
2266 cfq_slice_expired(cfqd, 0);
2267 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2268 __cfq_set_active_queue(cfqd, cfqq);
2269 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2270 }
2271
2272 BUG_ON(cfqd->busy_queues);
2273
2274 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2275 return dispatched;
2276 }
2277
2278 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2279 struct cfq_queue *cfqq)
2280 {
2281 /* the queue hasn't finished any request, can't estimate */
2282 if (cfq_cfqq_slice_new(cfqq))
2283 return 1;
2284 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2285 cfqq->slice_end))
2286 return 1;
2287
2288 return 0;
2289 }
2290
2291 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2292 {
2293 unsigned int max_dispatch;
2294
2295 /*
2296 * Drain async requests before we start sync IO
2297 */
2298 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2299 return false;
2300
2301 /*
2302 * If this is an async queue and we have sync IO in flight, let it wait
2303 */
2304 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2305 return false;
2306
2307 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2308 if (cfq_class_idle(cfqq))
2309 max_dispatch = 1;
2310
2311 /*
2312 * Does this cfqq already have too much IO in flight?
2313 */
2314 if (cfqq->dispatched >= max_dispatch) {
2315 /*
2316 * idle queue must always only have a single IO in flight
2317 */
2318 if (cfq_class_idle(cfqq))
2319 return false;
2320
2321 /*
2322 * We have other queues, don't allow more IO from this one
2323 */
2324 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2325 return false;
2326
2327 /*
2328 * Sole queue user, no limit
2329 */
2330 if (cfqd->busy_queues == 1)
2331 max_dispatch = -1;
2332 else
2333 /*
2334 * Normally we start throttling cfqq when cfq_quantum/2
2335 * requests have been dispatched. But we can drive
2336 * deeper queue depths at the beginning of slice
2337 * subjected to upper limit of cfq_quantum.
2338 * */
2339 max_dispatch = cfqd->cfq_quantum;
2340 }
2341
2342 /*
2343 * Async queues must wait a bit before being allowed dispatch.
2344 * We also ramp up the dispatch depth gradually for async IO,
2345 * based on the last sync IO we serviced
2346 */
2347 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2348 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2349 unsigned int depth;
2350
2351 depth = last_sync / cfqd->cfq_slice[1];
2352 if (!depth && !cfqq->dispatched)
2353 depth = 1;
2354 if (depth < max_dispatch)
2355 max_dispatch = depth;
2356 }
2357
2358 /*
2359 * If we're below the current max, allow a dispatch
2360 */
2361 return cfqq->dispatched < max_dispatch;
2362 }
2363
2364 /*
2365 * Dispatch a request from cfqq, moving them to the request queue
2366 * dispatch list.
2367 */
2368 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2369 {
2370 struct request *rq;
2371
2372 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2373
2374 if (!cfq_may_dispatch(cfqd, cfqq))
2375 return false;
2376
2377 /*
2378 * follow expired path, else get first next available
2379 */
2380 rq = cfq_check_fifo(cfqq);
2381 if (!rq)
2382 rq = cfqq->next_rq;
2383
2384 /*
2385 * insert request into driver dispatch list
2386 */
2387 cfq_dispatch_insert(cfqd->queue, rq);
2388
2389 if (!cfqd->active_cic) {
2390 struct cfq_io_context *cic = RQ_CIC(rq);
2391
2392 atomic_long_inc(&cic->ioc->refcount);
2393 cfqd->active_cic = cic;
2394 }
2395
2396 return true;
2397 }
2398
2399 /*
2400 * Find the cfqq that we need to service and move a request from that to the
2401 * dispatch list
2402 */
2403 static int cfq_dispatch_requests(struct request_queue *q, int force)
2404 {
2405 struct cfq_data *cfqd = q->elevator->elevator_data;
2406 struct cfq_queue *cfqq;
2407
2408 if (!cfqd->busy_queues)
2409 return 0;
2410
2411 if (unlikely(force))
2412 return cfq_forced_dispatch(cfqd);
2413
2414 cfqq = cfq_select_queue(cfqd);
2415 if (!cfqq)
2416 return 0;
2417
2418 /*
2419 * Dispatch a request from this cfqq, if it is allowed
2420 */
2421 if (!cfq_dispatch_request(cfqd, cfqq))
2422 return 0;
2423
2424 cfqq->slice_dispatch++;
2425 cfq_clear_cfqq_must_dispatch(cfqq);
2426
2427 /*
2428 * expire an async queue immediately if it has used up its slice. idle
2429 * queue always expire after 1 dispatch round.
2430 */
2431 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2432 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2433 cfq_class_idle(cfqq))) {
2434 cfqq->slice_end = jiffies + 1;
2435 cfq_slice_expired(cfqd, 0);
2436 }
2437
2438 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2439 return 1;
2440 }
2441
2442 /*
2443 * task holds one reference to the queue, dropped when task exits. each rq
2444 * in-flight on this queue also holds a reference, dropped when rq is freed.
2445 *
2446 * Each cfq queue took a reference on the parent group. Drop it now.
2447 * queue lock must be held here.
2448 */
2449 static void cfq_put_queue(struct cfq_queue *cfqq)
2450 {
2451 struct cfq_data *cfqd = cfqq->cfqd;
2452 struct cfq_group *cfqg, *orig_cfqg;
2453
2454 BUG_ON(atomic_read(&cfqq->ref) <= 0);
2455
2456 if (!atomic_dec_and_test(&cfqq->ref))
2457 return;
2458
2459 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2460 BUG_ON(rb_first(&cfqq->sort_list));
2461 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2462 cfqg = cfqq->cfqg;
2463 orig_cfqg = cfqq->orig_cfqg;
2464
2465 if (unlikely(cfqd->active_queue == cfqq)) {
2466 __cfq_slice_expired(cfqd, cfqq, 0);
2467 cfq_schedule_dispatch(cfqd);
2468 }
2469
2470 BUG_ON(cfq_cfqq_on_rr(cfqq));
2471 kmem_cache_free(cfq_pool, cfqq);
2472 cfq_put_cfqg(cfqg);
2473 if (orig_cfqg)
2474 cfq_put_cfqg(orig_cfqg);
2475 }
2476
2477 /*
2478 * Must always be called with the rcu_read_lock() held
2479 */
2480 static void
2481 __call_for_each_cic(struct io_context *ioc,
2482 void (*func)(struct io_context *, struct cfq_io_context *))
2483 {
2484 struct cfq_io_context *cic;
2485 struct hlist_node *n;
2486
2487 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2488 func(ioc, cic);
2489 }
2490
2491 /*
2492 * Call func for each cic attached to this ioc.
2493 */
2494 static void
2495 call_for_each_cic(struct io_context *ioc,
2496 void (*func)(struct io_context *, struct cfq_io_context *))
2497 {
2498 rcu_read_lock();
2499 __call_for_each_cic(ioc, func);
2500 rcu_read_unlock();
2501 }
2502
2503 static void cfq_cic_free_rcu(struct rcu_head *head)
2504 {
2505 struct cfq_io_context *cic;
2506
2507 cic = container_of(head, struct cfq_io_context, rcu_head);
2508
2509 kmem_cache_free(cfq_ioc_pool, cic);
2510 elv_ioc_count_dec(cfq_ioc_count);
2511
2512 if (ioc_gone) {
2513 /*
2514 * CFQ scheduler is exiting, grab exit lock and check
2515 * the pending io context count. If it hits zero,
2516 * complete ioc_gone and set it back to NULL
2517 */
2518 spin_lock(&ioc_gone_lock);
2519 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2520 complete(ioc_gone);
2521 ioc_gone = NULL;
2522 }
2523 spin_unlock(&ioc_gone_lock);
2524 }
2525 }
2526
2527 static void cfq_cic_free(struct cfq_io_context *cic)
2528 {
2529 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2530 }
2531
2532 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2533 {
2534 unsigned long flags;
2535 unsigned long dead_key = (unsigned long) cic->key;
2536
2537 BUG_ON(!(dead_key & CIC_DEAD_KEY));
2538
2539 spin_lock_irqsave(&ioc->lock, flags);
2540 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2541 hlist_del_rcu(&cic->cic_list);
2542 spin_unlock_irqrestore(&ioc->lock, flags);
2543
2544 cfq_cic_free(cic);
2545 }
2546
2547 /*
2548 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2549 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2550 * and ->trim() which is called with the task lock held
2551 */
2552 static void cfq_free_io_context(struct io_context *ioc)
2553 {
2554 /*
2555 * ioc->refcount is zero here, or we are called from elv_unregister(),
2556 * so no more cic's are allowed to be linked into this ioc. So it
2557 * should be ok to iterate over the known list, we will see all cic's
2558 * since no new ones are added.
2559 */
2560 __call_for_each_cic(ioc, cic_free_func);
2561 }
2562
2563 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2564 {
2565 struct cfq_queue *__cfqq, *next;
2566
2567 if (unlikely(cfqq == cfqd->active_queue)) {
2568 __cfq_slice_expired(cfqd, cfqq, 0);
2569 cfq_schedule_dispatch(cfqd);
2570 }
2571
2572 /*
2573 * If this queue was scheduled to merge with another queue, be
2574 * sure to drop the reference taken on that queue (and others in
2575 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2576 */
2577 __cfqq = cfqq->new_cfqq;
2578 while (__cfqq) {
2579 if (__cfqq == cfqq) {
2580 WARN(1, "cfqq->new_cfqq loop detected\n");
2581 break;
2582 }
2583 next = __cfqq->new_cfqq;
2584 cfq_put_queue(__cfqq);
2585 __cfqq = next;
2586 }
2587
2588 cfq_put_queue(cfqq);
2589 }
2590
2591 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2592 struct cfq_io_context *cic)
2593 {
2594 struct io_context *ioc = cic->ioc;
2595
2596 list_del_init(&cic->queue_list);
2597
2598 /*
2599 * Make sure dead mark is seen for dead queues
2600 */
2601 smp_wmb();
2602 cic->key = cfqd_dead_key(cfqd);
2603
2604 if (ioc->ioc_data == cic)
2605 rcu_assign_pointer(ioc->ioc_data, NULL);
2606
2607 if (cic->cfqq[BLK_RW_ASYNC]) {
2608 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2609 cic->cfqq[BLK_RW_ASYNC] = NULL;
2610 }
2611
2612 if (cic->cfqq[BLK_RW_SYNC]) {
2613 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2614 cic->cfqq[BLK_RW_SYNC] = NULL;
2615 }
2616 }
2617
2618 static void cfq_exit_single_io_context(struct io_context *ioc,
2619 struct cfq_io_context *cic)
2620 {
2621 struct cfq_data *cfqd = cic_to_cfqd(cic);
2622
2623 if (cfqd) {
2624 struct request_queue *q = cfqd->queue;
2625 unsigned long flags;
2626
2627 spin_lock_irqsave(q->queue_lock, flags);
2628
2629 /*
2630 * Ensure we get a fresh copy of the ->key to prevent
2631 * race between exiting task and queue
2632 */
2633 smp_read_barrier_depends();
2634 if (cic->key == cfqd)
2635 __cfq_exit_single_io_context(cfqd, cic);
2636
2637 spin_unlock_irqrestore(q->queue_lock, flags);
2638 }
2639 }
2640
2641 /*
2642 * The process that ioc belongs to has exited, we need to clean up
2643 * and put the internal structures we have that belongs to that process.
2644 */
2645 static void cfq_exit_io_context(struct io_context *ioc)
2646 {
2647 call_for_each_cic(ioc, cfq_exit_single_io_context);
2648 }
2649
2650 static struct cfq_io_context *
2651 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2652 {
2653 struct cfq_io_context *cic;
2654
2655 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2656 cfqd->queue->node);
2657 if (cic) {
2658 cic->last_end_request = jiffies;
2659 INIT_LIST_HEAD(&cic->queue_list);
2660 INIT_HLIST_NODE(&cic->cic_list);
2661 cic->dtor = cfq_free_io_context;
2662 cic->exit = cfq_exit_io_context;
2663 elv_ioc_count_inc(cfq_ioc_count);
2664 }
2665
2666 return cic;
2667 }
2668
2669 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2670 {
2671 struct task_struct *tsk = current;
2672 int ioprio_class;
2673
2674 if (!cfq_cfqq_prio_changed(cfqq))
2675 return;
2676
2677 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2678 switch (ioprio_class) {
2679 default:
2680 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2681 case IOPRIO_CLASS_NONE:
2682 /*
2683 * no prio set, inherit CPU scheduling settings
2684 */
2685 cfqq->ioprio = task_nice_ioprio(tsk);
2686 cfqq->ioprio_class = task_nice_ioclass(tsk);
2687 break;
2688 case IOPRIO_CLASS_RT:
2689 cfqq->ioprio = task_ioprio(ioc);
2690 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2691 break;
2692 case IOPRIO_CLASS_BE:
2693 cfqq->ioprio = task_ioprio(ioc);
2694 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2695 break;
2696 case IOPRIO_CLASS_IDLE:
2697 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2698 cfqq->ioprio = 7;
2699 cfq_clear_cfqq_idle_window(cfqq);
2700 break;
2701 }
2702
2703 /*
2704 * keep track of original prio settings in case we have to temporarily
2705 * elevate the priority of this queue
2706 */
2707 cfqq->org_ioprio = cfqq->ioprio;
2708 cfqq->org_ioprio_class = cfqq->ioprio_class;
2709 cfq_clear_cfqq_prio_changed(cfqq);
2710 }
2711
2712 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2713 {
2714 struct cfq_data *cfqd = cic_to_cfqd(cic);
2715 struct cfq_queue *cfqq;
2716 unsigned long flags;
2717
2718 if (unlikely(!cfqd))
2719 return;
2720
2721 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2722
2723 cfqq = cic->cfqq[BLK_RW_ASYNC];
2724 if (cfqq) {
2725 struct cfq_queue *new_cfqq;
2726 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2727 GFP_ATOMIC);
2728 if (new_cfqq) {
2729 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2730 cfq_put_queue(cfqq);
2731 }
2732 }
2733
2734 cfqq = cic->cfqq[BLK_RW_SYNC];
2735 if (cfqq)
2736 cfq_mark_cfqq_prio_changed(cfqq);
2737
2738 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2739 }
2740
2741 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2742 {
2743 call_for_each_cic(ioc, changed_ioprio);
2744 ioc->ioprio_changed = 0;
2745 }
2746
2747 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2748 pid_t pid, bool is_sync)
2749 {
2750 RB_CLEAR_NODE(&cfqq->rb_node);
2751 RB_CLEAR_NODE(&cfqq->p_node);
2752 INIT_LIST_HEAD(&cfqq->fifo);
2753
2754 atomic_set(&cfqq->ref, 0);
2755 cfqq->cfqd = cfqd;
2756
2757 cfq_mark_cfqq_prio_changed(cfqq);
2758
2759 if (is_sync) {
2760 if (!cfq_class_idle(cfqq))
2761 cfq_mark_cfqq_idle_window(cfqq);
2762 cfq_mark_cfqq_sync(cfqq);
2763 }
2764 cfqq->pid = pid;
2765 }
2766
2767 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2768 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2769 {
2770 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2771 struct cfq_data *cfqd = cic_to_cfqd(cic);
2772 unsigned long flags;
2773 struct request_queue *q;
2774
2775 if (unlikely(!cfqd))
2776 return;
2777
2778 q = cfqd->queue;
2779
2780 spin_lock_irqsave(q->queue_lock, flags);
2781
2782 if (sync_cfqq) {
2783 /*
2784 * Drop reference to sync queue. A new sync queue will be
2785 * assigned in new group upon arrival of a fresh request.
2786 */
2787 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2788 cic_set_cfqq(cic, NULL, 1);
2789 cfq_put_queue(sync_cfqq);
2790 }
2791
2792 spin_unlock_irqrestore(q->queue_lock, flags);
2793 }
2794
2795 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2796 {
2797 call_for_each_cic(ioc, changed_cgroup);
2798 ioc->cgroup_changed = 0;
2799 }
2800 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2801
2802 static struct cfq_queue *
2803 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2804 struct io_context *ioc, gfp_t gfp_mask)
2805 {
2806 struct cfq_queue *cfqq, *new_cfqq = NULL;
2807 struct cfq_io_context *cic;
2808 struct cfq_group *cfqg;
2809
2810 retry:
2811 cfqg = cfq_get_cfqg(cfqd, 1);
2812 cic = cfq_cic_lookup(cfqd, ioc);
2813 /* cic always exists here */
2814 cfqq = cic_to_cfqq(cic, is_sync);
2815
2816 /*
2817 * Always try a new alloc if we fell back to the OOM cfqq
2818 * originally, since it should just be a temporary situation.
2819 */
2820 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2821 cfqq = NULL;
2822 if (new_cfqq) {
2823 cfqq = new_cfqq;
2824 new_cfqq = NULL;
2825 } else if (gfp_mask & __GFP_WAIT) {
2826 spin_unlock_irq(cfqd->queue->queue_lock);
2827 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2828 gfp_mask | __GFP_ZERO,
2829 cfqd->queue->node);
2830 spin_lock_irq(cfqd->queue->queue_lock);
2831 if (new_cfqq)
2832 goto retry;
2833 } else {
2834 cfqq = kmem_cache_alloc_node(cfq_pool,
2835 gfp_mask | __GFP_ZERO,
2836 cfqd->queue->node);
2837 }
2838
2839 if (cfqq) {
2840 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2841 cfq_init_prio_data(cfqq, ioc);
2842 cfq_link_cfqq_cfqg(cfqq, cfqg);
2843 cfq_log_cfqq(cfqd, cfqq, "alloced");
2844 } else
2845 cfqq = &cfqd->oom_cfqq;
2846 }
2847
2848 if (new_cfqq)
2849 kmem_cache_free(cfq_pool, new_cfqq);
2850
2851 return cfqq;
2852 }
2853
2854 static struct cfq_queue **
2855 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2856 {
2857 switch (ioprio_class) {
2858 case IOPRIO_CLASS_RT:
2859 return &cfqd->async_cfqq[0][ioprio];
2860 case IOPRIO_CLASS_BE:
2861 return &cfqd->async_cfqq[1][ioprio];
2862 case IOPRIO_CLASS_IDLE:
2863 return &cfqd->async_idle_cfqq;
2864 default:
2865 BUG();
2866 }
2867 }
2868
2869 static struct cfq_queue *
2870 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2871 gfp_t gfp_mask)
2872 {
2873 const int ioprio = task_ioprio(ioc);
2874 const int ioprio_class = task_ioprio_class(ioc);
2875 struct cfq_queue **async_cfqq = NULL;
2876 struct cfq_queue *cfqq = NULL;
2877
2878 if (!is_sync) {
2879 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2880 cfqq = *async_cfqq;
2881 }
2882
2883 if (!cfqq)
2884 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2885
2886 /*
2887 * pin the queue now that it's allocated, scheduler exit will prune it
2888 */
2889 if (!is_sync && !(*async_cfqq)) {
2890 atomic_inc(&cfqq->ref);
2891 *async_cfqq = cfqq;
2892 }
2893
2894 atomic_inc(&cfqq->ref);
2895 return cfqq;
2896 }
2897
2898 /*
2899 * We drop cfq io contexts lazily, so we may find a dead one.
2900 */
2901 static void
2902 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2903 struct cfq_io_context *cic)
2904 {
2905 unsigned long flags;
2906
2907 WARN_ON(!list_empty(&cic->queue_list));
2908 BUG_ON(cic->key != cfqd_dead_key(cfqd));
2909
2910 spin_lock_irqsave(&ioc->lock, flags);
2911
2912 BUG_ON(ioc->ioc_data == cic);
2913
2914 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
2915 hlist_del_rcu(&cic->cic_list);
2916 spin_unlock_irqrestore(&ioc->lock, flags);
2917
2918 cfq_cic_free(cic);
2919 }
2920
2921 static struct cfq_io_context *
2922 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2923 {
2924 struct cfq_io_context *cic;
2925 unsigned long flags;
2926
2927 if (unlikely(!ioc))
2928 return NULL;
2929
2930 rcu_read_lock();
2931
2932 /*
2933 * we maintain a last-hit cache, to avoid browsing over the tree
2934 */
2935 cic = rcu_dereference(ioc->ioc_data);
2936 if (cic && cic->key == cfqd) {
2937 rcu_read_unlock();
2938 return cic;
2939 }
2940
2941 do {
2942 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
2943 rcu_read_unlock();
2944 if (!cic)
2945 break;
2946 if (unlikely(cic->key != cfqd)) {
2947 cfq_drop_dead_cic(cfqd, ioc, cic);
2948 rcu_read_lock();
2949 continue;
2950 }
2951
2952 spin_lock_irqsave(&ioc->lock, flags);
2953 rcu_assign_pointer(ioc->ioc_data, cic);
2954 spin_unlock_irqrestore(&ioc->lock, flags);
2955 break;
2956 } while (1);
2957
2958 return cic;
2959 }
2960
2961 /*
2962 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2963 * the process specific cfq io context when entered from the block layer.
2964 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2965 */
2966 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2967 struct cfq_io_context *cic, gfp_t gfp_mask)
2968 {
2969 unsigned long flags;
2970 int ret;
2971
2972 ret = radix_tree_preload(gfp_mask);
2973 if (!ret) {
2974 cic->ioc = ioc;
2975 cic->key = cfqd;
2976
2977 spin_lock_irqsave(&ioc->lock, flags);
2978 ret = radix_tree_insert(&ioc->radix_root,
2979 cfqd->cic_index, cic);
2980 if (!ret)
2981 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2982 spin_unlock_irqrestore(&ioc->lock, flags);
2983
2984 radix_tree_preload_end();
2985
2986 if (!ret) {
2987 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2988 list_add(&cic->queue_list, &cfqd->cic_list);
2989 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2990 }
2991 }
2992
2993 if (ret)
2994 printk(KERN_ERR "cfq: cic link failed!\n");
2995
2996 return ret;
2997 }
2998
2999 /*
3000 * Setup general io context and cfq io context. There can be several cfq
3001 * io contexts per general io context, if this process is doing io to more
3002 * than one device managed by cfq.
3003 */
3004 static struct cfq_io_context *
3005 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3006 {
3007 struct io_context *ioc = NULL;
3008 struct cfq_io_context *cic;
3009
3010 might_sleep_if(gfp_mask & __GFP_WAIT);
3011
3012 ioc = get_io_context(gfp_mask, cfqd->queue->node);
3013 if (!ioc)
3014 return NULL;
3015
3016 cic = cfq_cic_lookup(cfqd, ioc);
3017 if (cic)
3018 goto out;
3019
3020 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3021 if (cic == NULL)
3022 goto err;
3023
3024 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3025 goto err_free;
3026
3027 out:
3028 smp_read_barrier_depends();
3029 if (unlikely(ioc->ioprio_changed))
3030 cfq_ioc_set_ioprio(ioc);
3031
3032 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3033 if (unlikely(ioc->cgroup_changed))
3034 cfq_ioc_set_cgroup(ioc);
3035 #endif
3036 return cic;
3037 err_free:
3038 cfq_cic_free(cic);
3039 err:
3040 put_io_context(ioc);
3041 return NULL;
3042 }
3043
3044 static void
3045 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
3046 {
3047 unsigned long elapsed = jiffies - cic->last_end_request;
3048 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
3049
3050 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3051 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3052 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3053 }
3054
3055 static void
3056 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3057 struct request *rq)
3058 {
3059 sector_t sdist = 0;
3060 sector_t n_sec = blk_rq_sectors(rq);
3061 if (cfqq->last_request_pos) {
3062 if (cfqq->last_request_pos < blk_rq_pos(rq))
3063 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3064 else
3065 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3066 }
3067
3068 cfqq->seek_history <<= 1;
3069 if (blk_queue_nonrot(cfqd->queue))
3070 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3071 else
3072 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3073 }
3074
3075 /*
3076 * Disable idle window if the process thinks too long or seeks so much that
3077 * it doesn't matter
3078 */
3079 static void
3080 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3081 struct cfq_io_context *cic)
3082 {
3083 int old_idle, enable_idle;
3084
3085 /*
3086 * Don't idle for async or idle io prio class
3087 */
3088 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3089 return;
3090
3091 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3092
3093 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3094 cfq_mark_cfqq_deep(cfqq);
3095
3096 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3097 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3098 enable_idle = 0;
3099 else if (sample_valid(cic->ttime_samples)) {
3100 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3101 enable_idle = 0;
3102 else
3103 enable_idle = 1;
3104 }
3105
3106 if (old_idle != enable_idle) {
3107 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3108 if (enable_idle)
3109 cfq_mark_cfqq_idle_window(cfqq);
3110 else
3111 cfq_clear_cfqq_idle_window(cfqq);
3112 }
3113 }
3114
3115 /*
3116 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3117 * no or if we aren't sure, a 1 will cause a preempt.
3118 */
3119 static bool
3120 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3121 struct request *rq)
3122 {
3123 struct cfq_queue *cfqq;
3124
3125 cfqq = cfqd->active_queue;
3126 if (!cfqq)
3127 return false;
3128
3129 if (cfq_class_idle(new_cfqq))
3130 return false;
3131
3132 if (cfq_class_idle(cfqq))
3133 return true;
3134
3135 /*
3136 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3137 */
3138 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3139 return false;
3140
3141 /*
3142 * if the new request is sync, but the currently running queue is
3143 * not, let the sync request have priority.
3144 */
3145 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3146 return true;
3147
3148 if (new_cfqq->cfqg != cfqq->cfqg)
3149 return false;
3150
3151 if (cfq_slice_used(cfqq))
3152 return true;
3153
3154 /* Allow preemption only if we are idling on sync-noidle tree */
3155 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3156 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3157 new_cfqq->service_tree->count == 2 &&
3158 RB_EMPTY_ROOT(&cfqq->sort_list))
3159 return true;
3160
3161 /*
3162 * So both queues are sync. Let the new request get disk time if
3163 * it's a metadata request and the current queue is doing regular IO.
3164 */
3165 if (rq_is_meta(rq) && !cfqq->meta_pending)
3166 return true;
3167
3168 /*
3169 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3170 */
3171 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3172 return true;
3173
3174 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3175 return false;
3176
3177 /*
3178 * if this request is as-good as one we would expect from the
3179 * current cfqq, let it preempt
3180 */
3181 if (cfq_rq_close(cfqd, cfqq, rq))
3182 return true;
3183
3184 return false;
3185 }
3186
3187 /*
3188 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3189 * let it have half of its nominal slice.
3190 */
3191 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3192 {
3193 cfq_log_cfqq(cfqd, cfqq, "preempt");
3194 cfq_slice_expired(cfqd, 1);
3195
3196 /*
3197 * Put the new queue at the front of the of the current list,
3198 * so we know that it will be selected next.
3199 */
3200 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3201
3202 cfq_service_tree_add(cfqd, cfqq, 1);
3203
3204 cfqq->slice_end = 0;
3205 cfq_mark_cfqq_slice_new(cfqq);
3206 }
3207
3208 /*
3209 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3210 * something we should do about it
3211 */
3212 static void
3213 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3214 struct request *rq)
3215 {
3216 struct cfq_io_context *cic = RQ_CIC(rq);
3217
3218 cfqd->rq_queued++;
3219 if (rq_is_meta(rq))
3220 cfqq->meta_pending++;
3221
3222 cfq_update_io_thinktime(cfqd, cic);
3223 cfq_update_io_seektime(cfqd, cfqq, rq);
3224 cfq_update_idle_window(cfqd, cfqq, cic);
3225
3226 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3227
3228 if (cfqq == cfqd->active_queue) {
3229 /*
3230 * Remember that we saw a request from this process, but
3231 * don't start queuing just yet. Otherwise we risk seeing lots
3232 * of tiny requests, because we disrupt the normal plugging
3233 * and merging. If the request is already larger than a single
3234 * page, let it rip immediately. For that case we assume that
3235 * merging is already done. Ditto for a busy system that
3236 * has other work pending, don't risk delaying until the
3237 * idle timer unplug to continue working.
3238 */
3239 if (cfq_cfqq_wait_request(cfqq)) {
3240 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3241 cfqd->busy_queues > 1) {
3242 cfq_del_timer(cfqd, cfqq);
3243 cfq_clear_cfqq_wait_request(cfqq);
3244 __blk_run_queue(cfqd->queue);
3245 } else {
3246 blkiocg_update_idle_time_stats(
3247 &cfqq->cfqg->blkg);
3248 cfq_mark_cfqq_must_dispatch(cfqq);
3249 }
3250 }
3251 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3252 /*
3253 * not the active queue - expire current slice if it is
3254 * idle and has expired it's mean thinktime or this new queue
3255 * has some old slice time left and is of higher priority or
3256 * this new queue is RT and the current one is BE
3257 */
3258 cfq_preempt_queue(cfqd, cfqq);
3259 __blk_run_queue(cfqd->queue);
3260 }
3261 }
3262
3263 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3264 {
3265 struct cfq_data *cfqd = q->elevator->elevator_data;
3266 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3267
3268 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3269 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3270
3271 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3272 list_add_tail(&rq->queuelist, &cfqq->fifo);
3273 cfq_add_rq_rb(rq);
3274 blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3275 &cfqd->serving_group->blkg, rq_data_dir(rq),
3276 rq_is_sync(rq));
3277 cfq_rq_enqueued(cfqd, cfqq, rq);
3278 }
3279
3280 /*
3281 * Update hw_tag based on peak queue depth over 50 samples under
3282 * sufficient load.
3283 */
3284 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3285 {
3286 struct cfq_queue *cfqq = cfqd->active_queue;
3287
3288 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3289 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3290
3291 if (cfqd->hw_tag == 1)
3292 return;
3293
3294 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3295 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3296 return;
3297
3298 /*
3299 * If active queue hasn't enough requests and can idle, cfq might not
3300 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3301 * case
3302 */
3303 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3304 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3305 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3306 return;
3307
3308 if (cfqd->hw_tag_samples++ < 50)
3309 return;
3310
3311 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3312 cfqd->hw_tag = 1;
3313 else
3314 cfqd->hw_tag = 0;
3315 }
3316
3317 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3318 {
3319 struct cfq_io_context *cic = cfqd->active_cic;
3320
3321 /* If there are other queues in the group, don't wait */
3322 if (cfqq->cfqg->nr_cfqq > 1)
3323 return false;
3324
3325 if (cfq_slice_used(cfqq))
3326 return true;
3327
3328 /* if slice left is less than think time, wait busy */
3329 if (cic && sample_valid(cic->ttime_samples)
3330 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3331 return true;
3332
3333 /*
3334 * If think times is less than a jiffy than ttime_mean=0 and above
3335 * will not be true. It might happen that slice has not expired yet
3336 * but will expire soon (4-5 ns) during select_queue(). To cover the
3337 * case where think time is less than a jiffy, mark the queue wait
3338 * busy if only 1 jiffy is left in the slice.
3339 */
3340 if (cfqq->slice_end - jiffies == 1)
3341 return true;
3342
3343 return false;
3344 }
3345
3346 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3347 {
3348 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3349 struct cfq_data *cfqd = cfqq->cfqd;
3350 const int sync = rq_is_sync(rq);
3351 unsigned long now;
3352
3353 now = jiffies;
3354 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3355
3356 cfq_update_hw_tag(cfqd);
3357
3358 WARN_ON(!cfqd->rq_in_driver);
3359 WARN_ON(!cfqq->dispatched);
3360 cfqd->rq_in_driver--;
3361 cfqq->dispatched--;
3362 blkiocg_update_completion_stats(&cfqq->cfqg->blkg, rq_start_time_ns(rq),
3363 rq_io_start_time_ns(rq), rq_data_dir(rq),
3364 rq_is_sync(rq));
3365
3366 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3367
3368 if (sync) {
3369 RQ_CIC(rq)->last_end_request = now;
3370 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3371 cfqd->last_delayed_sync = now;
3372 }
3373
3374 /*
3375 * If this is the active queue, check if it needs to be expired,
3376 * or if we want to idle in case it has no pending requests.
3377 */
3378 if (cfqd->active_queue == cfqq) {
3379 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3380
3381 if (cfq_cfqq_slice_new(cfqq)) {
3382 cfq_set_prio_slice(cfqd, cfqq);
3383 cfq_clear_cfqq_slice_new(cfqq);
3384 }
3385
3386 /*
3387 * Should we wait for next request to come in before we expire
3388 * the queue.
3389 */
3390 if (cfq_should_wait_busy(cfqd, cfqq)) {
3391 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3392 cfq_mark_cfqq_wait_busy(cfqq);
3393 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3394 }
3395
3396 /*
3397 * Idling is not enabled on:
3398 * - expired queues
3399 * - idle-priority queues
3400 * - async queues
3401 * - queues with still some requests queued
3402 * - when there is a close cooperator
3403 */
3404 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3405 cfq_slice_expired(cfqd, 1);
3406 else if (sync && cfqq_empty &&
3407 !cfq_close_cooperator(cfqd, cfqq)) {
3408 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3409 /*
3410 * Idling is enabled for SYNC_WORKLOAD.
3411 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3412 * only if we processed at least one !rq_noidle request
3413 */
3414 if (cfqd->serving_type == SYNC_WORKLOAD
3415 || cfqd->noidle_tree_requires_idle
3416 || cfqq->cfqg->nr_cfqq == 1)
3417 cfq_arm_slice_timer(cfqd);
3418 }
3419 }
3420
3421 if (!cfqd->rq_in_driver)
3422 cfq_schedule_dispatch(cfqd);
3423 }
3424
3425 /*
3426 * we temporarily boost lower priority queues if they are holding fs exclusive
3427 * resources. they are boosted to normal prio (CLASS_BE/4)
3428 */
3429 static void cfq_prio_boost(struct cfq_queue *cfqq)
3430 {
3431 if (has_fs_excl()) {
3432 /*
3433 * boost idle prio on transactions that would lock out other
3434 * users of the filesystem
3435 */
3436 if (cfq_class_idle(cfqq))
3437 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3438 if (cfqq->ioprio > IOPRIO_NORM)
3439 cfqq->ioprio = IOPRIO_NORM;
3440 } else {
3441 /*
3442 * unboost the queue (if needed)
3443 */
3444 cfqq->ioprio_class = cfqq->org_ioprio_class;
3445 cfqq->ioprio = cfqq->org_ioprio;
3446 }
3447 }
3448
3449 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3450 {
3451 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3452 cfq_mark_cfqq_must_alloc_slice(cfqq);
3453 return ELV_MQUEUE_MUST;
3454 }
3455
3456 return ELV_MQUEUE_MAY;
3457 }
3458
3459 static int cfq_may_queue(struct request_queue *q, int rw)
3460 {
3461 struct cfq_data *cfqd = q->elevator->elevator_data;
3462 struct task_struct *tsk = current;
3463 struct cfq_io_context *cic;
3464 struct cfq_queue *cfqq;
3465
3466 /*
3467 * don't force setup of a queue from here, as a call to may_queue
3468 * does not necessarily imply that a request actually will be queued.
3469 * so just lookup a possibly existing queue, or return 'may queue'
3470 * if that fails
3471 */
3472 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3473 if (!cic)
3474 return ELV_MQUEUE_MAY;
3475
3476 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3477 if (cfqq) {
3478 cfq_init_prio_data(cfqq, cic->ioc);
3479 cfq_prio_boost(cfqq);
3480
3481 return __cfq_may_queue(cfqq);
3482 }
3483
3484 return ELV_MQUEUE_MAY;
3485 }
3486
3487 /*
3488 * queue lock held here
3489 */
3490 static void cfq_put_request(struct request *rq)
3491 {
3492 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3493
3494 if (cfqq) {
3495 const int rw = rq_data_dir(rq);
3496
3497 BUG_ON(!cfqq->allocated[rw]);
3498 cfqq->allocated[rw]--;
3499
3500 put_io_context(RQ_CIC(rq)->ioc);
3501
3502 rq->elevator_private = NULL;
3503 rq->elevator_private2 = NULL;
3504
3505 /* Put down rq reference on cfqg */
3506 cfq_put_cfqg(RQ_CFQG(rq));
3507 rq->elevator_private3 = NULL;
3508
3509 cfq_put_queue(cfqq);
3510 }
3511 }
3512
3513 static struct cfq_queue *
3514 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3515 struct cfq_queue *cfqq)
3516 {
3517 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3518 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3519 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3520 cfq_put_queue(cfqq);
3521 return cic_to_cfqq(cic, 1);
3522 }
3523
3524 /*
3525 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3526 * was the last process referring to said cfqq.
3527 */
3528 static struct cfq_queue *
3529 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3530 {
3531 if (cfqq_process_refs(cfqq) == 1) {
3532 cfqq->pid = current->pid;
3533 cfq_clear_cfqq_coop(cfqq);
3534 cfq_clear_cfqq_split_coop(cfqq);
3535 return cfqq;
3536 }
3537
3538 cic_set_cfqq(cic, NULL, 1);
3539 cfq_put_queue(cfqq);
3540 return NULL;
3541 }
3542 /*
3543 * Allocate cfq data structures associated with this request.
3544 */
3545 static int
3546 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3547 {
3548 struct cfq_data *cfqd = q->elevator->elevator_data;
3549 struct cfq_io_context *cic;
3550 const int rw = rq_data_dir(rq);
3551 const bool is_sync = rq_is_sync(rq);
3552 struct cfq_queue *cfqq;
3553 unsigned long flags;
3554
3555 might_sleep_if(gfp_mask & __GFP_WAIT);
3556
3557 cic = cfq_get_io_context(cfqd, gfp_mask);
3558
3559 spin_lock_irqsave(q->queue_lock, flags);
3560
3561 if (!cic)
3562 goto queue_fail;
3563
3564 new_queue:
3565 cfqq = cic_to_cfqq(cic, is_sync);
3566 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3567 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3568 cic_set_cfqq(cic, cfqq, is_sync);
3569 } else {
3570 /*
3571 * If the queue was seeky for too long, break it apart.
3572 */
3573 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3574 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3575 cfqq = split_cfqq(cic, cfqq);
3576 if (!cfqq)
3577 goto new_queue;
3578 }
3579
3580 /*
3581 * Check to see if this queue is scheduled to merge with
3582 * another, closely cooperating queue. The merging of
3583 * queues happens here as it must be done in process context.
3584 * The reference on new_cfqq was taken in merge_cfqqs.
3585 */
3586 if (cfqq->new_cfqq)
3587 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3588 }
3589
3590 cfqq->allocated[rw]++;
3591 atomic_inc(&cfqq->ref);
3592
3593 spin_unlock_irqrestore(q->queue_lock, flags);
3594
3595 rq->elevator_private = cic;
3596 rq->elevator_private2 = cfqq;
3597 rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
3598 return 0;
3599
3600 queue_fail:
3601 if (cic)
3602 put_io_context(cic->ioc);
3603
3604 cfq_schedule_dispatch(cfqd);
3605 spin_unlock_irqrestore(q->queue_lock, flags);
3606 cfq_log(cfqd, "set_request fail");
3607 return 1;
3608 }
3609
3610 static void cfq_kick_queue(struct work_struct *work)
3611 {
3612 struct cfq_data *cfqd =
3613 container_of(work, struct cfq_data, unplug_work);
3614 struct request_queue *q = cfqd->queue;
3615
3616 spin_lock_irq(q->queue_lock);
3617 __blk_run_queue(cfqd->queue);
3618 spin_unlock_irq(q->queue_lock);
3619 }
3620
3621 /*
3622 * Timer running if the active_queue is currently idling inside its time slice
3623 */
3624 static void cfq_idle_slice_timer(unsigned long data)
3625 {
3626 struct cfq_data *cfqd = (struct cfq_data *) data;
3627 struct cfq_queue *cfqq;
3628 unsigned long flags;
3629 int timed_out = 1;
3630
3631 cfq_log(cfqd, "idle timer fired");
3632
3633 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3634
3635 cfqq = cfqd->active_queue;
3636 if (cfqq) {
3637 timed_out = 0;
3638
3639 /*
3640 * We saw a request before the queue expired, let it through
3641 */
3642 if (cfq_cfqq_must_dispatch(cfqq))
3643 goto out_kick;
3644
3645 /*
3646 * expired
3647 */
3648 if (cfq_slice_used(cfqq))
3649 goto expire;
3650
3651 /*
3652 * only expire and reinvoke request handler, if there are
3653 * other queues with pending requests
3654 */
3655 if (!cfqd->busy_queues)
3656 goto out_cont;
3657
3658 /*
3659 * not expired and it has a request pending, let it dispatch
3660 */
3661 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3662 goto out_kick;
3663
3664 /*
3665 * Queue depth flag is reset only when the idle didn't succeed
3666 */
3667 cfq_clear_cfqq_deep(cfqq);
3668 }
3669 expire:
3670 cfq_slice_expired(cfqd, timed_out);
3671 out_kick:
3672 cfq_schedule_dispatch(cfqd);
3673 out_cont:
3674 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3675 }
3676
3677 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3678 {
3679 del_timer_sync(&cfqd->idle_slice_timer);
3680 cancel_work_sync(&cfqd->unplug_work);
3681 }
3682
3683 static void cfq_put_async_queues(struct cfq_data *cfqd)
3684 {
3685 int i;
3686
3687 for (i = 0; i < IOPRIO_BE_NR; i++) {
3688 if (cfqd->async_cfqq[0][i])
3689 cfq_put_queue(cfqd->async_cfqq[0][i]);
3690 if (cfqd->async_cfqq[1][i])
3691 cfq_put_queue(cfqd->async_cfqq[1][i]);
3692 }
3693
3694 if (cfqd->async_idle_cfqq)
3695 cfq_put_queue(cfqd->async_idle_cfqq);
3696 }
3697
3698 static void cfq_cfqd_free(struct rcu_head *head)
3699 {
3700 kfree(container_of(head, struct cfq_data, rcu));
3701 }
3702
3703 static void cfq_exit_queue(struct elevator_queue *e)
3704 {
3705 struct cfq_data *cfqd = e->elevator_data;
3706 struct request_queue *q = cfqd->queue;
3707
3708 cfq_shutdown_timer_wq(cfqd);
3709
3710 spin_lock_irq(q->queue_lock);
3711
3712 if (cfqd->active_queue)
3713 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3714
3715 while (!list_empty(&cfqd->cic_list)) {
3716 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3717 struct cfq_io_context,
3718 queue_list);
3719
3720 __cfq_exit_single_io_context(cfqd, cic);
3721 }
3722
3723 cfq_put_async_queues(cfqd);
3724 cfq_release_cfq_groups(cfqd);
3725 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3726
3727 spin_unlock_irq(q->queue_lock);
3728
3729 cfq_shutdown_timer_wq(cfqd);
3730
3731 spin_lock(&cic_index_lock);
3732 ida_remove(&cic_index_ida, cfqd->cic_index);
3733 spin_unlock(&cic_index_lock);
3734
3735 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3736 call_rcu(&cfqd->rcu, cfq_cfqd_free);
3737 }
3738
3739 static int cfq_alloc_cic_index(void)
3740 {
3741 int index, error;
3742
3743 do {
3744 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3745 return -ENOMEM;
3746
3747 spin_lock(&cic_index_lock);
3748 error = ida_get_new(&cic_index_ida, &index);
3749 spin_unlock(&cic_index_lock);
3750 if (error && error != -EAGAIN)
3751 return error;
3752 } while (error);
3753
3754 return index;
3755 }
3756
3757 static void *cfq_init_queue(struct request_queue *q)
3758 {
3759 struct cfq_data *cfqd;
3760 int i, j;
3761 struct cfq_group *cfqg;
3762 struct cfq_rb_root *st;
3763
3764 i = cfq_alloc_cic_index();
3765 if (i < 0)
3766 return NULL;
3767
3768 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3769 if (!cfqd)
3770 return NULL;
3771
3772 cfqd->cic_index = i;
3773
3774 /* Init root service tree */
3775 cfqd->grp_service_tree = CFQ_RB_ROOT;
3776
3777 /* Init root group */
3778 cfqg = &cfqd->root_group;
3779 for_each_cfqg_st(cfqg, i, j, st)
3780 *st = CFQ_RB_ROOT;
3781 RB_CLEAR_NODE(&cfqg->rb_node);
3782
3783 /* Give preference to root group over other groups */
3784 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3785
3786 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3787 /*
3788 * Take a reference to root group which we never drop. This is just
3789 * to make sure that cfq_put_cfqg() does not try to kfree root group
3790 */
3791 atomic_set(&cfqg->ref, 1);
3792 rcu_read_lock();
3793 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3794 0);
3795 rcu_read_unlock();
3796 #endif
3797 /*
3798 * Not strictly needed (since RB_ROOT just clears the node and we
3799 * zeroed cfqd on alloc), but better be safe in case someone decides
3800 * to add magic to the rb code
3801 */
3802 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3803 cfqd->prio_trees[i] = RB_ROOT;
3804
3805 /*
3806 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3807 * Grab a permanent reference to it, so that the normal code flow
3808 * will not attempt to free it.
3809 */
3810 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3811 atomic_inc(&cfqd->oom_cfqq.ref);
3812 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3813
3814 INIT_LIST_HEAD(&cfqd->cic_list);
3815
3816 cfqd->queue = q;
3817
3818 init_timer(&cfqd->idle_slice_timer);
3819 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3820 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3821
3822 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3823
3824 cfqd->cfq_quantum = cfq_quantum;
3825 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3826 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3827 cfqd->cfq_back_max = cfq_back_max;
3828 cfqd->cfq_back_penalty = cfq_back_penalty;
3829 cfqd->cfq_slice[0] = cfq_slice_async;
3830 cfqd->cfq_slice[1] = cfq_slice_sync;
3831 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3832 cfqd->cfq_slice_idle = cfq_slice_idle;
3833 cfqd->cfq_latency = 1;
3834 cfqd->cfq_group_isolation = 0;
3835 cfqd->hw_tag = -1;
3836 /*
3837 * we optimistically start assuming sync ops weren't delayed in last
3838 * second, in order to have larger depth for async operations.
3839 */
3840 cfqd->last_delayed_sync = jiffies - HZ;
3841 return cfqd;
3842 }
3843
3844 static void cfq_slab_kill(void)
3845 {
3846 /*
3847 * Caller already ensured that pending RCU callbacks are completed,
3848 * so we should have no busy allocations at this point.
3849 */
3850 if (cfq_pool)
3851 kmem_cache_destroy(cfq_pool);
3852 if (cfq_ioc_pool)
3853 kmem_cache_destroy(cfq_ioc_pool);
3854 }
3855
3856 static int __init cfq_slab_setup(void)
3857 {
3858 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3859 if (!cfq_pool)
3860 goto fail;
3861
3862 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3863 if (!cfq_ioc_pool)
3864 goto fail;
3865
3866 return 0;
3867 fail:
3868 cfq_slab_kill();
3869 return -ENOMEM;
3870 }
3871
3872 /*
3873 * sysfs parts below -->
3874 */
3875 static ssize_t
3876 cfq_var_show(unsigned int var, char *page)
3877 {
3878 return sprintf(page, "%d\n", var);
3879 }
3880
3881 static ssize_t
3882 cfq_var_store(unsigned int *var, const char *page, size_t count)
3883 {
3884 char *p = (char *) page;
3885
3886 *var = simple_strtoul(p, &p, 10);
3887 return count;
3888 }
3889
3890 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3891 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3892 { \
3893 struct cfq_data *cfqd = e->elevator_data; \
3894 unsigned int __data = __VAR; \
3895 if (__CONV) \
3896 __data = jiffies_to_msecs(__data); \
3897 return cfq_var_show(__data, (page)); \
3898 }
3899 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3900 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3901 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3902 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3903 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3904 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3905 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3906 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3907 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3908 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3909 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3910 #undef SHOW_FUNCTION
3911
3912 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3913 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3914 { \
3915 struct cfq_data *cfqd = e->elevator_data; \
3916 unsigned int __data; \
3917 int ret = cfq_var_store(&__data, (page), count); \
3918 if (__data < (MIN)) \
3919 __data = (MIN); \
3920 else if (__data > (MAX)) \
3921 __data = (MAX); \
3922 if (__CONV) \
3923 *(__PTR) = msecs_to_jiffies(__data); \
3924 else \
3925 *(__PTR) = __data; \
3926 return ret; \
3927 }
3928 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3929 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3930 UINT_MAX, 1);
3931 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3932 UINT_MAX, 1);
3933 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3934 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3935 UINT_MAX, 0);
3936 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3937 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3938 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3939 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3940 UINT_MAX, 0);
3941 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3942 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3943 #undef STORE_FUNCTION
3944
3945 #define CFQ_ATTR(name) \
3946 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3947
3948 static struct elv_fs_entry cfq_attrs[] = {
3949 CFQ_ATTR(quantum),
3950 CFQ_ATTR(fifo_expire_sync),
3951 CFQ_ATTR(fifo_expire_async),
3952 CFQ_ATTR(back_seek_max),
3953 CFQ_ATTR(back_seek_penalty),
3954 CFQ_ATTR(slice_sync),
3955 CFQ_ATTR(slice_async),
3956 CFQ_ATTR(slice_async_rq),
3957 CFQ_ATTR(slice_idle),
3958 CFQ_ATTR(low_latency),
3959 CFQ_ATTR(group_isolation),
3960 __ATTR_NULL
3961 };
3962
3963 static struct elevator_type iosched_cfq = {
3964 .ops = {
3965 .elevator_merge_fn = cfq_merge,
3966 .elevator_merged_fn = cfq_merged_request,
3967 .elevator_merge_req_fn = cfq_merged_requests,
3968 .elevator_allow_merge_fn = cfq_allow_merge,
3969 .elevator_bio_merged_fn = cfq_bio_merged,
3970 .elevator_dispatch_fn = cfq_dispatch_requests,
3971 .elevator_add_req_fn = cfq_insert_request,
3972 .elevator_activate_req_fn = cfq_activate_request,
3973 .elevator_deactivate_req_fn = cfq_deactivate_request,
3974 .elevator_queue_empty_fn = cfq_queue_empty,
3975 .elevator_completed_req_fn = cfq_completed_request,
3976 .elevator_former_req_fn = elv_rb_former_request,
3977 .elevator_latter_req_fn = elv_rb_latter_request,
3978 .elevator_set_req_fn = cfq_set_request,
3979 .elevator_put_req_fn = cfq_put_request,
3980 .elevator_may_queue_fn = cfq_may_queue,
3981 .elevator_init_fn = cfq_init_queue,
3982 .elevator_exit_fn = cfq_exit_queue,
3983 .trim = cfq_free_io_context,
3984 },
3985 .elevator_attrs = cfq_attrs,
3986 .elevator_name = "cfq",
3987 .elevator_owner = THIS_MODULE,
3988 };
3989
3990 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3991 static struct blkio_policy_type blkio_policy_cfq = {
3992 .ops = {
3993 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3994 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3995 },
3996 };
3997 #else
3998 static struct blkio_policy_type blkio_policy_cfq;
3999 #endif
4000
4001 static int __init cfq_init(void)
4002 {
4003 /*
4004 * could be 0 on HZ < 1000 setups
4005 */
4006 if (!cfq_slice_async)
4007 cfq_slice_async = 1;
4008 if (!cfq_slice_idle)
4009 cfq_slice_idle = 1;
4010
4011 if (cfq_slab_setup())
4012 return -ENOMEM;
4013
4014 elv_register(&iosched_cfq);
4015 blkio_policy_register(&blkio_policy_cfq);
4016
4017 return 0;
4018 }
4019
4020 static void __exit cfq_exit(void)
4021 {
4022 DECLARE_COMPLETION_ONSTACK(all_gone);
4023 blkio_policy_unregister(&blkio_policy_cfq);
4024 elv_unregister(&iosched_cfq);
4025 ioc_gone = &all_gone;
4026 /* ioc_gone's update must be visible before reading ioc_count */
4027 smp_wmb();
4028
4029 /*
4030 * this also protects us from entering cfq_slab_kill() with
4031 * pending RCU callbacks
4032 */
4033 if (elv_ioc_count_read(cfq_ioc_count))
4034 wait_for_completion(&all_gone);
4035 ida_destroy(&cic_index_ida);
4036 cfq_slab_kill();
4037 }
4038
4039 module_init(cfq_init);
4040 module_exit(cfq_exit);
4041
4042 MODULE_AUTHOR("Jens Axboe");
4043 MODULE_LICENSE("GPL");
4044 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");