]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/cfq-iosched.c
cfq-iosched: fold cfq_find_alloc_queue() into cfq_get_queue()
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include <linux/blk-cgroup.h>
18 #include "blk.h"
19
20 /*
21 * tunables
22 */
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const int cfq_slice_sync = HZ / 10;
31 static int cfq_slice_async = HZ / 25;
32 static const int cfq_slice_async_rq = 2;
33 static int cfq_slice_idle = HZ / 125;
34 static int cfq_group_idle = HZ / 125;
35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
37
38 /*
39 * offset from end of service tree
40 */
41 #define CFQ_IDLE_DELAY (HZ / 5)
42
43 /*
44 * below this threshold, we consider thinktime immediate
45 */
46 #define CFQ_MIN_TT (2)
47
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
51
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56
57 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
60
61 static struct kmem_cache *cfq_pool;
62
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
69
70 /* blkio-related constants */
71 #define CFQ_WEIGHT_MIN 10
72 #define CFQ_WEIGHT_MAX 1000
73 #define CFQ_WEIGHT_DEFAULT 500
74
75 struct cfq_ttime {
76 unsigned long last_end_request;
77
78 unsigned long ttime_total;
79 unsigned long ttime_samples;
80 unsigned long ttime_mean;
81 };
82
83 /*
84 * Most of our rbtree usage is for sorting with min extraction, so
85 * if we cache the leftmost node we don't have to walk down the tree
86 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
87 * move this into the elevator for the rq sorting as well.
88 */
89 struct cfq_rb_root {
90 struct rb_root rb;
91 struct rb_node *left;
92 unsigned count;
93 u64 min_vdisktime;
94 struct cfq_ttime ttime;
95 };
96 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
97 .ttime = {.last_end_request = jiffies,},}
98
99 /*
100 * Per process-grouping structure
101 */
102 struct cfq_queue {
103 /* reference count */
104 int ref;
105 /* various state flags, see below */
106 unsigned int flags;
107 /* parent cfq_data */
108 struct cfq_data *cfqd;
109 /* service_tree member */
110 struct rb_node rb_node;
111 /* service_tree key */
112 unsigned long rb_key;
113 /* prio tree member */
114 struct rb_node p_node;
115 /* prio tree root we belong to, if any */
116 struct rb_root *p_root;
117 /* sorted list of pending requests */
118 struct rb_root sort_list;
119 /* if fifo isn't expired, next request to serve */
120 struct request *next_rq;
121 /* requests queued in sort_list */
122 int queued[2];
123 /* currently allocated requests */
124 int allocated[2];
125 /* fifo list of requests in sort_list */
126 struct list_head fifo;
127
128 /* time when queue got scheduled in to dispatch first request. */
129 unsigned long dispatch_start;
130 unsigned int allocated_slice;
131 unsigned int slice_dispatch;
132 /* time when first request from queue completed and slice started. */
133 unsigned long slice_start;
134 unsigned long slice_end;
135 long slice_resid;
136
137 /* pending priority requests */
138 int prio_pending;
139 /* number of requests that are on the dispatch list or inside driver */
140 int dispatched;
141
142 /* io prio of this group */
143 unsigned short ioprio, org_ioprio;
144 unsigned short ioprio_class;
145
146 pid_t pid;
147
148 u32 seek_history;
149 sector_t last_request_pos;
150
151 struct cfq_rb_root *service_tree;
152 struct cfq_queue *new_cfqq;
153 struct cfq_group *cfqg;
154 /* Number of sectors dispatched from queue in single dispatch round */
155 unsigned long nr_sectors;
156 };
157
158 /*
159 * First index in the service_trees.
160 * IDLE is handled separately, so it has negative index
161 */
162 enum wl_class_t {
163 BE_WORKLOAD = 0,
164 RT_WORKLOAD = 1,
165 IDLE_WORKLOAD = 2,
166 CFQ_PRIO_NR,
167 };
168
169 /*
170 * Second index in the service_trees.
171 */
172 enum wl_type_t {
173 ASYNC_WORKLOAD = 0,
174 SYNC_NOIDLE_WORKLOAD = 1,
175 SYNC_WORKLOAD = 2
176 };
177
178 struct cfqg_stats {
179 #ifdef CONFIG_CFQ_GROUP_IOSCHED
180 /* total bytes transferred */
181 struct blkg_rwstat service_bytes;
182 /* total IOs serviced, post merge */
183 struct blkg_rwstat serviced;
184 /* number of ios merged */
185 struct blkg_rwstat merged;
186 /* total time spent on device in ns, may not be accurate w/ queueing */
187 struct blkg_rwstat service_time;
188 /* total time spent waiting in scheduler queue in ns */
189 struct blkg_rwstat wait_time;
190 /* number of IOs queued up */
191 struct blkg_rwstat queued;
192 /* total sectors transferred */
193 struct blkg_stat sectors;
194 /* total disk time and nr sectors dispatched by this group */
195 struct blkg_stat time;
196 #ifdef CONFIG_DEBUG_BLK_CGROUP
197 /* time not charged to this cgroup */
198 struct blkg_stat unaccounted_time;
199 /* sum of number of ios queued across all samples */
200 struct blkg_stat avg_queue_size_sum;
201 /* count of samples taken for average */
202 struct blkg_stat avg_queue_size_samples;
203 /* how many times this group has been removed from service tree */
204 struct blkg_stat dequeue;
205 /* total time spent waiting for it to be assigned a timeslice. */
206 struct blkg_stat group_wait_time;
207 /* time spent idling for this blkcg_gq */
208 struct blkg_stat idle_time;
209 /* total time with empty current active q with other requests queued */
210 struct blkg_stat empty_time;
211 /* fields after this shouldn't be cleared on stat reset */
212 uint64_t start_group_wait_time;
213 uint64_t start_idle_time;
214 uint64_t start_empty_time;
215 uint16_t flags;
216 #endif /* CONFIG_DEBUG_BLK_CGROUP */
217 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
218 };
219
220 /* Per-cgroup data */
221 struct cfq_group_data {
222 /* must be the first member */
223 struct blkcg_policy_data pd;
224
225 unsigned int weight;
226 unsigned int leaf_weight;
227 };
228
229 /* This is per cgroup per device grouping structure */
230 struct cfq_group {
231 /* must be the first member */
232 struct blkg_policy_data pd;
233
234 /* group service_tree member */
235 struct rb_node rb_node;
236
237 /* group service_tree key */
238 u64 vdisktime;
239
240 /*
241 * The number of active cfqgs and sum of their weights under this
242 * cfqg. This covers this cfqg's leaf_weight and all children's
243 * weights, but does not cover weights of further descendants.
244 *
245 * If a cfqg is on the service tree, it's active. An active cfqg
246 * also activates its parent and contributes to the children_weight
247 * of the parent.
248 */
249 int nr_active;
250 unsigned int children_weight;
251
252 /*
253 * vfraction is the fraction of vdisktime that the tasks in this
254 * cfqg are entitled to. This is determined by compounding the
255 * ratios walking up from this cfqg to the root.
256 *
257 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
258 * vfractions on a service tree is approximately 1. The sum may
259 * deviate a bit due to rounding errors and fluctuations caused by
260 * cfqgs entering and leaving the service tree.
261 */
262 unsigned int vfraction;
263
264 /*
265 * There are two weights - (internal) weight is the weight of this
266 * cfqg against the sibling cfqgs. leaf_weight is the wight of
267 * this cfqg against the child cfqgs. For the root cfqg, both
268 * weights are kept in sync for backward compatibility.
269 */
270 unsigned int weight;
271 unsigned int new_weight;
272 unsigned int dev_weight;
273
274 unsigned int leaf_weight;
275 unsigned int new_leaf_weight;
276 unsigned int dev_leaf_weight;
277
278 /* number of cfqq currently on this group */
279 int nr_cfqq;
280
281 /*
282 * Per group busy queues average. Useful for workload slice calc. We
283 * create the array for each prio class but at run time it is used
284 * only for RT and BE class and slot for IDLE class remains unused.
285 * This is primarily done to avoid confusion and a gcc warning.
286 */
287 unsigned int busy_queues_avg[CFQ_PRIO_NR];
288 /*
289 * rr lists of queues with requests. We maintain service trees for
290 * RT and BE classes. These trees are subdivided in subclasses
291 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
292 * class there is no subclassification and all the cfq queues go on
293 * a single tree service_tree_idle.
294 * Counts are embedded in the cfq_rb_root
295 */
296 struct cfq_rb_root service_trees[2][3];
297 struct cfq_rb_root service_tree_idle;
298
299 unsigned long saved_wl_slice;
300 enum wl_type_t saved_wl_type;
301 enum wl_class_t saved_wl_class;
302
303 /* number of requests that are on the dispatch list or inside driver */
304 int dispatched;
305 struct cfq_ttime ttime;
306 struct cfqg_stats stats; /* stats for this cfqg */
307 struct cfqg_stats dead_stats; /* stats pushed from dead children */
308 };
309
310 struct cfq_io_cq {
311 struct io_cq icq; /* must be the first member */
312 struct cfq_queue *cfqq[2];
313 struct cfq_ttime ttime;
314 int ioprio; /* the current ioprio */
315 #ifdef CONFIG_CFQ_GROUP_IOSCHED
316 uint64_t blkcg_serial_nr; /* the current blkcg serial */
317 #endif
318 };
319
320 /*
321 * Per block device queue structure
322 */
323 struct cfq_data {
324 struct request_queue *queue;
325 /* Root service tree for cfq_groups */
326 struct cfq_rb_root grp_service_tree;
327 struct cfq_group *root_group;
328
329 /*
330 * The priority currently being served
331 */
332 enum wl_class_t serving_wl_class;
333 enum wl_type_t serving_wl_type;
334 unsigned long workload_expires;
335 struct cfq_group *serving_group;
336
337 /*
338 * Each priority tree is sorted by next_request position. These
339 * trees are used when determining if two or more queues are
340 * interleaving requests (see cfq_close_cooperator).
341 */
342 struct rb_root prio_trees[CFQ_PRIO_LISTS];
343
344 unsigned int busy_queues;
345 unsigned int busy_sync_queues;
346
347 int rq_in_driver;
348 int rq_in_flight[2];
349
350 /*
351 * queue-depth detection
352 */
353 int rq_queued;
354 int hw_tag;
355 /*
356 * hw_tag can be
357 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
358 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
359 * 0 => no NCQ
360 */
361 int hw_tag_est_depth;
362 unsigned int hw_tag_samples;
363
364 /*
365 * idle window management
366 */
367 struct timer_list idle_slice_timer;
368 struct work_struct unplug_work;
369
370 struct cfq_queue *active_queue;
371 struct cfq_io_cq *active_cic;
372
373 /*
374 * async queue for each priority case
375 */
376 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
377 struct cfq_queue *async_idle_cfqq;
378
379 sector_t last_position;
380
381 /*
382 * tunables, see top of file
383 */
384 unsigned int cfq_quantum;
385 unsigned int cfq_fifo_expire[2];
386 unsigned int cfq_back_penalty;
387 unsigned int cfq_back_max;
388 unsigned int cfq_slice[2];
389 unsigned int cfq_slice_async_rq;
390 unsigned int cfq_slice_idle;
391 unsigned int cfq_group_idle;
392 unsigned int cfq_latency;
393 unsigned int cfq_target_latency;
394
395 /*
396 * Fallback dummy cfqq for extreme OOM conditions
397 */
398 struct cfq_queue oom_cfqq;
399
400 unsigned long last_delayed_sync;
401 };
402
403 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
404
405 static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
406 enum wl_class_t class,
407 enum wl_type_t type)
408 {
409 if (!cfqg)
410 return NULL;
411
412 if (class == IDLE_WORKLOAD)
413 return &cfqg->service_tree_idle;
414
415 return &cfqg->service_trees[class][type];
416 }
417
418 enum cfqq_state_flags {
419 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
420 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
421 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
422 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
423 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
424 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
425 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
426 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
427 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
428 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
429 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
430 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
431 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
432 };
433
434 #define CFQ_CFQQ_FNS(name) \
435 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
436 { \
437 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
438 } \
439 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
440 { \
441 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
442 } \
443 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
444 { \
445 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
446 }
447
448 CFQ_CFQQ_FNS(on_rr);
449 CFQ_CFQQ_FNS(wait_request);
450 CFQ_CFQQ_FNS(must_dispatch);
451 CFQ_CFQQ_FNS(must_alloc_slice);
452 CFQ_CFQQ_FNS(fifo_expire);
453 CFQ_CFQQ_FNS(idle_window);
454 CFQ_CFQQ_FNS(prio_changed);
455 CFQ_CFQQ_FNS(slice_new);
456 CFQ_CFQQ_FNS(sync);
457 CFQ_CFQQ_FNS(coop);
458 CFQ_CFQQ_FNS(split_coop);
459 CFQ_CFQQ_FNS(deep);
460 CFQ_CFQQ_FNS(wait_busy);
461 #undef CFQ_CFQQ_FNS
462
463 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
464
465 /* cfqg stats flags */
466 enum cfqg_stats_flags {
467 CFQG_stats_waiting = 0,
468 CFQG_stats_idling,
469 CFQG_stats_empty,
470 };
471
472 #define CFQG_FLAG_FNS(name) \
473 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
474 { \
475 stats->flags |= (1 << CFQG_stats_##name); \
476 } \
477 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
478 { \
479 stats->flags &= ~(1 << CFQG_stats_##name); \
480 } \
481 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
482 { \
483 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
484 } \
485
486 CFQG_FLAG_FNS(waiting)
487 CFQG_FLAG_FNS(idling)
488 CFQG_FLAG_FNS(empty)
489 #undef CFQG_FLAG_FNS
490
491 /* This should be called with the queue_lock held. */
492 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
493 {
494 unsigned long long now;
495
496 if (!cfqg_stats_waiting(stats))
497 return;
498
499 now = sched_clock();
500 if (time_after64(now, stats->start_group_wait_time))
501 blkg_stat_add(&stats->group_wait_time,
502 now - stats->start_group_wait_time);
503 cfqg_stats_clear_waiting(stats);
504 }
505
506 /* This should be called with the queue_lock held. */
507 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
508 struct cfq_group *curr_cfqg)
509 {
510 struct cfqg_stats *stats = &cfqg->stats;
511
512 if (cfqg_stats_waiting(stats))
513 return;
514 if (cfqg == curr_cfqg)
515 return;
516 stats->start_group_wait_time = sched_clock();
517 cfqg_stats_mark_waiting(stats);
518 }
519
520 /* This should be called with the queue_lock held. */
521 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
522 {
523 unsigned long long now;
524
525 if (!cfqg_stats_empty(stats))
526 return;
527
528 now = sched_clock();
529 if (time_after64(now, stats->start_empty_time))
530 blkg_stat_add(&stats->empty_time,
531 now - stats->start_empty_time);
532 cfqg_stats_clear_empty(stats);
533 }
534
535 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
536 {
537 blkg_stat_add(&cfqg->stats.dequeue, 1);
538 }
539
540 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
541 {
542 struct cfqg_stats *stats = &cfqg->stats;
543
544 if (blkg_rwstat_total(&stats->queued))
545 return;
546
547 /*
548 * group is already marked empty. This can happen if cfqq got new
549 * request in parent group and moved to this group while being added
550 * to service tree. Just ignore the event and move on.
551 */
552 if (cfqg_stats_empty(stats))
553 return;
554
555 stats->start_empty_time = sched_clock();
556 cfqg_stats_mark_empty(stats);
557 }
558
559 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
560 {
561 struct cfqg_stats *stats = &cfqg->stats;
562
563 if (cfqg_stats_idling(stats)) {
564 unsigned long long now = sched_clock();
565
566 if (time_after64(now, stats->start_idle_time))
567 blkg_stat_add(&stats->idle_time,
568 now - stats->start_idle_time);
569 cfqg_stats_clear_idling(stats);
570 }
571 }
572
573 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
574 {
575 struct cfqg_stats *stats = &cfqg->stats;
576
577 BUG_ON(cfqg_stats_idling(stats));
578
579 stats->start_idle_time = sched_clock();
580 cfqg_stats_mark_idling(stats);
581 }
582
583 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
584 {
585 struct cfqg_stats *stats = &cfqg->stats;
586
587 blkg_stat_add(&stats->avg_queue_size_sum,
588 blkg_rwstat_total(&stats->queued));
589 blkg_stat_add(&stats->avg_queue_size_samples, 1);
590 cfqg_stats_update_group_wait_time(stats);
591 }
592
593 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
594
595 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
596 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
597 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
598 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
599 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
600 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
601 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
602
603 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
604
605 #ifdef CONFIG_CFQ_GROUP_IOSCHED
606
607 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
608 {
609 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
610 }
611
612 static struct cfq_group_data
613 *cpd_to_cfqgd(struct blkcg_policy_data *cpd)
614 {
615 return cpd ? container_of(cpd, struct cfq_group_data, pd) : NULL;
616 }
617
618 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
619 {
620 return pd_to_blkg(&cfqg->pd);
621 }
622
623 static struct blkcg_policy blkcg_policy_cfq;
624
625 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
626 {
627 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
628 }
629
630 static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg)
631 {
632 return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq));
633 }
634
635 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
636 {
637 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
638
639 return pblkg ? blkg_to_cfqg(pblkg) : NULL;
640 }
641
642 static inline void cfqg_get(struct cfq_group *cfqg)
643 {
644 return blkg_get(cfqg_to_blkg(cfqg));
645 }
646
647 static inline void cfqg_put(struct cfq_group *cfqg)
648 {
649 return blkg_put(cfqg_to_blkg(cfqg));
650 }
651
652 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
653 char __pbuf[128]; \
654 \
655 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
656 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
657 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
658 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
659 __pbuf, ##args); \
660 } while (0)
661
662 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
663 char __pbuf[128]; \
664 \
665 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
666 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
667 } while (0)
668
669 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
670 struct cfq_group *curr_cfqg, int rw)
671 {
672 blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
673 cfqg_stats_end_empty_time(&cfqg->stats);
674 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
675 }
676
677 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
678 unsigned long time, unsigned long unaccounted_time)
679 {
680 blkg_stat_add(&cfqg->stats.time, time);
681 #ifdef CONFIG_DEBUG_BLK_CGROUP
682 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
683 #endif
684 }
685
686 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
687 {
688 blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
689 }
690
691 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
692 {
693 blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
694 }
695
696 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
697 uint64_t bytes, int rw)
698 {
699 blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
700 blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
701 blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
702 }
703
704 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
705 uint64_t start_time, uint64_t io_start_time, int rw)
706 {
707 struct cfqg_stats *stats = &cfqg->stats;
708 unsigned long long now = sched_clock();
709
710 if (time_after64(now, io_start_time))
711 blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
712 if (time_after64(io_start_time, start_time))
713 blkg_rwstat_add(&stats->wait_time, rw,
714 io_start_time - start_time);
715 }
716
717 /* @stats = 0 */
718 static void cfqg_stats_reset(struct cfqg_stats *stats)
719 {
720 /* queued stats shouldn't be cleared */
721 blkg_rwstat_reset(&stats->service_bytes);
722 blkg_rwstat_reset(&stats->serviced);
723 blkg_rwstat_reset(&stats->merged);
724 blkg_rwstat_reset(&stats->service_time);
725 blkg_rwstat_reset(&stats->wait_time);
726 blkg_stat_reset(&stats->time);
727 #ifdef CONFIG_DEBUG_BLK_CGROUP
728 blkg_stat_reset(&stats->unaccounted_time);
729 blkg_stat_reset(&stats->avg_queue_size_sum);
730 blkg_stat_reset(&stats->avg_queue_size_samples);
731 blkg_stat_reset(&stats->dequeue);
732 blkg_stat_reset(&stats->group_wait_time);
733 blkg_stat_reset(&stats->idle_time);
734 blkg_stat_reset(&stats->empty_time);
735 #endif
736 }
737
738 /* @to += @from */
739 static void cfqg_stats_merge(struct cfqg_stats *to, struct cfqg_stats *from)
740 {
741 /* queued stats shouldn't be cleared */
742 blkg_rwstat_merge(&to->service_bytes, &from->service_bytes);
743 blkg_rwstat_merge(&to->serviced, &from->serviced);
744 blkg_rwstat_merge(&to->merged, &from->merged);
745 blkg_rwstat_merge(&to->service_time, &from->service_time);
746 blkg_rwstat_merge(&to->wait_time, &from->wait_time);
747 blkg_stat_merge(&from->time, &from->time);
748 #ifdef CONFIG_DEBUG_BLK_CGROUP
749 blkg_stat_merge(&to->unaccounted_time, &from->unaccounted_time);
750 blkg_stat_merge(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
751 blkg_stat_merge(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
752 blkg_stat_merge(&to->dequeue, &from->dequeue);
753 blkg_stat_merge(&to->group_wait_time, &from->group_wait_time);
754 blkg_stat_merge(&to->idle_time, &from->idle_time);
755 blkg_stat_merge(&to->empty_time, &from->empty_time);
756 #endif
757 }
758
759 /*
760 * Transfer @cfqg's stats to its parent's dead_stats so that the ancestors'
761 * recursive stats can still account for the amount used by this cfqg after
762 * it's gone.
763 */
764 static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
765 {
766 struct cfq_group *parent = cfqg_parent(cfqg);
767
768 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
769
770 if (unlikely(!parent))
771 return;
772
773 cfqg_stats_merge(&parent->dead_stats, &cfqg->stats);
774 cfqg_stats_merge(&parent->dead_stats, &cfqg->dead_stats);
775 cfqg_stats_reset(&cfqg->stats);
776 cfqg_stats_reset(&cfqg->dead_stats);
777 }
778
779 #else /* CONFIG_CFQ_GROUP_IOSCHED */
780
781 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
782 static inline void cfqg_get(struct cfq_group *cfqg) { }
783 static inline void cfqg_put(struct cfq_group *cfqg) { }
784
785 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
786 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
787 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
788 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
789 ##args)
790 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
791
792 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
793 struct cfq_group *curr_cfqg, int rw) { }
794 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
795 unsigned long time, unsigned long unaccounted_time) { }
796 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
797 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
798 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
799 uint64_t bytes, int rw) { }
800 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
801 uint64_t start_time, uint64_t io_start_time, int rw) { }
802
803 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
804
805 #define cfq_log(cfqd, fmt, args...) \
806 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
807
808 /* Traverses through cfq group service trees */
809 #define for_each_cfqg_st(cfqg, i, j, st) \
810 for (i = 0; i <= IDLE_WORKLOAD; i++) \
811 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
812 : &cfqg->service_tree_idle; \
813 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
814 (i == IDLE_WORKLOAD && j == 0); \
815 j++, st = i < IDLE_WORKLOAD ? \
816 &cfqg->service_trees[i][j]: NULL) \
817
818 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
819 struct cfq_ttime *ttime, bool group_idle)
820 {
821 unsigned long slice;
822 if (!sample_valid(ttime->ttime_samples))
823 return false;
824 if (group_idle)
825 slice = cfqd->cfq_group_idle;
826 else
827 slice = cfqd->cfq_slice_idle;
828 return ttime->ttime_mean > slice;
829 }
830
831 static inline bool iops_mode(struct cfq_data *cfqd)
832 {
833 /*
834 * If we are not idling on queues and it is a NCQ drive, parallel
835 * execution of requests is on and measuring time is not possible
836 * in most of the cases until and unless we drive shallower queue
837 * depths and that becomes a performance bottleneck. In such cases
838 * switch to start providing fairness in terms of number of IOs.
839 */
840 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
841 return true;
842 else
843 return false;
844 }
845
846 static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
847 {
848 if (cfq_class_idle(cfqq))
849 return IDLE_WORKLOAD;
850 if (cfq_class_rt(cfqq))
851 return RT_WORKLOAD;
852 return BE_WORKLOAD;
853 }
854
855
856 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
857 {
858 if (!cfq_cfqq_sync(cfqq))
859 return ASYNC_WORKLOAD;
860 if (!cfq_cfqq_idle_window(cfqq))
861 return SYNC_NOIDLE_WORKLOAD;
862 return SYNC_WORKLOAD;
863 }
864
865 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
866 struct cfq_data *cfqd,
867 struct cfq_group *cfqg)
868 {
869 if (wl_class == IDLE_WORKLOAD)
870 return cfqg->service_tree_idle.count;
871
872 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
873 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
874 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
875 }
876
877 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
878 struct cfq_group *cfqg)
879 {
880 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
881 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
882 }
883
884 static void cfq_dispatch_insert(struct request_queue *, struct request *);
885 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
886 struct cfq_io_cq *cic, struct bio *bio);
887
888 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
889 {
890 /* cic->icq is the first member, %NULL will convert to %NULL */
891 return container_of(icq, struct cfq_io_cq, icq);
892 }
893
894 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
895 struct io_context *ioc)
896 {
897 if (ioc)
898 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
899 return NULL;
900 }
901
902 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
903 {
904 return cic->cfqq[is_sync];
905 }
906
907 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
908 bool is_sync)
909 {
910 cic->cfqq[is_sync] = cfqq;
911 }
912
913 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
914 {
915 return cic->icq.q->elevator->elevator_data;
916 }
917
918 /*
919 * We regard a request as SYNC, if it's either a read or has the SYNC bit
920 * set (in which case it could also be direct WRITE).
921 */
922 static inline bool cfq_bio_sync(struct bio *bio)
923 {
924 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
925 }
926
927 /*
928 * scheduler run of queue, if there are requests pending and no one in the
929 * driver that will restart queueing
930 */
931 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
932 {
933 if (cfqd->busy_queues) {
934 cfq_log(cfqd, "schedule dispatch");
935 kblockd_schedule_work(&cfqd->unplug_work);
936 }
937 }
938
939 /*
940 * Scale schedule slice based on io priority. Use the sync time slice only
941 * if a queue is marked sync and has sync io queued. A sync queue with async
942 * io only, should not get full sync slice length.
943 */
944 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
945 unsigned short prio)
946 {
947 const int base_slice = cfqd->cfq_slice[sync];
948
949 WARN_ON(prio >= IOPRIO_BE_NR);
950
951 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
952 }
953
954 static inline int
955 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
956 {
957 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
958 }
959
960 /**
961 * cfqg_scale_charge - scale disk time charge according to cfqg weight
962 * @charge: disk time being charged
963 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
964 *
965 * Scale @charge according to @vfraction, which is in range (0, 1]. The
966 * scaling is inversely proportional.
967 *
968 * scaled = charge / vfraction
969 *
970 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
971 */
972 static inline u64 cfqg_scale_charge(unsigned long charge,
973 unsigned int vfraction)
974 {
975 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
976
977 /* charge / vfraction */
978 c <<= CFQ_SERVICE_SHIFT;
979 do_div(c, vfraction);
980 return c;
981 }
982
983 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
984 {
985 s64 delta = (s64)(vdisktime - min_vdisktime);
986 if (delta > 0)
987 min_vdisktime = vdisktime;
988
989 return min_vdisktime;
990 }
991
992 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
993 {
994 s64 delta = (s64)(vdisktime - min_vdisktime);
995 if (delta < 0)
996 min_vdisktime = vdisktime;
997
998 return min_vdisktime;
999 }
1000
1001 static void update_min_vdisktime(struct cfq_rb_root *st)
1002 {
1003 struct cfq_group *cfqg;
1004
1005 if (st->left) {
1006 cfqg = rb_entry_cfqg(st->left);
1007 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
1008 cfqg->vdisktime);
1009 }
1010 }
1011
1012 /*
1013 * get averaged number of queues of RT/BE priority.
1014 * average is updated, with a formula that gives more weight to higher numbers,
1015 * to quickly follows sudden increases and decrease slowly
1016 */
1017
1018 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
1019 struct cfq_group *cfqg, bool rt)
1020 {
1021 unsigned min_q, max_q;
1022 unsigned mult = cfq_hist_divisor - 1;
1023 unsigned round = cfq_hist_divisor / 2;
1024 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1025
1026 min_q = min(cfqg->busy_queues_avg[rt], busy);
1027 max_q = max(cfqg->busy_queues_avg[rt], busy);
1028 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1029 cfq_hist_divisor;
1030 return cfqg->busy_queues_avg[rt];
1031 }
1032
1033 static inline unsigned
1034 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1035 {
1036 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1037 }
1038
1039 static inline unsigned
1040 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1041 {
1042 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
1043 if (cfqd->cfq_latency) {
1044 /*
1045 * interested queues (we consider only the ones with the same
1046 * priority class in the cfq group)
1047 */
1048 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1049 cfq_class_rt(cfqq));
1050 unsigned sync_slice = cfqd->cfq_slice[1];
1051 unsigned expect_latency = sync_slice * iq;
1052 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1053
1054 if (expect_latency > group_slice) {
1055 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
1056 /* scale low_slice according to IO priority
1057 * and sync vs async */
1058 unsigned low_slice =
1059 min(slice, base_low_slice * slice / sync_slice);
1060 /* the adapted slice value is scaled to fit all iqs
1061 * into the target latency */
1062 slice = max(slice * group_slice / expect_latency,
1063 low_slice);
1064 }
1065 }
1066 return slice;
1067 }
1068
1069 static inline void
1070 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1071 {
1072 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1073
1074 cfqq->slice_start = jiffies;
1075 cfqq->slice_end = jiffies + slice;
1076 cfqq->allocated_slice = slice;
1077 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
1078 }
1079
1080 /*
1081 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1082 * isn't valid until the first request from the dispatch is activated
1083 * and the slice time set.
1084 */
1085 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1086 {
1087 if (cfq_cfqq_slice_new(cfqq))
1088 return false;
1089 if (time_before(jiffies, cfqq->slice_end))
1090 return false;
1091
1092 return true;
1093 }
1094
1095 /*
1096 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1097 * We choose the request that is closest to the head right now. Distance
1098 * behind the head is penalized and only allowed to a certain extent.
1099 */
1100 static struct request *
1101 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1102 {
1103 sector_t s1, s2, d1 = 0, d2 = 0;
1104 unsigned long back_max;
1105 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1106 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1107 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1108
1109 if (rq1 == NULL || rq1 == rq2)
1110 return rq2;
1111 if (rq2 == NULL)
1112 return rq1;
1113
1114 if (rq_is_sync(rq1) != rq_is_sync(rq2))
1115 return rq_is_sync(rq1) ? rq1 : rq2;
1116
1117 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1118 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1119
1120 s1 = blk_rq_pos(rq1);
1121 s2 = blk_rq_pos(rq2);
1122
1123 /*
1124 * by definition, 1KiB is 2 sectors
1125 */
1126 back_max = cfqd->cfq_back_max * 2;
1127
1128 /*
1129 * Strict one way elevator _except_ in the case where we allow
1130 * short backward seeks which are biased as twice the cost of a
1131 * similar forward seek.
1132 */
1133 if (s1 >= last)
1134 d1 = s1 - last;
1135 else if (s1 + back_max >= last)
1136 d1 = (last - s1) * cfqd->cfq_back_penalty;
1137 else
1138 wrap |= CFQ_RQ1_WRAP;
1139
1140 if (s2 >= last)
1141 d2 = s2 - last;
1142 else if (s2 + back_max >= last)
1143 d2 = (last - s2) * cfqd->cfq_back_penalty;
1144 else
1145 wrap |= CFQ_RQ2_WRAP;
1146
1147 /* Found required data */
1148
1149 /*
1150 * By doing switch() on the bit mask "wrap" we avoid having to
1151 * check two variables for all permutations: --> faster!
1152 */
1153 switch (wrap) {
1154 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1155 if (d1 < d2)
1156 return rq1;
1157 else if (d2 < d1)
1158 return rq2;
1159 else {
1160 if (s1 >= s2)
1161 return rq1;
1162 else
1163 return rq2;
1164 }
1165
1166 case CFQ_RQ2_WRAP:
1167 return rq1;
1168 case CFQ_RQ1_WRAP:
1169 return rq2;
1170 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1171 default:
1172 /*
1173 * Since both rqs are wrapped,
1174 * start with the one that's further behind head
1175 * (--> only *one* back seek required),
1176 * since back seek takes more time than forward.
1177 */
1178 if (s1 <= s2)
1179 return rq1;
1180 else
1181 return rq2;
1182 }
1183 }
1184
1185 /*
1186 * The below is leftmost cache rbtree addon
1187 */
1188 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1189 {
1190 /* Service tree is empty */
1191 if (!root->count)
1192 return NULL;
1193
1194 if (!root->left)
1195 root->left = rb_first(&root->rb);
1196
1197 if (root->left)
1198 return rb_entry(root->left, struct cfq_queue, rb_node);
1199
1200 return NULL;
1201 }
1202
1203 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1204 {
1205 if (!root->left)
1206 root->left = rb_first(&root->rb);
1207
1208 if (root->left)
1209 return rb_entry_cfqg(root->left);
1210
1211 return NULL;
1212 }
1213
1214 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1215 {
1216 rb_erase(n, root);
1217 RB_CLEAR_NODE(n);
1218 }
1219
1220 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1221 {
1222 if (root->left == n)
1223 root->left = NULL;
1224 rb_erase_init(n, &root->rb);
1225 --root->count;
1226 }
1227
1228 /*
1229 * would be nice to take fifo expire time into account as well
1230 */
1231 static struct request *
1232 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1233 struct request *last)
1234 {
1235 struct rb_node *rbnext = rb_next(&last->rb_node);
1236 struct rb_node *rbprev = rb_prev(&last->rb_node);
1237 struct request *next = NULL, *prev = NULL;
1238
1239 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1240
1241 if (rbprev)
1242 prev = rb_entry_rq(rbprev);
1243
1244 if (rbnext)
1245 next = rb_entry_rq(rbnext);
1246 else {
1247 rbnext = rb_first(&cfqq->sort_list);
1248 if (rbnext && rbnext != &last->rb_node)
1249 next = rb_entry_rq(rbnext);
1250 }
1251
1252 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1253 }
1254
1255 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1256 struct cfq_queue *cfqq)
1257 {
1258 /*
1259 * just an approximation, should be ok.
1260 */
1261 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1262 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1263 }
1264
1265 static inline s64
1266 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1267 {
1268 return cfqg->vdisktime - st->min_vdisktime;
1269 }
1270
1271 static void
1272 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1273 {
1274 struct rb_node **node = &st->rb.rb_node;
1275 struct rb_node *parent = NULL;
1276 struct cfq_group *__cfqg;
1277 s64 key = cfqg_key(st, cfqg);
1278 int left = 1;
1279
1280 while (*node != NULL) {
1281 parent = *node;
1282 __cfqg = rb_entry_cfqg(parent);
1283
1284 if (key < cfqg_key(st, __cfqg))
1285 node = &parent->rb_left;
1286 else {
1287 node = &parent->rb_right;
1288 left = 0;
1289 }
1290 }
1291
1292 if (left)
1293 st->left = &cfqg->rb_node;
1294
1295 rb_link_node(&cfqg->rb_node, parent, node);
1296 rb_insert_color(&cfqg->rb_node, &st->rb);
1297 }
1298
1299 /*
1300 * This has to be called only on activation of cfqg
1301 */
1302 static void
1303 cfq_update_group_weight(struct cfq_group *cfqg)
1304 {
1305 if (cfqg->new_weight) {
1306 cfqg->weight = cfqg->new_weight;
1307 cfqg->new_weight = 0;
1308 }
1309 }
1310
1311 static void
1312 cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1313 {
1314 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1315
1316 if (cfqg->new_leaf_weight) {
1317 cfqg->leaf_weight = cfqg->new_leaf_weight;
1318 cfqg->new_leaf_weight = 0;
1319 }
1320 }
1321
1322 static void
1323 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1324 {
1325 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1326 struct cfq_group *pos = cfqg;
1327 struct cfq_group *parent;
1328 bool propagate;
1329
1330 /* add to the service tree */
1331 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1332
1333 /*
1334 * Update leaf_weight. We cannot update weight at this point
1335 * because cfqg might already have been activated and is
1336 * contributing its current weight to the parent's child_weight.
1337 */
1338 cfq_update_group_leaf_weight(cfqg);
1339 __cfq_group_service_tree_add(st, cfqg);
1340
1341 /*
1342 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1343 * entitled to. vfraction is calculated by walking the tree
1344 * towards the root calculating the fraction it has at each level.
1345 * The compounded ratio is how much vfraction @cfqg owns.
1346 *
1347 * Start with the proportion tasks in this cfqg has against active
1348 * children cfqgs - its leaf_weight against children_weight.
1349 */
1350 propagate = !pos->nr_active++;
1351 pos->children_weight += pos->leaf_weight;
1352 vfr = vfr * pos->leaf_weight / pos->children_weight;
1353
1354 /*
1355 * Compound ->weight walking up the tree. Both activation and
1356 * vfraction calculation are done in the same loop. Propagation
1357 * stops once an already activated node is met. vfraction
1358 * calculation should always continue to the root.
1359 */
1360 while ((parent = cfqg_parent(pos))) {
1361 if (propagate) {
1362 cfq_update_group_weight(pos);
1363 propagate = !parent->nr_active++;
1364 parent->children_weight += pos->weight;
1365 }
1366 vfr = vfr * pos->weight / parent->children_weight;
1367 pos = parent;
1368 }
1369
1370 cfqg->vfraction = max_t(unsigned, vfr, 1);
1371 }
1372
1373 static void
1374 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1375 {
1376 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1377 struct cfq_group *__cfqg;
1378 struct rb_node *n;
1379
1380 cfqg->nr_cfqq++;
1381 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1382 return;
1383
1384 /*
1385 * Currently put the group at the end. Later implement something
1386 * so that groups get lesser vtime based on their weights, so that
1387 * if group does not loose all if it was not continuously backlogged.
1388 */
1389 n = rb_last(&st->rb);
1390 if (n) {
1391 __cfqg = rb_entry_cfqg(n);
1392 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1393 } else
1394 cfqg->vdisktime = st->min_vdisktime;
1395 cfq_group_service_tree_add(st, cfqg);
1396 }
1397
1398 static void
1399 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1400 {
1401 struct cfq_group *pos = cfqg;
1402 bool propagate;
1403
1404 /*
1405 * Undo activation from cfq_group_service_tree_add(). Deactivate
1406 * @cfqg and propagate deactivation upwards.
1407 */
1408 propagate = !--pos->nr_active;
1409 pos->children_weight -= pos->leaf_weight;
1410
1411 while (propagate) {
1412 struct cfq_group *parent = cfqg_parent(pos);
1413
1414 /* @pos has 0 nr_active at this point */
1415 WARN_ON_ONCE(pos->children_weight);
1416 pos->vfraction = 0;
1417
1418 if (!parent)
1419 break;
1420
1421 propagate = !--parent->nr_active;
1422 parent->children_weight -= pos->weight;
1423 pos = parent;
1424 }
1425
1426 /* remove from the service tree */
1427 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1428 cfq_rb_erase(&cfqg->rb_node, st);
1429 }
1430
1431 static void
1432 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1433 {
1434 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1435
1436 BUG_ON(cfqg->nr_cfqq < 1);
1437 cfqg->nr_cfqq--;
1438
1439 /* If there are other cfq queues under this group, don't delete it */
1440 if (cfqg->nr_cfqq)
1441 return;
1442
1443 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1444 cfq_group_service_tree_del(st, cfqg);
1445 cfqg->saved_wl_slice = 0;
1446 cfqg_stats_update_dequeue(cfqg);
1447 }
1448
1449 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1450 unsigned int *unaccounted_time)
1451 {
1452 unsigned int slice_used;
1453
1454 /*
1455 * Queue got expired before even a single request completed or
1456 * got expired immediately after first request completion.
1457 */
1458 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1459 /*
1460 * Also charge the seek time incurred to the group, otherwise
1461 * if there are mutiple queues in the group, each can dispatch
1462 * a single request on seeky media and cause lots of seek time
1463 * and group will never know it.
1464 */
1465 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1466 1);
1467 } else {
1468 slice_used = jiffies - cfqq->slice_start;
1469 if (slice_used > cfqq->allocated_slice) {
1470 *unaccounted_time = slice_used - cfqq->allocated_slice;
1471 slice_used = cfqq->allocated_slice;
1472 }
1473 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1474 *unaccounted_time += cfqq->slice_start -
1475 cfqq->dispatch_start;
1476 }
1477
1478 return slice_used;
1479 }
1480
1481 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1482 struct cfq_queue *cfqq)
1483 {
1484 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1485 unsigned int used_sl, charge, unaccounted_sl = 0;
1486 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1487 - cfqg->service_tree_idle.count;
1488 unsigned int vfr;
1489
1490 BUG_ON(nr_sync < 0);
1491 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1492
1493 if (iops_mode(cfqd))
1494 charge = cfqq->slice_dispatch;
1495 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1496 charge = cfqq->allocated_slice;
1497
1498 /*
1499 * Can't update vdisktime while on service tree and cfqg->vfraction
1500 * is valid only while on it. Cache vfr, leave the service tree,
1501 * update vdisktime and go back on. The re-addition to the tree
1502 * will also update the weights as necessary.
1503 */
1504 vfr = cfqg->vfraction;
1505 cfq_group_service_tree_del(st, cfqg);
1506 cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1507 cfq_group_service_tree_add(st, cfqg);
1508
1509 /* This group is being expired. Save the context */
1510 if (time_after(cfqd->workload_expires, jiffies)) {
1511 cfqg->saved_wl_slice = cfqd->workload_expires
1512 - jiffies;
1513 cfqg->saved_wl_type = cfqd->serving_wl_type;
1514 cfqg->saved_wl_class = cfqd->serving_wl_class;
1515 } else
1516 cfqg->saved_wl_slice = 0;
1517
1518 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1519 st->min_vdisktime);
1520 cfq_log_cfqq(cfqq->cfqd, cfqq,
1521 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1522 used_sl, cfqq->slice_dispatch, charge,
1523 iops_mode(cfqd), cfqq->nr_sectors);
1524 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1525 cfqg_stats_set_start_empty_time(cfqg);
1526 }
1527
1528 /**
1529 * cfq_init_cfqg_base - initialize base part of a cfq_group
1530 * @cfqg: cfq_group to initialize
1531 *
1532 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1533 * is enabled or not.
1534 */
1535 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1536 {
1537 struct cfq_rb_root *st;
1538 int i, j;
1539
1540 for_each_cfqg_st(cfqg, i, j, st)
1541 *st = CFQ_RB_ROOT;
1542 RB_CLEAR_NODE(&cfqg->rb_node);
1543
1544 cfqg->ttime.last_end_request = jiffies;
1545 }
1546
1547 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1548 static void cfqg_stats_init(struct cfqg_stats *stats)
1549 {
1550 blkg_rwstat_init(&stats->service_bytes);
1551 blkg_rwstat_init(&stats->serviced);
1552 blkg_rwstat_init(&stats->merged);
1553 blkg_rwstat_init(&stats->service_time);
1554 blkg_rwstat_init(&stats->wait_time);
1555 blkg_rwstat_init(&stats->queued);
1556
1557 blkg_stat_init(&stats->sectors);
1558 blkg_stat_init(&stats->time);
1559
1560 #ifdef CONFIG_DEBUG_BLK_CGROUP
1561 blkg_stat_init(&stats->unaccounted_time);
1562 blkg_stat_init(&stats->avg_queue_size_sum);
1563 blkg_stat_init(&stats->avg_queue_size_samples);
1564 blkg_stat_init(&stats->dequeue);
1565 blkg_stat_init(&stats->group_wait_time);
1566 blkg_stat_init(&stats->idle_time);
1567 blkg_stat_init(&stats->empty_time);
1568 #endif
1569 }
1570
1571 static void cfq_cpd_init(const struct blkcg *blkcg)
1572 {
1573 struct cfq_group_data *cgd =
1574 cpd_to_cfqgd(blkcg->pd[blkcg_policy_cfq.plid]);
1575
1576 if (blkcg == &blkcg_root) {
1577 cgd->weight = 2 * CFQ_WEIGHT_DEFAULT;
1578 cgd->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
1579 } else {
1580 cgd->weight = CFQ_WEIGHT_DEFAULT;
1581 cgd->leaf_weight = CFQ_WEIGHT_DEFAULT;
1582 }
1583 }
1584
1585 static void cfq_pd_init(struct blkcg_gq *blkg)
1586 {
1587 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1588 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkg->blkcg);
1589
1590 cfq_init_cfqg_base(cfqg);
1591 cfqg->weight = cgd->weight;
1592 cfqg->leaf_weight = cgd->leaf_weight;
1593 cfqg_stats_init(&cfqg->stats);
1594 cfqg_stats_init(&cfqg->dead_stats);
1595 }
1596
1597 static void cfq_pd_offline(struct blkcg_gq *blkg)
1598 {
1599 /*
1600 * @blkg is going offline and will be ignored by
1601 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1602 * that they don't get lost. If IOs complete after this point, the
1603 * stats for them will be lost. Oh well...
1604 */
1605 cfqg_stats_xfer_dead(blkg_to_cfqg(blkg));
1606 }
1607
1608 /* offset delta from cfqg->stats to cfqg->dead_stats */
1609 static const int dead_stats_off_delta = offsetof(struct cfq_group, dead_stats) -
1610 offsetof(struct cfq_group, stats);
1611
1612 /* to be used by recursive prfill, sums live and dead stats recursively */
1613 static u64 cfqg_stat_pd_recursive_sum(struct blkg_policy_data *pd, int off)
1614 {
1615 u64 sum = 0;
1616
1617 sum += blkg_stat_recursive_sum(pd, off);
1618 sum += blkg_stat_recursive_sum(pd, off + dead_stats_off_delta);
1619 return sum;
1620 }
1621
1622 /* to be used by recursive prfill, sums live and dead rwstats recursively */
1623 static struct blkg_rwstat cfqg_rwstat_pd_recursive_sum(struct blkg_policy_data *pd,
1624 int off)
1625 {
1626 struct blkg_rwstat a, b;
1627
1628 a = blkg_rwstat_recursive_sum(pd, off);
1629 b = blkg_rwstat_recursive_sum(pd, off + dead_stats_off_delta);
1630 blkg_rwstat_merge(&a, &b);
1631 return a;
1632 }
1633
1634 static void cfq_pd_reset_stats(struct blkcg_gq *blkg)
1635 {
1636 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1637
1638 cfqg_stats_reset(&cfqg->stats);
1639 cfqg_stats_reset(&cfqg->dead_stats);
1640 }
1641
1642 /*
1643 * Search for the cfq group current task belongs to. request_queue lock must
1644 * be held.
1645 */
1646 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1647 struct blkcg *blkcg)
1648 {
1649 struct request_queue *q = cfqd->queue;
1650 struct cfq_group *cfqg = NULL;
1651
1652 /* avoid lookup for the common case where there's no blkcg */
1653 if (blkcg == &blkcg_root) {
1654 cfqg = cfqd->root_group;
1655 } else {
1656 struct blkcg_gq *blkg;
1657
1658 blkg = blkg_lookup_create(blkcg, q);
1659 if (!IS_ERR(blkg))
1660 cfqg = blkg_to_cfqg(blkg);
1661 }
1662
1663 return cfqg;
1664 }
1665
1666 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1667 {
1668 /* Currently, all async queues are mapped to root group */
1669 if (!cfq_cfqq_sync(cfqq))
1670 cfqg = cfqq->cfqd->root_group;
1671
1672 cfqq->cfqg = cfqg;
1673 /* cfqq reference on cfqg */
1674 cfqg_get(cfqg);
1675 }
1676
1677 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1678 struct blkg_policy_data *pd, int off)
1679 {
1680 struct cfq_group *cfqg = pd_to_cfqg(pd);
1681
1682 if (!cfqg->dev_weight)
1683 return 0;
1684 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1685 }
1686
1687 static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1688 {
1689 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1690 cfqg_prfill_weight_device, &blkcg_policy_cfq,
1691 0, false);
1692 return 0;
1693 }
1694
1695 static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1696 struct blkg_policy_data *pd, int off)
1697 {
1698 struct cfq_group *cfqg = pd_to_cfqg(pd);
1699
1700 if (!cfqg->dev_leaf_weight)
1701 return 0;
1702 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1703 }
1704
1705 static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1706 {
1707 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1708 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1709 0, false);
1710 return 0;
1711 }
1712
1713 static int cfq_print_weight(struct seq_file *sf, void *v)
1714 {
1715 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1716 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1717 unsigned int val = 0;
1718
1719 if (cgd)
1720 val = cgd->weight;
1721
1722 seq_printf(sf, "%u\n", val);
1723 return 0;
1724 }
1725
1726 static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1727 {
1728 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1729 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1730 unsigned int val = 0;
1731
1732 if (cgd)
1733 val = cgd->leaf_weight;
1734
1735 seq_printf(sf, "%u\n", val);
1736 return 0;
1737 }
1738
1739 static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1740 char *buf, size_t nbytes, loff_t off,
1741 bool is_leaf_weight)
1742 {
1743 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1744 struct blkg_conf_ctx ctx;
1745 struct cfq_group *cfqg;
1746 struct cfq_group_data *cfqgd;
1747 int ret;
1748
1749 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1750 if (ret)
1751 return ret;
1752
1753 ret = -EINVAL;
1754 cfqg = blkg_to_cfqg(ctx.blkg);
1755 cfqgd = blkcg_to_cfqgd(blkcg);
1756 if (!cfqg || !cfqgd)
1757 goto err;
1758
1759 if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) {
1760 if (!is_leaf_weight) {
1761 cfqg->dev_weight = ctx.v;
1762 cfqg->new_weight = ctx.v ?: cfqgd->weight;
1763 } else {
1764 cfqg->dev_leaf_weight = ctx.v;
1765 cfqg->new_leaf_weight = ctx.v ?: cfqgd->leaf_weight;
1766 }
1767 ret = 0;
1768 }
1769
1770 err:
1771 blkg_conf_finish(&ctx);
1772 return ret ?: nbytes;
1773 }
1774
1775 static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1776 char *buf, size_t nbytes, loff_t off)
1777 {
1778 return __cfqg_set_weight_device(of, buf, nbytes, off, false);
1779 }
1780
1781 static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1782 char *buf, size_t nbytes, loff_t off)
1783 {
1784 return __cfqg_set_weight_device(of, buf, nbytes, off, true);
1785 }
1786
1787 static int __cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1788 u64 val, bool is_leaf_weight)
1789 {
1790 struct blkcg *blkcg = css_to_blkcg(css);
1791 struct blkcg_gq *blkg;
1792 struct cfq_group_data *cfqgd;
1793 int ret = 0;
1794
1795 if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
1796 return -EINVAL;
1797
1798 spin_lock_irq(&blkcg->lock);
1799 cfqgd = blkcg_to_cfqgd(blkcg);
1800 if (!cfqgd) {
1801 ret = -EINVAL;
1802 goto out;
1803 }
1804
1805 if (!is_leaf_weight)
1806 cfqgd->weight = val;
1807 else
1808 cfqgd->leaf_weight = val;
1809
1810 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1811 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1812
1813 if (!cfqg)
1814 continue;
1815
1816 if (!is_leaf_weight) {
1817 if (!cfqg->dev_weight)
1818 cfqg->new_weight = cfqgd->weight;
1819 } else {
1820 if (!cfqg->dev_leaf_weight)
1821 cfqg->new_leaf_weight = cfqgd->leaf_weight;
1822 }
1823 }
1824
1825 out:
1826 spin_unlock_irq(&blkcg->lock);
1827 return ret;
1828 }
1829
1830 static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1831 u64 val)
1832 {
1833 return __cfq_set_weight(css, cft, val, false);
1834 }
1835
1836 static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1837 struct cftype *cft, u64 val)
1838 {
1839 return __cfq_set_weight(css, cft, val, true);
1840 }
1841
1842 static int cfqg_print_stat(struct seq_file *sf, void *v)
1843 {
1844 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1845 &blkcg_policy_cfq, seq_cft(sf)->private, false);
1846 return 0;
1847 }
1848
1849 static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1850 {
1851 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1852 &blkcg_policy_cfq, seq_cft(sf)->private, true);
1853 return 0;
1854 }
1855
1856 static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1857 struct blkg_policy_data *pd, int off)
1858 {
1859 u64 sum = cfqg_stat_pd_recursive_sum(pd, off);
1860
1861 return __blkg_prfill_u64(sf, pd, sum);
1862 }
1863
1864 static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1865 struct blkg_policy_data *pd, int off)
1866 {
1867 struct blkg_rwstat sum = cfqg_rwstat_pd_recursive_sum(pd, off);
1868
1869 return __blkg_prfill_rwstat(sf, pd, &sum);
1870 }
1871
1872 static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1873 {
1874 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1875 cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1876 seq_cft(sf)->private, false);
1877 return 0;
1878 }
1879
1880 static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1881 {
1882 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1883 cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1884 seq_cft(sf)->private, true);
1885 return 0;
1886 }
1887
1888 #ifdef CONFIG_DEBUG_BLK_CGROUP
1889 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1890 struct blkg_policy_data *pd, int off)
1891 {
1892 struct cfq_group *cfqg = pd_to_cfqg(pd);
1893 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1894 u64 v = 0;
1895
1896 if (samples) {
1897 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1898 v = div64_u64(v, samples);
1899 }
1900 __blkg_prfill_u64(sf, pd, v);
1901 return 0;
1902 }
1903
1904 /* print avg_queue_size */
1905 static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
1906 {
1907 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1908 cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
1909 0, false);
1910 return 0;
1911 }
1912 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1913
1914 static struct cftype cfq_blkcg_files[] = {
1915 /* on root, weight is mapped to leaf_weight */
1916 {
1917 .name = "weight_device",
1918 .flags = CFTYPE_ONLY_ON_ROOT,
1919 .seq_show = cfqg_print_leaf_weight_device,
1920 .write = cfqg_set_leaf_weight_device,
1921 },
1922 {
1923 .name = "weight",
1924 .flags = CFTYPE_ONLY_ON_ROOT,
1925 .seq_show = cfq_print_leaf_weight,
1926 .write_u64 = cfq_set_leaf_weight,
1927 },
1928
1929 /* no such mapping necessary for !roots */
1930 {
1931 .name = "weight_device",
1932 .flags = CFTYPE_NOT_ON_ROOT,
1933 .seq_show = cfqg_print_weight_device,
1934 .write = cfqg_set_weight_device,
1935 },
1936 {
1937 .name = "weight",
1938 .flags = CFTYPE_NOT_ON_ROOT,
1939 .seq_show = cfq_print_weight,
1940 .write_u64 = cfq_set_weight,
1941 },
1942
1943 {
1944 .name = "leaf_weight_device",
1945 .seq_show = cfqg_print_leaf_weight_device,
1946 .write = cfqg_set_leaf_weight_device,
1947 },
1948 {
1949 .name = "leaf_weight",
1950 .seq_show = cfq_print_leaf_weight,
1951 .write_u64 = cfq_set_leaf_weight,
1952 },
1953
1954 /* statistics, covers only the tasks in the cfqg */
1955 {
1956 .name = "time",
1957 .private = offsetof(struct cfq_group, stats.time),
1958 .seq_show = cfqg_print_stat,
1959 },
1960 {
1961 .name = "sectors",
1962 .private = offsetof(struct cfq_group, stats.sectors),
1963 .seq_show = cfqg_print_stat,
1964 },
1965 {
1966 .name = "io_service_bytes",
1967 .private = offsetof(struct cfq_group, stats.service_bytes),
1968 .seq_show = cfqg_print_rwstat,
1969 },
1970 {
1971 .name = "io_serviced",
1972 .private = offsetof(struct cfq_group, stats.serviced),
1973 .seq_show = cfqg_print_rwstat,
1974 },
1975 {
1976 .name = "io_service_time",
1977 .private = offsetof(struct cfq_group, stats.service_time),
1978 .seq_show = cfqg_print_rwstat,
1979 },
1980 {
1981 .name = "io_wait_time",
1982 .private = offsetof(struct cfq_group, stats.wait_time),
1983 .seq_show = cfqg_print_rwstat,
1984 },
1985 {
1986 .name = "io_merged",
1987 .private = offsetof(struct cfq_group, stats.merged),
1988 .seq_show = cfqg_print_rwstat,
1989 },
1990 {
1991 .name = "io_queued",
1992 .private = offsetof(struct cfq_group, stats.queued),
1993 .seq_show = cfqg_print_rwstat,
1994 },
1995
1996 /* the same statictics which cover the cfqg and its descendants */
1997 {
1998 .name = "time_recursive",
1999 .private = offsetof(struct cfq_group, stats.time),
2000 .seq_show = cfqg_print_stat_recursive,
2001 },
2002 {
2003 .name = "sectors_recursive",
2004 .private = offsetof(struct cfq_group, stats.sectors),
2005 .seq_show = cfqg_print_stat_recursive,
2006 },
2007 {
2008 .name = "io_service_bytes_recursive",
2009 .private = offsetof(struct cfq_group, stats.service_bytes),
2010 .seq_show = cfqg_print_rwstat_recursive,
2011 },
2012 {
2013 .name = "io_serviced_recursive",
2014 .private = offsetof(struct cfq_group, stats.serviced),
2015 .seq_show = cfqg_print_rwstat_recursive,
2016 },
2017 {
2018 .name = "io_service_time_recursive",
2019 .private = offsetof(struct cfq_group, stats.service_time),
2020 .seq_show = cfqg_print_rwstat_recursive,
2021 },
2022 {
2023 .name = "io_wait_time_recursive",
2024 .private = offsetof(struct cfq_group, stats.wait_time),
2025 .seq_show = cfqg_print_rwstat_recursive,
2026 },
2027 {
2028 .name = "io_merged_recursive",
2029 .private = offsetof(struct cfq_group, stats.merged),
2030 .seq_show = cfqg_print_rwstat_recursive,
2031 },
2032 {
2033 .name = "io_queued_recursive",
2034 .private = offsetof(struct cfq_group, stats.queued),
2035 .seq_show = cfqg_print_rwstat_recursive,
2036 },
2037 #ifdef CONFIG_DEBUG_BLK_CGROUP
2038 {
2039 .name = "avg_queue_size",
2040 .seq_show = cfqg_print_avg_queue_size,
2041 },
2042 {
2043 .name = "group_wait_time",
2044 .private = offsetof(struct cfq_group, stats.group_wait_time),
2045 .seq_show = cfqg_print_stat,
2046 },
2047 {
2048 .name = "idle_time",
2049 .private = offsetof(struct cfq_group, stats.idle_time),
2050 .seq_show = cfqg_print_stat,
2051 },
2052 {
2053 .name = "empty_time",
2054 .private = offsetof(struct cfq_group, stats.empty_time),
2055 .seq_show = cfqg_print_stat,
2056 },
2057 {
2058 .name = "dequeue",
2059 .private = offsetof(struct cfq_group, stats.dequeue),
2060 .seq_show = cfqg_print_stat,
2061 },
2062 {
2063 .name = "unaccounted_time",
2064 .private = offsetof(struct cfq_group, stats.unaccounted_time),
2065 .seq_show = cfqg_print_stat,
2066 },
2067 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2068 { } /* terminate */
2069 };
2070 #else /* GROUP_IOSCHED */
2071 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
2072 struct blkcg *blkcg)
2073 {
2074 return cfqd->root_group;
2075 }
2076
2077 static inline void
2078 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2079 cfqq->cfqg = cfqg;
2080 }
2081
2082 #endif /* GROUP_IOSCHED */
2083
2084 /*
2085 * The cfqd->service_trees holds all pending cfq_queue's that have
2086 * requests waiting to be processed. It is sorted in the order that
2087 * we will service the queues.
2088 */
2089 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2090 bool add_front)
2091 {
2092 struct rb_node **p, *parent;
2093 struct cfq_queue *__cfqq;
2094 unsigned long rb_key;
2095 struct cfq_rb_root *st;
2096 int left;
2097 int new_cfqq = 1;
2098
2099 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2100 if (cfq_class_idle(cfqq)) {
2101 rb_key = CFQ_IDLE_DELAY;
2102 parent = rb_last(&st->rb);
2103 if (parent && parent != &cfqq->rb_node) {
2104 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2105 rb_key += __cfqq->rb_key;
2106 } else
2107 rb_key += jiffies;
2108 } else if (!add_front) {
2109 /*
2110 * Get our rb key offset. Subtract any residual slice
2111 * value carried from last service. A negative resid
2112 * count indicates slice overrun, and this should position
2113 * the next service time further away in the tree.
2114 */
2115 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
2116 rb_key -= cfqq->slice_resid;
2117 cfqq->slice_resid = 0;
2118 } else {
2119 rb_key = -HZ;
2120 __cfqq = cfq_rb_first(st);
2121 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
2122 }
2123
2124 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2125 new_cfqq = 0;
2126 /*
2127 * same position, nothing more to do
2128 */
2129 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2130 return;
2131
2132 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2133 cfqq->service_tree = NULL;
2134 }
2135
2136 left = 1;
2137 parent = NULL;
2138 cfqq->service_tree = st;
2139 p = &st->rb.rb_node;
2140 while (*p) {
2141 parent = *p;
2142 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2143
2144 /*
2145 * sort by key, that represents service time.
2146 */
2147 if (time_before(rb_key, __cfqq->rb_key))
2148 p = &parent->rb_left;
2149 else {
2150 p = &parent->rb_right;
2151 left = 0;
2152 }
2153 }
2154
2155 if (left)
2156 st->left = &cfqq->rb_node;
2157
2158 cfqq->rb_key = rb_key;
2159 rb_link_node(&cfqq->rb_node, parent, p);
2160 rb_insert_color(&cfqq->rb_node, &st->rb);
2161 st->count++;
2162 if (add_front || !new_cfqq)
2163 return;
2164 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2165 }
2166
2167 static struct cfq_queue *
2168 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2169 sector_t sector, struct rb_node **ret_parent,
2170 struct rb_node ***rb_link)
2171 {
2172 struct rb_node **p, *parent;
2173 struct cfq_queue *cfqq = NULL;
2174
2175 parent = NULL;
2176 p = &root->rb_node;
2177 while (*p) {
2178 struct rb_node **n;
2179
2180 parent = *p;
2181 cfqq = rb_entry(parent, struct cfq_queue, p_node);
2182
2183 /*
2184 * Sort strictly based on sector. Smallest to the left,
2185 * largest to the right.
2186 */
2187 if (sector > blk_rq_pos(cfqq->next_rq))
2188 n = &(*p)->rb_right;
2189 else if (sector < blk_rq_pos(cfqq->next_rq))
2190 n = &(*p)->rb_left;
2191 else
2192 break;
2193 p = n;
2194 cfqq = NULL;
2195 }
2196
2197 *ret_parent = parent;
2198 if (rb_link)
2199 *rb_link = p;
2200 return cfqq;
2201 }
2202
2203 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2204 {
2205 struct rb_node **p, *parent;
2206 struct cfq_queue *__cfqq;
2207
2208 if (cfqq->p_root) {
2209 rb_erase(&cfqq->p_node, cfqq->p_root);
2210 cfqq->p_root = NULL;
2211 }
2212
2213 if (cfq_class_idle(cfqq))
2214 return;
2215 if (!cfqq->next_rq)
2216 return;
2217
2218 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2219 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2220 blk_rq_pos(cfqq->next_rq), &parent, &p);
2221 if (!__cfqq) {
2222 rb_link_node(&cfqq->p_node, parent, p);
2223 rb_insert_color(&cfqq->p_node, cfqq->p_root);
2224 } else
2225 cfqq->p_root = NULL;
2226 }
2227
2228 /*
2229 * Update cfqq's position in the service tree.
2230 */
2231 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2232 {
2233 /*
2234 * Resorting requires the cfqq to be on the RR list already.
2235 */
2236 if (cfq_cfqq_on_rr(cfqq)) {
2237 cfq_service_tree_add(cfqd, cfqq, 0);
2238 cfq_prio_tree_add(cfqd, cfqq);
2239 }
2240 }
2241
2242 /*
2243 * add to busy list of queues for service, trying to be fair in ordering
2244 * the pending list according to last request service
2245 */
2246 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2247 {
2248 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2249 BUG_ON(cfq_cfqq_on_rr(cfqq));
2250 cfq_mark_cfqq_on_rr(cfqq);
2251 cfqd->busy_queues++;
2252 if (cfq_cfqq_sync(cfqq))
2253 cfqd->busy_sync_queues++;
2254
2255 cfq_resort_rr_list(cfqd, cfqq);
2256 }
2257
2258 /*
2259 * Called when the cfqq no longer has requests pending, remove it from
2260 * the service tree.
2261 */
2262 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2263 {
2264 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2265 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2266 cfq_clear_cfqq_on_rr(cfqq);
2267
2268 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2269 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2270 cfqq->service_tree = NULL;
2271 }
2272 if (cfqq->p_root) {
2273 rb_erase(&cfqq->p_node, cfqq->p_root);
2274 cfqq->p_root = NULL;
2275 }
2276
2277 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2278 BUG_ON(!cfqd->busy_queues);
2279 cfqd->busy_queues--;
2280 if (cfq_cfqq_sync(cfqq))
2281 cfqd->busy_sync_queues--;
2282 }
2283
2284 /*
2285 * rb tree support functions
2286 */
2287 static void cfq_del_rq_rb(struct request *rq)
2288 {
2289 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2290 const int sync = rq_is_sync(rq);
2291
2292 BUG_ON(!cfqq->queued[sync]);
2293 cfqq->queued[sync]--;
2294
2295 elv_rb_del(&cfqq->sort_list, rq);
2296
2297 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2298 /*
2299 * Queue will be deleted from service tree when we actually
2300 * expire it later. Right now just remove it from prio tree
2301 * as it is empty.
2302 */
2303 if (cfqq->p_root) {
2304 rb_erase(&cfqq->p_node, cfqq->p_root);
2305 cfqq->p_root = NULL;
2306 }
2307 }
2308 }
2309
2310 static void cfq_add_rq_rb(struct request *rq)
2311 {
2312 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2313 struct cfq_data *cfqd = cfqq->cfqd;
2314 struct request *prev;
2315
2316 cfqq->queued[rq_is_sync(rq)]++;
2317
2318 elv_rb_add(&cfqq->sort_list, rq);
2319
2320 if (!cfq_cfqq_on_rr(cfqq))
2321 cfq_add_cfqq_rr(cfqd, cfqq);
2322
2323 /*
2324 * check if this request is a better next-serve candidate
2325 */
2326 prev = cfqq->next_rq;
2327 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2328
2329 /*
2330 * adjust priority tree position, if ->next_rq changes
2331 */
2332 if (prev != cfqq->next_rq)
2333 cfq_prio_tree_add(cfqd, cfqq);
2334
2335 BUG_ON(!cfqq->next_rq);
2336 }
2337
2338 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2339 {
2340 elv_rb_del(&cfqq->sort_list, rq);
2341 cfqq->queued[rq_is_sync(rq)]--;
2342 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2343 cfq_add_rq_rb(rq);
2344 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2345 rq->cmd_flags);
2346 }
2347
2348 static struct request *
2349 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2350 {
2351 struct task_struct *tsk = current;
2352 struct cfq_io_cq *cic;
2353 struct cfq_queue *cfqq;
2354
2355 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2356 if (!cic)
2357 return NULL;
2358
2359 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2360 if (cfqq)
2361 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2362
2363 return NULL;
2364 }
2365
2366 static void cfq_activate_request(struct request_queue *q, struct request *rq)
2367 {
2368 struct cfq_data *cfqd = q->elevator->elevator_data;
2369
2370 cfqd->rq_in_driver++;
2371 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2372 cfqd->rq_in_driver);
2373
2374 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2375 }
2376
2377 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2378 {
2379 struct cfq_data *cfqd = q->elevator->elevator_data;
2380
2381 WARN_ON(!cfqd->rq_in_driver);
2382 cfqd->rq_in_driver--;
2383 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2384 cfqd->rq_in_driver);
2385 }
2386
2387 static void cfq_remove_request(struct request *rq)
2388 {
2389 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2390
2391 if (cfqq->next_rq == rq)
2392 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2393
2394 list_del_init(&rq->queuelist);
2395 cfq_del_rq_rb(rq);
2396
2397 cfqq->cfqd->rq_queued--;
2398 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2399 if (rq->cmd_flags & REQ_PRIO) {
2400 WARN_ON(!cfqq->prio_pending);
2401 cfqq->prio_pending--;
2402 }
2403 }
2404
2405 static int cfq_merge(struct request_queue *q, struct request **req,
2406 struct bio *bio)
2407 {
2408 struct cfq_data *cfqd = q->elevator->elevator_data;
2409 struct request *__rq;
2410
2411 __rq = cfq_find_rq_fmerge(cfqd, bio);
2412 if (__rq && elv_rq_merge_ok(__rq, bio)) {
2413 *req = __rq;
2414 return ELEVATOR_FRONT_MERGE;
2415 }
2416
2417 return ELEVATOR_NO_MERGE;
2418 }
2419
2420 static void cfq_merged_request(struct request_queue *q, struct request *req,
2421 int type)
2422 {
2423 if (type == ELEVATOR_FRONT_MERGE) {
2424 struct cfq_queue *cfqq = RQ_CFQQ(req);
2425
2426 cfq_reposition_rq_rb(cfqq, req);
2427 }
2428 }
2429
2430 static void cfq_bio_merged(struct request_queue *q, struct request *req,
2431 struct bio *bio)
2432 {
2433 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
2434 }
2435
2436 static void
2437 cfq_merged_requests(struct request_queue *q, struct request *rq,
2438 struct request *next)
2439 {
2440 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2441 struct cfq_data *cfqd = q->elevator->elevator_data;
2442
2443 /*
2444 * reposition in fifo if next is older than rq
2445 */
2446 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2447 time_before(next->fifo_time, rq->fifo_time) &&
2448 cfqq == RQ_CFQQ(next)) {
2449 list_move(&rq->queuelist, &next->queuelist);
2450 rq->fifo_time = next->fifo_time;
2451 }
2452
2453 if (cfqq->next_rq == next)
2454 cfqq->next_rq = rq;
2455 cfq_remove_request(next);
2456 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2457
2458 cfqq = RQ_CFQQ(next);
2459 /*
2460 * all requests of this queue are merged to other queues, delete it
2461 * from the service tree. If it's the active_queue,
2462 * cfq_dispatch_requests() will choose to expire it or do idle
2463 */
2464 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2465 cfqq != cfqd->active_queue)
2466 cfq_del_cfqq_rr(cfqd, cfqq);
2467 }
2468
2469 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
2470 struct bio *bio)
2471 {
2472 struct cfq_data *cfqd = q->elevator->elevator_data;
2473 struct cfq_io_cq *cic;
2474 struct cfq_queue *cfqq;
2475
2476 /*
2477 * Disallow merge of a sync bio into an async request.
2478 */
2479 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2480 return false;
2481
2482 /*
2483 * Lookup the cfqq that this bio will be queued with and allow
2484 * merge only if rq is queued there.
2485 */
2486 cic = cfq_cic_lookup(cfqd, current->io_context);
2487 if (!cic)
2488 return false;
2489
2490 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2491 return cfqq == RQ_CFQQ(rq);
2492 }
2493
2494 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2495 {
2496 del_timer(&cfqd->idle_slice_timer);
2497 cfqg_stats_update_idle_time(cfqq->cfqg);
2498 }
2499
2500 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2501 struct cfq_queue *cfqq)
2502 {
2503 if (cfqq) {
2504 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2505 cfqd->serving_wl_class, cfqd->serving_wl_type);
2506 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2507 cfqq->slice_start = 0;
2508 cfqq->dispatch_start = jiffies;
2509 cfqq->allocated_slice = 0;
2510 cfqq->slice_end = 0;
2511 cfqq->slice_dispatch = 0;
2512 cfqq->nr_sectors = 0;
2513
2514 cfq_clear_cfqq_wait_request(cfqq);
2515 cfq_clear_cfqq_must_dispatch(cfqq);
2516 cfq_clear_cfqq_must_alloc_slice(cfqq);
2517 cfq_clear_cfqq_fifo_expire(cfqq);
2518 cfq_mark_cfqq_slice_new(cfqq);
2519
2520 cfq_del_timer(cfqd, cfqq);
2521 }
2522
2523 cfqd->active_queue = cfqq;
2524 }
2525
2526 /*
2527 * current cfqq expired its slice (or was too idle), select new one
2528 */
2529 static void
2530 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2531 bool timed_out)
2532 {
2533 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2534
2535 if (cfq_cfqq_wait_request(cfqq))
2536 cfq_del_timer(cfqd, cfqq);
2537
2538 cfq_clear_cfqq_wait_request(cfqq);
2539 cfq_clear_cfqq_wait_busy(cfqq);
2540
2541 /*
2542 * If this cfqq is shared between multiple processes, check to
2543 * make sure that those processes are still issuing I/Os within
2544 * the mean seek distance. If not, it may be time to break the
2545 * queues apart again.
2546 */
2547 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2548 cfq_mark_cfqq_split_coop(cfqq);
2549
2550 /*
2551 * store what was left of this slice, if the queue idled/timed out
2552 */
2553 if (timed_out) {
2554 if (cfq_cfqq_slice_new(cfqq))
2555 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2556 else
2557 cfqq->slice_resid = cfqq->slice_end - jiffies;
2558 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2559 }
2560
2561 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2562
2563 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2564 cfq_del_cfqq_rr(cfqd, cfqq);
2565
2566 cfq_resort_rr_list(cfqd, cfqq);
2567
2568 if (cfqq == cfqd->active_queue)
2569 cfqd->active_queue = NULL;
2570
2571 if (cfqd->active_cic) {
2572 put_io_context(cfqd->active_cic->icq.ioc);
2573 cfqd->active_cic = NULL;
2574 }
2575 }
2576
2577 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2578 {
2579 struct cfq_queue *cfqq = cfqd->active_queue;
2580
2581 if (cfqq)
2582 __cfq_slice_expired(cfqd, cfqq, timed_out);
2583 }
2584
2585 /*
2586 * Get next queue for service. Unless we have a queue preemption,
2587 * we'll simply select the first cfqq in the service tree.
2588 */
2589 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2590 {
2591 struct cfq_rb_root *st = st_for(cfqd->serving_group,
2592 cfqd->serving_wl_class, cfqd->serving_wl_type);
2593
2594 if (!cfqd->rq_queued)
2595 return NULL;
2596
2597 /* There is nothing to dispatch */
2598 if (!st)
2599 return NULL;
2600 if (RB_EMPTY_ROOT(&st->rb))
2601 return NULL;
2602 return cfq_rb_first(st);
2603 }
2604
2605 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2606 {
2607 struct cfq_group *cfqg;
2608 struct cfq_queue *cfqq;
2609 int i, j;
2610 struct cfq_rb_root *st;
2611
2612 if (!cfqd->rq_queued)
2613 return NULL;
2614
2615 cfqg = cfq_get_next_cfqg(cfqd);
2616 if (!cfqg)
2617 return NULL;
2618
2619 for_each_cfqg_st(cfqg, i, j, st)
2620 if ((cfqq = cfq_rb_first(st)) != NULL)
2621 return cfqq;
2622 return NULL;
2623 }
2624
2625 /*
2626 * Get and set a new active queue for service.
2627 */
2628 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2629 struct cfq_queue *cfqq)
2630 {
2631 if (!cfqq)
2632 cfqq = cfq_get_next_queue(cfqd);
2633
2634 __cfq_set_active_queue(cfqd, cfqq);
2635 return cfqq;
2636 }
2637
2638 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2639 struct request *rq)
2640 {
2641 if (blk_rq_pos(rq) >= cfqd->last_position)
2642 return blk_rq_pos(rq) - cfqd->last_position;
2643 else
2644 return cfqd->last_position - blk_rq_pos(rq);
2645 }
2646
2647 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2648 struct request *rq)
2649 {
2650 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2651 }
2652
2653 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2654 struct cfq_queue *cur_cfqq)
2655 {
2656 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2657 struct rb_node *parent, *node;
2658 struct cfq_queue *__cfqq;
2659 sector_t sector = cfqd->last_position;
2660
2661 if (RB_EMPTY_ROOT(root))
2662 return NULL;
2663
2664 /*
2665 * First, if we find a request starting at the end of the last
2666 * request, choose it.
2667 */
2668 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2669 if (__cfqq)
2670 return __cfqq;
2671
2672 /*
2673 * If the exact sector wasn't found, the parent of the NULL leaf
2674 * will contain the closest sector.
2675 */
2676 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2677 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2678 return __cfqq;
2679
2680 if (blk_rq_pos(__cfqq->next_rq) < sector)
2681 node = rb_next(&__cfqq->p_node);
2682 else
2683 node = rb_prev(&__cfqq->p_node);
2684 if (!node)
2685 return NULL;
2686
2687 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2688 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2689 return __cfqq;
2690
2691 return NULL;
2692 }
2693
2694 /*
2695 * cfqd - obvious
2696 * cur_cfqq - passed in so that we don't decide that the current queue is
2697 * closely cooperating with itself.
2698 *
2699 * So, basically we're assuming that that cur_cfqq has dispatched at least
2700 * one request, and that cfqd->last_position reflects a position on the disk
2701 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2702 * assumption.
2703 */
2704 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2705 struct cfq_queue *cur_cfqq)
2706 {
2707 struct cfq_queue *cfqq;
2708
2709 if (cfq_class_idle(cur_cfqq))
2710 return NULL;
2711 if (!cfq_cfqq_sync(cur_cfqq))
2712 return NULL;
2713 if (CFQQ_SEEKY(cur_cfqq))
2714 return NULL;
2715
2716 /*
2717 * Don't search priority tree if it's the only queue in the group.
2718 */
2719 if (cur_cfqq->cfqg->nr_cfqq == 1)
2720 return NULL;
2721
2722 /*
2723 * We should notice if some of the queues are cooperating, eg
2724 * working closely on the same area of the disk. In that case,
2725 * we can group them together and don't waste time idling.
2726 */
2727 cfqq = cfqq_close(cfqd, cur_cfqq);
2728 if (!cfqq)
2729 return NULL;
2730
2731 /* If new queue belongs to different cfq_group, don't choose it */
2732 if (cur_cfqq->cfqg != cfqq->cfqg)
2733 return NULL;
2734
2735 /*
2736 * It only makes sense to merge sync queues.
2737 */
2738 if (!cfq_cfqq_sync(cfqq))
2739 return NULL;
2740 if (CFQQ_SEEKY(cfqq))
2741 return NULL;
2742
2743 /*
2744 * Do not merge queues of different priority classes
2745 */
2746 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2747 return NULL;
2748
2749 return cfqq;
2750 }
2751
2752 /*
2753 * Determine whether we should enforce idle window for this queue.
2754 */
2755
2756 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2757 {
2758 enum wl_class_t wl_class = cfqq_class(cfqq);
2759 struct cfq_rb_root *st = cfqq->service_tree;
2760
2761 BUG_ON(!st);
2762 BUG_ON(!st->count);
2763
2764 if (!cfqd->cfq_slice_idle)
2765 return false;
2766
2767 /* We never do for idle class queues. */
2768 if (wl_class == IDLE_WORKLOAD)
2769 return false;
2770
2771 /* We do for queues that were marked with idle window flag. */
2772 if (cfq_cfqq_idle_window(cfqq) &&
2773 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2774 return true;
2775
2776 /*
2777 * Otherwise, we do only if they are the last ones
2778 * in their service tree.
2779 */
2780 if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2781 !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2782 return true;
2783 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2784 return false;
2785 }
2786
2787 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2788 {
2789 struct cfq_queue *cfqq = cfqd->active_queue;
2790 struct cfq_io_cq *cic;
2791 unsigned long sl, group_idle = 0;
2792
2793 /*
2794 * SSD device without seek penalty, disable idling. But only do so
2795 * for devices that support queuing, otherwise we still have a problem
2796 * with sync vs async workloads.
2797 */
2798 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2799 return;
2800
2801 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2802 WARN_ON(cfq_cfqq_slice_new(cfqq));
2803
2804 /*
2805 * idle is disabled, either manually or by past process history
2806 */
2807 if (!cfq_should_idle(cfqd, cfqq)) {
2808 /* no queue idling. Check for group idling */
2809 if (cfqd->cfq_group_idle)
2810 group_idle = cfqd->cfq_group_idle;
2811 else
2812 return;
2813 }
2814
2815 /*
2816 * still active requests from this queue, don't idle
2817 */
2818 if (cfqq->dispatched)
2819 return;
2820
2821 /*
2822 * task has exited, don't wait
2823 */
2824 cic = cfqd->active_cic;
2825 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2826 return;
2827
2828 /*
2829 * If our average think time is larger than the remaining time
2830 * slice, then don't idle. This avoids overrunning the allotted
2831 * time slice.
2832 */
2833 if (sample_valid(cic->ttime.ttime_samples) &&
2834 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2835 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2836 cic->ttime.ttime_mean);
2837 return;
2838 }
2839
2840 /* There are other queues in the group, don't do group idle */
2841 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2842 return;
2843
2844 cfq_mark_cfqq_wait_request(cfqq);
2845
2846 if (group_idle)
2847 sl = cfqd->cfq_group_idle;
2848 else
2849 sl = cfqd->cfq_slice_idle;
2850
2851 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2852 cfqg_stats_set_start_idle_time(cfqq->cfqg);
2853 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2854 group_idle ? 1 : 0);
2855 }
2856
2857 /*
2858 * Move request from internal lists to the request queue dispatch list.
2859 */
2860 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2861 {
2862 struct cfq_data *cfqd = q->elevator->elevator_data;
2863 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2864
2865 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2866
2867 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2868 cfq_remove_request(rq);
2869 cfqq->dispatched++;
2870 (RQ_CFQG(rq))->dispatched++;
2871 elv_dispatch_sort(q, rq);
2872
2873 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2874 cfqq->nr_sectors += blk_rq_sectors(rq);
2875 cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
2876 }
2877
2878 /*
2879 * return expired entry, or NULL to just start from scratch in rbtree
2880 */
2881 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2882 {
2883 struct request *rq = NULL;
2884
2885 if (cfq_cfqq_fifo_expire(cfqq))
2886 return NULL;
2887
2888 cfq_mark_cfqq_fifo_expire(cfqq);
2889
2890 if (list_empty(&cfqq->fifo))
2891 return NULL;
2892
2893 rq = rq_entry_fifo(cfqq->fifo.next);
2894 if (time_before(jiffies, rq->fifo_time))
2895 rq = NULL;
2896
2897 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2898 return rq;
2899 }
2900
2901 static inline int
2902 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2903 {
2904 const int base_rq = cfqd->cfq_slice_async_rq;
2905
2906 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2907
2908 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2909 }
2910
2911 /*
2912 * Must be called with the queue_lock held.
2913 */
2914 static int cfqq_process_refs(struct cfq_queue *cfqq)
2915 {
2916 int process_refs, io_refs;
2917
2918 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2919 process_refs = cfqq->ref - io_refs;
2920 BUG_ON(process_refs < 0);
2921 return process_refs;
2922 }
2923
2924 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2925 {
2926 int process_refs, new_process_refs;
2927 struct cfq_queue *__cfqq;
2928
2929 /*
2930 * If there are no process references on the new_cfqq, then it is
2931 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2932 * chain may have dropped their last reference (not just their
2933 * last process reference).
2934 */
2935 if (!cfqq_process_refs(new_cfqq))
2936 return;
2937
2938 /* Avoid a circular list and skip interim queue merges */
2939 while ((__cfqq = new_cfqq->new_cfqq)) {
2940 if (__cfqq == cfqq)
2941 return;
2942 new_cfqq = __cfqq;
2943 }
2944
2945 process_refs = cfqq_process_refs(cfqq);
2946 new_process_refs = cfqq_process_refs(new_cfqq);
2947 /*
2948 * If the process for the cfqq has gone away, there is no
2949 * sense in merging the queues.
2950 */
2951 if (process_refs == 0 || new_process_refs == 0)
2952 return;
2953
2954 /*
2955 * Merge in the direction of the lesser amount of work.
2956 */
2957 if (new_process_refs >= process_refs) {
2958 cfqq->new_cfqq = new_cfqq;
2959 new_cfqq->ref += process_refs;
2960 } else {
2961 new_cfqq->new_cfqq = cfqq;
2962 cfqq->ref += new_process_refs;
2963 }
2964 }
2965
2966 static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
2967 struct cfq_group *cfqg, enum wl_class_t wl_class)
2968 {
2969 struct cfq_queue *queue;
2970 int i;
2971 bool key_valid = false;
2972 unsigned long lowest_key = 0;
2973 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2974
2975 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2976 /* select the one with lowest rb_key */
2977 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
2978 if (queue &&
2979 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2980 lowest_key = queue->rb_key;
2981 cur_best = i;
2982 key_valid = true;
2983 }
2984 }
2985
2986 return cur_best;
2987 }
2988
2989 static void
2990 choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
2991 {
2992 unsigned slice;
2993 unsigned count;
2994 struct cfq_rb_root *st;
2995 unsigned group_slice;
2996 enum wl_class_t original_class = cfqd->serving_wl_class;
2997
2998 /* Choose next priority. RT > BE > IDLE */
2999 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
3000 cfqd->serving_wl_class = RT_WORKLOAD;
3001 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
3002 cfqd->serving_wl_class = BE_WORKLOAD;
3003 else {
3004 cfqd->serving_wl_class = IDLE_WORKLOAD;
3005 cfqd->workload_expires = jiffies + 1;
3006 return;
3007 }
3008
3009 if (original_class != cfqd->serving_wl_class)
3010 goto new_workload;
3011
3012 /*
3013 * For RT and BE, we have to choose also the type
3014 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3015 * expiration time
3016 */
3017 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3018 count = st->count;
3019
3020 /*
3021 * check workload expiration, and that we still have other queues ready
3022 */
3023 if (count && !time_after(jiffies, cfqd->workload_expires))
3024 return;
3025
3026 new_workload:
3027 /* otherwise select new workload type */
3028 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
3029 cfqd->serving_wl_class);
3030 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3031 count = st->count;
3032
3033 /*
3034 * the workload slice is computed as a fraction of target latency
3035 * proportional to the number of queues in that workload, over
3036 * all the queues in the same priority class
3037 */
3038 group_slice = cfq_group_slice(cfqd, cfqg);
3039
3040 slice = group_slice * count /
3041 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
3042 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
3043 cfqg));
3044
3045 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
3046 unsigned int tmp;
3047
3048 /*
3049 * Async queues are currently system wide. Just taking
3050 * proportion of queues with-in same group will lead to higher
3051 * async ratio system wide as generally root group is going
3052 * to have higher weight. A more accurate thing would be to
3053 * calculate system wide asnc/sync ratio.
3054 */
3055 tmp = cfqd->cfq_target_latency *
3056 cfqg_busy_async_queues(cfqd, cfqg);
3057 tmp = tmp/cfqd->busy_queues;
3058 slice = min_t(unsigned, slice, tmp);
3059
3060 /* async workload slice is scaled down according to
3061 * the sync/async slice ratio. */
3062 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
3063 } else
3064 /* sync workload slice is at least 2 * cfq_slice_idle */
3065 slice = max(slice, 2 * cfqd->cfq_slice_idle);
3066
3067 slice = max_t(unsigned, slice, CFQ_MIN_TT);
3068 cfq_log(cfqd, "workload slice:%d", slice);
3069 cfqd->workload_expires = jiffies + slice;
3070 }
3071
3072 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3073 {
3074 struct cfq_rb_root *st = &cfqd->grp_service_tree;
3075 struct cfq_group *cfqg;
3076
3077 if (RB_EMPTY_ROOT(&st->rb))
3078 return NULL;
3079 cfqg = cfq_rb_first_group(st);
3080 update_min_vdisktime(st);
3081 return cfqg;
3082 }
3083
3084 static void cfq_choose_cfqg(struct cfq_data *cfqd)
3085 {
3086 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3087
3088 cfqd->serving_group = cfqg;
3089
3090 /* Restore the workload type data */
3091 if (cfqg->saved_wl_slice) {
3092 cfqd->workload_expires = jiffies + cfqg->saved_wl_slice;
3093 cfqd->serving_wl_type = cfqg->saved_wl_type;
3094 cfqd->serving_wl_class = cfqg->saved_wl_class;
3095 } else
3096 cfqd->workload_expires = jiffies - 1;
3097
3098 choose_wl_class_and_type(cfqd, cfqg);
3099 }
3100
3101 /*
3102 * Select a queue for service. If we have a current active queue,
3103 * check whether to continue servicing it, or retrieve and set a new one.
3104 */
3105 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3106 {
3107 struct cfq_queue *cfqq, *new_cfqq = NULL;
3108
3109 cfqq = cfqd->active_queue;
3110 if (!cfqq)
3111 goto new_queue;
3112
3113 if (!cfqd->rq_queued)
3114 return NULL;
3115
3116 /*
3117 * We were waiting for group to get backlogged. Expire the queue
3118 */
3119 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3120 goto expire;
3121
3122 /*
3123 * The active queue has run out of time, expire it and select new.
3124 */
3125 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3126 /*
3127 * If slice had not expired at the completion of last request
3128 * we might not have turned on wait_busy flag. Don't expire
3129 * the queue yet. Allow the group to get backlogged.
3130 *
3131 * The very fact that we have used the slice, that means we
3132 * have been idling all along on this queue and it should be
3133 * ok to wait for this request to complete.
3134 */
3135 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3136 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3137 cfqq = NULL;
3138 goto keep_queue;
3139 } else
3140 goto check_group_idle;
3141 }
3142
3143 /*
3144 * The active queue has requests and isn't expired, allow it to
3145 * dispatch.
3146 */
3147 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3148 goto keep_queue;
3149
3150 /*
3151 * If another queue has a request waiting within our mean seek
3152 * distance, let it run. The expire code will check for close
3153 * cooperators and put the close queue at the front of the service
3154 * tree. If possible, merge the expiring queue with the new cfqq.
3155 */
3156 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3157 if (new_cfqq) {
3158 if (!cfqq->new_cfqq)
3159 cfq_setup_merge(cfqq, new_cfqq);
3160 goto expire;
3161 }
3162
3163 /*
3164 * No requests pending. If the active queue still has requests in
3165 * flight or is idling for a new request, allow either of these
3166 * conditions to happen (or time out) before selecting a new queue.
3167 */
3168 if (timer_pending(&cfqd->idle_slice_timer)) {
3169 cfqq = NULL;
3170 goto keep_queue;
3171 }
3172
3173 /*
3174 * This is a deep seek queue, but the device is much faster than
3175 * the queue can deliver, don't idle
3176 **/
3177 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3178 (cfq_cfqq_slice_new(cfqq) ||
3179 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
3180 cfq_clear_cfqq_deep(cfqq);
3181 cfq_clear_cfqq_idle_window(cfqq);
3182 }
3183
3184 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3185 cfqq = NULL;
3186 goto keep_queue;
3187 }
3188
3189 /*
3190 * If group idle is enabled and there are requests dispatched from
3191 * this group, wait for requests to complete.
3192 */
3193 check_group_idle:
3194 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3195 cfqq->cfqg->dispatched &&
3196 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3197 cfqq = NULL;
3198 goto keep_queue;
3199 }
3200
3201 expire:
3202 cfq_slice_expired(cfqd, 0);
3203 new_queue:
3204 /*
3205 * Current queue expired. Check if we have to switch to a new
3206 * service tree
3207 */
3208 if (!new_cfqq)
3209 cfq_choose_cfqg(cfqd);
3210
3211 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3212 keep_queue:
3213 return cfqq;
3214 }
3215
3216 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3217 {
3218 int dispatched = 0;
3219
3220 while (cfqq->next_rq) {
3221 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3222 dispatched++;
3223 }
3224
3225 BUG_ON(!list_empty(&cfqq->fifo));
3226
3227 /* By default cfqq is not expired if it is empty. Do it explicitly */
3228 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3229 return dispatched;
3230 }
3231
3232 /*
3233 * Drain our current requests. Used for barriers and when switching
3234 * io schedulers on-the-fly.
3235 */
3236 static int cfq_forced_dispatch(struct cfq_data *cfqd)
3237 {
3238 struct cfq_queue *cfqq;
3239 int dispatched = 0;
3240
3241 /* Expire the timeslice of the current active queue first */
3242 cfq_slice_expired(cfqd, 0);
3243 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3244 __cfq_set_active_queue(cfqd, cfqq);
3245 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3246 }
3247
3248 BUG_ON(cfqd->busy_queues);
3249
3250 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3251 return dispatched;
3252 }
3253
3254 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3255 struct cfq_queue *cfqq)
3256 {
3257 /* the queue hasn't finished any request, can't estimate */
3258 if (cfq_cfqq_slice_new(cfqq))
3259 return true;
3260 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
3261 cfqq->slice_end))
3262 return true;
3263
3264 return false;
3265 }
3266
3267 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3268 {
3269 unsigned int max_dispatch;
3270
3271 /*
3272 * Drain async requests before we start sync IO
3273 */
3274 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3275 return false;
3276
3277 /*
3278 * If this is an async queue and we have sync IO in flight, let it wait
3279 */
3280 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3281 return false;
3282
3283 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3284 if (cfq_class_idle(cfqq))
3285 max_dispatch = 1;
3286
3287 /*
3288 * Does this cfqq already have too much IO in flight?
3289 */
3290 if (cfqq->dispatched >= max_dispatch) {
3291 bool promote_sync = false;
3292 /*
3293 * idle queue must always only have a single IO in flight
3294 */
3295 if (cfq_class_idle(cfqq))
3296 return false;
3297
3298 /*
3299 * If there is only one sync queue
3300 * we can ignore async queue here and give the sync
3301 * queue no dispatch limit. The reason is a sync queue can
3302 * preempt async queue, limiting the sync queue doesn't make
3303 * sense. This is useful for aiostress test.
3304 */
3305 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3306 promote_sync = true;
3307
3308 /*
3309 * We have other queues, don't allow more IO from this one
3310 */
3311 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3312 !promote_sync)
3313 return false;
3314
3315 /*
3316 * Sole queue user, no limit
3317 */
3318 if (cfqd->busy_queues == 1 || promote_sync)
3319 max_dispatch = -1;
3320 else
3321 /*
3322 * Normally we start throttling cfqq when cfq_quantum/2
3323 * requests have been dispatched. But we can drive
3324 * deeper queue depths at the beginning of slice
3325 * subjected to upper limit of cfq_quantum.
3326 * */
3327 max_dispatch = cfqd->cfq_quantum;
3328 }
3329
3330 /*
3331 * Async queues must wait a bit before being allowed dispatch.
3332 * We also ramp up the dispatch depth gradually for async IO,
3333 * based on the last sync IO we serviced
3334 */
3335 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3336 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
3337 unsigned int depth;
3338
3339 depth = last_sync / cfqd->cfq_slice[1];
3340 if (!depth && !cfqq->dispatched)
3341 depth = 1;
3342 if (depth < max_dispatch)
3343 max_dispatch = depth;
3344 }
3345
3346 /*
3347 * If we're below the current max, allow a dispatch
3348 */
3349 return cfqq->dispatched < max_dispatch;
3350 }
3351
3352 /*
3353 * Dispatch a request from cfqq, moving them to the request queue
3354 * dispatch list.
3355 */
3356 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3357 {
3358 struct request *rq;
3359
3360 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3361
3362 if (!cfq_may_dispatch(cfqd, cfqq))
3363 return false;
3364
3365 /*
3366 * follow expired path, else get first next available
3367 */
3368 rq = cfq_check_fifo(cfqq);
3369 if (!rq)
3370 rq = cfqq->next_rq;
3371
3372 /*
3373 * insert request into driver dispatch list
3374 */
3375 cfq_dispatch_insert(cfqd->queue, rq);
3376
3377 if (!cfqd->active_cic) {
3378 struct cfq_io_cq *cic = RQ_CIC(rq);
3379
3380 atomic_long_inc(&cic->icq.ioc->refcount);
3381 cfqd->active_cic = cic;
3382 }
3383
3384 return true;
3385 }
3386
3387 /*
3388 * Find the cfqq that we need to service and move a request from that to the
3389 * dispatch list
3390 */
3391 static int cfq_dispatch_requests(struct request_queue *q, int force)
3392 {
3393 struct cfq_data *cfqd = q->elevator->elevator_data;
3394 struct cfq_queue *cfqq;
3395
3396 if (!cfqd->busy_queues)
3397 return 0;
3398
3399 if (unlikely(force))
3400 return cfq_forced_dispatch(cfqd);
3401
3402 cfqq = cfq_select_queue(cfqd);
3403 if (!cfqq)
3404 return 0;
3405
3406 /*
3407 * Dispatch a request from this cfqq, if it is allowed
3408 */
3409 if (!cfq_dispatch_request(cfqd, cfqq))
3410 return 0;
3411
3412 cfqq->slice_dispatch++;
3413 cfq_clear_cfqq_must_dispatch(cfqq);
3414
3415 /*
3416 * expire an async queue immediately if it has used up its slice. idle
3417 * queue always expire after 1 dispatch round.
3418 */
3419 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3420 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3421 cfq_class_idle(cfqq))) {
3422 cfqq->slice_end = jiffies + 1;
3423 cfq_slice_expired(cfqd, 0);
3424 }
3425
3426 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3427 return 1;
3428 }
3429
3430 /*
3431 * task holds one reference to the queue, dropped when task exits. each rq
3432 * in-flight on this queue also holds a reference, dropped when rq is freed.
3433 *
3434 * Each cfq queue took a reference on the parent group. Drop it now.
3435 * queue lock must be held here.
3436 */
3437 static void cfq_put_queue(struct cfq_queue *cfqq)
3438 {
3439 struct cfq_data *cfqd = cfqq->cfqd;
3440 struct cfq_group *cfqg;
3441
3442 BUG_ON(cfqq->ref <= 0);
3443
3444 cfqq->ref--;
3445 if (cfqq->ref)
3446 return;
3447
3448 cfq_log_cfqq(cfqd, cfqq, "put_queue");
3449 BUG_ON(rb_first(&cfqq->sort_list));
3450 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3451 cfqg = cfqq->cfqg;
3452
3453 if (unlikely(cfqd->active_queue == cfqq)) {
3454 __cfq_slice_expired(cfqd, cfqq, 0);
3455 cfq_schedule_dispatch(cfqd);
3456 }
3457
3458 BUG_ON(cfq_cfqq_on_rr(cfqq));
3459 kmem_cache_free(cfq_pool, cfqq);
3460 cfqg_put(cfqg);
3461 }
3462
3463 static void cfq_put_cooperator(struct cfq_queue *cfqq)
3464 {
3465 struct cfq_queue *__cfqq, *next;
3466
3467 /*
3468 * If this queue was scheduled to merge with another queue, be
3469 * sure to drop the reference taken on that queue (and others in
3470 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3471 */
3472 __cfqq = cfqq->new_cfqq;
3473 while (__cfqq) {
3474 if (__cfqq == cfqq) {
3475 WARN(1, "cfqq->new_cfqq loop detected\n");
3476 break;
3477 }
3478 next = __cfqq->new_cfqq;
3479 cfq_put_queue(__cfqq);
3480 __cfqq = next;
3481 }
3482 }
3483
3484 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3485 {
3486 if (unlikely(cfqq == cfqd->active_queue)) {
3487 __cfq_slice_expired(cfqd, cfqq, 0);
3488 cfq_schedule_dispatch(cfqd);
3489 }
3490
3491 cfq_put_cooperator(cfqq);
3492
3493 cfq_put_queue(cfqq);
3494 }
3495
3496 static void cfq_init_icq(struct io_cq *icq)
3497 {
3498 struct cfq_io_cq *cic = icq_to_cic(icq);
3499
3500 cic->ttime.last_end_request = jiffies;
3501 }
3502
3503 static void cfq_exit_icq(struct io_cq *icq)
3504 {
3505 struct cfq_io_cq *cic = icq_to_cic(icq);
3506 struct cfq_data *cfqd = cic_to_cfqd(cic);
3507
3508 if (cic_to_cfqq(cic, false)) {
3509 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false));
3510 cic_set_cfqq(cic, NULL, false);
3511 }
3512
3513 if (cic_to_cfqq(cic, true)) {
3514 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true));
3515 cic_set_cfqq(cic, NULL, true);
3516 }
3517 }
3518
3519 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3520 {
3521 struct task_struct *tsk = current;
3522 int ioprio_class;
3523
3524 if (!cfq_cfqq_prio_changed(cfqq))
3525 return;
3526
3527 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3528 switch (ioprio_class) {
3529 default:
3530 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3531 case IOPRIO_CLASS_NONE:
3532 /*
3533 * no prio set, inherit CPU scheduling settings
3534 */
3535 cfqq->ioprio = task_nice_ioprio(tsk);
3536 cfqq->ioprio_class = task_nice_ioclass(tsk);
3537 break;
3538 case IOPRIO_CLASS_RT:
3539 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3540 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3541 break;
3542 case IOPRIO_CLASS_BE:
3543 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3544 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3545 break;
3546 case IOPRIO_CLASS_IDLE:
3547 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3548 cfqq->ioprio = 7;
3549 cfq_clear_cfqq_idle_window(cfqq);
3550 break;
3551 }
3552
3553 /*
3554 * keep track of original prio settings in case we have to temporarily
3555 * elevate the priority of this queue
3556 */
3557 cfqq->org_ioprio = cfqq->ioprio;
3558 cfq_clear_cfqq_prio_changed(cfqq);
3559 }
3560
3561 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3562 {
3563 int ioprio = cic->icq.ioc->ioprio;
3564 struct cfq_data *cfqd = cic_to_cfqd(cic);
3565 struct cfq_queue *cfqq;
3566
3567 /*
3568 * Check whether ioprio has changed. The condition may trigger
3569 * spuriously on a newly created cic but there's no harm.
3570 */
3571 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3572 return;
3573
3574 cfqq = cic_to_cfqq(cic, false);
3575 if (cfqq) {
3576 cfq_put_queue(cfqq);
3577 cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio);
3578 cic_set_cfqq(cic, cfqq, false);
3579 }
3580
3581 cfqq = cic_to_cfqq(cic, true);
3582 if (cfqq)
3583 cfq_mark_cfqq_prio_changed(cfqq);
3584
3585 cic->ioprio = ioprio;
3586 }
3587
3588 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3589 pid_t pid, bool is_sync)
3590 {
3591 RB_CLEAR_NODE(&cfqq->rb_node);
3592 RB_CLEAR_NODE(&cfqq->p_node);
3593 INIT_LIST_HEAD(&cfqq->fifo);
3594
3595 cfqq->ref = 0;
3596 cfqq->cfqd = cfqd;
3597
3598 cfq_mark_cfqq_prio_changed(cfqq);
3599
3600 if (is_sync) {
3601 if (!cfq_class_idle(cfqq))
3602 cfq_mark_cfqq_idle_window(cfqq);
3603 cfq_mark_cfqq_sync(cfqq);
3604 }
3605 cfqq->pid = pid;
3606 }
3607
3608 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3609 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3610 {
3611 struct cfq_data *cfqd = cic_to_cfqd(cic);
3612 struct cfq_queue *sync_cfqq;
3613 uint64_t serial_nr;
3614
3615 rcu_read_lock();
3616 serial_nr = bio_blkcg(bio)->css.serial_nr;
3617 rcu_read_unlock();
3618
3619 /*
3620 * Check whether blkcg has changed. The condition may trigger
3621 * spuriously on a newly created cic but there's no harm.
3622 */
3623 if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr))
3624 return;
3625
3626 sync_cfqq = cic_to_cfqq(cic, 1);
3627 if (sync_cfqq) {
3628 /*
3629 * Drop reference to sync queue. A new sync queue will be
3630 * assigned in new group upon arrival of a fresh request.
3631 */
3632 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
3633 cic_set_cfqq(cic, NULL, 1);
3634 cfq_put_queue(sync_cfqq);
3635 }
3636
3637 cic->blkcg_serial_nr = serial_nr;
3638 }
3639 #else
3640 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3641 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3642
3643 static struct cfq_queue **
3644 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3645 {
3646 switch (ioprio_class) {
3647 case IOPRIO_CLASS_RT:
3648 return &cfqd->async_cfqq[0][ioprio];
3649 case IOPRIO_CLASS_NONE:
3650 ioprio = IOPRIO_NORM;
3651 /* fall through */
3652 case IOPRIO_CLASS_BE:
3653 return &cfqd->async_cfqq[1][ioprio];
3654 case IOPRIO_CLASS_IDLE:
3655 return &cfqd->async_idle_cfqq;
3656 default:
3657 BUG();
3658 }
3659 }
3660
3661 static struct cfq_queue *
3662 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3663 struct bio *bio)
3664 {
3665 int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3666 int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3667 struct cfq_queue **async_cfqq = NULL;
3668 struct cfq_queue *cfqq;
3669 struct cfq_group *cfqg;
3670
3671 rcu_read_lock();
3672 cfqg = cfq_lookup_create_cfqg(cfqd, bio_blkcg(bio));
3673 if (!cfqg) {
3674 cfqq = &cfqd->oom_cfqq;
3675 goto out;
3676 }
3677
3678 if (!is_sync) {
3679 if (!ioprio_valid(cic->ioprio)) {
3680 struct task_struct *tsk = current;
3681 ioprio = task_nice_ioprio(tsk);
3682 ioprio_class = task_nice_ioclass(tsk);
3683 }
3684 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3685 cfqq = *async_cfqq;
3686 if (cfqq)
3687 goto out;
3688 }
3689
3690 cfqq = kmem_cache_alloc_node(cfq_pool, GFP_NOWAIT | __GFP_ZERO,
3691 cfqd->queue->node);
3692 if (!cfqq) {
3693 cfqq = &cfqd->oom_cfqq;
3694 goto out;
3695 }
3696
3697 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3698 cfq_init_prio_data(cfqq, cic);
3699 cfq_link_cfqq_cfqg(cfqq, cfqg);
3700 cfq_log_cfqq(cfqd, cfqq, "alloced");
3701
3702 if (async_cfqq) {
3703 /* a new async queue is created, pin and remember */
3704 cfqq->ref++;
3705 *async_cfqq = cfqq;
3706 }
3707 out:
3708 cfqq->ref++;
3709 rcu_read_unlock();
3710 return cfqq;
3711 }
3712
3713 static void
3714 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3715 {
3716 unsigned long elapsed = jiffies - ttime->last_end_request;
3717 elapsed = min(elapsed, 2UL * slice_idle);
3718
3719 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3720 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3721 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3722 }
3723
3724 static void
3725 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3726 struct cfq_io_cq *cic)
3727 {
3728 if (cfq_cfqq_sync(cfqq)) {
3729 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3730 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3731 cfqd->cfq_slice_idle);
3732 }
3733 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3734 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3735 #endif
3736 }
3737
3738 static void
3739 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3740 struct request *rq)
3741 {
3742 sector_t sdist = 0;
3743 sector_t n_sec = blk_rq_sectors(rq);
3744 if (cfqq->last_request_pos) {
3745 if (cfqq->last_request_pos < blk_rq_pos(rq))
3746 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3747 else
3748 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3749 }
3750
3751 cfqq->seek_history <<= 1;
3752 if (blk_queue_nonrot(cfqd->queue))
3753 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3754 else
3755 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3756 }
3757
3758 /*
3759 * Disable idle window if the process thinks too long or seeks so much that
3760 * it doesn't matter
3761 */
3762 static void
3763 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3764 struct cfq_io_cq *cic)
3765 {
3766 int old_idle, enable_idle;
3767
3768 /*
3769 * Don't idle for async or idle io prio class
3770 */
3771 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3772 return;
3773
3774 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3775
3776 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3777 cfq_mark_cfqq_deep(cfqq);
3778
3779 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3780 enable_idle = 0;
3781 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3782 !cfqd->cfq_slice_idle ||
3783 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3784 enable_idle = 0;
3785 else if (sample_valid(cic->ttime.ttime_samples)) {
3786 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3787 enable_idle = 0;
3788 else
3789 enable_idle = 1;
3790 }
3791
3792 if (old_idle != enable_idle) {
3793 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3794 if (enable_idle)
3795 cfq_mark_cfqq_idle_window(cfqq);
3796 else
3797 cfq_clear_cfqq_idle_window(cfqq);
3798 }
3799 }
3800
3801 /*
3802 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3803 * no or if we aren't sure, a 1 will cause a preempt.
3804 */
3805 static bool
3806 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3807 struct request *rq)
3808 {
3809 struct cfq_queue *cfqq;
3810
3811 cfqq = cfqd->active_queue;
3812 if (!cfqq)
3813 return false;
3814
3815 if (cfq_class_idle(new_cfqq))
3816 return false;
3817
3818 if (cfq_class_idle(cfqq))
3819 return true;
3820
3821 /*
3822 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3823 */
3824 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3825 return false;
3826
3827 /*
3828 * if the new request is sync, but the currently running queue is
3829 * not, let the sync request have priority.
3830 */
3831 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3832 return true;
3833
3834 if (new_cfqq->cfqg != cfqq->cfqg)
3835 return false;
3836
3837 if (cfq_slice_used(cfqq))
3838 return true;
3839
3840 /* Allow preemption only if we are idling on sync-noidle tree */
3841 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
3842 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3843 new_cfqq->service_tree->count == 2 &&
3844 RB_EMPTY_ROOT(&cfqq->sort_list))
3845 return true;
3846
3847 /*
3848 * So both queues are sync. Let the new request get disk time if
3849 * it's a metadata request and the current queue is doing regular IO.
3850 */
3851 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3852 return true;
3853
3854 /*
3855 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3856 */
3857 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3858 return true;
3859
3860 /* An idle queue should not be idle now for some reason */
3861 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3862 return true;
3863
3864 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3865 return false;
3866
3867 /*
3868 * if this request is as-good as one we would expect from the
3869 * current cfqq, let it preempt
3870 */
3871 if (cfq_rq_close(cfqd, cfqq, rq))
3872 return true;
3873
3874 return false;
3875 }
3876
3877 /*
3878 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3879 * let it have half of its nominal slice.
3880 */
3881 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3882 {
3883 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3884
3885 cfq_log_cfqq(cfqd, cfqq, "preempt");
3886 cfq_slice_expired(cfqd, 1);
3887
3888 /*
3889 * workload type is changed, don't save slice, otherwise preempt
3890 * doesn't happen
3891 */
3892 if (old_type != cfqq_type(cfqq))
3893 cfqq->cfqg->saved_wl_slice = 0;
3894
3895 /*
3896 * Put the new queue at the front of the of the current list,
3897 * so we know that it will be selected next.
3898 */
3899 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3900
3901 cfq_service_tree_add(cfqd, cfqq, 1);
3902
3903 cfqq->slice_end = 0;
3904 cfq_mark_cfqq_slice_new(cfqq);
3905 }
3906
3907 /*
3908 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3909 * something we should do about it
3910 */
3911 static void
3912 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3913 struct request *rq)
3914 {
3915 struct cfq_io_cq *cic = RQ_CIC(rq);
3916
3917 cfqd->rq_queued++;
3918 if (rq->cmd_flags & REQ_PRIO)
3919 cfqq->prio_pending++;
3920
3921 cfq_update_io_thinktime(cfqd, cfqq, cic);
3922 cfq_update_io_seektime(cfqd, cfqq, rq);
3923 cfq_update_idle_window(cfqd, cfqq, cic);
3924
3925 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3926
3927 if (cfqq == cfqd->active_queue) {
3928 /*
3929 * Remember that we saw a request from this process, but
3930 * don't start queuing just yet. Otherwise we risk seeing lots
3931 * of tiny requests, because we disrupt the normal plugging
3932 * and merging. If the request is already larger than a single
3933 * page, let it rip immediately. For that case we assume that
3934 * merging is already done. Ditto for a busy system that
3935 * has other work pending, don't risk delaying until the
3936 * idle timer unplug to continue working.
3937 */
3938 if (cfq_cfqq_wait_request(cfqq)) {
3939 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3940 cfqd->busy_queues > 1) {
3941 cfq_del_timer(cfqd, cfqq);
3942 cfq_clear_cfqq_wait_request(cfqq);
3943 __blk_run_queue(cfqd->queue);
3944 } else {
3945 cfqg_stats_update_idle_time(cfqq->cfqg);
3946 cfq_mark_cfqq_must_dispatch(cfqq);
3947 }
3948 }
3949 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3950 /*
3951 * not the active queue - expire current slice if it is
3952 * idle and has expired it's mean thinktime or this new queue
3953 * has some old slice time left and is of higher priority or
3954 * this new queue is RT and the current one is BE
3955 */
3956 cfq_preempt_queue(cfqd, cfqq);
3957 __blk_run_queue(cfqd->queue);
3958 }
3959 }
3960
3961 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3962 {
3963 struct cfq_data *cfqd = q->elevator->elevator_data;
3964 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3965
3966 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3967 cfq_init_prio_data(cfqq, RQ_CIC(rq));
3968
3969 rq->fifo_time = jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
3970 list_add_tail(&rq->queuelist, &cfqq->fifo);
3971 cfq_add_rq_rb(rq);
3972 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
3973 rq->cmd_flags);
3974 cfq_rq_enqueued(cfqd, cfqq, rq);
3975 }
3976
3977 /*
3978 * Update hw_tag based on peak queue depth over 50 samples under
3979 * sufficient load.
3980 */
3981 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3982 {
3983 struct cfq_queue *cfqq = cfqd->active_queue;
3984
3985 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3986 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3987
3988 if (cfqd->hw_tag == 1)
3989 return;
3990
3991 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3992 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3993 return;
3994
3995 /*
3996 * If active queue hasn't enough requests and can idle, cfq might not
3997 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3998 * case
3999 */
4000 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
4001 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
4002 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
4003 return;
4004
4005 if (cfqd->hw_tag_samples++ < 50)
4006 return;
4007
4008 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
4009 cfqd->hw_tag = 1;
4010 else
4011 cfqd->hw_tag = 0;
4012 }
4013
4014 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4015 {
4016 struct cfq_io_cq *cic = cfqd->active_cic;
4017
4018 /* If the queue already has requests, don't wait */
4019 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4020 return false;
4021
4022 /* If there are other queues in the group, don't wait */
4023 if (cfqq->cfqg->nr_cfqq > 1)
4024 return false;
4025
4026 /* the only queue in the group, but think time is big */
4027 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
4028 return false;
4029
4030 if (cfq_slice_used(cfqq))
4031 return true;
4032
4033 /* if slice left is less than think time, wait busy */
4034 if (cic && sample_valid(cic->ttime.ttime_samples)
4035 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
4036 return true;
4037
4038 /*
4039 * If think times is less than a jiffy than ttime_mean=0 and above
4040 * will not be true. It might happen that slice has not expired yet
4041 * but will expire soon (4-5 ns) during select_queue(). To cover the
4042 * case where think time is less than a jiffy, mark the queue wait
4043 * busy if only 1 jiffy is left in the slice.
4044 */
4045 if (cfqq->slice_end - jiffies == 1)
4046 return true;
4047
4048 return false;
4049 }
4050
4051 static void cfq_completed_request(struct request_queue *q, struct request *rq)
4052 {
4053 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4054 struct cfq_data *cfqd = cfqq->cfqd;
4055 const int sync = rq_is_sync(rq);
4056 unsigned long now;
4057
4058 now = jiffies;
4059 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
4060 !!(rq->cmd_flags & REQ_NOIDLE));
4061
4062 cfq_update_hw_tag(cfqd);
4063
4064 WARN_ON(!cfqd->rq_in_driver);
4065 WARN_ON(!cfqq->dispatched);
4066 cfqd->rq_in_driver--;
4067 cfqq->dispatched--;
4068 (RQ_CFQG(rq))->dispatched--;
4069 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4070 rq_io_start_time_ns(rq), rq->cmd_flags);
4071
4072 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4073
4074 if (sync) {
4075 struct cfq_rb_root *st;
4076
4077 RQ_CIC(rq)->ttime.last_end_request = now;
4078
4079 if (cfq_cfqq_on_rr(cfqq))
4080 st = cfqq->service_tree;
4081 else
4082 st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4083 cfqq_type(cfqq));
4084
4085 st->ttime.last_end_request = now;
4086 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
4087 cfqd->last_delayed_sync = now;
4088 }
4089
4090 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4091 cfqq->cfqg->ttime.last_end_request = now;
4092 #endif
4093
4094 /*
4095 * If this is the active queue, check if it needs to be expired,
4096 * or if we want to idle in case it has no pending requests.
4097 */
4098 if (cfqd->active_queue == cfqq) {
4099 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4100
4101 if (cfq_cfqq_slice_new(cfqq)) {
4102 cfq_set_prio_slice(cfqd, cfqq);
4103 cfq_clear_cfqq_slice_new(cfqq);
4104 }
4105
4106 /*
4107 * Should we wait for next request to come in before we expire
4108 * the queue.
4109 */
4110 if (cfq_should_wait_busy(cfqd, cfqq)) {
4111 unsigned long extend_sl = cfqd->cfq_slice_idle;
4112 if (!cfqd->cfq_slice_idle)
4113 extend_sl = cfqd->cfq_group_idle;
4114 cfqq->slice_end = jiffies + extend_sl;
4115 cfq_mark_cfqq_wait_busy(cfqq);
4116 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4117 }
4118
4119 /*
4120 * Idling is not enabled on:
4121 * - expired queues
4122 * - idle-priority queues
4123 * - async queues
4124 * - queues with still some requests queued
4125 * - when there is a close cooperator
4126 */
4127 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4128 cfq_slice_expired(cfqd, 1);
4129 else if (sync && cfqq_empty &&
4130 !cfq_close_cooperator(cfqd, cfqq)) {
4131 cfq_arm_slice_timer(cfqd);
4132 }
4133 }
4134
4135 if (!cfqd->rq_in_driver)
4136 cfq_schedule_dispatch(cfqd);
4137 }
4138
4139 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4140 {
4141 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4142 cfq_mark_cfqq_must_alloc_slice(cfqq);
4143 return ELV_MQUEUE_MUST;
4144 }
4145
4146 return ELV_MQUEUE_MAY;
4147 }
4148
4149 static int cfq_may_queue(struct request_queue *q, int rw)
4150 {
4151 struct cfq_data *cfqd = q->elevator->elevator_data;
4152 struct task_struct *tsk = current;
4153 struct cfq_io_cq *cic;
4154 struct cfq_queue *cfqq;
4155
4156 /*
4157 * don't force setup of a queue from here, as a call to may_queue
4158 * does not necessarily imply that a request actually will be queued.
4159 * so just lookup a possibly existing queue, or return 'may queue'
4160 * if that fails
4161 */
4162 cic = cfq_cic_lookup(cfqd, tsk->io_context);
4163 if (!cic)
4164 return ELV_MQUEUE_MAY;
4165
4166 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
4167 if (cfqq) {
4168 cfq_init_prio_data(cfqq, cic);
4169
4170 return __cfq_may_queue(cfqq);
4171 }
4172
4173 return ELV_MQUEUE_MAY;
4174 }
4175
4176 /*
4177 * queue lock held here
4178 */
4179 static void cfq_put_request(struct request *rq)
4180 {
4181 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4182
4183 if (cfqq) {
4184 const int rw = rq_data_dir(rq);
4185
4186 BUG_ON(!cfqq->allocated[rw]);
4187 cfqq->allocated[rw]--;
4188
4189 /* Put down rq reference on cfqg */
4190 cfqg_put(RQ_CFQG(rq));
4191 rq->elv.priv[0] = NULL;
4192 rq->elv.priv[1] = NULL;
4193
4194 cfq_put_queue(cfqq);
4195 }
4196 }
4197
4198 static struct cfq_queue *
4199 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4200 struct cfq_queue *cfqq)
4201 {
4202 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4203 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4204 cfq_mark_cfqq_coop(cfqq->new_cfqq);
4205 cfq_put_queue(cfqq);
4206 return cic_to_cfqq(cic, 1);
4207 }
4208
4209 /*
4210 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4211 * was the last process referring to said cfqq.
4212 */
4213 static struct cfq_queue *
4214 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4215 {
4216 if (cfqq_process_refs(cfqq) == 1) {
4217 cfqq->pid = current->pid;
4218 cfq_clear_cfqq_coop(cfqq);
4219 cfq_clear_cfqq_split_coop(cfqq);
4220 return cfqq;
4221 }
4222
4223 cic_set_cfqq(cic, NULL, 1);
4224
4225 cfq_put_cooperator(cfqq);
4226
4227 cfq_put_queue(cfqq);
4228 return NULL;
4229 }
4230 /*
4231 * Allocate cfq data structures associated with this request.
4232 */
4233 static int
4234 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4235 gfp_t gfp_mask)
4236 {
4237 struct cfq_data *cfqd = q->elevator->elevator_data;
4238 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4239 const int rw = rq_data_dir(rq);
4240 const bool is_sync = rq_is_sync(rq);
4241 struct cfq_queue *cfqq;
4242
4243 spin_lock_irq(q->queue_lock);
4244
4245 check_ioprio_changed(cic, bio);
4246 check_blkcg_changed(cic, bio);
4247 new_queue:
4248 cfqq = cic_to_cfqq(cic, is_sync);
4249 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4250 if (cfqq)
4251 cfq_put_queue(cfqq);
4252 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio);
4253 cic_set_cfqq(cic, cfqq, is_sync);
4254 } else {
4255 /*
4256 * If the queue was seeky for too long, break it apart.
4257 */
4258 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4259 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4260 cfqq = split_cfqq(cic, cfqq);
4261 if (!cfqq)
4262 goto new_queue;
4263 }
4264
4265 /*
4266 * Check to see if this queue is scheduled to merge with
4267 * another, closely cooperating queue. The merging of
4268 * queues happens here as it must be done in process context.
4269 * The reference on new_cfqq was taken in merge_cfqqs.
4270 */
4271 if (cfqq->new_cfqq)
4272 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4273 }
4274
4275 cfqq->allocated[rw]++;
4276
4277 cfqq->ref++;
4278 cfqg_get(cfqq->cfqg);
4279 rq->elv.priv[0] = cfqq;
4280 rq->elv.priv[1] = cfqq->cfqg;
4281 spin_unlock_irq(q->queue_lock);
4282 return 0;
4283 }
4284
4285 static void cfq_kick_queue(struct work_struct *work)
4286 {
4287 struct cfq_data *cfqd =
4288 container_of(work, struct cfq_data, unplug_work);
4289 struct request_queue *q = cfqd->queue;
4290
4291 spin_lock_irq(q->queue_lock);
4292 __blk_run_queue(cfqd->queue);
4293 spin_unlock_irq(q->queue_lock);
4294 }
4295
4296 /*
4297 * Timer running if the active_queue is currently idling inside its time slice
4298 */
4299 static void cfq_idle_slice_timer(unsigned long data)
4300 {
4301 struct cfq_data *cfqd = (struct cfq_data *) data;
4302 struct cfq_queue *cfqq;
4303 unsigned long flags;
4304 int timed_out = 1;
4305
4306 cfq_log(cfqd, "idle timer fired");
4307
4308 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4309
4310 cfqq = cfqd->active_queue;
4311 if (cfqq) {
4312 timed_out = 0;
4313
4314 /*
4315 * We saw a request before the queue expired, let it through
4316 */
4317 if (cfq_cfqq_must_dispatch(cfqq))
4318 goto out_kick;
4319
4320 /*
4321 * expired
4322 */
4323 if (cfq_slice_used(cfqq))
4324 goto expire;
4325
4326 /*
4327 * only expire and reinvoke request handler, if there are
4328 * other queues with pending requests
4329 */
4330 if (!cfqd->busy_queues)
4331 goto out_cont;
4332
4333 /*
4334 * not expired and it has a request pending, let it dispatch
4335 */
4336 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4337 goto out_kick;
4338
4339 /*
4340 * Queue depth flag is reset only when the idle didn't succeed
4341 */
4342 cfq_clear_cfqq_deep(cfqq);
4343 }
4344 expire:
4345 cfq_slice_expired(cfqd, timed_out);
4346 out_kick:
4347 cfq_schedule_dispatch(cfqd);
4348 out_cont:
4349 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4350 }
4351
4352 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4353 {
4354 del_timer_sync(&cfqd->idle_slice_timer);
4355 cancel_work_sync(&cfqd->unplug_work);
4356 }
4357
4358 static void cfq_put_async_queues(struct cfq_data *cfqd)
4359 {
4360 int i;
4361
4362 for (i = 0; i < IOPRIO_BE_NR; i++) {
4363 if (cfqd->async_cfqq[0][i])
4364 cfq_put_queue(cfqd->async_cfqq[0][i]);
4365 if (cfqd->async_cfqq[1][i])
4366 cfq_put_queue(cfqd->async_cfqq[1][i]);
4367 }
4368
4369 if (cfqd->async_idle_cfqq)
4370 cfq_put_queue(cfqd->async_idle_cfqq);
4371 }
4372
4373 static void cfq_exit_queue(struct elevator_queue *e)
4374 {
4375 struct cfq_data *cfqd = e->elevator_data;
4376 struct request_queue *q = cfqd->queue;
4377
4378 cfq_shutdown_timer_wq(cfqd);
4379
4380 spin_lock_irq(q->queue_lock);
4381
4382 if (cfqd->active_queue)
4383 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4384
4385 cfq_put_async_queues(cfqd);
4386
4387 spin_unlock_irq(q->queue_lock);
4388
4389 cfq_shutdown_timer_wq(cfqd);
4390
4391 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4392 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4393 #else
4394 kfree(cfqd->root_group);
4395 #endif
4396 kfree(cfqd);
4397 }
4398
4399 static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4400 {
4401 struct cfq_data *cfqd;
4402 struct blkcg_gq *blkg __maybe_unused;
4403 int i, ret;
4404 struct elevator_queue *eq;
4405
4406 eq = elevator_alloc(q, e);
4407 if (!eq)
4408 return -ENOMEM;
4409
4410 cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4411 if (!cfqd) {
4412 kobject_put(&eq->kobj);
4413 return -ENOMEM;
4414 }
4415 eq->elevator_data = cfqd;
4416
4417 cfqd->queue = q;
4418 spin_lock_irq(q->queue_lock);
4419 q->elevator = eq;
4420 spin_unlock_irq(q->queue_lock);
4421
4422 /* Init root service tree */
4423 cfqd->grp_service_tree = CFQ_RB_ROOT;
4424
4425 /* Init root group and prefer root group over other groups by default */
4426 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4427 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4428 if (ret)
4429 goto out_free;
4430
4431 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4432 #else
4433 ret = -ENOMEM;
4434 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4435 GFP_KERNEL, cfqd->queue->node);
4436 if (!cfqd->root_group)
4437 goto out_free;
4438
4439 cfq_init_cfqg_base(cfqd->root_group);
4440 #endif
4441 cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
4442 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
4443
4444 /*
4445 * Not strictly needed (since RB_ROOT just clears the node and we
4446 * zeroed cfqd on alloc), but better be safe in case someone decides
4447 * to add magic to the rb code
4448 */
4449 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4450 cfqd->prio_trees[i] = RB_ROOT;
4451
4452 /*
4453 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4454 * Grab a permanent reference to it, so that the normal code flow
4455 * will not attempt to free it. oom_cfqq is linked to root_group
4456 * but shouldn't hold a reference as it'll never be unlinked. Lose
4457 * the reference from linking right away.
4458 */
4459 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4460 cfqd->oom_cfqq.ref++;
4461
4462 spin_lock_irq(q->queue_lock);
4463 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4464 cfqg_put(cfqd->root_group);
4465 spin_unlock_irq(q->queue_lock);
4466
4467 init_timer(&cfqd->idle_slice_timer);
4468 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4469 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4470
4471 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4472
4473 cfqd->cfq_quantum = cfq_quantum;
4474 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4475 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4476 cfqd->cfq_back_max = cfq_back_max;
4477 cfqd->cfq_back_penalty = cfq_back_penalty;
4478 cfqd->cfq_slice[0] = cfq_slice_async;
4479 cfqd->cfq_slice[1] = cfq_slice_sync;
4480 cfqd->cfq_target_latency = cfq_target_latency;
4481 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4482 cfqd->cfq_slice_idle = cfq_slice_idle;
4483 cfqd->cfq_group_idle = cfq_group_idle;
4484 cfqd->cfq_latency = 1;
4485 cfqd->hw_tag = -1;
4486 /*
4487 * we optimistically start assuming sync ops weren't delayed in last
4488 * second, in order to have larger depth for async operations.
4489 */
4490 cfqd->last_delayed_sync = jiffies - HZ;
4491 return 0;
4492
4493 out_free:
4494 kfree(cfqd);
4495 kobject_put(&eq->kobj);
4496 return ret;
4497 }
4498
4499 static void cfq_registered_queue(struct request_queue *q)
4500 {
4501 struct elevator_queue *e = q->elevator;
4502 struct cfq_data *cfqd = e->elevator_data;
4503
4504 /*
4505 * Default to IOPS mode with no idling for SSDs
4506 */
4507 if (blk_queue_nonrot(q))
4508 cfqd->cfq_slice_idle = 0;
4509 }
4510
4511 /*
4512 * sysfs parts below -->
4513 */
4514 static ssize_t
4515 cfq_var_show(unsigned int var, char *page)
4516 {
4517 return sprintf(page, "%u\n", var);
4518 }
4519
4520 static ssize_t
4521 cfq_var_store(unsigned int *var, const char *page, size_t count)
4522 {
4523 char *p = (char *) page;
4524
4525 *var = simple_strtoul(p, &p, 10);
4526 return count;
4527 }
4528
4529 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4530 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4531 { \
4532 struct cfq_data *cfqd = e->elevator_data; \
4533 unsigned int __data = __VAR; \
4534 if (__CONV) \
4535 __data = jiffies_to_msecs(__data); \
4536 return cfq_var_show(__data, (page)); \
4537 }
4538 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4539 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4540 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4541 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4542 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4543 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4544 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4545 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4546 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4547 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4548 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4549 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4550 #undef SHOW_FUNCTION
4551
4552 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4553 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4554 { \
4555 struct cfq_data *cfqd = e->elevator_data; \
4556 unsigned int __data; \
4557 int ret = cfq_var_store(&__data, (page), count); \
4558 if (__data < (MIN)) \
4559 __data = (MIN); \
4560 else if (__data > (MAX)) \
4561 __data = (MAX); \
4562 if (__CONV) \
4563 *(__PTR) = msecs_to_jiffies(__data); \
4564 else \
4565 *(__PTR) = __data; \
4566 return ret; \
4567 }
4568 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4569 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4570 UINT_MAX, 1);
4571 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4572 UINT_MAX, 1);
4573 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4574 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4575 UINT_MAX, 0);
4576 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4577 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4578 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4579 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4580 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4581 UINT_MAX, 0);
4582 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4583 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4584 #undef STORE_FUNCTION
4585
4586 #define CFQ_ATTR(name) \
4587 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4588
4589 static struct elv_fs_entry cfq_attrs[] = {
4590 CFQ_ATTR(quantum),
4591 CFQ_ATTR(fifo_expire_sync),
4592 CFQ_ATTR(fifo_expire_async),
4593 CFQ_ATTR(back_seek_max),
4594 CFQ_ATTR(back_seek_penalty),
4595 CFQ_ATTR(slice_sync),
4596 CFQ_ATTR(slice_async),
4597 CFQ_ATTR(slice_async_rq),
4598 CFQ_ATTR(slice_idle),
4599 CFQ_ATTR(group_idle),
4600 CFQ_ATTR(low_latency),
4601 CFQ_ATTR(target_latency),
4602 __ATTR_NULL
4603 };
4604
4605 static struct elevator_type iosched_cfq = {
4606 .ops = {
4607 .elevator_merge_fn = cfq_merge,
4608 .elevator_merged_fn = cfq_merged_request,
4609 .elevator_merge_req_fn = cfq_merged_requests,
4610 .elevator_allow_merge_fn = cfq_allow_merge,
4611 .elevator_bio_merged_fn = cfq_bio_merged,
4612 .elevator_dispatch_fn = cfq_dispatch_requests,
4613 .elevator_add_req_fn = cfq_insert_request,
4614 .elevator_activate_req_fn = cfq_activate_request,
4615 .elevator_deactivate_req_fn = cfq_deactivate_request,
4616 .elevator_completed_req_fn = cfq_completed_request,
4617 .elevator_former_req_fn = elv_rb_former_request,
4618 .elevator_latter_req_fn = elv_rb_latter_request,
4619 .elevator_init_icq_fn = cfq_init_icq,
4620 .elevator_exit_icq_fn = cfq_exit_icq,
4621 .elevator_set_req_fn = cfq_set_request,
4622 .elevator_put_req_fn = cfq_put_request,
4623 .elevator_may_queue_fn = cfq_may_queue,
4624 .elevator_init_fn = cfq_init_queue,
4625 .elevator_exit_fn = cfq_exit_queue,
4626 .elevator_registered_fn = cfq_registered_queue,
4627 },
4628 .icq_size = sizeof(struct cfq_io_cq),
4629 .icq_align = __alignof__(struct cfq_io_cq),
4630 .elevator_attrs = cfq_attrs,
4631 .elevator_name = "cfq",
4632 .elevator_owner = THIS_MODULE,
4633 };
4634
4635 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4636 static struct blkcg_policy blkcg_policy_cfq = {
4637 .pd_size = sizeof(struct cfq_group),
4638 .cpd_size = sizeof(struct cfq_group_data),
4639 .cftypes = cfq_blkcg_files,
4640
4641 .cpd_init_fn = cfq_cpd_init,
4642 .pd_init_fn = cfq_pd_init,
4643 .pd_offline_fn = cfq_pd_offline,
4644 .pd_reset_stats_fn = cfq_pd_reset_stats,
4645 };
4646 #endif
4647
4648 static int __init cfq_init(void)
4649 {
4650 int ret;
4651
4652 /*
4653 * could be 0 on HZ < 1000 setups
4654 */
4655 if (!cfq_slice_async)
4656 cfq_slice_async = 1;
4657 if (!cfq_slice_idle)
4658 cfq_slice_idle = 1;
4659
4660 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4661 if (!cfq_group_idle)
4662 cfq_group_idle = 1;
4663
4664 ret = blkcg_policy_register(&blkcg_policy_cfq);
4665 if (ret)
4666 return ret;
4667 #else
4668 cfq_group_idle = 0;
4669 #endif
4670
4671 ret = -ENOMEM;
4672 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4673 if (!cfq_pool)
4674 goto err_pol_unreg;
4675
4676 ret = elv_register(&iosched_cfq);
4677 if (ret)
4678 goto err_free_pool;
4679
4680 return 0;
4681
4682 err_free_pool:
4683 kmem_cache_destroy(cfq_pool);
4684 err_pol_unreg:
4685 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4686 blkcg_policy_unregister(&blkcg_policy_cfq);
4687 #endif
4688 return ret;
4689 }
4690
4691 static void __exit cfq_exit(void)
4692 {
4693 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4694 blkcg_policy_unregister(&blkcg_policy_cfq);
4695 #endif
4696 elv_unregister(&iosched_cfq);
4697 kmem_cache_destroy(cfq_pool);
4698 }
4699
4700 module_init(cfq_init);
4701 module_exit(cfq_exit);
4702
4703 MODULE_AUTHOR("Jens Axboe");
4704 MODULE_LICENSE("GPL");
4705 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");