]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/cfq-iosched.c
cfq-iosched: commenting non-obvious initialization
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
17
18 /*
19 * tunables
20 */
21 /* max queue in one round of service */
22 static const int cfq_quantum = 4;
23 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max = 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty = 2;
28 static const int cfq_slice_sync = HZ / 10;
29 static int cfq_slice_async = HZ / 25;
30 static const int cfq_slice_async_rq = 2;
31 static int cfq_slice_idle = HZ / 125;
32 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33 static const int cfq_hist_divisor = 4;
34
35 /*
36 * offset from end of service tree
37 */
38 #define CFQ_IDLE_DELAY (HZ / 5)
39
40 /*
41 * below this threshold, we consider thinktime immediate
42 */
43 #define CFQ_MIN_TT (2)
44
45 /*
46 * Allow merged cfqqs to perform this amount of seeky I/O before
47 * deciding to break the queues up again.
48 */
49 #define CFQQ_COOP_TOUT (HZ)
50
51 #define CFQ_SLICE_SCALE (5)
52 #define CFQ_HW_QUEUE_MIN (5)
53 #define CFQ_SERVICE_SHIFT 12
54
55 #define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
57 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
58
59 static struct kmem_cache *cfq_pool;
60 static struct kmem_cache *cfq_ioc_pool;
61
62 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63 static struct completion *ioc_gone;
64 static DEFINE_SPINLOCK(ioc_gone_lock);
65
66 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
67 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
68 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69
70 #define sample_valid(samples) ((samples) > 80)
71 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
72
73 /*
74 * Most of our rbtree usage is for sorting with min extraction, so
75 * if we cache the leftmost node we don't have to walk down the tree
76 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77 * move this into the elevator for the rq sorting as well.
78 */
79 struct cfq_rb_root {
80 struct rb_root rb;
81 struct rb_node *left;
82 unsigned count;
83 u64 min_vdisktime;
84 struct rb_node *active;
85 unsigned total_weight;
86 };
87 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
88
89 /*
90 * Per process-grouping structure
91 */
92 struct cfq_queue {
93 /* reference count */
94 atomic_t ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
117
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
120 unsigned int allocated_slice;
121 /* time when first request from queue completed and slice started. */
122 unsigned long slice_start;
123 unsigned long slice_end;
124 long slice_resid;
125 unsigned int slice_dispatch;
126
127 /* pending metadata requests */
128 int meta_pending;
129 /* number of requests that are on the dispatch list or inside driver */
130 int dispatched;
131
132 /* io prio of this group */
133 unsigned short ioprio, org_ioprio;
134 unsigned short ioprio_class, org_ioprio_class;
135
136 unsigned int seek_samples;
137 u64 seek_total;
138 sector_t seek_mean;
139 sector_t last_request_pos;
140 unsigned long seeky_start;
141
142 pid_t pid;
143
144 struct cfq_rb_root *service_tree;
145 struct cfq_queue *new_cfqq;
146 struct cfq_group *cfqg;
147 struct cfq_group *orig_cfqg;
148 /* Sectors dispatched in current dispatch round */
149 unsigned long nr_sectors;
150 };
151
152 /*
153 * First index in the service_trees.
154 * IDLE is handled separately, so it has negative index
155 */
156 enum wl_prio_t {
157 BE_WORKLOAD = 0,
158 RT_WORKLOAD = 1,
159 IDLE_WORKLOAD = 2,
160 };
161
162 /*
163 * Second index in the service_trees.
164 */
165 enum wl_type_t {
166 ASYNC_WORKLOAD = 0,
167 SYNC_NOIDLE_WORKLOAD = 1,
168 SYNC_WORKLOAD = 2
169 };
170
171 /* This is per cgroup per device grouping structure */
172 struct cfq_group {
173 /* group service_tree member */
174 struct rb_node rb_node;
175
176 /* group service_tree key */
177 u64 vdisktime;
178 unsigned int weight;
179 bool on_st;
180
181 /* number of cfqq currently on this group */
182 int nr_cfqq;
183
184 /* Per group busy queus average. Useful for workload slice calc. */
185 unsigned int busy_queues_avg[2];
186 /*
187 * rr lists of queues with requests, onle rr for each priority class.
188 * Counts are embedded in the cfq_rb_root
189 */
190 struct cfq_rb_root service_trees[2][3];
191 struct cfq_rb_root service_tree_idle;
192
193 unsigned long saved_workload_slice;
194 enum wl_type_t saved_workload;
195 enum wl_prio_t saved_serving_prio;
196 struct blkio_group blkg;
197 #ifdef CONFIG_CFQ_GROUP_IOSCHED
198 struct hlist_node cfqd_node;
199 atomic_t ref;
200 #endif
201 };
202
203 /*
204 * Per block device queue structure
205 */
206 struct cfq_data {
207 struct request_queue *queue;
208 /* Root service tree for cfq_groups */
209 struct cfq_rb_root grp_service_tree;
210 struct cfq_group root_group;
211 /* Number of active cfq groups on group service tree */
212 int nr_groups;
213
214 /*
215 * The priority currently being served
216 */
217 enum wl_prio_t serving_prio;
218 enum wl_type_t serving_type;
219 unsigned long workload_expires;
220 struct cfq_group *serving_group;
221 bool noidle_tree_requires_idle;
222
223 /*
224 * Each priority tree is sorted by next_request position. These
225 * trees are used when determining if two or more queues are
226 * interleaving requests (see cfq_close_cooperator).
227 */
228 struct rb_root prio_trees[CFQ_PRIO_LISTS];
229
230 unsigned int busy_queues;
231
232 int rq_in_driver[2];
233 int sync_flight;
234
235 /*
236 * queue-depth detection
237 */
238 int rq_queued;
239 int hw_tag;
240 /*
241 * hw_tag can be
242 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
243 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
244 * 0 => no NCQ
245 */
246 int hw_tag_est_depth;
247 unsigned int hw_tag_samples;
248
249 /*
250 * idle window management
251 */
252 struct timer_list idle_slice_timer;
253 struct work_struct unplug_work;
254
255 struct cfq_queue *active_queue;
256 struct cfq_io_context *active_cic;
257
258 /*
259 * async queue for each priority case
260 */
261 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
262 struct cfq_queue *async_idle_cfqq;
263
264 sector_t last_position;
265
266 /*
267 * tunables, see top of file
268 */
269 unsigned int cfq_quantum;
270 unsigned int cfq_fifo_expire[2];
271 unsigned int cfq_back_penalty;
272 unsigned int cfq_back_max;
273 unsigned int cfq_slice[2];
274 unsigned int cfq_slice_async_rq;
275 unsigned int cfq_slice_idle;
276 unsigned int cfq_latency;
277 unsigned int cfq_group_isolation;
278
279 struct list_head cic_list;
280
281 /*
282 * Fallback dummy cfqq for extreme OOM conditions
283 */
284 struct cfq_queue oom_cfqq;
285
286 unsigned long last_delayed_sync;
287
288 /* List of cfq groups being managed on this device*/
289 struct hlist_head cfqg_list;
290 struct rcu_head rcu;
291 };
292
293 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
294
295 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
296 enum wl_prio_t prio,
297 enum wl_type_t type,
298 struct cfq_data *cfqd)
299 {
300 if (!cfqg)
301 return NULL;
302
303 if (prio == IDLE_WORKLOAD)
304 return &cfqg->service_tree_idle;
305
306 return &cfqg->service_trees[prio][type];
307 }
308
309 enum cfqq_state_flags {
310 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
311 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
312 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
313 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
314 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
315 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
316 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
317 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
318 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
319 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
320 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
321 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
322 };
323
324 #define CFQ_CFQQ_FNS(name) \
325 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
326 { \
327 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
328 } \
329 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
330 { \
331 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
332 } \
333 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
334 { \
335 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
336 }
337
338 CFQ_CFQQ_FNS(on_rr);
339 CFQ_CFQQ_FNS(wait_request);
340 CFQ_CFQQ_FNS(must_dispatch);
341 CFQ_CFQQ_FNS(must_alloc_slice);
342 CFQ_CFQQ_FNS(fifo_expire);
343 CFQ_CFQQ_FNS(idle_window);
344 CFQ_CFQQ_FNS(prio_changed);
345 CFQ_CFQQ_FNS(slice_new);
346 CFQ_CFQQ_FNS(sync);
347 CFQ_CFQQ_FNS(coop);
348 CFQ_CFQQ_FNS(deep);
349 CFQ_CFQQ_FNS(wait_busy);
350 #undef CFQ_CFQQ_FNS
351
352 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
353 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
354 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
355 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
356 blkg_path(&(cfqq)->cfqg->blkg), ##args);
357
358 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
359 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
360 blkg_path(&(cfqg)->blkg), ##args); \
361
362 #else
363 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
364 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
365 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
366 #endif
367 #define cfq_log(cfqd, fmt, args...) \
368 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
369
370 /* Traverses through cfq group service trees */
371 #define for_each_cfqg_st(cfqg, i, j, st) \
372 for (i = 0; i <= IDLE_WORKLOAD; i++) \
373 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
374 : &cfqg->service_tree_idle; \
375 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
376 (i == IDLE_WORKLOAD && j == 0); \
377 j++, st = i < IDLE_WORKLOAD ? \
378 &cfqg->service_trees[i][j]: NULL) \
379
380
381 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
382 {
383 if (cfq_class_idle(cfqq))
384 return IDLE_WORKLOAD;
385 if (cfq_class_rt(cfqq))
386 return RT_WORKLOAD;
387 return BE_WORKLOAD;
388 }
389
390
391 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
392 {
393 if (!cfq_cfqq_sync(cfqq))
394 return ASYNC_WORKLOAD;
395 if (!cfq_cfqq_idle_window(cfqq))
396 return SYNC_NOIDLE_WORKLOAD;
397 return SYNC_WORKLOAD;
398 }
399
400 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
401 struct cfq_data *cfqd,
402 struct cfq_group *cfqg)
403 {
404 if (wl == IDLE_WORKLOAD)
405 return cfqg->service_tree_idle.count;
406
407 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
408 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
409 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
410 }
411
412 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
413 struct cfq_group *cfqg)
414 {
415 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
416 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
417 }
418
419 static void cfq_dispatch_insert(struct request_queue *, struct request *);
420 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
421 struct io_context *, gfp_t);
422 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
423 struct io_context *);
424
425 static inline int rq_in_driver(struct cfq_data *cfqd)
426 {
427 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
428 }
429
430 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
431 bool is_sync)
432 {
433 return cic->cfqq[is_sync];
434 }
435
436 static inline void cic_set_cfqq(struct cfq_io_context *cic,
437 struct cfq_queue *cfqq, bool is_sync)
438 {
439 cic->cfqq[is_sync] = cfqq;
440 }
441
442 /*
443 * We regard a request as SYNC, if it's either a read or has the SYNC bit
444 * set (in which case it could also be direct WRITE).
445 */
446 static inline bool cfq_bio_sync(struct bio *bio)
447 {
448 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
449 }
450
451 /*
452 * scheduler run of queue, if there are requests pending and no one in the
453 * driver that will restart queueing
454 */
455 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
456 {
457 if (cfqd->busy_queues) {
458 cfq_log(cfqd, "schedule dispatch");
459 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
460 }
461 }
462
463 static int cfq_queue_empty(struct request_queue *q)
464 {
465 struct cfq_data *cfqd = q->elevator->elevator_data;
466
467 return !cfqd->rq_queued;
468 }
469
470 /*
471 * Scale schedule slice based on io priority. Use the sync time slice only
472 * if a queue is marked sync and has sync io queued. A sync queue with async
473 * io only, should not get full sync slice length.
474 */
475 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
476 unsigned short prio)
477 {
478 const int base_slice = cfqd->cfq_slice[sync];
479
480 WARN_ON(prio >= IOPRIO_BE_NR);
481
482 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
483 }
484
485 static inline int
486 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
487 {
488 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
489 }
490
491 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
492 {
493 u64 d = delta << CFQ_SERVICE_SHIFT;
494
495 d = d * BLKIO_WEIGHT_DEFAULT;
496 do_div(d, cfqg->weight);
497 return d;
498 }
499
500 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
501 {
502 s64 delta = (s64)(vdisktime - min_vdisktime);
503 if (delta > 0)
504 min_vdisktime = vdisktime;
505
506 return min_vdisktime;
507 }
508
509 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
510 {
511 s64 delta = (s64)(vdisktime - min_vdisktime);
512 if (delta < 0)
513 min_vdisktime = vdisktime;
514
515 return min_vdisktime;
516 }
517
518 static void update_min_vdisktime(struct cfq_rb_root *st)
519 {
520 u64 vdisktime = st->min_vdisktime;
521 struct cfq_group *cfqg;
522
523 if (st->active) {
524 cfqg = rb_entry_cfqg(st->active);
525 vdisktime = cfqg->vdisktime;
526 }
527
528 if (st->left) {
529 cfqg = rb_entry_cfqg(st->left);
530 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
531 }
532
533 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
534 }
535
536 /*
537 * get averaged number of queues of RT/BE priority.
538 * average is updated, with a formula that gives more weight to higher numbers,
539 * to quickly follows sudden increases and decrease slowly
540 */
541
542 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
543 struct cfq_group *cfqg, bool rt)
544 {
545 unsigned min_q, max_q;
546 unsigned mult = cfq_hist_divisor - 1;
547 unsigned round = cfq_hist_divisor / 2;
548 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
549
550 min_q = min(cfqg->busy_queues_avg[rt], busy);
551 max_q = max(cfqg->busy_queues_avg[rt], busy);
552 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
553 cfq_hist_divisor;
554 return cfqg->busy_queues_avg[rt];
555 }
556
557 static inline unsigned
558 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
559 {
560 struct cfq_rb_root *st = &cfqd->grp_service_tree;
561
562 return cfq_target_latency * cfqg->weight / st->total_weight;
563 }
564
565 static inline void
566 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
567 {
568 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
569 if (cfqd->cfq_latency) {
570 /*
571 * interested queues (we consider only the ones with the same
572 * priority class in the cfq group)
573 */
574 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
575 cfq_class_rt(cfqq));
576 unsigned sync_slice = cfqd->cfq_slice[1];
577 unsigned expect_latency = sync_slice * iq;
578 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
579
580 if (expect_latency > group_slice) {
581 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
582 /* scale low_slice according to IO priority
583 * and sync vs async */
584 unsigned low_slice =
585 min(slice, base_low_slice * slice / sync_slice);
586 /* the adapted slice value is scaled to fit all iqs
587 * into the target latency */
588 slice = max(slice * group_slice / expect_latency,
589 low_slice);
590 }
591 }
592 cfqq->slice_start = jiffies;
593 cfqq->slice_end = jiffies + slice;
594 cfqq->allocated_slice = slice;
595 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
596 }
597
598 /*
599 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
600 * isn't valid until the first request from the dispatch is activated
601 * and the slice time set.
602 */
603 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
604 {
605 if (cfq_cfqq_slice_new(cfqq))
606 return 0;
607 if (time_before(jiffies, cfqq->slice_end))
608 return 0;
609
610 return 1;
611 }
612
613 /*
614 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
615 * We choose the request that is closest to the head right now. Distance
616 * behind the head is penalized and only allowed to a certain extent.
617 */
618 static struct request *
619 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
620 {
621 sector_t s1, s2, d1 = 0, d2 = 0;
622 unsigned long back_max;
623 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
624 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
625 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
626
627 if (rq1 == NULL || rq1 == rq2)
628 return rq2;
629 if (rq2 == NULL)
630 return rq1;
631
632 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
633 return rq1;
634 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
635 return rq2;
636 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
637 return rq1;
638 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
639 return rq2;
640
641 s1 = blk_rq_pos(rq1);
642 s2 = blk_rq_pos(rq2);
643
644 /*
645 * by definition, 1KiB is 2 sectors
646 */
647 back_max = cfqd->cfq_back_max * 2;
648
649 /*
650 * Strict one way elevator _except_ in the case where we allow
651 * short backward seeks which are biased as twice the cost of a
652 * similar forward seek.
653 */
654 if (s1 >= last)
655 d1 = s1 - last;
656 else if (s1 + back_max >= last)
657 d1 = (last - s1) * cfqd->cfq_back_penalty;
658 else
659 wrap |= CFQ_RQ1_WRAP;
660
661 if (s2 >= last)
662 d2 = s2 - last;
663 else if (s2 + back_max >= last)
664 d2 = (last - s2) * cfqd->cfq_back_penalty;
665 else
666 wrap |= CFQ_RQ2_WRAP;
667
668 /* Found required data */
669
670 /*
671 * By doing switch() on the bit mask "wrap" we avoid having to
672 * check two variables for all permutations: --> faster!
673 */
674 switch (wrap) {
675 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
676 if (d1 < d2)
677 return rq1;
678 else if (d2 < d1)
679 return rq2;
680 else {
681 if (s1 >= s2)
682 return rq1;
683 else
684 return rq2;
685 }
686
687 case CFQ_RQ2_WRAP:
688 return rq1;
689 case CFQ_RQ1_WRAP:
690 return rq2;
691 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
692 default:
693 /*
694 * Since both rqs are wrapped,
695 * start with the one that's further behind head
696 * (--> only *one* back seek required),
697 * since back seek takes more time than forward.
698 */
699 if (s1 <= s2)
700 return rq1;
701 else
702 return rq2;
703 }
704 }
705
706 /*
707 * The below is leftmost cache rbtree addon
708 */
709 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
710 {
711 /* Service tree is empty */
712 if (!root->count)
713 return NULL;
714
715 if (!root->left)
716 root->left = rb_first(&root->rb);
717
718 if (root->left)
719 return rb_entry(root->left, struct cfq_queue, rb_node);
720
721 return NULL;
722 }
723
724 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
725 {
726 if (!root->left)
727 root->left = rb_first(&root->rb);
728
729 if (root->left)
730 return rb_entry_cfqg(root->left);
731
732 return NULL;
733 }
734
735 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
736 {
737 rb_erase(n, root);
738 RB_CLEAR_NODE(n);
739 }
740
741 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
742 {
743 if (root->left == n)
744 root->left = NULL;
745 rb_erase_init(n, &root->rb);
746 --root->count;
747 }
748
749 /*
750 * would be nice to take fifo expire time into account as well
751 */
752 static struct request *
753 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
754 struct request *last)
755 {
756 struct rb_node *rbnext = rb_next(&last->rb_node);
757 struct rb_node *rbprev = rb_prev(&last->rb_node);
758 struct request *next = NULL, *prev = NULL;
759
760 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
761
762 if (rbprev)
763 prev = rb_entry_rq(rbprev);
764
765 if (rbnext)
766 next = rb_entry_rq(rbnext);
767 else {
768 rbnext = rb_first(&cfqq->sort_list);
769 if (rbnext && rbnext != &last->rb_node)
770 next = rb_entry_rq(rbnext);
771 }
772
773 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
774 }
775
776 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
777 struct cfq_queue *cfqq)
778 {
779 /*
780 * just an approximation, should be ok.
781 */
782 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
783 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
784 }
785
786 static inline s64
787 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
788 {
789 return cfqg->vdisktime - st->min_vdisktime;
790 }
791
792 static void
793 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
794 {
795 struct rb_node **node = &st->rb.rb_node;
796 struct rb_node *parent = NULL;
797 struct cfq_group *__cfqg;
798 s64 key = cfqg_key(st, cfqg);
799 int left = 1;
800
801 while (*node != NULL) {
802 parent = *node;
803 __cfqg = rb_entry_cfqg(parent);
804
805 if (key < cfqg_key(st, __cfqg))
806 node = &parent->rb_left;
807 else {
808 node = &parent->rb_right;
809 left = 0;
810 }
811 }
812
813 if (left)
814 st->left = &cfqg->rb_node;
815
816 rb_link_node(&cfqg->rb_node, parent, node);
817 rb_insert_color(&cfqg->rb_node, &st->rb);
818 }
819
820 static void
821 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
822 {
823 struct cfq_rb_root *st = &cfqd->grp_service_tree;
824 struct cfq_group *__cfqg;
825 struct rb_node *n;
826
827 cfqg->nr_cfqq++;
828 if (cfqg->on_st)
829 return;
830
831 /*
832 * Currently put the group at the end. Later implement something
833 * so that groups get lesser vtime based on their weights, so that
834 * if group does not loose all if it was not continously backlogged.
835 */
836 n = rb_last(&st->rb);
837 if (n) {
838 __cfqg = rb_entry_cfqg(n);
839 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
840 } else
841 cfqg->vdisktime = st->min_vdisktime;
842
843 __cfq_group_service_tree_add(st, cfqg);
844 cfqg->on_st = true;
845 cfqd->nr_groups++;
846 st->total_weight += cfqg->weight;
847 }
848
849 static void
850 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
851 {
852 struct cfq_rb_root *st = &cfqd->grp_service_tree;
853
854 if (st->active == &cfqg->rb_node)
855 st->active = NULL;
856
857 BUG_ON(cfqg->nr_cfqq < 1);
858 cfqg->nr_cfqq--;
859
860 /* If there are other cfq queues under this group, don't delete it */
861 if (cfqg->nr_cfqq)
862 return;
863
864 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
865 cfqg->on_st = false;
866 cfqd->nr_groups--;
867 st->total_weight -= cfqg->weight;
868 if (!RB_EMPTY_NODE(&cfqg->rb_node))
869 cfq_rb_erase(&cfqg->rb_node, st);
870 cfqg->saved_workload_slice = 0;
871 blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
872 }
873
874 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
875 {
876 unsigned int slice_used;
877
878 /*
879 * Queue got expired before even a single request completed or
880 * got expired immediately after first request completion.
881 */
882 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
883 /*
884 * Also charge the seek time incurred to the group, otherwise
885 * if there are mutiple queues in the group, each can dispatch
886 * a single request on seeky media and cause lots of seek time
887 * and group will never know it.
888 */
889 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
890 1);
891 } else {
892 slice_used = jiffies - cfqq->slice_start;
893 if (slice_used > cfqq->allocated_slice)
894 slice_used = cfqq->allocated_slice;
895 }
896
897 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
898 cfqq->nr_sectors);
899 return slice_used;
900 }
901
902 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
903 struct cfq_queue *cfqq)
904 {
905 struct cfq_rb_root *st = &cfqd->grp_service_tree;
906 unsigned int used_sl, charge_sl;
907 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
908 - cfqg->service_tree_idle.count;
909
910 BUG_ON(nr_sync < 0);
911 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
912
913 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
914 charge_sl = cfqq->allocated_slice;
915
916 /* Can't update vdisktime while group is on service tree */
917 cfq_rb_erase(&cfqg->rb_node, st);
918 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
919 __cfq_group_service_tree_add(st, cfqg);
920
921 /* This group is being expired. Save the context */
922 if (time_after(cfqd->workload_expires, jiffies)) {
923 cfqg->saved_workload_slice = cfqd->workload_expires
924 - jiffies;
925 cfqg->saved_workload = cfqd->serving_type;
926 cfqg->saved_serving_prio = cfqd->serving_prio;
927 } else
928 cfqg->saved_workload_slice = 0;
929
930 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
931 st->min_vdisktime);
932 blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
933 cfqq->nr_sectors);
934 }
935
936 #ifdef CONFIG_CFQ_GROUP_IOSCHED
937 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
938 {
939 if (blkg)
940 return container_of(blkg, struct cfq_group, blkg);
941 return NULL;
942 }
943
944 void
945 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
946 {
947 cfqg_of_blkg(blkg)->weight = weight;
948 }
949
950 static struct cfq_group *
951 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
952 {
953 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
954 struct cfq_group *cfqg = NULL;
955 void *key = cfqd;
956 int i, j;
957 struct cfq_rb_root *st;
958 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
959 unsigned int major, minor;
960
961 /* Do we need to take this reference */
962 if (!blkiocg_css_tryget(blkcg))
963 return NULL;;
964
965 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
966 if (cfqg || !create)
967 goto done;
968
969 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
970 if (!cfqg)
971 goto done;
972
973 cfqg->weight = blkcg->weight;
974 for_each_cfqg_st(cfqg, i, j, st)
975 *st = CFQ_RB_ROOT;
976 RB_CLEAR_NODE(&cfqg->rb_node);
977
978 /*
979 * Take the initial reference that will be released on destroy
980 * This can be thought of a joint reference by cgroup and
981 * elevator which will be dropped by either elevator exit
982 * or cgroup deletion path depending on who is exiting first.
983 */
984 atomic_set(&cfqg->ref, 1);
985
986 /* Add group onto cgroup list */
987 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
988 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
989 MKDEV(major, minor));
990
991 /* Add group on cfqd list */
992 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
993
994 done:
995 blkiocg_css_put(blkcg);
996 return cfqg;
997 }
998
999 /*
1000 * Search for the cfq group current task belongs to. If create = 1, then also
1001 * create the cfq group if it does not exist. request_queue lock must be held.
1002 */
1003 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1004 {
1005 struct cgroup *cgroup;
1006 struct cfq_group *cfqg = NULL;
1007
1008 rcu_read_lock();
1009 cgroup = task_cgroup(current, blkio_subsys_id);
1010 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1011 if (!cfqg && create)
1012 cfqg = &cfqd->root_group;
1013 rcu_read_unlock();
1014 return cfqg;
1015 }
1016
1017 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1018 {
1019 /* Currently, all async queues are mapped to root group */
1020 if (!cfq_cfqq_sync(cfqq))
1021 cfqg = &cfqq->cfqd->root_group;
1022
1023 cfqq->cfqg = cfqg;
1024 /* cfqq reference on cfqg */
1025 atomic_inc(&cfqq->cfqg->ref);
1026 }
1027
1028 static void cfq_put_cfqg(struct cfq_group *cfqg)
1029 {
1030 struct cfq_rb_root *st;
1031 int i, j;
1032
1033 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1034 if (!atomic_dec_and_test(&cfqg->ref))
1035 return;
1036 for_each_cfqg_st(cfqg, i, j, st)
1037 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1038 kfree(cfqg);
1039 }
1040
1041 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1042 {
1043 /* Something wrong if we are trying to remove same group twice */
1044 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1045
1046 hlist_del_init(&cfqg->cfqd_node);
1047
1048 /*
1049 * Put the reference taken at the time of creation so that when all
1050 * queues are gone, group can be destroyed.
1051 */
1052 cfq_put_cfqg(cfqg);
1053 }
1054
1055 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1056 {
1057 struct hlist_node *pos, *n;
1058 struct cfq_group *cfqg;
1059
1060 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1061 /*
1062 * If cgroup removal path got to blk_group first and removed
1063 * it from cgroup list, then it will take care of destroying
1064 * cfqg also.
1065 */
1066 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1067 cfq_destroy_cfqg(cfqd, cfqg);
1068 }
1069 }
1070
1071 /*
1072 * Blk cgroup controller notification saying that blkio_group object is being
1073 * delinked as associated cgroup object is going away. That also means that
1074 * no new IO will come in this group. So get rid of this group as soon as
1075 * any pending IO in the group is finished.
1076 *
1077 * This function is called under rcu_read_lock(). key is the rcu protected
1078 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1079 * read lock.
1080 *
1081 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1082 * it should not be NULL as even if elevator was exiting, cgroup deltion
1083 * path got to it first.
1084 */
1085 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1086 {
1087 unsigned long flags;
1088 struct cfq_data *cfqd = key;
1089
1090 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1091 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1092 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1093 }
1094
1095 #else /* GROUP_IOSCHED */
1096 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1097 {
1098 return &cfqd->root_group;
1099 }
1100 static inline void
1101 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1102 cfqq->cfqg = cfqg;
1103 }
1104
1105 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1106 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1107
1108 #endif /* GROUP_IOSCHED */
1109
1110 /*
1111 * The cfqd->service_trees holds all pending cfq_queue's that have
1112 * requests waiting to be processed. It is sorted in the order that
1113 * we will service the queues.
1114 */
1115 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1116 bool add_front)
1117 {
1118 struct rb_node **p, *parent;
1119 struct cfq_queue *__cfqq;
1120 unsigned long rb_key;
1121 struct cfq_rb_root *service_tree;
1122 int left;
1123 int new_cfqq = 1;
1124 int group_changed = 0;
1125
1126 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1127 if (!cfqd->cfq_group_isolation
1128 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1129 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1130 /* Move this cfq to root group */
1131 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1132 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1133 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1134 cfqq->orig_cfqg = cfqq->cfqg;
1135 cfqq->cfqg = &cfqd->root_group;
1136 atomic_inc(&cfqd->root_group.ref);
1137 group_changed = 1;
1138 } else if (!cfqd->cfq_group_isolation
1139 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1140 /* cfqq is sequential now needs to go to its original group */
1141 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1142 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1143 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1144 cfq_put_cfqg(cfqq->cfqg);
1145 cfqq->cfqg = cfqq->orig_cfqg;
1146 cfqq->orig_cfqg = NULL;
1147 group_changed = 1;
1148 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1149 }
1150 #endif
1151
1152 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1153 cfqq_type(cfqq), cfqd);
1154 if (cfq_class_idle(cfqq)) {
1155 rb_key = CFQ_IDLE_DELAY;
1156 parent = rb_last(&service_tree->rb);
1157 if (parent && parent != &cfqq->rb_node) {
1158 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1159 rb_key += __cfqq->rb_key;
1160 } else
1161 rb_key += jiffies;
1162 } else if (!add_front) {
1163 /*
1164 * Get our rb key offset. Subtract any residual slice
1165 * value carried from last service. A negative resid
1166 * count indicates slice overrun, and this should position
1167 * the next service time further away in the tree.
1168 */
1169 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1170 rb_key -= cfqq->slice_resid;
1171 cfqq->slice_resid = 0;
1172 } else {
1173 rb_key = -HZ;
1174 __cfqq = cfq_rb_first(service_tree);
1175 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1176 }
1177
1178 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1179 new_cfqq = 0;
1180 /*
1181 * same position, nothing more to do
1182 */
1183 if (rb_key == cfqq->rb_key &&
1184 cfqq->service_tree == service_tree)
1185 return;
1186
1187 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1188 cfqq->service_tree = NULL;
1189 }
1190
1191 left = 1;
1192 parent = NULL;
1193 cfqq->service_tree = service_tree;
1194 p = &service_tree->rb.rb_node;
1195 while (*p) {
1196 struct rb_node **n;
1197
1198 parent = *p;
1199 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1200
1201 /*
1202 * sort by key, that represents service time.
1203 */
1204 if (time_before(rb_key, __cfqq->rb_key))
1205 n = &(*p)->rb_left;
1206 else {
1207 n = &(*p)->rb_right;
1208 left = 0;
1209 }
1210
1211 p = n;
1212 }
1213
1214 if (left)
1215 service_tree->left = &cfqq->rb_node;
1216
1217 cfqq->rb_key = rb_key;
1218 rb_link_node(&cfqq->rb_node, parent, p);
1219 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1220 service_tree->count++;
1221 if ((add_front || !new_cfqq) && !group_changed)
1222 return;
1223 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1224 }
1225
1226 static struct cfq_queue *
1227 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1228 sector_t sector, struct rb_node **ret_parent,
1229 struct rb_node ***rb_link)
1230 {
1231 struct rb_node **p, *parent;
1232 struct cfq_queue *cfqq = NULL;
1233
1234 parent = NULL;
1235 p = &root->rb_node;
1236 while (*p) {
1237 struct rb_node **n;
1238
1239 parent = *p;
1240 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1241
1242 /*
1243 * Sort strictly based on sector. Smallest to the left,
1244 * largest to the right.
1245 */
1246 if (sector > blk_rq_pos(cfqq->next_rq))
1247 n = &(*p)->rb_right;
1248 else if (sector < blk_rq_pos(cfqq->next_rq))
1249 n = &(*p)->rb_left;
1250 else
1251 break;
1252 p = n;
1253 cfqq = NULL;
1254 }
1255
1256 *ret_parent = parent;
1257 if (rb_link)
1258 *rb_link = p;
1259 return cfqq;
1260 }
1261
1262 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1263 {
1264 struct rb_node **p, *parent;
1265 struct cfq_queue *__cfqq;
1266
1267 if (cfqq->p_root) {
1268 rb_erase(&cfqq->p_node, cfqq->p_root);
1269 cfqq->p_root = NULL;
1270 }
1271
1272 if (cfq_class_idle(cfqq))
1273 return;
1274 if (!cfqq->next_rq)
1275 return;
1276
1277 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1278 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1279 blk_rq_pos(cfqq->next_rq), &parent, &p);
1280 if (!__cfqq) {
1281 rb_link_node(&cfqq->p_node, parent, p);
1282 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1283 } else
1284 cfqq->p_root = NULL;
1285 }
1286
1287 /*
1288 * Update cfqq's position in the service tree.
1289 */
1290 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1291 {
1292 /*
1293 * Resorting requires the cfqq to be on the RR list already.
1294 */
1295 if (cfq_cfqq_on_rr(cfqq)) {
1296 cfq_service_tree_add(cfqd, cfqq, 0);
1297 cfq_prio_tree_add(cfqd, cfqq);
1298 }
1299 }
1300
1301 /*
1302 * add to busy list of queues for service, trying to be fair in ordering
1303 * the pending list according to last request service
1304 */
1305 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1306 {
1307 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1308 BUG_ON(cfq_cfqq_on_rr(cfqq));
1309 cfq_mark_cfqq_on_rr(cfqq);
1310 cfqd->busy_queues++;
1311
1312 cfq_resort_rr_list(cfqd, cfqq);
1313 }
1314
1315 /*
1316 * Called when the cfqq no longer has requests pending, remove it from
1317 * the service tree.
1318 */
1319 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1320 {
1321 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1322 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1323 cfq_clear_cfqq_on_rr(cfqq);
1324
1325 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1326 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1327 cfqq->service_tree = NULL;
1328 }
1329 if (cfqq->p_root) {
1330 rb_erase(&cfqq->p_node, cfqq->p_root);
1331 cfqq->p_root = NULL;
1332 }
1333
1334 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1335 BUG_ON(!cfqd->busy_queues);
1336 cfqd->busy_queues--;
1337 }
1338
1339 /*
1340 * rb tree support functions
1341 */
1342 static void cfq_del_rq_rb(struct request *rq)
1343 {
1344 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1345 const int sync = rq_is_sync(rq);
1346
1347 BUG_ON(!cfqq->queued[sync]);
1348 cfqq->queued[sync]--;
1349
1350 elv_rb_del(&cfqq->sort_list, rq);
1351
1352 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1353 /*
1354 * Queue will be deleted from service tree when we actually
1355 * expire it later. Right now just remove it from prio tree
1356 * as it is empty.
1357 */
1358 if (cfqq->p_root) {
1359 rb_erase(&cfqq->p_node, cfqq->p_root);
1360 cfqq->p_root = NULL;
1361 }
1362 }
1363 }
1364
1365 static void cfq_add_rq_rb(struct request *rq)
1366 {
1367 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1368 struct cfq_data *cfqd = cfqq->cfqd;
1369 struct request *__alias, *prev;
1370
1371 cfqq->queued[rq_is_sync(rq)]++;
1372
1373 /*
1374 * looks a little odd, but the first insert might return an alias.
1375 * if that happens, put the alias on the dispatch list
1376 */
1377 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1378 cfq_dispatch_insert(cfqd->queue, __alias);
1379
1380 if (!cfq_cfqq_on_rr(cfqq))
1381 cfq_add_cfqq_rr(cfqd, cfqq);
1382
1383 /*
1384 * check if this request is a better next-serve candidate
1385 */
1386 prev = cfqq->next_rq;
1387 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1388
1389 /*
1390 * adjust priority tree position, if ->next_rq changes
1391 */
1392 if (prev != cfqq->next_rq)
1393 cfq_prio_tree_add(cfqd, cfqq);
1394
1395 BUG_ON(!cfqq->next_rq);
1396 }
1397
1398 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1399 {
1400 elv_rb_del(&cfqq->sort_list, rq);
1401 cfqq->queued[rq_is_sync(rq)]--;
1402 cfq_add_rq_rb(rq);
1403 }
1404
1405 static struct request *
1406 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1407 {
1408 struct task_struct *tsk = current;
1409 struct cfq_io_context *cic;
1410 struct cfq_queue *cfqq;
1411
1412 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1413 if (!cic)
1414 return NULL;
1415
1416 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1417 if (cfqq) {
1418 sector_t sector = bio->bi_sector + bio_sectors(bio);
1419
1420 return elv_rb_find(&cfqq->sort_list, sector);
1421 }
1422
1423 return NULL;
1424 }
1425
1426 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1427 {
1428 struct cfq_data *cfqd = q->elevator->elevator_data;
1429
1430 cfqd->rq_in_driver[rq_is_sync(rq)]++;
1431 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1432 rq_in_driver(cfqd));
1433
1434 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1435 }
1436
1437 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1438 {
1439 struct cfq_data *cfqd = q->elevator->elevator_data;
1440 const int sync = rq_is_sync(rq);
1441
1442 WARN_ON(!cfqd->rq_in_driver[sync]);
1443 cfqd->rq_in_driver[sync]--;
1444 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1445 rq_in_driver(cfqd));
1446 }
1447
1448 static void cfq_remove_request(struct request *rq)
1449 {
1450 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1451
1452 if (cfqq->next_rq == rq)
1453 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1454
1455 list_del_init(&rq->queuelist);
1456 cfq_del_rq_rb(rq);
1457
1458 cfqq->cfqd->rq_queued--;
1459 if (rq_is_meta(rq)) {
1460 WARN_ON(!cfqq->meta_pending);
1461 cfqq->meta_pending--;
1462 }
1463 }
1464
1465 static int cfq_merge(struct request_queue *q, struct request **req,
1466 struct bio *bio)
1467 {
1468 struct cfq_data *cfqd = q->elevator->elevator_data;
1469 struct request *__rq;
1470
1471 __rq = cfq_find_rq_fmerge(cfqd, bio);
1472 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1473 *req = __rq;
1474 return ELEVATOR_FRONT_MERGE;
1475 }
1476
1477 return ELEVATOR_NO_MERGE;
1478 }
1479
1480 static void cfq_merged_request(struct request_queue *q, struct request *req,
1481 int type)
1482 {
1483 if (type == ELEVATOR_FRONT_MERGE) {
1484 struct cfq_queue *cfqq = RQ_CFQQ(req);
1485
1486 cfq_reposition_rq_rb(cfqq, req);
1487 }
1488 }
1489
1490 static void
1491 cfq_merged_requests(struct request_queue *q, struct request *rq,
1492 struct request *next)
1493 {
1494 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1495 /*
1496 * reposition in fifo if next is older than rq
1497 */
1498 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1499 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1500 list_move(&rq->queuelist, &next->queuelist);
1501 rq_set_fifo_time(rq, rq_fifo_time(next));
1502 }
1503
1504 if (cfqq->next_rq == next)
1505 cfqq->next_rq = rq;
1506 cfq_remove_request(next);
1507 }
1508
1509 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1510 struct bio *bio)
1511 {
1512 struct cfq_data *cfqd = q->elevator->elevator_data;
1513 struct cfq_io_context *cic;
1514 struct cfq_queue *cfqq;
1515
1516 /* Deny merge if bio and rq don't belong to same cfq group */
1517 if ((RQ_CFQQ(rq))->cfqg != cfq_get_cfqg(cfqd, 0))
1518 return false;
1519 /*
1520 * Disallow merge of a sync bio into an async request.
1521 */
1522 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1523 return false;
1524
1525 /*
1526 * Lookup the cfqq that this bio will be queued with. Allow
1527 * merge only if rq is queued there.
1528 */
1529 cic = cfq_cic_lookup(cfqd, current->io_context);
1530 if (!cic)
1531 return false;
1532
1533 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1534 return cfqq == RQ_CFQQ(rq);
1535 }
1536
1537 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1538 struct cfq_queue *cfqq)
1539 {
1540 if (cfqq) {
1541 cfq_log_cfqq(cfqd, cfqq, "set_active");
1542 cfqq->slice_start = 0;
1543 cfqq->dispatch_start = jiffies;
1544 cfqq->allocated_slice = 0;
1545 cfqq->slice_end = 0;
1546 cfqq->slice_dispatch = 0;
1547 cfqq->nr_sectors = 0;
1548
1549 cfq_clear_cfqq_wait_request(cfqq);
1550 cfq_clear_cfqq_must_dispatch(cfqq);
1551 cfq_clear_cfqq_must_alloc_slice(cfqq);
1552 cfq_clear_cfqq_fifo_expire(cfqq);
1553 cfq_mark_cfqq_slice_new(cfqq);
1554
1555 del_timer(&cfqd->idle_slice_timer);
1556 }
1557
1558 cfqd->active_queue = cfqq;
1559 }
1560
1561 /*
1562 * current cfqq expired its slice (or was too idle), select new one
1563 */
1564 static void
1565 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1566 bool timed_out)
1567 {
1568 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1569
1570 if (cfq_cfqq_wait_request(cfqq))
1571 del_timer(&cfqd->idle_slice_timer);
1572
1573 cfq_clear_cfqq_wait_request(cfqq);
1574 cfq_clear_cfqq_wait_busy(cfqq);
1575
1576 /*
1577 * store what was left of this slice, if the queue idled/timed out
1578 */
1579 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1580 cfqq->slice_resid = cfqq->slice_end - jiffies;
1581 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1582 }
1583
1584 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1585
1586 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1587 cfq_del_cfqq_rr(cfqd, cfqq);
1588
1589 cfq_resort_rr_list(cfqd, cfqq);
1590
1591 if (cfqq == cfqd->active_queue)
1592 cfqd->active_queue = NULL;
1593
1594 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1595 cfqd->grp_service_tree.active = NULL;
1596
1597 if (cfqd->active_cic) {
1598 put_io_context(cfqd->active_cic->ioc);
1599 cfqd->active_cic = NULL;
1600 }
1601 }
1602
1603 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1604 {
1605 struct cfq_queue *cfqq = cfqd->active_queue;
1606
1607 if (cfqq)
1608 __cfq_slice_expired(cfqd, cfqq, timed_out);
1609 }
1610
1611 /*
1612 * Get next queue for service. Unless we have a queue preemption,
1613 * we'll simply select the first cfqq in the service tree.
1614 */
1615 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1616 {
1617 struct cfq_rb_root *service_tree =
1618 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1619 cfqd->serving_type, cfqd);
1620
1621 if (!cfqd->rq_queued)
1622 return NULL;
1623
1624 /* There is nothing to dispatch */
1625 if (!service_tree)
1626 return NULL;
1627 if (RB_EMPTY_ROOT(&service_tree->rb))
1628 return NULL;
1629 return cfq_rb_first(service_tree);
1630 }
1631
1632 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1633 {
1634 struct cfq_group *cfqg;
1635 struct cfq_queue *cfqq;
1636 int i, j;
1637 struct cfq_rb_root *st;
1638
1639 if (!cfqd->rq_queued)
1640 return NULL;
1641
1642 cfqg = cfq_get_next_cfqg(cfqd);
1643 if (!cfqg)
1644 return NULL;
1645
1646 for_each_cfqg_st(cfqg, i, j, st)
1647 if ((cfqq = cfq_rb_first(st)) != NULL)
1648 return cfqq;
1649 return NULL;
1650 }
1651
1652 /*
1653 * Get and set a new active queue for service.
1654 */
1655 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1656 struct cfq_queue *cfqq)
1657 {
1658 if (!cfqq)
1659 cfqq = cfq_get_next_queue(cfqd);
1660
1661 __cfq_set_active_queue(cfqd, cfqq);
1662 return cfqq;
1663 }
1664
1665 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1666 struct request *rq)
1667 {
1668 if (blk_rq_pos(rq) >= cfqd->last_position)
1669 return blk_rq_pos(rq) - cfqd->last_position;
1670 else
1671 return cfqd->last_position - blk_rq_pos(rq);
1672 }
1673
1674 #define CFQQ_SEEK_THR 8 * 1024
1675 #define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1676
1677 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1678 struct request *rq)
1679 {
1680 sector_t sdist = cfqq->seek_mean;
1681
1682 if (!sample_valid(cfqq->seek_samples))
1683 sdist = CFQQ_SEEK_THR;
1684
1685 return cfq_dist_from_last(cfqd, rq) <= sdist;
1686 }
1687
1688 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1689 struct cfq_queue *cur_cfqq)
1690 {
1691 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1692 struct rb_node *parent, *node;
1693 struct cfq_queue *__cfqq;
1694 sector_t sector = cfqd->last_position;
1695
1696 if (RB_EMPTY_ROOT(root))
1697 return NULL;
1698
1699 /*
1700 * First, if we find a request starting at the end of the last
1701 * request, choose it.
1702 */
1703 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1704 if (__cfqq)
1705 return __cfqq;
1706
1707 /*
1708 * If the exact sector wasn't found, the parent of the NULL leaf
1709 * will contain the closest sector.
1710 */
1711 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1712 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1713 return __cfqq;
1714
1715 if (blk_rq_pos(__cfqq->next_rq) < sector)
1716 node = rb_next(&__cfqq->p_node);
1717 else
1718 node = rb_prev(&__cfqq->p_node);
1719 if (!node)
1720 return NULL;
1721
1722 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1723 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1724 return __cfqq;
1725
1726 return NULL;
1727 }
1728
1729 /*
1730 * cfqd - obvious
1731 * cur_cfqq - passed in so that we don't decide that the current queue is
1732 * closely cooperating with itself.
1733 *
1734 * So, basically we're assuming that that cur_cfqq has dispatched at least
1735 * one request, and that cfqd->last_position reflects a position on the disk
1736 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1737 * assumption.
1738 */
1739 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1740 struct cfq_queue *cur_cfqq)
1741 {
1742 struct cfq_queue *cfqq;
1743
1744 if (!cfq_cfqq_sync(cur_cfqq))
1745 return NULL;
1746 if (CFQQ_SEEKY(cur_cfqq))
1747 return NULL;
1748
1749 /*
1750 * Don't search priority tree if it's the only queue in the group.
1751 */
1752 if (cur_cfqq->cfqg->nr_cfqq == 1)
1753 return NULL;
1754
1755 /*
1756 * We should notice if some of the queues are cooperating, eg
1757 * working closely on the same area of the disk. In that case,
1758 * we can group them together and don't waste time idling.
1759 */
1760 cfqq = cfqq_close(cfqd, cur_cfqq);
1761 if (!cfqq)
1762 return NULL;
1763
1764 /* If new queue belongs to different cfq_group, don't choose it */
1765 if (cur_cfqq->cfqg != cfqq->cfqg)
1766 return NULL;
1767
1768 /*
1769 * It only makes sense to merge sync queues.
1770 */
1771 if (!cfq_cfqq_sync(cfqq))
1772 return NULL;
1773 if (CFQQ_SEEKY(cfqq))
1774 return NULL;
1775
1776 /*
1777 * Do not merge queues of different priority classes
1778 */
1779 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1780 return NULL;
1781
1782 return cfqq;
1783 }
1784
1785 /*
1786 * Determine whether we should enforce idle window for this queue.
1787 */
1788
1789 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1790 {
1791 enum wl_prio_t prio = cfqq_prio(cfqq);
1792 struct cfq_rb_root *service_tree = cfqq->service_tree;
1793
1794 BUG_ON(!service_tree);
1795 BUG_ON(!service_tree->count);
1796
1797 /* We never do for idle class queues. */
1798 if (prio == IDLE_WORKLOAD)
1799 return false;
1800
1801 /* We do for queues that were marked with idle window flag. */
1802 if (cfq_cfqq_idle_window(cfqq) &&
1803 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1804 return true;
1805
1806 /*
1807 * Otherwise, we do only if they are the last ones
1808 * in their service tree.
1809 */
1810 return service_tree->count == 1;
1811 }
1812
1813 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1814 {
1815 struct cfq_queue *cfqq = cfqd->active_queue;
1816 struct cfq_io_context *cic;
1817 unsigned long sl;
1818
1819 /*
1820 * SSD device without seek penalty, disable idling. But only do so
1821 * for devices that support queuing, otherwise we still have a problem
1822 * with sync vs async workloads.
1823 */
1824 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1825 return;
1826
1827 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1828 WARN_ON(cfq_cfqq_slice_new(cfqq));
1829
1830 /*
1831 * idle is disabled, either manually or by past process history
1832 */
1833 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1834 return;
1835
1836 /*
1837 * still active requests from this queue, don't idle
1838 */
1839 if (cfqq->dispatched)
1840 return;
1841
1842 /*
1843 * task has exited, don't wait
1844 */
1845 cic = cfqd->active_cic;
1846 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1847 return;
1848
1849 /*
1850 * If our average think time is larger than the remaining time
1851 * slice, then don't idle. This avoids overrunning the allotted
1852 * time slice.
1853 */
1854 if (sample_valid(cic->ttime_samples) &&
1855 (cfqq->slice_end - jiffies < cic->ttime_mean))
1856 return;
1857
1858 cfq_mark_cfqq_wait_request(cfqq);
1859
1860 sl = cfqd->cfq_slice_idle;
1861
1862 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1863 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1864 }
1865
1866 /*
1867 * Move request from internal lists to the request queue dispatch list.
1868 */
1869 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1870 {
1871 struct cfq_data *cfqd = q->elevator->elevator_data;
1872 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1873
1874 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1875
1876 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1877 cfq_remove_request(rq);
1878 cfqq->dispatched++;
1879 elv_dispatch_sort(q, rq);
1880
1881 if (cfq_cfqq_sync(cfqq))
1882 cfqd->sync_flight++;
1883 cfqq->nr_sectors += blk_rq_sectors(rq);
1884 }
1885
1886 /*
1887 * return expired entry, or NULL to just start from scratch in rbtree
1888 */
1889 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1890 {
1891 struct request *rq = NULL;
1892
1893 if (cfq_cfqq_fifo_expire(cfqq))
1894 return NULL;
1895
1896 cfq_mark_cfqq_fifo_expire(cfqq);
1897
1898 if (list_empty(&cfqq->fifo))
1899 return NULL;
1900
1901 rq = rq_entry_fifo(cfqq->fifo.next);
1902 if (time_before(jiffies, rq_fifo_time(rq)))
1903 rq = NULL;
1904
1905 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1906 return rq;
1907 }
1908
1909 static inline int
1910 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1911 {
1912 const int base_rq = cfqd->cfq_slice_async_rq;
1913
1914 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1915
1916 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1917 }
1918
1919 /*
1920 * Must be called with the queue_lock held.
1921 */
1922 static int cfqq_process_refs(struct cfq_queue *cfqq)
1923 {
1924 int process_refs, io_refs;
1925
1926 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1927 process_refs = atomic_read(&cfqq->ref) - io_refs;
1928 BUG_ON(process_refs < 0);
1929 return process_refs;
1930 }
1931
1932 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1933 {
1934 int process_refs, new_process_refs;
1935 struct cfq_queue *__cfqq;
1936
1937 /* Avoid a circular list and skip interim queue merges */
1938 while ((__cfqq = new_cfqq->new_cfqq)) {
1939 if (__cfqq == cfqq)
1940 return;
1941 new_cfqq = __cfqq;
1942 }
1943
1944 process_refs = cfqq_process_refs(cfqq);
1945 /*
1946 * If the process for the cfqq has gone away, there is no
1947 * sense in merging the queues.
1948 */
1949 if (process_refs == 0)
1950 return;
1951
1952 /*
1953 * Merge in the direction of the lesser amount of work.
1954 */
1955 new_process_refs = cfqq_process_refs(new_cfqq);
1956 if (new_process_refs >= process_refs) {
1957 cfqq->new_cfqq = new_cfqq;
1958 atomic_add(process_refs, &new_cfqq->ref);
1959 } else {
1960 new_cfqq->new_cfqq = cfqq;
1961 atomic_add(new_process_refs, &cfqq->ref);
1962 }
1963 }
1964
1965 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1966 struct cfq_group *cfqg, enum wl_prio_t prio,
1967 bool prio_changed)
1968 {
1969 struct cfq_queue *queue;
1970 int i;
1971 bool key_valid = false;
1972 unsigned long lowest_key = 0;
1973 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1974
1975 if (prio_changed) {
1976 /*
1977 * When priorities switched, we prefer starting
1978 * from SYNC_NOIDLE (first choice), or just SYNC
1979 * over ASYNC
1980 */
1981 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1982 return cur_best;
1983 cur_best = SYNC_WORKLOAD;
1984 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1985 return cur_best;
1986
1987 return ASYNC_WORKLOAD;
1988 }
1989
1990 for (i = 0; i < 3; ++i) {
1991 /* otherwise, select the one with lowest rb_key */
1992 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1993 if (queue &&
1994 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1995 lowest_key = queue->rb_key;
1996 cur_best = i;
1997 key_valid = true;
1998 }
1999 }
2000
2001 return cur_best;
2002 }
2003
2004 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2005 {
2006 enum wl_prio_t previous_prio = cfqd->serving_prio;
2007 bool prio_changed;
2008 unsigned slice;
2009 unsigned count;
2010 struct cfq_rb_root *st;
2011 unsigned group_slice;
2012
2013 if (!cfqg) {
2014 cfqd->serving_prio = IDLE_WORKLOAD;
2015 cfqd->workload_expires = jiffies + 1;
2016 return;
2017 }
2018
2019 /* Choose next priority. RT > BE > IDLE */
2020 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2021 cfqd->serving_prio = RT_WORKLOAD;
2022 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2023 cfqd->serving_prio = BE_WORKLOAD;
2024 else {
2025 cfqd->serving_prio = IDLE_WORKLOAD;
2026 cfqd->workload_expires = jiffies + 1;
2027 return;
2028 }
2029
2030 /*
2031 * For RT and BE, we have to choose also the type
2032 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2033 * expiration time
2034 */
2035 prio_changed = (cfqd->serving_prio != previous_prio);
2036 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2037 cfqd);
2038 count = st->count;
2039
2040 /*
2041 * If priority didn't change, check workload expiration,
2042 * and that we still have other queues ready
2043 */
2044 if (!prio_changed && count &&
2045 !time_after(jiffies, cfqd->workload_expires))
2046 return;
2047
2048 /* otherwise select new workload type */
2049 cfqd->serving_type =
2050 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
2051 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2052 cfqd);
2053 count = st->count;
2054
2055 /*
2056 * the workload slice is computed as a fraction of target latency
2057 * proportional to the number of queues in that workload, over
2058 * all the queues in the same priority class
2059 */
2060 group_slice = cfq_group_slice(cfqd, cfqg);
2061
2062 slice = group_slice * count /
2063 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2064 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2065
2066 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2067 unsigned int tmp;
2068
2069 /*
2070 * Async queues are currently system wide. Just taking
2071 * proportion of queues with-in same group will lead to higher
2072 * async ratio system wide as generally root group is going
2073 * to have higher weight. A more accurate thing would be to
2074 * calculate system wide asnc/sync ratio.
2075 */
2076 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2077 tmp = tmp/cfqd->busy_queues;
2078 slice = min_t(unsigned, slice, tmp);
2079
2080 /* async workload slice is scaled down according to
2081 * the sync/async slice ratio. */
2082 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2083 } else
2084 /* sync workload slice is at least 2 * cfq_slice_idle */
2085 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2086
2087 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2088 cfqd->workload_expires = jiffies + slice;
2089 cfqd->noidle_tree_requires_idle = false;
2090 }
2091
2092 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2093 {
2094 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2095 struct cfq_group *cfqg;
2096
2097 if (RB_EMPTY_ROOT(&st->rb))
2098 return NULL;
2099 cfqg = cfq_rb_first_group(st);
2100 st->active = &cfqg->rb_node;
2101 update_min_vdisktime(st);
2102 return cfqg;
2103 }
2104
2105 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2106 {
2107 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2108
2109 cfqd->serving_group = cfqg;
2110
2111 /* Restore the workload type data */
2112 if (cfqg->saved_workload_slice) {
2113 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2114 cfqd->serving_type = cfqg->saved_workload;
2115 cfqd->serving_prio = cfqg->saved_serving_prio;
2116 }
2117 choose_service_tree(cfqd, cfqg);
2118 }
2119
2120 /*
2121 * Select a queue for service. If we have a current active queue,
2122 * check whether to continue servicing it, or retrieve and set a new one.
2123 */
2124 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2125 {
2126 struct cfq_queue *cfqq, *new_cfqq = NULL;
2127
2128 cfqq = cfqd->active_queue;
2129 if (!cfqq)
2130 goto new_queue;
2131
2132 if (!cfqd->rq_queued)
2133 return NULL;
2134
2135 /*
2136 * We were waiting for group to get backlogged. Expire the queue
2137 */
2138 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2139 goto expire;
2140
2141 /*
2142 * The active queue has run out of time, expire it and select new.
2143 */
2144 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2145 /*
2146 * If slice had not expired at the completion of last request
2147 * we might not have turned on wait_busy flag. Don't expire
2148 * the queue yet. Allow the group to get backlogged.
2149 *
2150 * The very fact that we have used the slice, that means we
2151 * have been idling all along on this queue and it should be
2152 * ok to wait for this request to complete.
2153 */
2154 if (cfqq->cfqg->nr_cfqq == 1 && cfqq->dispatched
2155 && cfq_should_idle(cfqd, cfqq))
2156 goto keep_queue;
2157 else
2158 goto expire;
2159 }
2160
2161 /*
2162 * The active queue has requests and isn't expired, allow it to
2163 * dispatch.
2164 */
2165 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2166 goto keep_queue;
2167
2168 /*
2169 * If another queue has a request waiting within our mean seek
2170 * distance, let it run. The expire code will check for close
2171 * cooperators and put the close queue at the front of the service
2172 * tree. If possible, merge the expiring queue with the new cfqq.
2173 */
2174 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2175 if (new_cfqq) {
2176 if (!cfqq->new_cfqq)
2177 cfq_setup_merge(cfqq, new_cfqq);
2178 goto expire;
2179 }
2180
2181 /*
2182 * No requests pending. If the active queue still has requests in
2183 * flight or is idling for a new request, allow either of these
2184 * conditions to happen (or time out) before selecting a new queue.
2185 */
2186 if (timer_pending(&cfqd->idle_slice_timer) ||
2187 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2188 cfqq = NULL;
2189 goto keep_queue;
2190 }
2191
2192 expire:
2193 cfq_slice_expired(cfqd, 0);
2194 new_queue:
2195 /*
2196 * Current queue expired. Check if we have to switch to a new
2197 * service tree
2198 */
2199 if (!new_cfqq)
2200 cfq_choose_cfqg(cfqd);
2201
2202 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2203 keep_queue:
2204 return cfqq;
2205 }
2206
2207 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2208 {
2209 int dispatched = 0;
2210
2211 while (cfqq->next_rq) {
2212 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2213 dispatched++;
2214 }
2215
2216 BUG_ON(!list_empty(&cfqq->fifo));
2217
2218 /* By default cfqq is not expired if it is empty. Do it explicitly */
2219 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2220 return dispatched;
2221 }
2222
2223 /*
2224 * Drain our current requests. Used for barriers and when switching
2225 * io schedulers on-the-fly.
2226 */
2227 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2228 {
2229 struct cfq_queue *cfqq;
2230 int dispatched = 0;
2231
2232 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2233 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2234
2235 cfq_slice_expired(cfqd, 0);
2236 BUG_ON(cfqd->busy_queues);
2237
2238 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2239 return dispatched;
2240 }
2241
2242 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2243 {
2244 unsigned int max_dispatch;
2245
2246 /*
2247 * Drain async requests before we start sync IO
2248 */
2249 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2250 return false;
2251
2252 /*
2253 * If this is an async queue and we have sync IO in flight, let it wait
2254 */
2255 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2256 return false;
2257
2258 max_dispatch = cfqd->cfq_quantum;
2259 if (cfq_class_idle(cfqq))
2260 max_dispatch = 1;
2261
2262 /*
2263 * Does this cfqq already have too much IO in flight?
2264 */
2265 if (cfqq->dispatched >= max_dispatch) {
2266 /*
2267 * idle queue must always only have a single IO in flight
2268 */
2269 if (cfq_class_idle(cfqq))
2270 return false;
2271
2272 /*
2273 * We have other queues, don't allow more IO from this one
2274 */
2275 if (cfqd->busy_queues > 1)
2276 return false;
2277
2278 /*
2279 * Sole queue user, no limit
2280 */
2281 max_dispatch = -1;
2282 }
2283
2284 /*
2285 * Async queues must wait a bit before being allowed dispatch.
2286 * We also ramp up the dispatch depth gradually for async IO,
2287 * based on the last sync IO we serviced
2288 */
2289 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2290 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2291 unsigned int depth;
2292
2293 depth = last_sync / cfqd->cfq_slice[1];
2294 if (!depth && !cfqq->dispatched)
2295 depth = 1;
2296 if (depth < max_dispatch)
2297 max_dispatch = depth;
2298 }
2299
2300 /*
2301 * If we're below the current max, allow a dispatch
2302 */
2303 return cfqq->dispatched < max_dispatch;
2304 }
2305
2306 /*
2307 * Dispatch a request from cfqq, moving them to the request queue
2308 * dispatch list.
2309 */
2310 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2311 {
2312 struct request *rq;
2313
2314 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2315
2316 if (!cfq_may_dispatch(cfqd, cfqq))
2317 return false;
2318
2319 /*
2320 * follow expired path, else get first next available
2321 */
2322 rq = cfq_check_fifo(cfqq);
2323 if (!rq)
2324 rq = cfqq->next_rq;
2325
2326 /*
2327 * insert request into driver dispatch list
2328 */
2329 cfq_dispatch_insert(cfqd->queue, rq);
2330
2331 if (!cfqd->active_cic) {
2332 struct cfq_io_context *cic = RQ_CIC(rq);
2333
2334 atomic_long_inc(&cic->ioc->refcount);
2335 cfqd->active_cic = cic;
2336 }
2337
2338 return true;
2339 }
2340
2341 /*
2342 * Find the cfqq that we need to service and move a request from that to the
2343 * dispatch list
2344 */
2345 static int cfq_dispatch_requests(struct request_queue *q, int force)
2346 {
2347 struct cfq_data *cfqd = q->elevator->elevator_data;
2348 struct cfq_queue *cfqq;
2349
2350 if (!cfqd->busy_queues)
2351 return 0;
2352
2353 if (unlikely(force))
2354 return cfq_forced_dispatch(cfqd);
2355
2356 cfqq = cfq_select_queue(cfqd);
2357 if (!cfqq)
2358 return 0;
2359
2360 /*
2361 * Dispatch a request from this cfqq, if it is allowed
2362 */
2363 if (!cfq_dispatch_request(cfqd, cfqq))
2364 return 0;
2365
2366 cfqq->slice_dispatch++;
2367 cfq_clear_cfqq_must_dispatch(cfqq);
2368
2369 /*
2370 * expire an async queue immediately if it has used up its slice. idle
2371 * queue always expire after 1 dispatch round.
2372 */
2373 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2374 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2375 cfq_class_idle(cfqq))) {
2376 cfqq->slice_end = jiffies + 1;
2377 cfq_slice_expired(cfqd, 0);
2378 }
2379
2380 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2381 return 1;
2382 }
2383
2384 /*
2385 * task holds one reference to the queue, dropped when task exits. each rq
2386 * in-flight on this queue also holds a reference, dropped when rq is freed.
2387 *
2388 * Each cfq queue took a reference on the parent group. Drop it now.
2389 * queue lock must be held here.
2390 */
2391 static void cfq_put_queue(struct cfq_queue *cfqq)
2392 {
2393 struct cfq_data *cfqd = cfqq->cfqd;
2394 struct cfq_group *cfqg, *orig_cfqg;
2395
2396 BUG_ON(atomic_read(&cfqq->ref) <= 0);
2397
2398 if (!atomic_dec_and_test(&cfqq->ref))
2399 return;
2400
2401 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2402 BUG_ON(rb_first(&cfqq->sort_list));
2403 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2404 cfqg = cfqq->cfqg;
2405 orig_cfqg = cfqq->orig_cfqg;
2406
2407 if (unlikely(cfqd->active_queue == cfqq)) {
2408 __cfq_slice_expired(cfqd, cfqq, 0);
2409 cfq_schedule_dispatch(cfqd);
2410 }
2411
2412 BUG_ON(cfq_cfqq_on_rr(cfqq));
2413 kmem_cache_free(cfq_pool, cfqq);
2414 cfq_put_cfqg(cfqg);
2415 if (orig_cfqg)
2416 cfq_put_cfqg(orig_cfqg);
2417 }
2418
2419 /*
2420 * Must always be called with the rcu_read_lock() held
2421 */
2422 static void
2423 __call_for_each_cic(struct io_context *ioc,
2424 void (*func)(struct io_context *, struct cfq_io_context *))
2425 {
2426 struct cfq_io_context *cic;
2427 struct hlist_node *n;
2428
2429 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2430 func(ioc, cic);
2431 }
2432
2433 /*
2434 * Call func for each cic attached to this ioc.
2435 */
2436 static void
2437 call_for_each_cic(struct io_context *ioc,
2438 void (*func)(struct io_context *, struct cfq_io_context *))
2439 {
2440 rcu_read_lock();
2441 __call_for_each_cic(ioc, func);
2442 rcu_read_unlock();
2443 }
2444
2445 static void cfq_cic_free_rcu(struct rcu_head *head)
2446 {
2447 struct cfq_io_context *cic;
2448
2449 cic = container_of(head, struct cfq_io_context, rcu_head);
2450
2451 kmem_cache_free(cfq_ioc_pool, cic);
2452 elv_ioc_count_dec(cfq_ioc_count);
2453
2454 if (ioc_gone) {
2455 /*
2456 * CFQ scheduler is exiting, grab exit lock and check
2457 * the pending io context count. If it hits zero,
2458 * complete ioc_gone and set it back to NULL
2459 */
2460 spin_lock(&ioc_gone_lock);
2461 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2462 complete(ioc_gone);
2463 ioc_gone = NULL;
2464 }
2465 spin_unlock(&ioc_gone_lock);
2466 }
2467 }
2468
2469 static void cfq_cic_free(struct cfq_io_context *cic)
2470 {
2471 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2472 }
2473
2474 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2475 {
2476 unsigned long flags;
2477
2478 BUG_ON(!cic->dead_key);
2479
2480 spin_lock_irqsave(&ioc->lock, flags);
2481 radix_tree_delete(&ioc->radix_root, cic->dead_key);
2482 hlist_del_rcu(&cic->cic_list);
2483 spin_unlock_irqrestore(&ioc->lock, flags);
2484
2485 cfq_cic_free(cic);
2486 }
2487
2488 /*
2489 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2490 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2491 * and ->trim() which is called with the task lock held
2492 */
2493 static void cfq_free_io_context(struct io_context *ioc)
2494 {
2495 /*
2496 * ioc->refcount is zero here, or we are called from elv_unregister(),
2497 * so no more cic's are allowed to be linked into this ioc. So it
2498 * should be ok to iterate over the known list, we will see all cic's
2499 * since no new ones are added.
2500 */
2501 __call_for_each_cic(ioc, cic_free_func);
2502 }
2503
2504 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2505 {
2506 struct cfq_queue *__cfqq, *next;
2507
2508 if (unlikely(cfqq == cfqd->active_queue)) {
2509 __cfq_slice_expired(cfqd, cfqq, 0);
2510 cfq_schedule_dispatch(cfqd);
2511 }
2512
2513 /*
2514 * If this queue was scheduled to merge with another queue, be
2515 * sure to drop the reference taken on that queue (and others in
2516 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2517 */
2518 __cfqq = cfqq->new_cfqq;
2519 while (__cfqq) {
2520 if (__cfqq == cfqq) {
2521 WARN(1, "cfqq->new_cfqq loop detected\n");
2522 break;
2523 }
2524 next = __cfqq->new_cfqq;
2525 cfq_put_queue(__cfqq);
2526 __cfqq = next;
2527 }
2528
2529 cfq_put_queue(cfqq);
2530 }
2531
2532 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2533 struct cfq_io_context *cic)
2534 {
2535 struct io_context *ioc = cic->ioc;
2536
2537 list_del_init(&cic->queue_list);
2538
2539 /*
2540 * Make sure key == NULL is seen for dead queues
2541 */
2542 smp_wmb();
2543 cic->dead_key = (unsigned long) cic->key;
2544 cic->key = NULL;
2545
2546 if (ioc->ioc_data == cic)
2547 rcu_assign_pointer(ioc->ioc_data, NULL);
2548
2549 if (cic->cfqq[BLK_RW_ASYNC]) {
2550 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2551 cic->cfqq[BLK_RW_ASYNC] = NULL;
2552 }
2553
2554 if (cic->cfqq[BLK_RW_SYNC]) {
2555 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2556 cic->cfqq[BLK_RW_SYNC] = NULL;
2557 }
2558 }
2559
2560 static void cfq_exit_single_io_context(struct io_context *ioc,
2561 struct cfq_io_context *cic)
2562 {
2563 struct cfq_data *cfqd = cic->key;
2564
2565 if (cfqd) {
2566 struct request_queue *q = cfqd->queue;
2567 unsigned long flags;
2568
2569 spin_lock_irqsave(q->queue_lock, flags);
2570
2571 /*
2572 * Ensure we get a fresh copy of the ->key to prevent
2573 * race between exiting task and queue
2574 */
2575 smp_read_barrier_depends();
2576 if (cic->key)
2577 __cfq_exit_single_io_context(cfqd, cic);
2578
2579 spin_unlock_irqrestore(q->queue_lock, flags);
2580 }
2581 }
2582
2583 /*
2584 * The process that ioc belongs to has exited, we need to clean up
2585 * and put the internal structures we have that belongs to that process.
2586 */
2587 static void cfq_exit_io_context(struct io_context *ioc)
2588 {
2589 call_for_each_cic(ioc, cfq_exit_single_io_context);
2590 }
2591
2592 static struct cfq_io_context *
2593 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2594 {
2595 struct cfq_io_context *cic;
2596
2597 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2598 cfqd->queue->node);
2599 if (cic) {
2600 cic->last_end_request = jiffies;
2601 INIT_LIST_HEAD(&cic->queue_list);
2602 INIT_HLIST_NODE(&cic->cic_list);
2603 cic->dtor = cfq_free_io_context;
2604 cic->exit = cfq_exit_io_context;
2605 elv_ioc_count_inc(cfq_ioc_count);
2606 }
2607
2608 return cic;
2609 }
2610
2611 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2612 {
2613 struct task_struct *tsk = current;
2614 int ioprio_class;
2615
2616 if (!cfq_cfqq_prio_changed(cfqq))
2617 return;
2618
2619 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2620 switch (ioprio_class) {
2621 default:
2622 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2623 case IOPRIO_CLASS_NONE:
2624 /*
2625 * no prio set, inherit CPU scheduling settings
2626 */
2627 cfqq->ioprio = task_nice_ioprio(tsk);
2628 cfqq->ioprio_class = task_nice_ioclass(tsk);
2629 break;
2630 case IOPRIO_CLASS_RT:
2631 cfqq->ioprio = task_ioprio(ioc);
2632 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2633 break;
2634 case IOPRIO_CLASS_BE:
2635 cfqq->ioprio = task_ioprio(ioc);
2636 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2637 break;
2638 case IOPRIO_CLASS_IDLE:
2639 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2640 cfqq->ioprio = 7;
2641 cfq_clear_cfqq_idle_window(cfqq);
2642 break;
2643 }
2644
2645 /*
2646 * keep track of original prio settings in case we have to temporarily
2647 * elevate the priority of this queue
2648 */
2649 cfqq->org_ioprio = cfqq->ioprio;
2650 cfqq->org_ioprio_class = cfqq->ioprio_class;
2651 cfq_clear_cfqq_prio_changed(cfqq);
2652 }
2653
2654 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2655 {
2656 struct cfq_data *cfqd = cic->key;
2657 struct cfq_queue *cfqq;
2658 unsigned long flags;
2659
2660 if (unlikely(!cfqd))
2661 return;
2662
2663 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2664
2665 cfqq = cic->cfqq[BLK_RW_ASYNC];
2666 if (cfqq) {
2667 struct cfq_queue *new_cfqq;
2668 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2669 GFP_ATOMIC);
2670 if (new_cfqq) {
2671 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2672 cfq_put_queue(cfqq);
2673 }
2674 }
2675
2676 cfqq = cic->cfqq[BLK_RW_SYNC];
2677 if (cfqq)
2678 cfq_mark_cfqq_prio_changed(cfqq);
2679
2680 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2681 }
2682
2683 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2684 {
2685 call_for_each_cic(ioc, changed_ioprio);
2686 ioc->ioprio_changed = 0;
2687 }
2688
2689 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2690 pid_t pid, bool is_sync)
2691 {
2692 RB_CLEAR_NODE(&cfqq->rb_node);
2693 RB_CLEAR_NODE(&cfqq->p_node);
2694 INIT_LIST_HEAD(&cfqq->fifo);
2695
2696 atomic_set(&cfqq->ref, 0);
2697 cfqq->cfqd = cfqd;
2698
2699 cfq_mark_cfqq_prio_changed(cfqq);
2700
2701 if (is_sync) {
2702 if (!cfq_class_idle(cfqq))
2703 cfq_mark_cfqq_idle_window(cfqq);
2704 cfq_mark_cfqq_sync(cfqq);
2705 }
2706 cfqq->pid = pid;
2707 }
2708
2709 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2710 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2711 {
2712 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2713 struct cfq_data *cfqd = cic->key;
2714 unsigned long flags;
2715 struct request_queue *q;
2716
2717 if (unlikely(!cfqd))
2718 return;
2719
2720 q = cfqd->queue;
2721
2722 spin_lock_irqsave(q->queue_lock, flags);
2723
2724 if (sync_cfqq) {
2725 /*
2726 * Drop reference to sync queue. A new sync queue will be
2727 * assigned in new group upon arrival of a fresh request.
2728 */
2729 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2730 cic_set_cfqq(cic, NULL, 1);
2731 cfq_put_queue(sync_cfqq);
2732 }
2733
2734 spin_unlock_irqrestore(q->queue_lock, flags);
2735 }
2736
2737 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2738 {
2739 call_for_each_cic(ioc, changed_cgroup);
2740 ioc->cgroup_changed = 0;
2741 }
2742 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2743
2744 static struct cfq_queue *
2745 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2746 struct io_context *ioc, gfp_t gfp_mask)
2747 {
2748 struct cfq_queue *cfqq, *new_cfqq = NULL;
2749 struct cfq_io_context *cic;
2750 struct cfq_group *cfqg;
2751
2752 retry:
2753 cfqg = cfq_get_cfqg(cfqd, 1);
2754 cic = cfq_cic_lookup(cfqd, ioc);
2755 /* cic always exists here */
2756 cfqq = cic_to_cfqq(cic, is_sync);
2757
2758 /*
2759 * Always try a new alloc if we fell back to the OOM cfqq
2760 * originally, since it should just be a temporary situation.
2761 */
2762 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2763 cfqq = NULL;
2764 if (new_cfqq) {
2765 cfqq = new_cfqq;
2766 new_cfqq = NULL;
2767 } else if (gfp_mask & __GFP_WAIT) {
2768 spin_unlock_irq(cfqd->queue->queue_lock);
2769 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2770 gfp_mask | __GFP_ZERO,
2771 cfqd->queue->node);
2772 spin_lock_irq(cfqd->queue->queue_lock);
2773 if (new_cfqq)
2774 goto retry;
2775 } else {
2776 cfqq = kmem_cache_alloc_node(cfq_pool,
2777 gfp_mask | __GFP_ZERO,
2778 cfqd->queue->node);
2779 }
2780
2781 if (cfqq) {
2782 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2783 cfq_init_prio_data(cfqq, ioc);
2784 cfq_link_cfqq_cfqg(cfqq, cfqg);
2785 cfq_log_cfqq(cfqd, cfqq, "alloced");
2786 } else
2787 cfqq = &cfqd->oom_cfqq;
2788 }
2789
2790 if (new_cfqq)
2791 kmem_cache_free(cfq_pool, new_cfqq);
2792
2793 return cfqq;
2794 }
2795
2796 static struct cfq_queue **
2797 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2798 {
2799 switch (ioprio_class) {
2800 case IOPRIO_CLASS_RT:
2801 return &cfqd->async_cfqq[0][ioprio];
2802 case IOPRIO_CLASS_BE:
2803 return &cfqd->async_cfqq[1][ioprio];
2804 case IOPRIO_CLASS_IDLE:
2805 return &cfqd->async_idle_cfqq;
2806 default:
2807 BUG();
2808 }
2809 }
2810
2811 static struct cfq_queue *
2812 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2813 gfp_t gfp_mask)
2814 {
2815 const int ioprio = task_ioprio(ioc);
2816 const int ioprio_class = task_ioprio_class(ioc);
2817 struct cfq_queue **async_cfqq = NULL;
2818 struct cfq_queue *cfqq = NULL;
2819
2820 if (!is_sync) {
2821 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2822 cfqq = *async_cfqq;
2823 }
2824
2825 if (!cfqq)
2826 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2827
2828 /*
2829 * pin the queue now that it's allocated, scheduler exit will prune it
2830 */
2831 if (!is_sync && !(*async_cfqq)) {
2832 atomic_inc(&cfqq->ref);
2833 *async_cfqq = cfqq;
2834 }
2835
2836 atomic_inc(&cfqq->ref);
2837 return cfqq;
2838 }
2839
2840 /*
2841 * We drop cfq io contexts lazily, so we may find a dead one.
2842 */
2843 static void
2844 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2845 struct cfq_io_context *cic)
2846 {
2847 unsigned long flags;
2848
2849 WARN_ON(!list_empty(&cic->queue_list));
2850
2851 spin_lock_irqsave(&ioc->lock, flags);
2852
2853 BUG_ON(ioc->ioc_data == cic);
2854
2855 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2856 hlist_del_rcu(&cic->cic_list);
2857 spin_unlock_irqrestore(&ioc->lock, flags);
2858
2859 cfq_cic_free(cic);
2860 }
2861
2862 static struct cfq_io_context *
2863 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2864 {
2865 struct cfq_io_context *cic;
2866 unsigned long flags;
2867 void *k;
2868
2869 if (unlikely(!ioc))
2870 return NULL;
2871
2872 rcu_read_lock();
2873
2874 /*
2875 * we maintain a last-hit cache, to avoid browsing over the tree
2876 */
2877 cic = rcu_dereference(ioc->ioc_data);
2878 if (cic && cic->key == cfqd) {
2879 rcu_read_unlock();
2880 return cic;
2881 }
2882
2883 do {
2884 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2885 rcu_read_unlock();
2886 if (!cic)
2887 break;
2888 /* ->key must be copied to avoid race with cfq_exit_queue() */
2889 k = cic->key;
2890 if (unlikely(!k)) {
2891 cfq_drop_dead_cic(cfqd, ioc, cic);
2892 rcu_read_lock();
2893 continue;
2894 }
2895
2896 spin_lock_irqsave(&ioc->lock, flags);
2897 rcu_assign_pointer(ioc->ioc_data, cic);
2898 spin_unlock_irqrestore(&ioc->lock, flags);
2899 break;
2900 } while (1);
2901
2902 return cic;
2903 }
2904
2905 /*
2906 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2907 * the process specific cfq io context when entered from the block layer.
2908 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2909 */
2910 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2911 struct cfq_io_context *cic, gfp_t gfp_mask)
2912 {
2913 unsigned long flags;
2914 int ret;
2915
2916 ret = radix_tree_preload(gfp_mask);
2917 if (!ret) {
2918 cic->ioc = ioc;
2919 cic->key = cfqd;
2920
2921 spin_lock_irqsave(&ioc->lock, flags);
2922 ret = radix_tree_insert(&ioc->radix_root,
2923 (unsigned long) cfqd, cic);
2924 if (!ret)
2925 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2926 spin_unlock_irqrestore(&ioc->lock, flags);
2927
2928 radix_tree_preload_end();
2929
2930 if (!ret) {
2931 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2932 list_add(&cic->queue_list, &cfqd->cic_list);
2933 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2934 }
2935 }
2936
2937 if (ret)
2938 printk(KERN_ERR "cfq: cic link failed!\n");
2939
2940 return ret;
2941 }
2942
2943 /*
2944 * Setup general io context and cfq io context. There can be several cfq
2945 * io contexts per general io context, if this process is doing io to more
2946 * than one device managed by cfq.
2947 */
2948 static struct cfq_io_context *
2949 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2950 {
2951 struct io_context *ioc = NULL;
2952 struct cfq_io_context *cic;
2953
2954 might_sleep_if(gfp_mask & __GFP_WAIT);
2955
2956 ioc = get_io_context(gfp_mask, cfqd->queue->node);
2957 if (!ioc)
2958 return NULL;
2959
2960 cic = cfq_cic_lookup(cfqd, ioc);
2961 if (cic)
2962 goto out;
2963
2964 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2965 if (cic == NULL)
2966 goto err;
2967
2968 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2969 goto err_free;
2970
2971 out:
2972 smp_read_barrier_depends();
2973 if (unlikely(ioc->ioprio_changed))
2974 cfq_ioc_set_ioprio(ioc);
2975
2976 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2977 if (unlikely(ioc->cgroup_changed))
2978 cfq_ioc_set_cgroup(ioc);
2979 #endif
2980 return cic;
2981 err_free:
2982 cfq_cic_free(cic);
2983 err:
2984 put_io_context(ioc);
2985 return NULL;
2986 }
2987
2988 static void
2989 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2990 {
2991 unsigned long elapsed = jiffies - cic->last_end_request;
2992 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2993
2994 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2995 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2996 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2997 }
2998
2999 static void
3000 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3001 struct request *rq)
3002 {
3003 sector_t sdist;
3004 u64 total;
3005
3006 if (!cfqq->last_request_pos)
3007 sdist = 0;
3008 else if (cfqq->last_request_pos < blk_rq_pos(rq))
3009 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3010 else
3011 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3012
3013 /*
3014 * Don't allow the seek distance to get too large from the
3015 * odd fragment, pagein, etc
3016 */
3017 if (cfqq->seek_samples <= 60) /* second&third seek */
3018 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
3019 else
3020 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
3021
3022 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
3023 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
3024 total = cfqq->seek_total + (cfqq->seek_samples/2);
3025 do_div(total, cfqq->seek_samples);
3026 cfqq->seek_mean = (sector_t)total;
3027
3028 /*
3029 * If this cfqq is shared between multiple processes, check to
3030 * make sure that those processes are still issuing I/Os within
3031 * the mean seek distance. If not, it may be time to break the
3032 * queues apart again.
3033 */
3034 if (cfq_cfqq_coop(cfqq)) {
3035 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
3036 cfqq->seeky_start = jiffies;
3037 else if (!CFQQ_SEEKY(cfqq))
3038 cfqq->seeky_start = 0;
3039 }
3040 }
3041
3042 /*
3043 * Disable idle window if the process thinks too long or seeks so much that
3044 * it doesn't matter
3045 */
3046 static void
3047 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3048 struct cfq_io_context *cic)
3049 {
3050 int old_idle, enable_idle;
3051
3052 /*
3053 * Don't idle for async or idle io prio class
3054 */
3055 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3056 return;
3057
3058 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3059
3060 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3061 cfq_mark_cfqq_deep(cfqq);
3062
3063 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3064 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
3065 && CFQQ_SEEKY(cfqq)))
3066 enable_idle = 0;
3067 else if (sample_valid(cic->ttime_samples)) {
3068 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3069 enable_idle = 0;
3070 else
3071 enable_idle = 1;
3072 }
3073
3074 if (old_idle != enable_idle) {
3075 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3076 if (enable_idle)
3077 cfq_mark_cfqq_idle_window(cfqq);
3078 else
3079 cfq_clear_cfqq_idle_window(cfqq);
3080 }
3081 }
3082
3083 /*
3084 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3085 * no or if we aren't sure, a 1 will cause a preempt.
3086 */
3087 static bool
3088 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3089 struct request *rq)
3090 {
3091 struct cfq_queue *cfqq;
3092
3093 cfqq = cfqd->active_queue;
3094 if (!cfqq)
3095 return false;
3096
3097 if (cfq_class_idle(new_cfqq))
3098 return false;
3099
3100 if (cfq_class_idle(cfqq))
3101 return true;
3102
3103 /*
3104 * if the new request is sync, but the currently running queue is
3105 * not, let the sync request have priority.
3106 */
3107 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3108 return true;
3109
3110 if (new_cfqq->cfqg != cfqq->cfqg)
3111 return false;
3112
3113 if (cfq_slice_used(cfqq))
3114 return true;
3115
3116 /* Allow preemption only if we are idling on sync-noidle tree */
3117 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3118 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3119 new_cfqq->service_tree->count == 2 &&
3120 RB_EMPTY_ROOT(&cfqq->sort_list))
3121 return true;
3122
3123 /*
3124 * So both queues are sync. Let the new request get disk time if
3125 * it's a metadata request and the current queue is doing regular IO.
3126 */
3127 if (rq_is_meta(rq) && !cfqq->meta_pending)
3128 return true;
3129
3130 /*
3131 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3132 */
3133 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3134 return true;
3135
3136 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3137 return false;
3138
3139 /*
3140 * if this request is as-good as one we would expect from the
3141 * current cfqq, let it preempt
3142 */
3143 if (cfq_rq_close(cfqd, cfqq, rq))
3144 return true;
3145
3146 return false;
3147 }
3148
3149 /*
3150 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3151 * let it have half of its nominal slice.
3152 */
3153 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3154 {
3155 cfq_log_cfqq(cfqd, cfqq, "preempt");
3156 cfq_slice_expired(cfqd, 1);
3157
3158 /*
3159 * Put the new queue at the front of the of the current list,
3160 * so we know that it will be selected next.
3161 */
3162 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3163
3164 cfq_service_tree_add(cfqd, cfqq, 1);
3165
3166 cfqq->slice_end = 0;
3167 cfq_mark_cfqq_slice_new(cfqq);
3168 }
3169
3170 /*
3171 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3172 * something we should do about it
3173 */
3174 static void
3175 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3176 struct request *rq)
3177 {
3178 struct cfq_io_context *cic = RQ_CIC(rq);
3179
3180 cfqd->rq_queued++;
3181 if (rq_is_meta(rq))
3182 cfqq->meta_pending++;
3183
3184 cfq_update_io_thinktime(cfqd, cic);
3185 cfq_update_io_seektime(cfqd, cfqq, rq);
3186 cfq_update_idle_window(cfqd, cfqq, cic);
3187
3188 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3189
3190 if (cfqq == cfqd->active_queue) {
3191 /*
3192 * Remember that we saw a request from this process, but
3193 * don't start queuing just yet. Otherwise we risk seeing lots
3194 * of tiny requests, because we disrupt the normal plugging
3195 * and merging. If the request is already larger than a single
3196 * page, let it rip immediately. For that case we assume that
3197 * merging is already done. Ditto for a busy system that
3198 * has other work pending, don't risk delaying until the
3199 * idle timer unplug to continue working.
3200 */
3201 if (cfq_cfqq_wait_request(cfqq)) {
3202 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3203 cfqd->busy_queues > 1) {
3204 del_timer(&cfqd->idle_slice_timer);
3205 __blk_run_queue(cfqd->queue);
3206 } else
3207 cfq_mark_cfqq_must_dispatch(cfqq);
3208 }
3209 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3210 /*
3211 * not the active queue - expire current slice if it is
3212 * idle and has expired it's mean thinktime or this new queue
3213 * has some old slice time left and is of higher priority or
3214 * this new queue is RT and the current one is BE
3215 */
3216 cfq_preempt_queue(cfqd, cfqq);
3217 __blk_run_queue(cfqd->queue);
3218 }
3219 }
3220
3221 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3222 {
3223 struct cfq_data *cfqd = q->elevator->elevator_data;
3224 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3225
3226 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3227 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3228
3229 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3230 list_add_tail(&rq->queuelist, &cfqq->fifo);
3231 cfq_add_rq_rb(rq);
3232
3233 cfq_rq_enqueued(cfqd, cfqq, rq);
3234 }
3235
3236 /*
3237 * Update hw_tag based on peak queue depth over 50 samples under
3238 * sufficient load.
3239 */
3240 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3241 {
3242 struct cfq_queue *cfqq = cfqd->active_queue;
3243
3244 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3245 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3246
3247 if (cfqd->hw_tag == 1)
3248 return;
3249
3250 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3251 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
3252 return;
3253
3254 /*
3255 * If active queue hasn't enough requests and can idle, cfq might not
3256 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3257 * case
3258 */
3259 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3260 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3261 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3262 return;
3263
3264 if (cfqd->hw_tag_samples++ < 50)
3265 return;
3266
3267 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3268 cfqd->hw_tag = 1;
3269 else
3270 cfqd->hw_tag = 0;
3271 }
3272
3273 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3274 {
3275 struct cfq_io_context *cic = cfqd->active_cic;
3276
3277 /* If there are other queues in the group, don't wait */
3278 if (cfqq->cfqg->nr_cfqq > 1)
3279 return false;
3280
3281 if (cfq_slice_used(cfqq))
3282 return true;
3283
3284 /* if slice left is less than think time, wait busy */
3285 if (cic && sample_valid(cic->ttime_samples)
3286 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3287 return true;
3288
3289 /*
3290 * If think times is less than a jiffy than ttime_mean=0 and above
3291 * will not be true. It might happen that slice has not expired yet
3292 * but will expire soon (4-5 ns) during select_queue(). To cover the
3293 * case where think time is less than a jiffy, mark the queue wait
3294 * busy if only 1 jiffy is left in the slice.
3295 */
3296 if (cfqq->slice_end - jiffies == 1)
3297 return true;
3298
3299 return false;
3300 }
3301
3302 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3303 {
3304 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3305 struct cfq_data *cfqd = cfqq->cfqd;
3306 const int sync = rq_is_sync(rq);
3307 unsigned long now;
3308
3309 now = jiffies;
3310 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3311
3312 cfq_update_hw_tag(cfqd);
3313
3314 WARN_ON(!cfqd->rq_in_driver[sync]);
3315 WARN_ON(!cfqq->dispatched);
3316 cfqd->rq_in_driver[sync]--;
3317 cfqq->dispatched--;
3318
3319 if (cfq_cfqq_sync(cfqq))
3320 cfqd->sync_flight--;
3321
3322 if (sync) {
3323 RQ_CIC(rq)->last_end_request = now;
3324 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3325 cfqd->last_delayed_sync = now;
3326 }
3327
3328 /*
3329 * If this is the active queue, check if it needs to be expired,
3330 * or if we want to idle in case it has no pending requests.
3331 */
3332 if (cfqd->active_queue == cfqq) {
3333 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3334
3335 if (cfq_cfqq_slice_new(cfqq)) {
3336 cfq_set_prio_slice(cfqd, cfqq);
3337 cfq_clear_cfqq_slice_new(cfqq);
3338 }
3339
3340 /*
3341 * Should we wait for next request to come in before we expire
3342 * the queue.
3343 */
3344 if (cfq_should_wait_busy(cfqd, cfqq)) {
3345 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3346 cfq_mark_cfqq_wait_busy(cfqq);
3347 }
3348
3349 /*
3350 * Idling is not enabled on:
3351 * - expired queues
3352 * - idle-priority queues
3353 * - async queues
3354 * - queues with still some requests queued
3355 * - when there is a close cooperator
3356 */
3357 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3358 cfq_slice_expired(cfqd, 1);
3359 else if (sync && cfqq_empty &&
3360 !cfq_close_cooperator(cfqd, cfqq)) {
3361 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3362 /*
3363 * Idling is enabled for SYNC_WORKLOAD.
3364 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3365 * only if we processed at least one !rq_noidle request
3366 */
3367 if (cfqd->serving_type == SYNC_WORKLOAD
3368 || cfqd->noidle_tree_requires_idle
3369 || cfqq->cfqg->nr_cfqq == 1)
3370 cfq_arm_slice_timer(cfqd);
3371 }
3372 }
3373
3374 if (!rq_in_driver(cfqd))
3375 cfq_schedule_dispatch(cfqd);
3376 }
3377
3378 /*
3379 * we temporarily boost lower priority queues if they are holding fs exclusive
3380 * resources. they are boosted to normal prio (CLASS_BE/4)
3381 */
3382 static void cfq_prio_boost(struct cfq_queue *cfqq)
3383 {
3384 if (has_fs_excl()) {
3385 /*
3386 * boost idle prio on transactions that would lock out other
3387 * users of the filesystem
3388 */
3389 if (cfq_class_idle(cfqq))
3390 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3391 if (cfqq->ioprio > IOPRIO_NORM)
3392 cfqq->ioprio = IOPRIO_NORM;
3393 } else {
3394 /*
3395 * unboost the queue (if needed)
3396 */
3397 cfqq->ioprio_class = cfqq->org_ioprio_class;
3398 cfqq->ioprio = cfqq->org_ioprio;
3399 }
3400 }
3401
3402 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3403 {
3404 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3405 cfq_mark_cfqq_must_alloc_slice(cfqq);
3406 return ELV_MQUEUE_MUST;
3407 }
3408
3409 return ELV_MQUEUE_MAY;
3410 }
3411
3412 static int cfq_may_queue(struct request_queue *q, int rw)
3413 {
3414 struct cfq_data *cfqd = q->elevator->elevator_data;
3415 struct task_struct *tsk = current;
3416 struct cfq_io_context *cic;
3417 struct cfq_queue *cfqq;
3418
3419 /*
3420 * don't force setup of a queue from here, as a call to may_queue
3421 * does not necessarily imply that a request actually will be queued.
3422 * so just lookup a possibly existing queue, or return 'may queue'
3423 * if that fails
3424 */
3425 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3426 if (!cic)
3427 return ELV_MQUEUE_MAY;
3428
3429 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3430 if (cfqq) {
3431 cfq_init_prio_data(cfqq, cic->ioc);
3432 cfq_prio_boost(cfqq);
3433
3434 return __cfq_may_queue(cfqq);
3435 }
3436
3437 return ELV_MQUEUE_MAY;
3438 }
3439
3440 /*
3441 * queue lock held here
3442 */
3443 static void cfq_put_request(struct request *rq)
3444 {
3445 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3446
3447 if (cfqq) {
3448 const int rw = rq_data_dir(rq);
3449
3450 BUG_ON(!cfqq->allocated[rw]);
3451 cfqq->allocated[rw]--;
3452
3453 put_io_context(RQ_CIC(rq)->ioc);
3454
3455 rq->elevator_private = NULL;
3456 rq->elevator_private2 = NULL;
3457
3458 cfq_put_queue(cfqq);
3459 }
3460 }
3461
3462 static struct cfq_queue *
3463 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3464 struct cfq_queue *cfqq)
3465 {
3466 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3467 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3468 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3469 cfq_put_queue(cfqq);
3470 return cic_to_cfqq(cic, 1);
3471 }
3472
3473 static int should_split_cfqq(struct cfq_queue *cfqq)
3474 {
3475 if (cfqq->seeky_start &&
3476 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
3477 return 1;
3478 return 0;
3479 }
3480
3481 /*
3482 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3483 * was the last process referring to said cfqq.
3484 */
3485 static struct cfq_queue *
3486 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3487 {
3488 if (cfqq_process_refs(cfqq) == 1) {
3489 cfqq->seeky_start = 0;
3490 cfqq->pid = current->pid;
3491 cfq_clear_cfqq_coop(cfqq);
3492 return cfqq;
3493 }
3494
3495 cic_set_cfqq(cic, NULL, 1);
3496 cfq_put_queue(cfqq);
3497 return NULL;
3498 }
3499 /*
3500 * Allocate cfq data structures associated with this request.
3501 */
3502 static int
3503 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3504 {
3505 struct cfq_data *cfqd = q->elevator->elevator_data;
3506 struct cfq_io_context *cic;
3507 const int rw = rq_data_dir(rq);
3508 const bool is_sync = rq_is_sync(rq);
3509 struct cfq_queue *cfqq;
3510 unsigned long flags;
3511
3512 might_sleep_if(gfp_mask & __GFP_WAIT);
3513
3514 cic = cfq_get_io_context(cfqd, gfp_mask);
3515
3516 spin_lock_irqsave(q->queue_lock, flags);
3517
3518 if (!cic)
3519 goto queue_fail;
3520
3521 new_queue:
3522 cfqq = cic_to_cfqq(cic, is_sync);
3523 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3524 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3525 cic_set_cfqq(cic, cfqq, is_sync);
3526 } else {
3527 /*
3528 * If the queue was seeky for too long, break it apart.
3529 */
3530 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3531 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3532 cfqq = split_cfqq(cic, cfqq);
3533 if (!cfqq)
3534 goto new_queue;
3535 }
3536
3537 /*
3538 * Check to see if this queue is scheduled to merge with
3539 * another, closely cooperating queue. The merging of
3540 * queues happens here as it must be done in process context.
3541 * The reference on new_cfqq was taken in merge_cfqqs.
3542 */
3543 if (cfqq->new_cfqq)
3544 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3545 }
3546
3547 cfqq->allocated[rw]++;
3548 atomic_inc(&cfqq->ref);
3549
3550 spin_unlock_irqrestore(q->queue_lock, flags);
3551
3552 rq->elevator_private = cic;
3553 rq->elevator_private2 = cfqq;
3554 return 0;
3555
3556 queue_fail:
3557 if (cic)
3558 put_io_context(cic->ioc);
3559
3560 cfq_schedule_dispatch(cfqd);
3561 spin_unlock_irqrestore(q->queue_lock, flags);
3562 cfq_log(cfqd, "set_request fail");
3563 return 1;
3564 }
3565
3566 static void cfq_kick_queue(struct work_struct *work)
3567 {
3568 struct cfq_data *cfqd =
3569 container_of(work, struct cfq_data, unplug_work);
3570 struct request_queue *q = cfqd->queue;
3571
3572 spin_lock_irq(q->queue_lock);
3573 __blk_run_queue(cfqd->queue);
3574 spin_unlock_irq(q->queue_lock);
3575 }
3576
3577 /*
3578 * Timer running if the active_queue is currently idling inside its time slice
3579 */
3580 static void cfq_idle_slice_timer(unsigned long data)
3581 {
3582 struct cfq_data *cfqd = (struct cfq_data *) data;
3583 struct cfq_queue *cfqq;
3584 unsigned long flags;
3585 int timed_out = 1;
3586
3587 cfq_log(cfqd, "idle timer fired");
3588
3589 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3590
3591 cfqq = cfqd->active_queue;
3592 if (cfqq) {
3593 timed_out = 0;
3594
3595 /*
3596 * We saw a request before the queue expired, let it through
3597 */
3598 if (cfq_cfqq_must_dispatch(cfqq))
3599 goto out_kick;
3600
3601 /*
3602 * expired
3603 */
3604 if (cfq_slice_used(cfqq))
3605 goto expire;
3606
3607 /*
3608 * only expire and reinvoke request handler, if there are
3609 * other queues with pending requests
3610 */
3611 if (!cfqd->busy_queues)
3612 goto out_cont;
3613
3614 /*
3615 * not expired and it has a request pending, let it dispatch
3616 */
3617 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3618 goto out_kick;
3619
3620 /*
3621 * Queue depth flag is reset only when the idle didn't succeed
3622 */
3623 cfq_clear_cfqq_deep(cfqq);
3624 }
3625 expire:
3626 cfq_slice_expired(cfqd, timed_out);
3627 out_kick:
3628 cfq_schedule_dispatch(cfqd);
3629 out_cont:
3630 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3631 }
3632
3633 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3634 {
3635 del_timer_sync(&cfqd->idle_slice_timer);
3636 cancel_work_sync(&cfqd->unplug_work);
3637 }
3638
3639 static void cfq_put_async_queues(struct cfq_data *cfqd)
3640 {
3641 int i;
3642
3643 for (i = 0; i < IOPRIO_BE_NR; i++) {
3644 if (cfqd->async_cfqq[0][i])
3645 cfq_put_queue(cfqd->async_cfqq[0][i]);
3646 if (cfqd->async_cfqq[1][i])
3647 cfq_put_queue(cfqd->async_cfqq[1][i]);
3648 }
3649
3650 if (cfqd->async_idle_cfqq)
3651 cfq_put_queue(cfqd->async_idle_cfqq);
3652 }
3653
3654 static void cfq_cfqd_free(struct rcu_head *head)
3655 {
3656 kfree(container_of(head, struct cfq_data, rcu));
3657 }
3658
3659 static void cfq_exit_queue(struct elevator_queue *e)
3660 {
3661 struct cfq_data *cfqd = e->elevator_data;
3662 struct request_queue *q = cfqd->queue;
3663
3664 cfq_shutdown_timer_wq(cfqd);
3665
3666 spin_lock_irq(q->queue_lock);
3667
3668 if (cfqd->active_queue)
3669 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3670
3671 while (!list_empty(&cfqd->cic_list)) {
3672 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3673 struct cfq_io_context,
3674 queue_list);
3675
3676 __cfq_exit_single_io_context(cfqd, cic);
3677 }
3678
3679 cfq_put_async_queues(cfqd);
3680 cfq_release_cfq_groups(cfqd);
3681 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3682
3683 spin_unlock_irq(q->queue_lock);
3684
3685 cfq_shutdown_timer_wq(cfqd);
3686
3687 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3688 call_rcu(&cfqd->rcu, cfq_cfqd_free);
3689 }
3690
3691 static void *cfq_init_queue(struct request_queue *q)
3692 {
3693 struct cfq_data *cfqd;
3694 int i, j;
3695 struct cfq_group *cfqg;
3696 struct cfq_rb_root *st;
3697
3698 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3699 if (!cfqd)
3700 return NULL;
3701
3702 /* Init root service tree */
3703 cfqd->grp_service_tree = CFQ_RB_ROOT;
3704
3705 /* Init root group */
3706 cfqg = &cfqd->root_group;
3707 for_each_cfqg_st(cfqg, i, j, st)
3708 *st = CFQ_RB_ROOT;
3709 RB_CLEAR_NODE(&cfqg->rb_node);
3710
3711 /* Give preference to root group over other groups */
3712 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3713
3714 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3715 /*
3716 * Take a reference to root group which we never drop. This is just
3717 * to make sure that cfq_put_cfqg() does not try to kfree root group
3718 */
3719 atomic_set(&cfqg->ref, 1);
3720 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3721 0);
3722 #endif
3723 /*
3724 * Not strictly needed (since RB_ROOT just clears the node and we
3725 * zeroed cfqd on alloc), but better be safe in case someone decides
3726 * to add magic to the rb code
3727 */
3728 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3729 cfqd->prio_trees[i] = RB_ROOT;
3730
3731 /*
3732 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3733 * Grab a permanent reference to it, so that the normal code flow
3734 * will not attempt to free it.
3735 */
3736 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3737 atomic_inc(&cfqd->oom_cfqq.ref);
3738 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3739
3740 INIT_LIST_HEAD(&cfqd->cic_list);
3741
3742 cfqd->queue = q;
3743
3744 init_timer(&cfqd->idle_slice_timer);
3745 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3746 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3747
3748 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3749
3750 cfqd->cfq_quantum = cfq_quantum;
3751 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3752 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3753 cfqd->cfq_back_max = cfq_back_max;
3754 cfqd->cfq_back_penalty = cfq_back_penalty;
3755 cfqd->cfq_slice[0] = cfq_slice_async;
3756 cfqd->cfq_slice[1] = cfq_slice_sync;
3757 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3758 cfqd->cfq_slice_idle = cfq_slice_idle;
3759 cfqd->cfq_latency = 1;
3760 cfqd->cfq_group_isolation = 0;
3761 cfqd->hw_tag = -1;
3762 /*
3763 * we optimistically start assuming sync ops weren't delayed in last
3764 * second, in order to have larger depth for async operations.
3765 */
3766 cfqd->last_delayed_sync = jiffies - HZ;
3767 INIT_RCU_HEAD(&cfqd->rcu);
3768 return cfqd;
3769 }
3770
3771 static void cfq_slab_kill(void)
3772 {
3773 /*
3774 * Caller already ensured that pending RCU callbacks are completed,
3775 * so we should have no busy allocations at this point.
3776 */
3777 if (cfq_pool)
3778 kmem_cache_destroy(cfq_pool);
3779 if (cfq_ioc_pool)
3780 kmem_cache_destroy(cfq_ioc_pool);
3781 }
3782
3783 static int __init cfq_slab_setup(void)
3784 {
3785 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3786 if (!cfq_pool)
3787 goto fail;
3788
3789 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3790 if (!cfq_ioc_pool)
3791 goto fail;
3792
3793 return 0;
3794 fail:
3795 cfq_slab_kill();
3796 return -ENOMEM;
3797 }
3798
3799 /*
3800 * sysfs parts below -->
3801 */
3802 static ssize_t
3803 cfq_var_show(unsigned int var, char *page)
3804 {
3805 return sprintf(page, "%d\n", var);
3806 }
3807
3808 static ssize_t
3809 cfq_var_store(unsigned int *var, const char *page, size_t count)
3810 {
3811 char *p = (char *) page;
3812
3813 *var = simple_strtoul(p, &p, 10);
3814 return count;
3815 }
3816
3817 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3818 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3819 { \
3820 struct cfq_data *cfqd = e->elevator_data; \
3821 unsigned int __data = __VAR; \
3822 if (__CONV) \
3823 __data = jiffies_to_msecs(__data); \
3824 return cfq_var_show(__data, (page)); \
3825 }
3826 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3827 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3828 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3829 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3830 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3831 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3832 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3833 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3834 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3835 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3836 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3837 #undef SHOW_FUNCTION
3838
3839 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3840 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3841 { \
3842 struct cfq_data *cfqd = e->elevator_data; \
3843 unsigned int __data; \
3844 int ret = cfq_var_store(&__data, (page), count); \
3845 if (__data < (MIN)) \
3846 __data = (MIN); \
3847 else if (__data > (MAX)) \
3848 __data = (MAX); \
3849 if (__CONV) \
3850 *(__PTR) = msecs_to_jiffies(__data); \
3851 else \
3852 *(__PTR) = __data; \
3853 return ret; \
3854 }
3855 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3856 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3857 UINT_MAX, 1);
3858 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3859 UINT_MAX, 1);
3860 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3861 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3862 UINT_MAX, 0);
3863 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3864 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3865 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3866 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3867 UINT_MAX, 0);
3868 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3869 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3870 #undef STORE_FUNCTION
3871
3872 #define CFQ_ATTR(name) \
3873 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3874
3875 static struct elv_fs_entry cfq_attrs[] = {
3876 CFQ_ATTR(quantum),
3877 CFQ_ATTR(fifo_expire_sync),
3878 CFQ_ATTR(fifo_expire_async),
3879 CFQ_ATTR(back_seek_max),
3880 CFQ_ATTR(back_seek_penalty),
3881 CFQ_ATTR(slice_sync),
3882 CFQ_ATTR(slice_async),
3883 CFQ_ATTR(slice_async_rq),
3884 CFQ_ATTR(slice_idle),
3885 CFQ_ATTR(low_latency),
3886 CFQ_ATTR(group_isolation),
3887 __ATTR_NULL
3888 };
3889
3890 static struct elevator_type iosched_cfq = {
3891 .ops = {
3892 .elevator_merge_fn = cfq_merge,
3893 .elevator_merged_fn = cfq_merged_request,
3894 .elevator_merge_req_fn = cfq_merged_requests,
3895 .elevator_allow_merge_fn = cfq_allow_merge,
3896 .elevator_dispatch_fn = cfq_dispatch_requests,
3897 .elevator_add_req_fn = cfq_insert_request,
3898 .elevator_activate_req_fn = cfq_activate_request,
3899 .elevator_deactivate_req_fn = cfq_deactivate_request,
3900 .elevator_queue_empty_fn = cfq_queue_empty,
3901 .elevator_completed_req_fn = cfq_completed_request,
3902 .elevator_former_req_fn = elv_rb_former_request,
3903 .elevator_latter_req_fn = elv_rb_latter_request,
3904 .elevator_set_req_fn = cfq_set_request,
3905 .elevator_put_req_fn = cfq_put_request,
3906 .elevator_may_queue_fn = cfq_may_queue,
3907 .elevator_init_fn = cfq_init_queue,
3908 .elevator_exit_fn = cfq_exit_queue,
3909 .trim = cfq_free_io_context,
3910 },
3911 .elevator_attrs = cfq_attrs,
3912 .elevator_name = "cfq",
3913 .elevator_owner = THIS_MODULE,
3914 };
3915
3916 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3917 static struct blkio_policy_type blkio_policy_cfq = {
3918 .ops = {
3919 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3920 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3921 },
3922 };
3923 #else
3924 static struct blkio_policy_type blkio_policy_cfq;
3925 #endif
3926
3927 static int __init cfq_init(void)
3928 {
3929 /*
3930 * could be 0 on HZ < 1000 setups
3931 */
3932 if (!cfq_slice_async)
3933 cfq_slice_async = 1;
3934 if (!cfq_slice_idle)
3935 cfq_slice_idle = 1;
3936
3937 if (cfq_slab_setup())
3938 return -ENOMEM;
3939
3940 elv_register(&iosched_cfq);
3941 blkio_policy_register(&blkio_policy_cfq);
3942
3943 return 0;
3944 }
3945
3946 static void __exit cfq_exit(void)
3947 {
3948 DECLARE_COMPLETION_ONSTACK(all_gone);
3949 blkio_policy_unregister(&blkio_policy_cfq);
3950 elv_unregister(&iosched_cfq);
3951 ioc_gone = &all_gone;
3952 /* ioc_gone's update must be visible before reading ioc_count */
3953 smp_wmb();
3954
3955 /*
3956 * this also protects us from entering cfq_slab_kill() with
3957 * pending RCU callbacks
3958 */
3959 if (elv_ioc_count_read(cfq_ioc_count))
3960 wait_for_completion(&all_gone);
3961 cfq_slab_kill();
3962 }
3963
3964 module_init(cfq_init);
3965 module_exit(cfq_exit);
3966
3967 MODULE_AUTHOR("Jens Axboe");
3968 MODULE_LICENSE("GPL");
3969 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");