]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/cfq-iosched.c
blkio: Propagate cgroup weight updation to cfq groups
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
17
18 /*
19 * tunables
20 */
21 /* max queue in one round of service */
22 static const int cfq_quantum = 4;
23 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max = 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty = 2;
28 static const int cfq_slice_sync = HZ / 10;
29 static int cfq_slice_async = HZ / 25;
30 static const int cfq_slice_async_rq = 2;
31 static int cfq_slice_idle = HZ / 125;
32 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33 static const int cfq_hist_divisor = 4;
34
35 /*
36 * offset from end of service tree
37 */
38 #define CFQ_IDLE_DELAY (HZ / 5)
39
40 /*
41 * below this threshold, we consider thinktime immediate
42 */
43 #define CFQ_MIN_TT (2)
44
45 /*
46 * Allow merged cfqqs to perform this amount of seeky I/O before
47 * deciding to break the queues up again.
48 */
49 #define CFQQ_COOP_TOUT (HZ)
50
51 #define CFQ_SLICE_SCALE (5)
52 #define CFQ_HW_QUEUE_MIN (5)
53 #define CFQ_SERVICE_SHIFT 12
54
55 #define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
57 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
58
59 static struct kmem_cache *cfq_pool;
60 static struct kmem_cache *cfq_ioc_pool;
61
62 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63 static struct completion *ioc_gone;
64 static DEFINE_SPINLOCK(ioc_gone_lock);
65
66 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
67 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
68 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69
70 #define sample_valid(samples) ((samples) > 80)
71 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
72
73 /*
74 * Most of our rbtree usage is for sorting with min extraction, so
75 * if we cache the leftmost node we don't have to walk down the tree
76 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77 * move this into the elevator for the rq sorting as well.
78 */
79 struct cfq_rb_root {
80 struct rb_root rb;
81 struct rb_node *left;
82 unsigned count;
83 u64 min_vdisktime;
84 struct rb_node *active;
85 unsigned total_weight;
86 };
87 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
88
89 /*
90 * Per process-grouping structure
91 */
92 struct cfq_queue {
93 /* reference count */
94 atomic_t ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
117
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
120 /* time when first request from queue completed and slice started. */
121 unsigned long slice_start;
122 unsigned long slice_end;
123 long slice_resid;
124 unsigned int slice_dispatch;
125
126 /* pending metadata requests */
127 int meta_pending;
128 /* number of requests that are on the dispatch list or inside driver */
129 int dispatched;
130
131 /* io prio of this group */
132 unsigned short ioprio, org_ioprio;
133 unsigned short ioprio_class, org_ioprio_class;
134
135 unsigned int seek_samples;
136 u64 seek_total;
137 sector_t seek_mean;
138 sector_t last_request_pos;
139 unsigned long seeky_start;
140
141 pid_t pid;
142
143 struct cfq_rb_root *service_tree;
144 struct cfq_queue *new_cfqq;
145 struct cfq_group *cfqg;
146 /* Sectors dispatched in current dispatch round */
147 unsigned long nr_sectors;
148 };
149
150 /*
151 * First index in the service_trees.
152 * IDLE is handled separately, so it has negative index
153 */
154 enum wl_prio_t {
155 BE_WORKLOAD = 0,
156 RT_WORKLOAD = 1,
157 IDLE_WORKLOAD = 2,
158 };
159
160 /*
161 * Second index in the service_trees.
162 */
163 enum wl_type_t {
164 ASYNC_WORKLOAD = 0,
165 SYNC_NOIDLE_WORKLOAD = 1,
166 SYNC_WORKLOAD = 2
167 };
168
169 /* This is per cgroup per device grouping structure */
170 struct cfq_group {
171 /* group service_tree member */
172 struct rb_node rb_node;
173
174 /* group service_tree key */
175 u64 vdisktime;
176 unsigned int weight;
177 bool on_st;
178
179 /* number of cfqq currently on this group */
180 int nr_cfqq;
181
182 /* Per group busy queus average. Useful for workload slice calc. */
183 unsigned int busy_queues_avg[2];
184 /*
185 * rr lists of queues with requests, onle rr for each priority class.
186 * Counts are embedded in the cfq_rb_root
187 */
188 struct cfq_rb_root service_trees[2][3];
189 struct cfq_rb_root service_tree_idle;
190
191 unsigned long saved_workload_slice;
192 enum wl_type_t saved_workload;
193 enum wl_prio_t saved_serving_prio;
194 struct blkio_group blkg;
195 #ifdef CONFIG_CFQ_GROUP_IOSCHED
196 struct hlist_node cfqd_node;
197 atomic_t ref;
198 #endif
199 };
200
201 /*
202 * Per block device queue structure
203 */
204 struct cfq_data {
205 struct request_queue *queue;
206 /* Root service tree for cfq_groups */
207 struct cfq_rb_root grp_service_tree;
208 struct cfq_group root_group;
209 /* Number of active cfq groups on group service tree */
210 int nr_groups;
211
212 /*
213 * The priority currently being served
214 */
215 enum wl_prio_t serving_prio;
216 enum wl_type_t serving_type;
217 unsigned long workload_expires;
218 struct cfq_group *serving_group;
219 bool noidle_tree_requires_idle;
220
221 /*
222 * Each priority tree is sorted by next_request position. These
223 * trees are used when determining if two or more queues are
224 * interleaving requests (see cfq_close_cooperator).
225 */
226 struct rb_root prio_trees[CFQ_PRIO_LISTS];
227
228 unsigned int busy_queues;
229
230 int rq_in_driver[2];
231 int sync_flight;
232
233 /*
234 * queue-depth detection
235 */
236 int rq_queued;
237 int hw_tag;
238 /*
239 * hw_tag can be
240 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
241 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
242 * 0 => no NCQ
243 */
244 int hw_tag_est_depth;
245 unsigned int hw_tag_samples;
246
247 /*
248 * idle window management
249 */
250 struct timer_list idle_slice_timer;
251 struct work_struct unplug_work;
252
253 struct cfq_queue *active_queue;
254 struct cfq_io_context *active_cic;
255
256 /*
257 * async queue for each priority case
258 */
259 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
260 struct cfq_queue *async_idle_cfqq;
261
262 sector_t last_position;
263
264 /*
265 * tunables, see top of file
266 */
267 unsigned int cfq_quantum;
268 unsigned int cfq_fifo_expire[2];
269 unsigned int cfq_back_penalty;
270 unsigned int cfq_back_max;
271 unsigned int cfq_slice[2];
272 unsigned int cfq_slice_async_rq;
273 unsigned int cfq_slice_idle;
274 unsigned int cfq_latency;
275
276 struct list_head cic_list;
277
278 /*
279 * Fallback dummy cfqq for extreme OOM conditions
280 */
281 struct cfq_queue oom_cfqq;
282
283 unsigned long last_end_sync_rq;
284
285 /* List of cfq groups being managed on this device*/
286 struct hlist_head cfqg_list;
287 };
288
289 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
290
291 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
292 enum wl_prio_t prio,
293 enum wl_type_t type,
294 struct cfq_data *cfqd)
295 {
296 if (!cfqg)
297 return NULL;
298
299 if (prio == IDLE_WORKLOAD)
300 return &cfqg->service_tree_idle;
301
302 return &cfqg->service_trees[prio][type];
303 }
304
305 enum cfqq_state_flags {
306 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
307 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
308 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
309 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
310 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
311 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
312 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
313 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
314 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
315 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
316 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
317 };
318
319 #define CFQ_CFQQ_FNS(name) \
320 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
321 { \
322 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
323 } \
324 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
325 { \
326 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
327 } \
328 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
329 { \
330 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
331 }
332
333 CFQ_CFQQ_FNS(on_rr);
334 CFQ_CFQQ_FNS(wait_request);
335 CFQ_CFQQ_FNS(must_dispatch);
336 CFQ_CFQQ_FNS(must_alloc_slice);
337 CFQ_CFQQ_FNS(fifo_expire);
338 CFQ_CFQQ_FNS(idle_window);
339 CFQ_CFQQ_FNS(prio_changed);
340 CFQ_CFQQ_FNS(slice_new);
341 CFQ_CFQQ_FNS(sync);
342 CFQ_CFQQ_FNS(coop);
343 CFQ_CFQQ_FNS(deep);
344 #undef CFQ_CFQQ_FNS
345
346 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
347 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
348 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
349 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
350 blkg_path(&(cfqq)->cfqg->blkg), ##args);
351
352 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
353 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
354 blkg_path(&(cfqg)->blkg), ##args); \
355
356 #else
357 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
358 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
359 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
360 #endif
361 #define cfq_log(cfqd, fmt, args...) \
362 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
363
364 /* Traverses through cfq group service trees */
365 #define for_each_cfqg_st(cfqg, i, j, st) \
366 for (i = 0; i <= IDLE_WORKLOAD; i++) \
367 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
368 : &cfqg->service_tree_idle; \
369 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
370 (i == IDLE_WORKLOAD && j == 0); \
371 j++, st = i < IDLE_WORKLOAD ? \
372 &cfqg->service_trees[i][j]: NULL) \
373
374
375 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
376 {
377 if (cfq_class_idle(cfqq))
378 return IDLE_WORKLOAD;
379 if (cfq_class_rt(cfqq))
380 return RT_WORKLOAD;
381 return BE_WORKLOAD;
382 }
383
384
385 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
386 {
387 if (!cfq_cfqq_sync(cfqq))
388 return ASYNC_WORKLOAD;
389 if (!cfq_cfqq_idle_window(cfqq))
390 return SYNC_NOIDLE_WORKLOAD;
391 return SYNC_WORKLOAD;
392 }
393
394 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
395 struct cfq_data *cfqd,
396 struct cfq_group *cfqg)
397 {
398 if (wl == IDLE_WORKLOAD)
399 return cfqg->service_tree_idle.count;
400
401 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
402 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
403 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
404 }
405
406 static void cfq_dispatch_insert(struct request_queue *, struct request *);
407 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
408 struct io_context *, gfp_t);
409 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
410 struct io_context *);
411
412 static inline int rq_in_driver(struct cfq_data *cfqd)
413 {
414 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
415 }
416
417 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
418 bool is_sync)
419 {
420 return cic->cfqq[is_sync];
421 }
422
423 static inline void cic_set_cfqq(struct cfq_io_context *cic,
424 struct cfq_queue *cfqq, bool is_sync)
425 {
426 cic->cfqq[is_sync] = cfqq;
427 }
428
429 /*
430 * We regard a request as SYNC, if it's either a read or has the SYNC bit
431 * set (in which case it could also be direct WRITE).
432 */
433 static inline bool cfq_bio_sync(struct bio *bio)
434 {
435 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
436 }
437
438 /*
439 * scheduler run of queue, if there are requests pending and no one in the
440 * driver that will restart queueing
441 */
442 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
443 {
444 if (cfqd->busy_queues) {
445 cfq_log(cfqd, "schedule dispatch");
446 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
447 }
448 }
449
450 static int cfq_queue_empty(struct request_queue *q)
451 {
452 struct cfq_data *cfqd = q->elevator->elevator_data;
453
454 return !cfqd->rq_queued;
455 }
456
457 /*
458 * Scale schedule slice based on io priority. Use the sync time slice only
459 * if a queue is marked sync and has sync io queued. A sync queue with async
460 * io only, should not get full sync slice length.
461 */
462 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
463 unsigned short prio)
464 {
465 const int base_slice = cfqd->cfq_slice[sync];
466
467 WARN_ON(prio >= IOPRIO_BE_NR);
468
469 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
470 }
471
472 static inline int
473 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
474 {
475 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
476 }
477
478 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
479 {
480 u64 d = delta << CFQ_SERVICE_SHIFT;
481
482 d = d * BLKIO_WEIGHT_DEFAULT;
483 do_div(d, cfqg->weight);
484 return d;
485 }
486
487 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
488 {
489 s64 delta = (s64)(vdisktime - min_vdisktime);
490 if (delta > 0)
491 min_vdisktime = vdisktime;
492
493 return min_vdisktime;
494 }
495
496 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
497 {
498 s64 delta = (s64)(vdisktime - min_vdisktime);
499 if (delta < 0)
500 min_vdisktime = vdisktime;
501
502 return min_vdisktime;
503 }
504
505 static void update_min_vdisktime(struct cfq_rb_root *st)
506 {
507 u64 vdisktime = st->min_vdisktime;
508 struct cfq_group *cfqg;
509
510 if (st->active) {
511 cfqg = rb_entry_cfqg(st->active);
512 vdisktime = cfqg->vdisktime;
513 }
514
515 if (st->left) {
516 cfqg = rb_entry_cfqg(st->left);
517 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
518 }
519
520 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
521 }
522
523 /*
524 * get averaged number of queues of RT/BE priority.
525 * average is updated, with a formula that gives more weight to higher numbers,
526 * to quickly follows sudden increases and decrease slowly
527 */
528
529 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
530 struct cfq_group *cfqg, bool rt)
531 {
532 unsigned min_q, max_q;
533 unsigned mult = cfq_hist_divisor - 1;
534 unsigned round = cfq_hist_divisor / 2;
535 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
536
537 min_q = min(cfqg->busy_queues_avg[rt], busy);
538 max_q = max(cfqg->busy_queues_avg[rt], busy);
539 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
540 cfq_hist_divisor;
541 return cfqg->busy_queues_avg[rt];
542 }
543
544 static inline unsigned
545 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
546 {
547 struct cfq_rb_root *st = &cfqd->grp_service_tree;
548
549 return cfq_target_latency * cfqg->weight / st->total_weight;
550 }
551
552 static inline void
553 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
554 {
555 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
556 if (cfqd->cfq_latency) {
557 /*
558 * interested queues (we consider only the ones with the same
559 * priority class in the cfq group)
560 */
561 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
562 cfq_class_rt(cfqq));
563 unsigned sync_slice = cfqd->cfq_slice[1];
564 unsigned expect_latency = sync_slice * iq;
565 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
566
567 if (expect_latency > group_slice) {
568 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
569 /* scale low_slice according to IO priority
570 * and sync vs async */
571 unsigned low_slice =
572 min(slice, base_low_slice * slice / sync_slice);
573 /* the adapted slice value is scaled to fit all iqs
574 * into the target latency */
575 slice = max(slice * group_slice / expect_latency,
576 low_slice);
577 }
578 }
579 cfqq->slice_start = jiffies;
580 cfqq->slice_end = jiffies + slice;
581 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
582 }
583
584 /*
585 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
586 * isn't valid until the first request from the dispatch is activated
587 * and the slice time set.
588 */
589 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
590 {
591 if (cfq_cfqq_slice_new(cfqq))
592 return 0;
593 if (time_before(jiffies, cfqq->slice_end))
594 return 0;
595
596 return 1;
597 }
598
599 /*
600 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
601 * We choose the request that is closest to the head right now. Distance
602 * behind the head is penalized and only allowed to a certain extent.
603 */
604 static struct request *
605 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
606 {
607 sector_t s1, s2, d1 = 0, d2 = 0;
608 unsigned long back_max;
609 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
610 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
611 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
612
613 if (rq1 == NULL || rq1 == rq2)
614 return rq2;
615 if (rq2 == NULL)
616 return rq1;
617
618 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
619 return rq1;
620 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
621 return rq2;
622 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
623 return rq1;
624 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
625 return rq2;
626
627 s1 = blk_rq_pos(rq1);
628 s2 = blk_rq_pos(rq2);
629
630 /*
631 * by definition, 1KiB is 2 sectors
632 */
633 back_max = cfqd->cfq_back_max * 2;
634
635 /*
636 * Strict one way elevator _except_ in the case where we allow
637 * short backward seeks which are biased as twice the cost of a
638 * similar forward seek.
639 */
640 if (s1 >= last)
641 d1 = s1 - last;
642 else if (s1 + back_max >= last)
643 d1 = (last - s1) * cfqd->cfq_back_penalty;
644 else
645 wrap |= CFQ_RQ1_WRAP;
646
647 if (s2 >= last)
648 d2 = s2 - last;
649 else if (s2 + back_max >= last)
650 d2 = (last - s2) * cfqd->cfq_back_penalty;
651 else
652 wrap |= CFQ_RQ2_WRAP;
653
654 /* Found required data */
655
656 /*
657 * By doing switch() on the bit mask "wrap" we avoid having to
658 * check two variables for all permutations: --> faster!
659 */
660 switch (wrap) {
661 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
662 if (d1 < d2)
663 return rq1;
664 else if (d2 < d1)
665 return rq2;
666 else {
667 if (s1 >= s2)
668 return rq1;
669 else
670 return rq2;
671 }
672
673 case CFQ_RQ2_WRAP:
674 return rq1;
675 case CFQ_RQ1_WRAP:
676 return rq2;
677 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
678 default:
679 /*
680 * Since both rqs are wrapped,
681 * start with the one that's further behind head
682 * (--> only *one* back seek required),
683 * since back seek takes more time than forward.
684 */
685 if (s1 <= s2)
686 return rq1;
687 else
688 return rq2;
689 }
690 }
691
692 /*
693 * The below is leftmost cache rbtree addon
694 */
695 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
696 {
697 /* Service tree is empty */
698 if (!root->count)
699 return NULL;
700
701 if (!root->left)
702 root->left = rb_first(&root->rb);
703
704 if (root->left)
705 return rb_entry(root->left, struct cfq_queue, rb_node);
706
707 return NULL;
708 }
709
710 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
711 {
712 if (!root->left)
713 root->left = rb_first(&root->rb);
714
715 if (root->left)
716 return rb_entry_cfqg(root->left);
717
718 return NULL;
719 }
720
721 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
722 {
723 rb_erase(n, root);
724 RB_CLEAR_NODE(n);
725 }
726
727 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
728 {
729 if (root->left == n)
730 root->left = NULL;
731 rb_erase_init(n, &root->rb);
732 --root->count;
733 }
734
735 /*
736 * would be nice to take fifo expire time into account as well
737 */
738 static struct request *
739 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
740 struct request *last)
741 {
742 struct rb_node *rbnext = rb_next(&last->rb_node);
743 struct rb_node *rbprev = rb_prev(&last->rb_node);
744 struct request *next = NULL, *prev = NULL;
745
746 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
747
748 if (rbprev)
749 prev = rb_entry_rq(rbprev);
750
751 if (rbnext)
752 next = rb_entry_rq(rbnext);
753 else {
754 rbnext = rb_first(&cfqq->sort_list);
755 if (rbnext && rbnext != &last->rb_node)
756 next = rb_entry_rq(rbnext);
757 }
758
759 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
760 }
761
762 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
763 struct cfq_queue *cfqq)
764 {
765 /*
766 * just an approximation, should be ok.
767 */
768 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
769 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
770 }
771
772 static inline s64
773 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
774 {
775 return cfqg->vdisktime - st->min_vdisktime;
776 }
777
778 static void
779 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
780 {
781 struct rb_node **node = &st->rb.rb_node;
782 struct rb_node *parent = NULL;
783 struct cfq_group *__cfqg;
784 s64 key = cfqg_key(st, cfqg);
785 int left = 1;
786
787 while (*node != NULL) {
788 parent = *node;
789 __cfqg = rb_entry_cfqg(parent);
790
791 if (key < cfqg_key(st, __cfqg))
792 node = &parent->rb_left;
793 else {
794 node = &parent->rb_right;
795 left = 0;
796 }
797 }
798
799 if (left)
800 st->left = &cfqg->rb_node;
801
802 rb_link_node(&cfqg->rb_node, parent, node);
803 rb_insert_color(&cfqg->rb_node, &st->rb);
804 }
805
806 static void
807 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
808 {
809 struct cfq_rb_root *st = &cfqd->grp_service_tree;
810 struct cfq_group *__cfqg;
811 struct rb_node *n;
812
813 cfqg->nr_cfqq++;
814 if (cfqg->on_st)
815 return;
816
817 /*
818 * Currently put the group at the end. Later implement something
819 * so that groups get lesser vtime based on their weights, so that
820 * if group does not loose all if it was not continously backlogged.
821 */
822 n = rb_last(&st->rb);
823 if (n) {
824 __cfqg = rb_entry_cfqg(n);
825 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
826 } else
827 cfqg->vdisktime = st->min_vdisktime;
828
829 __cfq_group_service_tree_add(st, cfqg);
830 cfqg->on_st = true;
831 cfqd->nr_groups++;
832 st->total_weight += cfqg->weight;
833 }
834
835 static void
836 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
837 {
838 struct cfq_rb_root *st = &cfqd->grp_service_tree;
839
840 if (st->active == &cfqg->rb_node)
841 st->active = NULL;
842
843 BUG_ON(cfqg->nr_cfqq < 1);
844 cfqg->nr_cfqq--;
845
846 /* If there are other cfq queues under this group, don't delete it */
847 if (cfqg->nr_cfqq)
848 return;
849
850 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
851 cfqg->on_st = false;
852 cfqd->nr_groups--;
853 st->total_weight -= cfqg->weight;
854 if (!RB_EMPTY_NODE(&cfqg->rb_node))
855 cfq_rb_erase(&cfqg->rb_node, st);
856 cfqg->saved_workload_slice = 0;
857 blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
858 }
859
860 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
861 {
862 unsigned int slice_used, allocated_slice;
863
864 /*
865 * Queue got expired before even a single request completed or
866 * got expired immediately after first request completion.
867 */
868 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
869 /*
870 * Also charge the seek time incurred to the group, otherwise
871 * if there are mutiple queues in the group, each can dispatch
872 * a single request on seeky media and cause lots of seek time
873 * and group will never know it.
874 */
875 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
876 1);
877 } else {
878 slice_used = jiffies - cfqq->slice_start;
879 allocated_slice = cfqq->slice_end - cfqq->slice_start;
880 if (slice_used > allocated_slice)
881 slice_used = allocated_slice;
882 }
883
884 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
885 cfqq->nr_sectors);
886 return slice_used;
887 }
888
889 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
890 struct cfq_queue *cfqq)
891 {
892 struct cfq_rb_root *st = &cfqd->grp_service_tree;
893 unsigned int used_sl;
894
895 used_sl = cfq_cfqq_slice_usage(cfqq);
896
897 /* Can't update vdisktime while group is on service tree */
898 cfq_rb_erase(&cfqg->rb_node, st);
899 cfqg->vdisktime += cfq_scale_slice(used_sl, cfqg);
900 __cfq_group_service_tree_add(st, cfqg);
901
902 /* This group is being expired. Save the context */
903 if (time_after(cfqd->workload_expires, jiffies)) {
904 cfqg->saved_workload_slice = cfqd->workload_expires
905 - jiffies;
906 cfqg->saved_workload = cfqd->serving_type;
907 cfqg->saved_serving_prio = cfqd->serving_prio;
908 } else
909 cfqg->saved_workload_slice = 0;
910
911 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
912 st->min_vdisktime);
913 blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
914 cfqq->nr_sectors);
915 }
916
917 #ifdef CONFIG_CFQ_GROUP_IOSCHED
918 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
919 {
920 if (blkg)
921 return container_of(blkg, struct cfq_group, blkg);
922 return NULL;
923 }
924
925 void
926 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
927 {
928 cfqg_of_blkg(blkg)->weight = weight;
929 }
930
931 static struct cfq_group *
932 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
933 {
934 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
935 struct cfq_group *cfqg = NULL;
936 void *key = cfqd;
937 int i, j;
938 struct cfq_rb_root *st;
939 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
940 unsigned int major, minor;
941
942 /* Do we need to take this reference */
943 if (!css_tryget(&blkcg->css))
944 return NULL;;
945
946 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
947 if (cfqg || !create)
948 goto done;
949
950 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
951 if (!cfqg)
952 goto done;
953
954 cfqg->weight = blkcg->weight;
955 for_each_cfqg_st(cfqg, i, j, st)
956 *st = CFQ_RB_ROOT;
957 RB_CLEAR_NODE(&cfqg->rb_node);
958
959 /*
960 * Take the initial reference that will be released on destroy
961 * This can be thought of a joint reference by cgroup and
962 * elevator which will be dropped by either elevator exit
963 * or cgroup deletion path depending on who is exiting first.
964 */
965 atomic_set(&cfqg->ref, 1);
966
967 /* Add group onto cgroup list */
968 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
969 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
970 MKDEV(major, minor));
971
972 /* Add group on cfqd list */
973 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
974
975 done:
976 css_put(&blkcg->css);
977 return cfqg;
978 }
979
980 /*
981 * Search for the cfq group current task belongs to. If create = 1, then also
982 * create the cfq group if it does not exist. request_queue lock must be held.
983 */
984 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
985 {
986 struct cgroup *cgroup;
987 struct cfq_group *cfqg = NULL;
988
989 rcu_read_lock();
990 cgroup = task_cgroup(current, blkio_subsys_id);
991 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
992 if (!cfqg && create)
993 cfqg = &cfqd->root_group;
994 rcu_read_unlock();
995 return cfqg;
996 }
997
998 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
999 {
1000 /* Currently, all async queues are mapped to root group */
1001 if (!cfq_cfqq_sync(cfqq))
1002 cfqg = &cfqq->cfqd->root_group;
1003
1004 cfqq->cfqg = cfqg;
1005 /* cfqq reference on cfqg */
1006 atomic_inc(&cfqq->cfqg->ref);
1007 }
1008
1009 static void cfq_put_cfqg(struct cfq_group *cfqg)
1010 {
1011 struct cfq_rb_root *st;
1012 int i, j;
1013
1014 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1015 if (!atomic_dec_and_test(&cfqg->ref))
1016 return;
1017 for_each_cfqg_st(cfqg, i, j, st)
1018 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1019 kfree(cfqg);
1020 }
1021
1022 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1023 {
1024 /* Something wrong if we are trying to remove same group twice */
1025 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1026
1027 hlist_del_init(&cfqg->cfqd_node);
1028
1029 /*
1030 * Put the reference taken at the time of creation so that when all
1031 * queues are gone, group can be destroyed.
1032 */
1033 cfq_put_cfqg(cfqg);
1034 }
1035
1036 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1037 {
1038 struct hlist_node *pos, *n;
1039 struct cfq_group *cfqg;
1040
1041 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1042 /*
1043 * If cgroup removal path got to blk_group first and removed
1044 * it from cgroup list, then it will take care of destroying
1045 * cfqg also.
1046 */
1047 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1048 cfq_destroy_cfqg(cfqd, cfqg);
1049 }
1050 }
1051
1052 /*
1053 * Blk cgroup controller notification saying that blkio_group object is being
1054 * delinked as associated cgroup object is going away. That also means that
1055 * no new IO will come in this group. So get rid of this group as soon as
1056 * any pending IO in the group is finished.
1057 *
1058 * This function is called under rcu_read_lock(). key is the rcu protected
1059 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1060 * read lock.
1061 *
1062 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1063 * it should not be NULL as even if elevator was exiting, cgroup deltion
1064 * path got to it first.
1065 */
1066 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1067 {
1068 unsigned long flags;
1069 struct cfq_data *cfqd = key;
1070
1071 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1072 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1073 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1074 }
1075
1076 #else /* GROUP_IOSCHED */
1077 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1078 {
1079 return &cfqd->root_group;
1080 }
1081 static inline void
1082 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1083 cfqq->cfqg = cfqg;
1084 }
1085
1086 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1087 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1088
1089 #endif /* GROUP_IOSCHED */
1090
1091 /*
1092 * The cfqd->service_trees holds all pending cfq_queue's that have
1093 * requests waiting to be processed. It is sorted in the order that
1094 * we will service the queues.
1095 */
1096 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1097 bool add_front)
1098 {
1099 struct rb_node **p, *parent;
1100 struct cfq_queue *__cfqq;
1101 unsigned long rb_key;
1102 struct cfq_rb_root *service_tree;
1103 int left;
1104 int new_cfqq = 1;
1105
1106 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1107 cfqq_type(cfqq), cfqd);
1108 if (cfq_class_idle(cfqq)) {
1109 rb_key = CFQ_IDLE_DELAY;
1110 parent = rb_last(&service_tree->rb);
1111 if (parent && parent != &cfqq->rb_node) {
1112 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1113 rb_key += __cfqq->rb_key;
1114 } else
1115 rb_key += jiffies;
1116 } else if (!add_front) {
1117 /*
1118 * Get our rb key offset. Subtract any residual slice
1119 * value carried from last service. A negative resid
1120 * count indicates slice overrun, and this should position
1121 * the next service time further away in the tree.
1122 */
1123 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1124 rb_key -= cfqq->slice_resid;
1125 cfqq->slice_resid = 0;
1126 } else {
1127 rb_key = -HZ;
1128 __cfqq = cfq_rb_first(service_tree);
1129 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1130 }
1131
1132 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1133 new_cfqq = 0;
1134 /*
1135 * same position, nothing more to do
1136 */
1137 if (rb_key == cfqq->rb_key &&
1138 cfqq->service_tree == service_tree)
1139 return;
1140
1141 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1142 cfqq->service_tree = NULL;
1143 }
1144
1145 left = 1;
1146 parent = NULL;
1147 cfqq->service_tree = service_tree;
1148 p = &service_tree->rb.rb_node;
1149 while (*p) {
1150 struct rb_node **n;
1151
1152 parent = *p;
1153 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1154
1155 /*
1156 * sort by key, that represents service time.
1157 */
1158 if (time_before(rb_key, __cfqq->rb_key))
1159 n = &(*p)->rb_left;
1160 else {
1161 n = &(*p)->rb_right;
1162 left = 0;
1163 }
1164
1165 p = n;
1166 }
1167
1168 if (left)
1169 service_tree->left = &cfqq->rb_node;
1170
1171 cfqq->rb_key = rb_key;
1172 rb_link_node(&cfqq->rb_node, parent, p);
1173 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1174 service_tree->count++;
1175 if (add_front || !new_cfqq)
1176 return;
1177 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1178 }
1179
1180 static struct cfq_queue *
1181 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1182 sector_t sector, struct rb_node **ret_parent,
1183 struct rb_node ***rb_link)
1184 {
1185 struct rb_node **p, *parent;
1186 struct cfq_queue *cfqq = NULL;
1187
1188 parent = NULL;
1189 p = &root->rb_node;
1190 while (*p) {
1191 struct rb_node **n;
1192
1193 parent = *p;
1194 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1195
1196 /*
1197 * Sort strictly based on sector. Smallest to the left,
1198 * largest to the right.
1199 */
1200 if (sector > blk_rq_pos(cfqq->next_rq))
1201 n = &(*p)->rb_right;
1202 else if (sector < blk_rq_pos(cfqq->next_rq))
1203 n = &(*p)->rb_left;
1204 else
1205 break;
1206 p = n;
1207 cfqq = NULL;
1208 }
1209
1210 *ret_parent = parent;
1211 if (rb_link)
1212 *rb_link = p;
1213 return cfqq;
1214 }
1215
1216 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1217 {
1218 struct rb_node **p, *parent;
1219 struct cfq_queue *__cfqq;
1220
1221 if (cfqq->p_root) {
1222 rb_erase(&cfqq->p_node, cfqq->p_root);
1223 cfqq->p_root = NULL;
1224 }
1225
1226 if (cfq_class_idle(cfqq))
1227 return;
1228 if (!cfqq->next_rq)
1229 return;
1230
1231 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1232 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1233 blk_rq_pos(cfqq->next_rq), &parent, &p);
1234 if (!__cfqq) {
1235 rb_link_node(&cfqq->p_node, parent, p);
1236 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1237 } else
1238 cfqq->p_root = NULL;
1239 }
1240
1241 /*
1242 * Update cfqq's position in the service tree.
1243 */
1244 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1245 {
1246 /*
1247 * Resorting requires the cfqq to be on the RR list already.
1248 */
1249 if (cfq_cfqq_on_rr(cfqq)) {
1250 cfq_service_tree_add(cfqd, cfqq, 0);
1251 cfq_prio_tree_add(cfqd, cfqq);
1252 }
1253 }
1254
1255 /*
1256 * add to busy list of queues for service, trying to be fair in ordering
1257 * the pending list according to last request service
1258 */
1259 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1260 {
1261 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1262 BUG_ON(cfq_cfqq_on_rr(cfqq));
1263 cfq_mark_cfqq_on_rr(cfqq);
1264 cfqd->busy_queues++;
1265
1266 cfq_resort_rr_list(cfqd, cfqq);
1267 }
1268
1269 /*
1270 * Called when the cfqq no longer has requests pending, remove it from
1271 * the service tree.
1272 */
1273 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1274 {
1275 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1276 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1277 cfq_clear_cfqq_on_rr(cfqq);
1278
1279 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1280 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1281 cfqq->service_tree = NULL;
1282 }
1283 if (cfqq->p_root) {
1284 rb_erase(&cfqq->p_node, cfqq->p_root);
1285 cfqq->p_root = NULL;
1286 }
1287
1288 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1289 BUG_ON(!cfqd->busy_queues);
1290 cfqd->busy_queues--;
1291 }
1292
1293 /*
1294 * rb tree support functions
1295 */
1296 static void cfq_del_rq_rb(struct request *rq)
1297 {
1298 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1299 const int sync = rq_is_sync(rq);
1300
1301 BUG_ON(!cfqq->queued[sync]);
1302 cfqq->queued[sync]--;
1303
1304 elv_rb_del(&cfqq->sort_list, rq);
1305
1306 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1307 /*
1308 * Queue will be deleted from service tree when we actually
1309 * expire it later. Right now just remove it from prio tree
1310 * as it is empty.
1311 */
1312 if (cfqq->p_root) {
1313 rb_erase(&cfqq->p_node, cfqq->p_root);
1314 cfqq->p_root = NULL;
1315 }
1316 }
1317 }
1318
1319 static void cfq_add_rq_rb(struct request *rq)
1320 {
1321 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1322 struct cfq_data *cfqd = cfqq->cfqd;
1323 struct request *__alias, *prev;
1324
1325 cfqq->queued[rq_is_sync(rq)]++;
1326
1327 /*
1328 * looks a little odd, but the first insert might return an alias.
1329 * if that happens, put the alias on the dispatch list
1330 */
1331 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1332 cfq_dispatch_insert(cfqd->queue, __alias);
1333
1334 if (!cfq_cfqq_on_rr(cfqq))
1335 cfq_add_cfqq_rr(cfqd, cfqq);
1336
1337 /*
1338 * check if this request is a better next-serve candidate
1339 */
1340 prev = cfqq->next_rq;
1341 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1342
1343 /*
1344 * adjust priority tree position, if ->next_rq changes
1345 */
1346 if (prev != cfqq->next_rq)
1347 cfq_prio_tree_add(cfqd, cfqq);
1348
1349 BUG_ON(!cfqq->next_rq);
1350 }
1351
1352 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1353 {
1354 elv_rb_del(&cfqq->sort_list, rq);
1355 cfqq->queued[rq_is_sync(rq)]--;
1356 cfq_add_rq_rb(rq);
1357 }
1358
1359 static struct request *
1360 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1361 {
1362 struct task_struct *tsk = current;
1363 struct cfq_io_context *cic;
1364 struct cfq_queue *cfqq;
1365
1366 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1367 if (!cic)
1368 return NULL;
1369
1370 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1371 if (cfqq) {
1372 sector_t sector = bio->bi_sector + bio_sectors(bio);
1373
1374 return elv_rb_find(&cfqq->sort_list, sector);
1375 }
1376
1377 return NULL;
1378 }
1379
1380 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1381 {
1382 struct cfq_data *cfqd = q->elevator->elevator_data;
1383
1384 cfqd->rq_in_driver[rq_is_sync(rq)]++;
1385 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1386 rq_in_driver(cfqd));
1387
1388 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1389 }
1390
1391 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1392 {
1393 struct cfq_data *cfqd = q->elevator->elevator_data;
1394 const int sync = rq_is_sync(rq);
1395
1396 WARN_ON(!cfqd->rq_in_driver[sync]);
1397 cfqd->rq_in_driver[sync]--;
1398 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1399 rq_in_driver(cfqd));
1400 }
1401
1402 static void cfq_remove_request(struct request *rq)
1403 {
1404 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1405
1406 if (cfqq->next_rq == rq)
1407 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1408
1409 list_del_init(&rq->queuelist);
1410 cfq_del_rq_rb(rq);
1411
1412 cfqq->cfqd->rq_queued--;
1413 if (rq_is_meta(rq)) {
1414 WARN_ON(!cfqq->meta_pending);
1415 cfqq->meta_pending--;
1416 }
1417 }
1418
1419 static int cfq_merge(struct request_queue *q, struct request **req,
1420 struct bio *bio)
1421 {
1422 struct cfq_data *cfqd = q->elevator->elevator_data;
1423 struct request *__rq;
1424
1425 __rq = cfq_find_rq_fmerge(cfqd, bio);
1426 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1427 *req = __rq;
1428 return ELEVATOR_FRONT_MERGE;
1429 }
1430
1431 return ELEVATOR_NO_MERGE;
1432 }
1433
1434 static void cfq_merged_request(struct request_queue *q, struct request *req,
1435 int type)
1436 {
1437 if (type == ELEVATOR_FRONT_MERGE) {
1438 struct cfq_queue *cfqq = RQ_CFQQ(req);
1439
1440 cfq_reposition_rq_rb(cfqq, req);
1441 }
1442 }
1443
1444 static void
1445 cfq_merged_requests(struct request_queue *q, struct request *rq,
1446 struct request *next)
1447 {
1448 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1449 /*
1450 * reposition in fifo if next is older than rq
1451 */
1452 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1453 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1454 list_move(&rq->queuelist, &next->queuelist);
1455 rq_set_fifo_time(rq, rq_fifo_time(next));
1456 }
1457
1458 if (cfqq->next_rq == next)
1459 cfqq->next_rq = rq;
1460 cfq_remove_request(next);
1461 }
1462
1463 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1464 struct bio *bio)
1465 {
1466 struct cfq_data *cfqd = q->elevator->elevator_data;
1467 struct cfq_io_context *cic;
1468 struct cfq_queue *cfqq;
1469
1470 /* Deny merge if bio and rq don't belong to same cfq group */
1471 if ((RQ_CFQQ(rq))->cfqg != cfq_get_cfqg(cfqd, 0))
1472 return false;
1473 /*
1474 * Disallow merge of a sync bio into an async request.
1475 */
1476 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1477 return false;
1478
1479 /*
1480 * Lookup the cfqq that this bio will be queued with. Allow
1481 * merge only if rq is queued there.
1482 */
1483 cic = cfq_cic_lookup(cfqd, current->io_context);
1484 if (!cic)
1485 return false;
1486
1487 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1488 return cfqq == RQ_CFQQ(rq);
1489 }
1490
1491 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1492 struct cfq_queue *cfqq)
1493 {
1494 if (cfqq) {
1495 cfq_log_cfqq(cfqd, cfqq, "set_active");
1496 cfqq->slice_start = 0;
1497 cfqq->dispatch_start = jiffies;
1498 cfqq->slice_end = 0;
1499 cfqq->slice_dispatch = 0;
1500 cfqq->nr_sectors = 0;
1501
1502 cfq_clear_cfqq_wait_request(cfqq);
1503 cfq_clear_cfqq_must_dispatch(cfqq);
1504 cfq_clear_cfqq_must_alloc_slice(cfqq);
1505 cfq_clear_cfqq_fifo_expire(cfqq);
1506 cfq_mark_cfqq_slice_new(cfqq);
1507
1508 del_timer(&cfqd->idle_slice_timer);
1509 }
1510
1511 cfqd->active_queue = cfqq;
1512 }
1513
1514 /*
1515 * current cfqq expired its slice (or was too idle), select new one
1516 */
1517 static void
1518 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1519 bool timed_out)
1520 {
1521 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1522
1523 if (cfq_cfqq_wait_request(cfqq))
1524 del_timer(&cfqd->idle_slice_timer);
1525
1526 cfq_clear_cfqq_wait_request(cfqq);
1527
1528 /*
1529 * store what was left of this slice, if the queue idled/timed out
1530 */
1531 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1532 cfqq->slice_resid = cfqq->slice_end - jiffies;
1533 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1534 }
1535
1536 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1537
1538 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1539 cfq_del_cfqq_rr(cfqd, cfqq);
1540
1541 cfq_resort_rr_list(cfqd, cfqq);
1542
1543 if (cfqq == cfqd->active_queue)
1544 cfqd->active_queue = NULL;
1545
1546 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1547 cfqd->grp_service_tree.active = NULL;
1548
1549 if (cfqd->active_cic) {
1550 put_io_context(cfqd->active_cic->ioc);
1551 cfqd->active_cic = NULL;
1552 }
1553 }
1554
1555 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1556 {
1557 struct cfq_queue *cfqq = cfqd->active_queue;
1558
1559 if (cfqq)
1560 __cfq_slice_expired(cfqd, cfqq, timed_out);
1561 }
1562
1563 /*
1564 * Get next queue for service. Unless we have a queue preemption,
1565 * we'll simply select the first cfqq in the service tree.
1566 */
1567 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1568 {
1569 struct cfq_rb_root *service_tree =
1570 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1571 cfqd->serving_type, cfqd);
1572
1573 if (!cfqd->rq_queued)
1574 return NULL;
1575
1576 /* There is nothing to dispatch */
1577 if (!service_tree)
1578 return NULL;
1579 if (RB_EMPTY_ROOT(&service_tree->rb))
1580 return NULL;
1581 return cfq_rb_first(service_tree);
1582 }
1583
1584 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1585 {
1586 struct cfq_group *cfqg;
1587 struct cfq_queue *cfqq;
1588 int i, j;
1589 struct cfq_rb_root *st;
1590
1591 if (!cfqd->rq_queued)
1592 return NULL;
1593
1594 cfqg = cfq_get_next_cfqg(cfqd);
1595 if (!cfqg)
1596 return NULL;
1597
1598 for_each_cfqg_st(cfqg, i, j, st)
1599 if ((cfqq = cfq_rb_first(st)) != NULL)
1600 return cfqq;
1601 return NULL;
1602 }
1603
1604 /*
1605 * Get and set a new active queue for service.
1606 */
1607 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1608 struct cfq_queue *cfqq)
1609 {
1610 if (!cfqq)
1611 cfqq = cfq_get_next_queue(cfqd);
1612
1613 __cfq_set_active_queue(cfqd, cfqq);
1614 return cfqq;
1615 }
1616
1617 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1618 struct request *rq)
1619 {
1620 if (blk_rq_pos(rq) >= cfqd->last_position)
1621 return blk_rq_pos(rq) - cfqd->last_position;
1622 else
1623 return cfqd->last_position - blk_rq_pos(rq);
1624 }
1625
1626 #define CFQQ_SEEK_THR 8 * 1024
1627 #define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1628
1629 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1630 struct request *rq)
1631 {
1632 sector_t sdist = cfqq->seek_mean;
1633
1634 if (!sample_valid(cfqq->seek_samples))
1635 sdist = CFQQ_SEEK_THR;
1636
1637 return cfq_dist_from_last(cfqd, rq) <= sdist;
1638 }
1639
1640 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1641 struct cfq_queue *cur_cfqq)
1642 {
1643 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1644 struct rb_node *parent, *node;
1645 struct cfq_queue *__cfqq;
1646 sector_t sector = cfqd->last_position;
1647
1648 if (RB_EMPTY_ROOT(root))
1649 return NULL;
1650
1651 /*
1652 * First, if we find a request starting at the end of the last
1653 * request, choose it.
1654 */
1655 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1656 if (__cfqq)
1657 return __cfqq;
1658
1659 /*
1660 * If the exact sector wasn't found, the parent of the NULL leaf
1661 * will contain the closest sector.
1662 */
1663 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1664 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1665 return __cfqq;
1666
1667 if (blk_rq_pos(__cfqq->next_rq) < sector)
1668 node = rb_next(&__cfqq->p_node);
1669 else
1670 node = rb_prev(&__cfqq->p_node);
1671 if (!node)
1672 return NULL;
1673
1674 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1675 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1676 return __cfqq;
1677
1678 return NULL;
1679 }
1680
1681 /*
1682 * cfqd - obvious
1683 * cur_cfqq - passed in so that we don't decide that the current queue is
1684 * closely cooperating with itself.
1685 *
1686 * So, basically we're assuming that that cur_cfqq has dispatched at least
1687 * one request, and that cfqd->last_position reflects a position on the disk
1688 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1689 * assumption.
1690 */
1691 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1692 struct cfq_queue *cur_cfqq)
1693 {
1694 struct cfq_queue *cfqq;
1695
1696 if (!cfq_cfqq_sync(cur_cfqq))
1697 return NULL;
1698 if (CFQQ_SEEKY(cur_cfqq))
1699 return NULL;
1700
1701 /*
1702 * We should notice if some of the queues are cooperating, eg
1703 * working closely on the same area of the disk. In that case,
1704 * we can group them together and don't waste time idling.
1705 */
1706 cfqq = cfqq_close(cfqd, cur_cfqq);
1707 if (!cfqq)
1708 return NULL;
1709
1710 /* If new queue belongs to different cfq_group, don't choose it */
1711 if (cur_cfqq->cfqg != cfqq->cfqg)
1712 return NULL;
1713
1714 /*
1715 * It only makes sense to merge sync queues.
1716 */
1717 if (!cfq_cfqq_sync(cfqq))
1718 return NULL;
1719 if (CFQQ_SEEKY(cfqq))
1720 return NULL;
1721
1722 /*
1723 * Do not merge queues of different priority classes
1724 */
1725 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1726 return NULL;
1727
1728 return cfqq;
1729 }
1730
1731 /*
1732 * Determine whether we should enforce idle window for this queue.
1733 */
1734
1735 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1736 {
1737 enum wl_prio_t prio = cfqq_prio(cfqq);
1738 struct cfq_rb_root *service_tree = cfqq->service_tree;
1739
1740 BUG_ON(!service_tree);
1741 BUG_ON(!service_tree->count);
1742
1743 /* We never do for idle class queues. */
1744 if (prio == IDLE_WORKLOAD)
1745 return false;
1746
1747 /* We do for queues that were marked with idle window flag. */
1748 if (cfq_cfqq_idle_window(cfqq))
1749 return true;
1750
1751 /*
1752 * Otherwise, we do only if they are the last ones
1753 * in their service tree.
1754 */
1755 return service_tree->count == 1;
1756 }
1757
1758 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1759 {
1760 struct cfq_queue *cfqq = cfqd->active_queue;
1761 struct cfq_io_context *cic;
1762 unsigned long sl;
1763
1764 /*
1765 * SSD device without seek penalty, disable idling. But only do so
1766 * for devices that support queuing, otherwise we still have a problem
1767 * with sync vs async workloads.
1768 */
1769 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1770 return;
1771
1772 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1773 WARN_ON(cfq_cfqq_slice_new(cfqq));
1774
1775 /*
1776 * idle is disabled, either manually or by past process history
1777 */
1778 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1779 return;
1780
1781 /*
1782 * still active requests from this queue, don't idle
1783 */
1784 if (cfqq->dispatched)
1785 return;
1786
1787 /*
1788 * task has exited, don't wait
1789 */
1790 cic = cfqd->active_cic;
1791 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1792 return;
1793
1794 /*
1795 * If our average think time is larger than the remaining time
1796 * slice, then don't idle. This avoids overrunning the allotted
1797 * time slice.
1798 */
1799 if (sample_valid(cic->ttime_samples) &&
1800 (cfqq->slice_end - jiffies < cic->ttime_mean))
1801 return;
1802
1803 cfq_mark_cfqq_wait_request(cfqq);
1804
1805 sl = cfqd->cfq_slice_idle;
1806
1807 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1808 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1809 }
1810
1811 /*
1812 * Move request from internal lists to the request queue dispatch list.
1813 */
1814 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1815 {
1816 struct cfq_data *cfqd = q->elevator->elevator_data;
1817 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1818
1819 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1820
1821 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1822 cfq_remove_request(rq);
1823 cfqq->dispatched++;
1824 elv_dispatch_sort(q, rq);
1825
1826 if (cfq_cfqq_sync(cfqq))
1827 cfqd->sync_flight++;
1828 cfqq->nr_sectors += blk_rq_sectors(rq);
1829 }
1830
1831 /*
1832 * return expired entry, or NULL to just start from scratch in rbtree
1833 */
1834 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1835 {
1836 struct request *rq = NULL;
1837
1838 if (cfq_cfqq_fifo_expire(cfqq))
1839 return NULL;
1840
1841 cfq_mark_cfqq_fifo_expire(cfqq);
1842
1843 if (list_empty(&cfqq->fifo))
1844 return NULL;
1845
1846 rq = rq_entry_fifo(cfqq->fifo.next);
1847 if (time_before(jiffies, rq_fifo_time(rq)))
1848 rq = NULL;
1849
1850 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1851 return rq;
1852 }
1853
1854 static inline int
1855 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1856 {
1857 const int base_rq = cfqd->cfq_slice_async_rq;
1858
1859 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1860
1861 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1862 }
1863
1864 /*
1865 * Must be called with the queue_lock held.
1866 */
1867 static int cfqq_process_refs(struct cfq_queue *cfqq)
1868 {
1869 int process_refs, io_refs;
1870
1871 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1872 process_refs = atomic_read(&cfqq->ref) - io_refs;
1873 BUG_ON(process_refs < 0);
1874 return process_refs;
1875 }
1876
1877 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1878 {
1879 int process_refs, new_process_refs;
1880 struct cfq_queue *__cfqq;
1881
1882 /* Avoid a circular list and skip interim queue merges */
1883 while ((__cfqq = new_cfqq->new_cfqq)) {
1884 if (__cfqq == cfqq)
1885 return;
1886 new_cfqq = __cfqq;
1887 }
1888
1889 process_refs = cfqq_process_refs(cfqq);
1890 /*
1891 * If the process for the cfqq has gone away, there is no
1892 * sense in merging the queues.
1893 */
1894 if (process_refs == 0)
1895 return;
1896
1897 /*
1898 * Merge in the direction of the lesser amount of work.
1899 */
1900 new_process_refs = cfqq_process_refs(new_cfqq);
1901 if (new_process_refs >= process_refs) {
1902 cfqq->new_cfqq = new_cfqq;
1903 atomic_add(process_refs, &new_cfqq->ref);
1904 } else {
1905 new_cfqq->new_cfqq = cfqq;
1906 atomic_add(new_process_refs, &cfqq->ref);
1907 }
1908 }
1909
1910 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1911 struct cfq_group *cfqg, enum wl_prio_t prio,
1912 bool prio_changed)
1913 {
1914 struct cfq_queue *queue;
1915 int i;
1916 bool key_valid = false;
1917 unsigned long lowest_key = 0;
1918 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1919
1920 if (prio_changed) {
1921 /*
1922 * When priorities switched, we prefer starting
1923 * from SYNC_NOIDLE (first choice), or just SYNC
1924 * over ASYNC
1925 */
1926 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1927 return cur_best;
1928 cur_best = SYNC_WORKLOAD;
1929 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1930 return cur_best;
1931
1932 return ASYNC_WORKLOAD;
1933 }
1934
1935 for (i = 0; i < 3; ++i) {
1936 /* otherwise, select the one with lowest rb_key */
1937 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1938 if (queue &&
1939 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1940 lowest_key = queue->rb_key;
1941 cur_best = i;
1942 key_valid = true;
1943 }
1944 }
1945
1946 return cur_best;
1947 }
1948
1949 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1950 {
1951 enum wl_prio_t previous_prio = cfqd->serving_prio;
1952 bool prio_changed;
1953 unsigned slice;
1954 unsigned count;
1955 struct cfq_rb_root *st;
1956 unsigned group_slice;
1957
1958 if (!cfqg) {
1959 cfqd->serving_prio = IDLE_WORKLOAD;
1960 cfqd->workload_expires = jiffies + 1;
1961 return;
1962 }
1963
1964 /* Choose next priority. RT > BE > IDLE */
1965 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1966 cfqd->serving_prio = RT_WORKLOAD;
1967 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
1968 cfqd->serving_prio = BE_WORKLOAD;
1969 else {
1970 cfqd->serving_prio = IDLE_WORKLOAD;
1971 cfqd->workload_expires = jiffies + 1;
1972 return;
1973 }
1974
1975 /*
1976 * For RT and BE, we have to choose also the type
1977 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1978 * expiration time
1979 */
1980 prio_changed = (cfqd->serving_prio != previous_prio);
1981 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1982 cfqd);
1983 count = st->count;
1984
1985 /*
1986 * If priority didn't change, check workload expiration,
1987 * and that we still have other queues ready
1988 */
1989 if (!prio_changed && count &&
1990 !time_after(jiffies, cfqd->workload_expires))
1991 return;
1992
1993 /* otherwise select new workload type */
1994 cfqd->serving_type =
1995 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
1996 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1997 cfqd);
1998 count = st->count;
1999
2000 /*
2001 * the workload slice is computed as a fraction of target latency
2002 * proportional to the number of queues in that workload, over
2003 * all the queues in the same priority class
2004 */
2005 group_slice = cfq_group_slice(cfqd, cfqg);
2006
2007 slice = group_slice * count /
2008 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2009 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2010
2011 if (cfqd->serving_type == ASYNC_WORKLOAD)
2012 /* async workload slice is scaled down according to
2013 * the sync/async slice ratio. */
2014 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2015 else
2016 /* sync workload slice is at least 2 * cfq_slice_idle */
2017 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2018
2019 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2020 cfqd->workload_expires = jiffies + slice;
2021 cfqd->noidle_tree_requires_idle = false;
2022 }
2023
2024 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2025 {
2026 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2027 struct cfq_group *cfqg;
2028
2029 if (RB_EMPTY_ROOT(&st->rb))
2030 return NULL;
2031 cfqg = cfq_rb_first_group(st);
2032 st->active = &cfqg->rb_node;
2033 update_min_vdisktime(st);
2034 return cfqg;
2035 }
2036
2037 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2038 {
2039 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2040
2041 cfqd->serving_group = cfqg;
2042
2043 /* Restore the workload type data */
2044 if (cfqg->saved_workload_slice) {
2045 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2046 cfqd->serving_type = cfqg->saved_workload;
2047 cfqd->serving_prio = cfqg->saved_serving_prio;
2048 }
2049 choose_service_tree(cfqd, cfqg);
2050 }
2051
2052 /*
2053 * Select a queue for service. If we have a current active queue,
2054 * check whether to continue servicing it, or retrieve and set a new one.
2055 */
2056 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2057 {
2058 struct cfq_queue *cfqq, *new_cfqq = NULL;
2059
2060 cfqq = cfqd->active_queue;
2061 if (!cfqq)
2062 goto new_queue;
2063
2064 if (!cfqd->rq_queued)
2065 return NULL;
2066 /*
2067 * The active queue has run out of time, expire it and select new.
2068 */
2069 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
2070 goto expire;
2071
2072 /*
2073 * The active queue has requests and isn't expired, allow it to
2074 * dispatch.
2075 */
2076 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2077 goto keep_queue;
2078
2079 /*
2080 * If another queue has a request waiting within our mean seek
2081 * distance, let it run. The expire code will check for close
2082 * cooperators and put the close queue at the front of the service
2083 * tree. If possible, merge the expiring queue with the new cfqq.
2084 */
2085 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2086 if (new_cfqq) {
2087 if (!cfqq->new_cfqq)
2088 cfq_setup_merge(cfqq, new_cfqq);
2089 goto expire;
2090 }
2091
2092 /*
2093 * No requests pending. If the active queue still has requests in
2094 * flight or is idling for a new request, allow either of these
2095 * conditions to happen (or time out) before selecting a new queue.
2096 */
2097 if (timer_pending(&cfqd->idle_slice_timer) ||
2098 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2099 cfqq = NULL;
2100 goto keep_queue;
2101 }
2102
2103 expire:
2104 cfq_slice_expired(cfqd, 0);
2105 new_queue:
2106 /*
2107 * Current queue expired. Check if we have to switch to a new
2108 * service tree
2109 */
2110 if (!new_cfqq)
2111 cfq_choose_cfqg(cfqd);
2112
2113 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2114 keep_queue:
2115 return cfqq;
2116 }
2117
2118 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2119 {
2120 int dispatched = 0;
2121
2122 while (cfqq->next_rq) {
2123 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2124 dispatched++;
2125 }
2126
2127 BUG_ON(!list_empty(&cfqq->fifo));
2128
2129 /* By default cfqq is not expired if it is empty. Do it explicitly */
2130 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2131 return dispatched;
2132 }
2133
2134 /*
2135 * Drain our current requests. Used for barriers and when switching
2136 * io schedulers on-the-fly.
2137 */
2138 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2139 {
2140 struct cfq_queue *cfqq;
2141 int dispatched = 0;
2142
2143 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2144 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2145
2146 cfq_slice_expired(cfqd, 0);
2147 BUG_ON(cfqd->busy_queues);
2148
2149 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2150 return dispatched;
2151 }
2152
2153 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2154 {
2155 unsigned int max_dispatch;
2156
2157 /*
2158 * Drain async requests before we start sync IO
2159 */
2160 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2161 return false;
2162
2163 /*
2164 * If this is an async queue and we have sync IO in flight, let it wait
2165 */
2166 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2167 return false;
2168
2169 max_dispatch = cfqd->cfq_quantum;
2170 if (cfq_class_idle(cfqq))
2171 max_dispatch = 1;
2172
2173 /*
2174 * Does this cfqq already have too much IO in flight?
2175 */
2176 if (cfqq->dispatched >= max_dispatch) {
2177 /*
2178 * idle queue must always only have a single IO in flight
2179 */
2180 if (cfq_class_idle(cfqq))
2181 return false;
2182
2183 /*
2184 * We have other queues, don't allow more IO from this one
2185 */
2186 if (cfqd->busy_queues > 1)
2187 return false;
2188
2189 /*
2190 * Sole queue user, no limit
2191 */
2192 max_dispatch = -1;
2193 }
2194
2195 /*
2196 * Async queues must wait a bit before being allowed dispatch.
2197 * We also ramp up the dispatch depth gradually for async IO,
2198 * based on the last sync IO we serviced
2199 */
2200 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2201 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
2202 unsigned int depth;
2203
2204 depth = last_sync / cfqd->cfq_slice[1];
2205 if (!depth && !cfqq->dispatched)
2206 depth = 1;
2207 if (depth < max_dispatch)
2208 max_dispatch = depth;
2209 }
2210
2211 /*
2212 * If we're below the current max, allow a dispatch
2213 */
2214 return cfqq->dispatched < max_dispatch;
2215 }
2216
2217 /*
2218 * Dispatch a request from cfqq, moving them to the request queue
2219 * dispatch list.
2220 */
2221 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2222 {
2223 struct request *rq;
2224
2225 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2226
2227 if (!cfq_may_dispatch(cfqd, cfqq))
2228 return false;
2229
2230 /*
2231 * follow expired path, else get first next available
2232 */
2233 rq = cfq_check_fifo(cfqq);
2234 if (!rq)
2235 rq = cfqq->next_rq;
2236
2237 /*
2238 * insert request into driver dispatch list
2239 */
2240 cfq_dispatch_insert(cfqd->queue, rq);
2241
2242 if (!cfqd->active_cic) {
2243 struct cfq_io_context *cic = RQ_CIC(rq);
2244
2245 atomic_long_inc(&cic->ioc->refcount);
2246 cfqd->active_cic = cic;
2247 }
2248
2249 return true;
2250 }
2251
2252 /*
2253 * Find the cfqq that we need to service and move a request from that to the
2254 * dispatch list
2255 */
2256 static int cfq_dispatch_requests(struct request_queue *q, int force)
2257 {
2258 struct cfq_data *cfqd = q->elevator->elevator_data;
2259 struct cfq_queue *cfqq;
2260
2261 if (!cfqd->busy_queues)
2262 return 0;
2263
2264 if (unlikely(force))
2265 return cfq_forced_dispatch(cfqd);
2266
2267 cfqq = cfq_select_queue(cfqd);
2268 if (!cfqq)
2269 return 0;
2270
2271 /*
2272 * Dispatch a request from this cfqq, if it is allowed
2273 */
2274 if (!cfq_dispatch_request(cfqd, cfqq))
2275 return 0;
2276
2277 cfqq->slice_dispatch++;
2278 cfq_clear_cfqq_must_dispatch(cfqq);
2279
2280 /*
2281 * expire an async queue immediately if it has used up its slice. idle
2282 * queue always expire after 1 dispatch round.
2283 */
2284 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2285 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2286 cfq_class_idle(cfqq))) {
2287 cfqq->slice_end = jiffies + 1;
2288 cfq_slice_expired(cfqd, 0);
2289 }
2290
2291 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2292 return 1;
2293 }
2294
2295 /*
2296 * task holds one reference to the queue, dropped when task exits. each rq
2297 * in-flight on this queue also holds a reference, dropped when rq is freed.
2298 *
2299 * Each cfq queue took a reference on the parent group. Drop it now.
2300 * queue lock must be held here.
2301 */
2302 static void cfq_put_queue(struct cfq_queue *cfqq)
2303 {
2304 struct cfq_data *cfqd = cfqq->cfqd;
2305 struct cfq_group *cfqg;
2306
2307 BUG_ON(atomic_read(&cfqq->ref) <= 0);
2308
2309 if (!atomic_dec_and_test(&cfqq->ref))
2310 return;
2311
2312 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2313 BUG_ON(rb_first(&cfqq->sort_list));
2314 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2315 cfqg = cfqq->cfqg;
2316
2317 if (unlikely(cfqd->active_queue == cfqq)) {
2318 __cfq_slice_expired(cfqd, cfqq, 0);
2319 cfq_schedule_dispatch(cfqd);
2320 }
2321
2322 BUG_ON(cfq_cfqq_on_rr(cfqq));
2323 kmem_cache_free(cfq_pool, cfqq);
2324 cfq_put_cfqg(cfqg);
2325 }
2326
2327 /*
2328 * Must always be called with the rcu_read_lock() held
2329 */
2330 static void
2331 __call_for_each_cic(struct io_context *ioc,
2332 void (*func)(struct io_context *, struct cfq_io_context *))
2333 {
2334 struct cfq_io_context *cic;
2335 struct hlist_node *n;
2336
2337 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2338 func(ioc, cic);
2339 }
2340
2341 /*
2342 * Call func for each cic attached to this ioc.
2343 */
2344 static void
2345 call_for_each_cic(struct io_context *ioc,
2346 void (*func)(struct io_context *, struct cfq_io_context *))
2347 {
2348 rcu_read_lock();
2349 __call_for_each_cic(ioc, func);
2350 rcu_read_unlock();
2351 }
2352
2353 static void cfq_cic_free_rcu(struct rcu_head *head)
2354 {
2355 struct cfq_io_context *cic;
2356
2357 cic = container_of(head, struct cfq_io_context, rcu_head);
2358
2359 kmem_cache_free(cfq_ioc_pool, cic);
2360 elv_ioc_count_dec(cfq_ioc_count);
2361
2362 if (ioc_gone) {
2363 /*
2364 * CFQ scheduler is exiting, grab exit lock and check
2365 * the pending io context count. If it hits zero,
2366 * complete ioc_gone and set it back to NULL
2367 */
2368 spin_lock(&ioc_gone_lock);
2369 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2370 complete(ioc_gone);
2371 ioc_gone = NULL;
2372 }
2373 spin_unlock(&ioc_gone_lock);
2374 }
2375 }
2376
2377 static void cfq_cic_free(struct cfq_io_context *cic)
2378 {
2379 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2380 }
2381
2382 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2383 {
2384 unsigned long flags;
2385
2386 BUG_ON(!cic->dead_key);
2387
2388 spin_lock_irqsave(&ioc->lock, flags);
2389 radix_tree_delete(&ioc->radix_root, cic->dead_key);
2390 hlist_del_rcu(&cic->cic_list);
2391 spin_unlock_irqrestore(&ioc->lock, flags);
2392
2393 cfq_cic_free(cic);
2394 }
2395
2396 /*
2397 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2398 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2399 * and ->trim() which is called with the task lock held
2400 */
2401 static void cfq_free_io_context(struct io_context *ioc)
2402 {
2403 /*
2404 * ioc->refcount is zero here, or we are called from elv_unregister(),
2405 * so no more cic's are allowed to be linked into this ioc. So it
2406 * should be ok to iterate over the known list, we will see all cic's
2407 * since no new ones are added.
2408 */
2409 __call_for_each_cic(ioc, cic_free_func);
2410 }
2411
2412 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2413 {
2414 struct cfq_queue *__cfqq, *next;
2415
2416 if (unlikely(cfqq == cfqd->active_queue)) {
2417 __cfq_slice_expired(cfqd, cfqq, 0);
2418 cfq_schedule_dispatch(cfqd);
2419 }
2420
2421 /*
2422 * If this queue was scheduled to merge with another queue, be
2423 * sure to drop the reference taken on that queue (and others in
2424 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2425 */
2426 __cfqq = cfqq->new_cfqq;
2427 while (__cfqq) {
2428 if (__cfqq == cfqq) {
2429 WARN(1, "cfqq->new_cfqq loop detected\n");
2430 break;
2431 }
2432 next = __cfqq->new_cfqq;
2433 cfq_put_queue(__cfqq);
2434 __cfqq = next;
2435 }
2436
2437 cfq_put_queue(cfqq);
2438 }
2439
2440 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2441 struct cfq_io_context *cic)
2442 {
2443 struct io_context *ioc = cic->ioc;
2444
2445 list_del_init(&cic->queue_list);
2446
2447 /*
2448 * Make sure key == NULL is seen for dead queues
2449 */
2450 smp_wmb();
2451 cic->dead_key = (unsigned long) cic->key;
2452 cic->key = NULL;
2453
2454 if (ioc->ioc_data == cic)
2455 rcu_assign_pointer(ioc->ioc_data, NULL);
2456
2457 if (cic->cfqq[BLK_RW_ASYNC]) {
2458 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2459 cic->cfqq[BLK_RW_ASYNC] = NULL;
2460 }
2461
2462 if (cic->cfqq[BLK_RW_SYNC]) {
2463 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2464 cic->cfqq[BLK_RW_SYNC] = NULL;
2465 }
2466 }
2467
2468 static void cfq_exit_single_io_context(struct io_context *ioc,
2469 struct cfq_io_context *cic)
2470 {
2471 struct cfq_data *cfqd = cic->key;
2472
2473 if (cfqd) {
2474 struct request_queue *q = cfqd->queue;
2475 unsigned long flags;
2476
2477 spin_lock_irqsave(q->queue_lock, flags);
2478
2479 /*
2480 * Ensure we get a fresh copy of the ->key to prevent
2481 * race between exiting task and queue
2482 */
2483 smp_read_barrier_depends();
2484 if (cic->key)
2485 __cfq_exit_single_io_context(cfqd, cic);
2486
2487 spin_unlock_irqrestore(q->queue_lock, flags);
2488 }
2489 }
2490
2491 /*
2492 * The process that ioc belongs to has exited, we need to clean up
2493 * and put the internal structures we have that belongs to that process.
2494 */
2495 static void cfq_exit_io_context(struct io_context *ioc)
2496 {
2497 call_for_each_cic(ioc, cfq_exit_single_io_context);
2498 }
2499
2500 static struct cfq_io_context *
2501 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2502 {
2503 struct cfq_io_context *cic;
2504
2505 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2506 cfqd->queue->node);
2507 if (cic) {
2508 cic->last_end_request = jiffies;
2509 INIT_LIST_HEAD(&cic->queue_list);
2510 INIT_HLIST_NODE(&cic->cic_list);
2511 cic->dtor = cfq_free_io_context;
2512 cic->exit = cfq_exit_io_context;
2513 elv_ioc_count_inc(cfq_ioc_count);
2514 }
2515
2516 return cic;
2517 }
2518
2519 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2520 {
2521 struct task_struct *tsk = current;
2522 int ioprio_class;
2523
2524 if (!cfq_cfqq_prio_changed(cfqq))
2525 return;
2526
2527 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2528 switch (ioprio_class) {
2529 default:
2530 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2531 case IOPRIO_CLASS_NONE:
2532 /*
2533 * no prio set, inherit CPU scheduling settings
2534 */
2535 cfqq->ioprio = task_nice_ioprio(tsk);
2536 cfqq->ioprio_class = task_nice_ioclass(tsk);
2537 break;
2538 case IOPRIO_CLASS_RT:
2539 cfqq->ioprio = task_ioprio(ioc);
2540 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2541 break;
2542 case IOPRIO_CLASS_BE:
2543 cfqq->ioprio = task_ioprio(ioc);
2544 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2545 break;
2546 case IOPRIO_CLASS_IDLE:
2547 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2548 cfqq->ioprio = 7;
2549 cfq_clear_cfqq_idle_window(cfqq);
2550 break;
2551 }
2552
2553 /*
2554 * keep track of original prio settings in case we have to temporarily
2555 * elevate the priority of this queue
2556 */
2557 cfqq->org_ioprio = cfqq->ioprio;
2558 cfqq->org_ioprio_class = cfqq->ioprio_class;
2559 cfq_clear_cfqq_prio_changed(cfqq);
2560 }
2561
2562 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2563 {
2564 struct cfq_data *cfqd = cic->key;
2565 struct cfq_queue *cfqq;
2566 unsigned long flags;
2567
2568 if (unlikely(!cfqd))
2569 return;
2570
2571 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2572
2573 cfqq = cic->cfqq[BLK_RW_ASYNC];
2574 if (cfqq) {
2575 struct cfq_queue *new_cfqq;
2576 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2577 GFP_ATOMIC);
2578 if (new_cfqq) {
2579 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2580 cfq_put_queue(cfqq);
2581 }
2582 }
2583
2584 cfqq = cic->cfqq[BLK_RW_SYNC];
2585 if (cfqq)
2586 cfq_mark_cfqq_prio_changed(cfqq);
2587
2588 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2589 }
2590
2591 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2592 {
2593 call_for_each_cic(ioc, changed_ioprio);
2594 ioc->ioprio_changed = 0;
2595 }
2596
2597 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2598 pid_t pid, bool is_sync)
2599 {
2600 RB_CLEAR_NODE(&cfqq->rb_node);
2601 RB_CLEAR_NODE(&cfqq->p_node);
2602 INIT_LIST_HEAD(&cfqq->fifo);
2603
2604 atomic_set(&cfqq->ref, 0);
2605 cfqq->cfqd = cfqd;
2606
2607 cfq_mark_cfqq_prio_changed(cfqq);
2608
2609 if (is_sync) {
2610 if (!cfq_class_idle(cfqq))
2611 cfq_mark_cfqq_idle_window(cfqq);
2612 cfq_mark_cfqq_sync(cfqq);
2613 }
2614 cfqq->pid = pid;
2615 }
2616
2617 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2618 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2619 {
2620 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2621 struct cfq_data *cfqd = cic->key;
2622 unsigned long flags;
2623 struct request_queue *q;
2624
2625 if (unlikely(!cfqd))
2626 return;
2627
2628 q = cfqd->queue;
2629
2630 spin_lock_irqsave(q->queue_lock, flags);
2631
2632 if (sync_cfqq) {
2633 /*
2634 * Drop reference to sync queue. A new sync queue will be
2635 * assigned in new group upon arrival of a fresh request.
2636 */
2637 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2638 cic_set_cfqq(cic, NULL, 1);
2639 cfq_put_queue(sync_cfqq);
2640 }
2641
2642 spin_unlock_irqrestore(q->queue_lock, flags);
2643 }
2644
2645 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2646 {
2647 call_for_each_cic(ioc, changed_cgroup);
2648 ioc->cgroup_changed = 0;
2649 }
2650 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2651
2652 static struct cfq_queue *
2653 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2654 struct io_context *ioc, gfp_t gfp_mask)
2655 {
2656 struct cfq_queue *cfqq, *new_cfqq = NULL;
2657 struct cfq_io_context *cic;
2658 struct cfq_group *cfqg;
2659
2660 retry:
2661 cfqg = cfq_get_cfqg(cfqd, 1);
2662 cic = cfq_cic_lookup(cfqd, ioc);
2663 /* cic always exists here */
2664 cfqq = cic_to_cfqq(cic, is_sync);
2665
2666 /*
2667 * Always try a new alloc if we fell back to the OOM cfqq
2668 * originally, since it should just be a temporary situation.
2669 */
2670 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2671 cfqq = NULL;
2672 if (new_cfqq) {
2673 cfqq = new_cfqq;
2674 new_cfqq = NULL;
2675 } else if (gfp_mask & __GFP_WAIT) {
2676 spin_unlock_irq(cfqd->queue->queue_lock);
2677 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2678 gfp_mask | __GFP_ZERO,
2679 cfqd->queue->node);
2680 spin_lock_irq(cfqd->queue->queue_lock);
2681 if (new_cfqq)
2682 goto retry;
2683 } else {
2684 cfqq = kmem_cache_alloc_node(cfq_pool,
2685 gfp_mask | __GFP_ZERO,
2686 cfqd->queue->node);
2687 }
2688
2689 if (cfqq) {
2690 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2691 cfq_init_prio_data(cfqq, ioc);
2692 cfq_link_cfqq_cfqg(cfqq, cfqg);
2693 cfq_log_cfqq(cfqd, cfqq, "alloced");
2694 } else
2695 cfqq = &cfqd->oom_cfqq;
2696 }
2697
2698 if (new_cfqq)
2699 kmem_cache_free(cfq_pool, new_cfqq);
2700
2701 return cfqq;
2702 }
2703
2704 static struct cfq_queue **
2705 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2706 {
2707 switch (ioprio_class) {
2708 case IOPRIO_CLASS_RT:
2709 return &cfqd->async_cfqq[0][ioprio];
2710 case IOPRIO_CLASS_BE:
2711 return &cfqd->async_cfqq[1][ioprio];
2712 case IOPRIO_CLASS_IDLE:
2713 return &cfqd->async_idle_cfqq;
2714 default:
2715 BUG();
2716 }
2717 }
2718
2719 static struct cfq_queue *
2720 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2721 gfp_t gfp_mask)
2722 {
2723 const int ioprio = task_ioprio(ioc);
2724 const int ioprio_class = task_ioprio_class(ioc);
2725 struct cfq_queue **async_cfqq = NULL;
2726 struct cfq_queue *cfqq = NULL;
2727
2728 if (!is_sync) {
2729 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2730 cfqq = *async_cfqq;
2731 }
2732
2733 if (!cfqq)
2734 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2735
2736 /*
2737 * pin the queue now that it's allocated, scheduler exit will prune it
2738 */
2739 if (!is_sync && !(*async_cfqq)) {
2740 atomic_inc(&cfqq->ref);
2741 *async_cfqq = cfqq;
2742 }
2743
2744 atomic_inc(&cfqq->ref);
2745 return cfqq;
2746 }
2747
2748 /*
2749 * We drop cfq io contexts lazily, so we may find a dead one.
2750 */
2751 static void
2752 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2753 struct cfq_io_context *cic)
2754 {
2755 unsigned long flags;
2756
2757 WARN_ON(!list_empty(&cic->queue_list));
2758
2759 spin_lock_irqsave(&ioc->lock, flags);
2760
2761 BUG_ON(ioc->ioc_data == cic);
2762
2763 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2764 hlist_del_rcu(&cic->cic_list);
2765 spin_unlock_irqrestore(&ioc->lock, flags);
2766
2767 cfq_cic_free(cic);
2768 }
2769
2770 static struct cfq_io_context *
2771 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2772 {
2773 struct cfq_io_context *cic;
2774 unsigned long flags;
2775 void *k;
2776
2777 if (unlikely(!ioc))
2778 return NULL;
2779
2780 rcu_read_lock();
2781
2782 /*
2783 * we maintain a last-hit cache, to avoid browsing over the tree
2784 */
2785 cic = rcu_dereference(ioc->ioc_data);
2786 if (cic && cic->key == cfqd) {
2787 rcu_read_unlock();
2788 return cic;
2789 }
2790
2791 do {
2792 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2793 rcu_read_unlock();
2794 if (!cic)
2795 break;
2796 /* ->key must be copied to avoid race with cfq_exit_queue() */
2797 k = cic->key;
2798 if (unlikely(!k)) {
2799 cfq_drop_dead_cic(cfqd, ioc, cic);
2800 rcu_read_lock();
2801 continue;
2802 }
2803
2804 spin_lock_irqsave(&ioc->lock, flags);
2805 rcu_assign_pointer(ioc->ioc_data, cic);
2806 spin_unlock_irqrestore(&ioc->lock, flags);
2807 break;
2808 } while (1);
2809
2810 return cic;
2811 }
2812
2813 /*
2814 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2815 * the process specific cfq io context when entered from the block layer.
2816 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2817 */
2818 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2819 struct cfq_io_context *cic, gfp_t gfp_mask)
2820 {
2821 unsigned long flags;
2822 int ret;
2823
2824 ret = radix_tree_preload(gfp_mask);
2825 if (!ret) {
2826 cic->ioc = ioc;
2827 cic->key = cfqd;
2828
2829 spin_lock_irqsave(&ioc->lock, flags);
2830 ret = radix_tree_insert(&ioc->radix_root,
2831 (unsigned long) cfqd, cic);
2832 if (!ret)
2833 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2834 spin_unlock_irqrestore(&ioc->lock, flags);
2835
2836 radix_tree_preload_end();
2837
2838 if (!ret) {
2839 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2840 list_add(&cic->queue_list, &cfqd->cic_list);
2841 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2842 }
2843 }
2844
2845 if (ret)
2846 printk(KERN_ERR "cfq: cic link failed!\n");
2847
2848 return ret;
2849 }
2850
2851 /*
2852 * Setup general io context and cfq io context. There can be several cfq
2853 * io contexts per general io context, if this process is doing io to more
2854 * than one device managed by cfq.
2855 */
2856 static struct cfq_io_context *
2857 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2858 {
2859 struct io_context *ioc = NULL;
2860 struct cfq_io_context *cic;
2861
2862 might_sleep_if(gfp_mask & __GFP_WAIT);
2863
2864 ioc = get_io_context(gfp_mask, cfqd->queue->node);
2865 if (!ioc)
2866 return NULL;
2867
2868 cic = cfq_cic_lookup(cfqd, ioc);
2869 if (cic)
2870 goto out;
2871
2872 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2873 if (cic == NULL)
2874 goto err;
2875
2876 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2877 goto err_free;
2878
2879 out:
2880 smp_read_barrier_depends();
2881 if (unlikely(ioc->ioprio_changed))
2882 cfq_ioc_set_ioprio(ioc);
2883
2884 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2885 if (unlikely(ioc->cgroup_changed))
2886 cfq_ioc_set_cgroup(ioc);
2887 #endif
2888 return cic;
2889 err_free:
2890 cfq_cic_free(cic);
2891 err:
2892 put_io_context(ioc);
2893 return NULL;
2894 }
2895
2896 static void
2897 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2898 {
2899 unsigned long elapsed = jiffies - cic->last_end_request;
2900 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2901
2902 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2903 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2904 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2905 }
2906
2907 static void
2908 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2909 struct request *rq)
2910 {
2911 sector_t sdist;
2912 u64 total;
2913
2914 if (!cfqq->last_request_pos)
2915 sdist = 0;
2916 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2917 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2918 else
2919 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2920
2921 /*
2922 * Don't allow the seek distance to get too large from the
2923 * odd fragment, pagein, etc
2924 */
2925 if (cfqq->seek_samples <= 60) /* second&third seek */
2926 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2927 else
2928 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2929
2930 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2931 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2932 total = cfqq->seek_total + (cfqq->seek_samples/2);
2933 do_div(total, cfqq->seek_samples);
2934 cfqq->seek_mean = (sector_t)total;
2935
2936 /*
2937 * If this cfqq is shared between multiple processes, check to
2938 * make sure that those processes are still issuing I/Os within
2939 * the mean seek distance. If not, it may be time to break the
2940 * queues apart again.
2941 */
2942 if (cfq_cfqq_coop(cfqq)) {
2943 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2944 cfqq->seeky_start = jiffies;
2945 else if (!CFQQ_SEEKY(cfqq))
2946 cfqq->seeky_start = 0;
2947 }
2948 }
2949
2950 /*
2951 * Disable idle window if the process thinks too long or seeks so much that
2952 * it doesn't matter
2953 */
2954 static void
2955 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2956 struct cfq_io_context *cic)
2957 {
2958 int old_idle, enable_idle;
2959
2960 /*
2961 * Don't idle for async or idle io prio class
2962 */
2963 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2964 return;
2965
2966 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2967
2968 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2969 cfq_mark_cfqq_deep(cfqq);
2970
2971 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2972 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
2973 && CFQQ_SEEKY(cfqq)))
2974 enable_idle = 0;
2975 else if (sample_valid(cic->ttime_samples)) {
2976 if (cic->ttime_mean > cfqd->cfq_slice_idle)
2977 enable_idle = 0;
2978 else
2979 enable_idle = 1;
2980 }
2981
2982 if (old_idle != enable_idle) {
2983 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2984 if (enable_idle)
2985 cfq_mark_cfqq_idle_window(cfqq);
2986 else
2987 cfq_clear_cfqq_idle_window(cfqq);
2988 }
2989 }
2990
2991 /*
2992 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2993 * no or if we aren't sure, a 1 will cause a preempt.
2994 */
2995 static bool
2996 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2997 struct request *rq)
2998 {
2999 struct cfq_queue *cfqq;
3000
3001 cfqq = cfqd->active_queue;
3002 if (!cfqq)
3003 return false;
3004
3005 if (cfq_class_idle(new_cfqq))
3006 return false;
3007
3008 if (cfq_class_idle(cfqq))
3009 return true;
3010
3011 /*
3012 * if the new request is sync, but the currently running queue is
3013 * not, let the sync request have priority.
3014 */
3015 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3016 return true;
3017
3018 if (new_cfqq->cfqg != cfqq->cfqg)
3019 return false;
3020
3021 if (cfq_slice_used(cfqq))
3022 return true;
3023
3024 /* Allow preemption only if we are idling on sync-noidle tree */
3025 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3026 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3027 new_cfqq->service_tree->count == 2 &&
3028 RB_EMPTY_ROOT(&cfqq->sort_list))
3029 return true;
3030
3031 /*
3032 * So both queues are sync. Let the new request get disk time if
3033 * it's a metadata request and the current queue is doing regular IO.
3034 */
3035 if (rq_is_meta(rq) && !cfqq->meta_pending)
3036 return true;
3037
3038 /*
3039 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3040 */
3041 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3042 return true;
3043
3044 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3045 return false;
3046
3047 /*
3048 * if this request is as-good as one we would expect from the
3049 * current cfqq, let it preempt
3050 */
3051 if (cfq_rq_close(cfqd, cfqq, rq))
3052 return true;
3053
3054 return false;
3055 }
3056
3057 /*
3058 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3059 * let it have half of its nominal slice.
3060 */
3061 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3062 {
3063 cfq_log_cfqq(cfqd, cfqq, "preempt");
3064 cfq_slice_expired(cfqd, 1);
3065
3066 /*
3067 * Put the new queue at the front of the of the current list,
3068 * so we know that it will be selected next.
3069 */
3070 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3071
3072 cfq_service_tree_add(cfqd, cfqq, 1);
3073
3074 cfqq->slice_end = 0;
3075 cfq_mark_cfqq_slice_new(cfqq);
3076 }
3077
3078 /*
3079 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3080 * something we should do about it
3081 */
3082 static void
3083 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3084 struct request *rq)
3085 {
3086 struct cfq_io_context *cic = RQ_CIC(rq);
3087
3088 cfqd->rq_queued++;
3089 if (rq_is_meta(rq))
3090 cfqq->meta_pending++;
3091
3092 cfq_update_io_thinktime(cfqd, cic);
3093 cfq_update_io_seektime(cfqd, cfqq, rq);
3094 cfq_update_idle_window(cfqd, cfqq, cic);
3095
3096 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3097
3098 if (cfqq == cfqd->active_queue) {
3099 /*
3100 * Remember that we saw a request from this process, but
3101 * don't start queuing just yet. Otherwise we risk seeing lots
3102 * of tiny requests, because we disrupt the normal plugging
3103 * and merging. If the request is already larger than a single
3104 * page, let it rip immediately. For that case we assume that
3105 * merging is already done. Ditto for a busy system that
3106 * has other work pending, don't risk delaying until the
3107 * idle timer unplug to continue working.
3108 */
3109 if (cfq_cfqq_wait_request(cfqq)) {
3110 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3111 cfqd->busy_queues > 1) {
3112 del_timer(&cfqd->idle_slice_timer);
3113 __blk_run_queue(cfqd->queue);
3114 } else
3115 cfq_mark_cfqq_must_dispatch(cfqq);
3116 }
3117 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3118 /*
3119 * not the active queue - expire current slice if it is
3120 * idle and has expired it's mean thinktime or this new queue
3121 * has some old slice time left and is of higher priority or
3122 * this new queue is RT and the current one is BE
3123 */
3124 cfq_preempt_queue(cfqd, cfqq);
3125 __blk_run_queue(cfqd->queue);
3126 }
3127 }
3128
3129 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3130 {
3131 struct cfq_data *cfqd = q->elevator->elevator_data;
3132 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3133
3134 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3135 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3136
3137 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3138 list_add_tail(&rq->queuelist, &cfqq->fifo);
3139 cfq_add_rq_rb(rq);
3140
3141 cfq_rq_enqueued(cfqd, cfqq, rq);
3142 }
3143
3144 /*
3145 * Update hw_tag based on peak queue depth over 50 samples under
3146 * sufficient load.
3147 */
3148 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3149 {
3150 struct cfq_queue *cfqq = cfqd->active_queue;
3151
3152 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3153 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3154
3155 if (cfqd->hw_tag == 1)
3156 return;
3157
3158 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3159 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
3160 return;
3161
3162 /*
3163 * If active queue hasn't enough requests and can idle, cfq might not
3164 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3165 * case
3166 */
3167 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3168 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3169 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3170 return;
3171
3172 if (cfqd->hw_tag_samples++ < 50)
3173 return;
3174
3175 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3176 cfqd->hw_tag = 1;
3177 else
3178 cfqd->hw_tag = 0;
3179 }
3180
3181 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3182 {
3183 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3184 struct cfq_data *cfqd = cfqq->cfqd;
3185 const int sync = rq_is_sync(rq);
3186 unsigned long now;
3187
3188 now = jiffies;
3189 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3190
3191 cfq_update_hw_tag(cfqd);
3192
3193 WARN_ON(!cfqd->rq_in_driver[sync]);
3194 WARN_ON(!cfqq->dispatched);
3195 cfqd->rq_in_driver[sync]--;
3196 cfqq->dispatched--;
3197
3198 if (cfq_cfqq_sync(cfqq))
3199 cfqd->sync_flight--;
3200
3201 if (sync) {
3202 RQ_CIC(rq)->last_end_request = now;
3203 cfqd->last_end_sync_rq = now;
3204 }
3205
3206 /*
3207 * If this is the active queue, check if it needs to be expired,
3208 * or if we want to idle in case it has no pending requests.
3209 */
3210 if (cfqd->active_queue == cfqq) {
3211 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3212
3213 if (cfq_cfqq_slice_new(cfqq)) {
3214 cfq_set_prio_slice(cfqd, cfqq);
3215 cfq_clear_cfqq_slice_new(cfqq);
3216 }
3217 /*
3218 * Idling is not enabled on:
3219 * - expired queues
3220 * - idle-priority queues
3221 * - async queues
3222 * - queues with still some requests queued
3223 * - when there is a close cooperator
3224 */
3225 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3226 cfq_slice_expired(cfqd, 1);
3227 else if (sync && cfqq_empty &&
3228 !cfq_close_cooperator(cfqd, cfqq)) {
3229 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3230 /*
3231 * Idling is enabled for SYNC_WORKLOAD.
3232 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3233 * only if we processed at least one !rq_noidle request
3234 */
3235 if (cfqd->serving_type == SYNC_WORKLOAD
3236 || cfqd->noidle_tree_requires_idle)
3237 cfq_arm_slice_timer(cfqd);
3238 }
3239 }
3240
3241 if (!rq_in_driver(cfqd))
3242 cfq_schedule_dispatch(cfqd);
3243 }
3244
3245 /*
3246 * we temporarily boost lower priority queues if they are holding fs exclusive
3247 * resources. they are boosted to normal prio (CLASS_BE/4)
3248 */
3249 static void cfq_prio_boost(struct cfq_queue *cfqq)
3250 {
3251 if (has_fs_excl()) {
3252 /*
3253 * boost idle prio on transactions that would lock out other
3254 * users of the filesystem
3255 */
3256 if (cfq_class_idle(cfqq))
3257 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3258 if (cfqq->ioprio > IOPRIO_NORM)
3259 cfqq->ioprio = IOPRIO_NORM;
3260 } else {
3261 /*
3262 * unboost the queue (if needed)
3263 */
3264 cfqq->ioprio_class = cfqq->org_ioprio_class;
3265 cfqq->ioprio = cfqq->org_ioprio;
3266 }
3267 }
3268
3269 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3270 {
3271 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3272 cfq_mark_cfqq_must_alloc_slice(cfqq);
3273 return ELV_MQUEUE_MUST;
3274 }
3275
3276 return ELV_MQUEUE_MAY;
3277 }
3278
3279 static int cfq_may_queue(struct request_queue *q, int rw)
3280 {
3281 struct cfq_data *cfqd = q->elevator->elevator_data;
3282 struct task_struct *tsk = current;
3283 struct cfq_io_context *cic;
3284 struct cfq_queue *cfqq;
3285
3286 /*
3287 * don't force setup of a queue from here, as a call to may_queue
3288 * does not necessarily imply that a request actually will be queued.
3289 * so just lookup a possibly existing queue, or return 'may queue'
3290 * if that fails
3291 */
3292 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3293 if (!cic)
3294 return ELV_MQUEUE_MAY;
3295
3296 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3297 if (cfqq) {
3298 cfq_init_prio_data(cfqq, cic->ioc);
3299 cfq_prio_boost(cfqq);
3300
3301 return __cfq_may_queue(cfqq);
3302 }
3303
3304 return ELV_MQUEUE_MAY;
3305 }
3306
3307 /*
3308 * queue lock held here
3309 */
3310 static void cfq_put_request(struct request *rq)
3311 {
3312 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3313
3314 if (cfqq) {
3315 const int rw = rq_data_dir(rq);
3316
3317 BUG_ON(!cfqq->allocated[rw]);
3318 cfqq->allocated[rw]--;
3319
3320 put_io_context(RQ_CIC(rq)->ioc);
3321
3322 rq->elevator_private = NULL;
3323 rq->elevator_private2 = NULL;
3324
3325 cfq_put_queue(cfqq);
3326 }
3327 }
3328
3329 static struct cfq_queue *
3330 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3331 struct cfq_queue *cfqq)
3332 {
3333 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3334 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3335 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3336 cfq_put_queue(cfqq);
3337 return cic_to_cfqq(cic, 1);
3338 }
3339
3340 static int should_split_cfqq(struct cfq_queue *cfqq)
3341 {
3342 if (cfqq->seeky_start &&
3343 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
3344 return 1;
3345 return 0;
3346 }
3347
3348 /*
3349 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3350 * was the last process referring to said cfqq.
3351 */
3352 static struct cfq_queue *
3353 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3354 {
3355 if (cfqq_process_refs(cfqq) == 1) {
3356 cfqq->seeky_start = 0;
3357 cfqq->pid = current->pid;
3358 cfq_clear_cfqq_coop(cfqq);
3359 return cfqq;
3360 }
3361
3362 cic_set_cfqq(cic, NULL, 1);
3363 cfq_put_queue(cfqq);
3364 return NULL;
3365 }
3366 /*
3367 * Allocate cfq data structures associated with this request.
3368 */
3369 static int
3370 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3371 {
3372 struct cfq_data *cfqd = q->elevator->elevator_data;
3373 struct cfq_io_context *cic;
3374 const int rw = rq_data_dir(rq);
3375 const bool is_sync = rq_is_sync(rq);
3376 struct cfq_queue *cfqq;
3377 unsigned long flags;
3378
3379 might_sleep_if(gfp_mask & __GFP_WAIT);
3380
3381 cic = cfq_get_io_context(cfqd, gfp_mask);
3382
3383 spin_lock_irqsave(q->queue_lock, flags);
3384
3385 if (!cic)
3386 goto queue_fail;
3387
3388 new_queue:
3389 cfqq = cic_to_cfqq(cic, is_sync);
3390 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3391 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3392 cic_set_cfqq(cic, cfqq, is_sync);
3393 } else {
3394 /*
3395 * If the queue was seeky for too long, break it apart.
3396 */
3397 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3398 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3399 cfqq = split_cfqq(cic, cfqq);
3400 if (!cfqq)
3401 goto new_queue;
3402 }
3403
3404 /*
3405 * Check to see if this queue is scheduled to merge with
3406 * another, closely cooperating queue. The merging of
3407 * queues happens here as it must be done in process context.
3408 * The reference on new_cfqq was taken in merge_cfqqs.
3409 */
3410 if (cfqq->new_cfqq)
3411 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3412 }
3413
3414 cfqq->allocated[rw]++;
3415 atomic_inc(&cfqq->ref);
3416
3417 spin_unlock_irqrestore(q->queue_lock, flags);
3418
3419 rq->elevator_private = cic;
3420 rq->elevator_private2 = cfqq;
3421 return 0;
3422
3423 queue_fail:
3424 if (cic)
3425 put_io_context(cic->ioc);
3426
3427 cfq_schedule_dispatch(cfqd);
3428 spin_unlock_irqrestore(q->queue_lock, flags);
3429 cfq_log(cfqd, "set_request fail");
3430 return 1;
3431 }
3432
3433 static void cfq_kick_queue(struct work_struct *work)
3434 {
3435 struct cfq_data *cfqd =
3436 container_of(work, struct cfq_data, unplug_work);
3437 struct request_queue *q = cfqd->queue;
3438
3439 spin_lock_irq(q->queue_lock);
3440 __blk_run_queue(cfqd->queue);
3441 spin_unlock_irq(q->queue_lock);
3442 }
3443
3444 /*
3445 * Timer running if the active_queue is currently idling inside its time slice
3446 */
3447 static void cfq_idle_slice_timer(unsigned long data)
3448 {
3449 struct cfq_data *cfqd = (struct cfq_data *) data;
3450 struct cfq_queue *cfqq;
3451 unsigned long flags;
3452 int timed_out = 1;
3453
3454 cfq_log(cfqd, "idle timer fired");
3455
3456 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3457
3458 cfqq = cfqd->active_queue;
3459 if (cfqq) {
3460 timed_out = 0;
3461
3462 /*
3463 * We saw a request before the queue expired, let it through
3464 */
3465 if (cfq_cfqq_must_dispatch(cfqq))
3466 goto out_kick;
3467
3468 /*
3469 * expired
3470 */
3471 if (cfq_slice_used(cfqq))
3472 goto expire;
3473
3474 /*
3475 * only expire and reinvoke request handler, if there are
3476 * other queues with pending requests
3477 */
3478 if (!cfqd->busy_queues)
3479 goto out_cont;
3480
3481 /*
3482 * not expired and it has a request pending, let it dispatch
3483 */
3484 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3485 goto out_kick;
3486
3487 /*
3488 * Queue depth flag is reset only when the idle didn't succeed
3489 */
3490 cfq_clear_cfqq_deep(cfqq);
3491 }
3492 expire:
3493 cfq_slice_expired(cfqd, timed_out);
3494 out_kick:
3495 cfq_schedule_dispatch(cfqd);
3496 out_cont:
3497 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3498 }
3499
3500 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3501 {
3502 del_timer_sync(&cfqd->idle_slice_timer);
3503 cancel_work_sync(&cfqd->unplug_work);
3504 }
3505
3506 static void cfq_put_async_queues(struct cfq_data *cfqd)
3507 {
3508 int i;
3509
3510 for (i = 0; i < IOPRIO_BE_NR; i++) {
3511 if (cfqd->async_cfqq[0][i])
3512 cfq_put_queue(cfqd->async_cfqq[0][i]);
3513 if (cfqd->async_cfqq[1][i])
3514 cfq_put_queue(cfqd->async_cfqq[1][i]);
3515 }
3516
3517 if (cfqd->async_idle_cfqq)
3518 cfq_put_queue(cfqd->async_idle_cfqq);
3519 }
3520
3521 static void cfq_exit_queue(struct elevator_queue *e)
3522 {
3523 struct cfq_data *cfqd = e->elevator_data;
3524 struct request_queue *q = cfqd->queue;
3525
3526 cfq_shutdown_timer_wq(cfqd);
3527
3528 spin_lock_irq(q->queue_lock);
3529
3530 if (cfqd->active_queue)
3531 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3532
3533 while (!list_empty(&cfqd->cic_list)) {
3534 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3535 struct cfq_io_context,
3536 queue_list);
3537
3538 __cfq_exit_single_io_context(cfqd, cic);
3539 }
3540
3541 cfq_put_async_queues(cfqd);
3542 cfq_release_cfq_groups(cfqd);
3543 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3544
3545 spin_unlock_irq(q->queue_lock);
3546
3547 cfq_shutdown_timer_wq(cfqd);
3548
3549 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3550 synchronize_rcu();
3551 kfree(cfqd);
3552 }
3553
3554 static void *cfq_init_queue(struct request_queue *q)
3555 {
3556 struct cfq_data *cfqd;
3557 int i, j;
3558 struct cfq_group *cfqg;
3559 struct cfq_rb_root *st;
3560
3561 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3562 if (!cfqd)
3563 return NULL;
3564
3565 /* Init root service tree */
3566 cfqd->grp_service_tree = CFQ_RB_ROOT;
3567
3568 /* Init root group */
3569 cfqg = &cfqd->root_group;
3570 for_each_cfqg_st(cfqg, i, j, st)
3571 *st = CFQ_RB_ROOT;
3572 RB_CLEAR_NODE(&cfqg->rb_node);
3573
3574 /* Give preference to root group over other groups */
3575 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3576
3577 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3578 /*
3579 * Take a reference to root group which we never drop. This is just
3580 * to make sure that cfq_put_cfqg() does not try to kfree root group
3581 */
3582 atomic_set(&cfqg->ref, 1);
3583 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3584 0);
3585 #endif
3586 /*
3587 * Not strictly needed (since RB_ROOT just clears the node and we
3588 * zeroed cfqd on alloc), but better be safe in case someone decides
3589 * to add magic to the rb code
3590 */
3591 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3592 cfqd->prio_trees[i] = RB_ROOT;
3593
3594 /*
3595 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3596 * Grab a permanent reference to it, so that the normal code flow
3597 * will not attempt to free it.
3598 */
3599 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3600 atomic_inc(&cfqd->oom_cfqq.ref);
3601 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3602
3603 INIT_LIST_HEAD(&cfqd->cic_list);
3604
3605 cfqd->queue = q;
3606
3607 init_timer(&cfqd->idle_slice_timer);
3608 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3609 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3610
3611 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3612
3613 cfqd->cfq_quantum = cfq_quantum;
3614 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3615 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3616 cfqd->cfq_back_max = cfq_back_max;
3617 cfqd->cfq_back_penalty = cfq_back_penalty;
3618 cfqd->cfq_slice[0] = cfq_slice_async;
3619 cfqd->cfq_slice[1] = cfq_slice_sync;
3620 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3621 cfqd->cfq_slice_idle = cfq_slice_idle;
3622 cfqd->cfq_latency = 1;
3623 cfqd->hw_tag = -1;
3624 cfqd->last_end_sync_rq = jiffies;
3625 return cfqd;
3626 }
3627
3628 static void cfq_slab_kill(void)
3629 {
3630 /*
3631 * Caller already ensured that pending RCU callbacks are completed,
3632 * so we should have no busy allocations at this point.
3633 */
3634 if (cfq_pool)
3635 kmem_cache_destroy(cfq_pool);
3636 if (cfq_ioc_pool)
3637 kmem_cache_destroy(cfq_ioc_pool);
3638 }
3639
3640 static int __init cfq_slab_setup(void)
3641 {
3642 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3643 if (!cfq_pool)
3644 goto fail;
3645
3646 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3647 if (!cfq_ioc_pool)
3648 goto fail;
3649
3650 return 0;
3651 fail:
3652 cfq_slab_kill();
3653 return -ENOMEM;
3654 }
3655
3656 /*
3657 * sysfs parts below -->
3658 */
3659 static ssize_t
3660 cfq_var_show(unsigned int var, char *page)
3661 {
3662 return sprintf(page, "%d\n", var);
3663 }
3664
3665 static ssize_t
3666 cfq_var_store(unsigned int *var, const char *page, size_t count)
3667 {
3668 char *p = (char *) page;
3669
3670 *var = simple_strtoul(p, &p, 10);
3671 return count;
3672 }
3673
3674 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3675 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3676 { \
3677 struct cfq_data *cfqd = e->elevator_data; \
3678 unsigned int __data = __VAR; \
3679 if (__CONV) \
3680 __data = jiffies_to_msecs(__data); \
3681 return cfq_var_show(__data, (page)); \
3682 }
3683 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3684 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3685 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3686 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3687 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3688 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3689 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3690 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3691 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3692 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3693 #undef SHOW_FUNCTION
3694
3695 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3696 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3697 { \
3698 struct cfq_data *cfqd = e->elevator_data; \
3699 unsigned int __data; \
3700 int ret = cfq_var_store(&__data, (page), count); \
3701 if (__data < (MIN)) \
3702 __data = (MIN); \
3703 else if (__data > (MAX)) \
3704 __data = (MAX); \
3705 if (__CONV) \
3706 *(__PTR) = msecs_to_jiffies(__data); \
3707 else \
3708 *(__PTR) = __data; \
3709 return ret; \
3710 }
3711 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3712 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3713 UINT_MAX, 1);
3714 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3715 UINT_MAX, 1);
3716 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3717 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3718 UINT_MAX, 0);
3719 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3720 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3721 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3722 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3723 UINT_MAX, 0);
3724 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3725 #undef STORE_FUNCTION
3726
3727 #define CFQ_ATTR(name) \
3728 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3729
3730 static struct elv_fs_entry cfq_attrs[] = {
3731 CFQ_ATTR(quantum),
3732 CFQ_ATTR(fifo_expire_sync),
3733 CFQ_ATTR(fifo_expire_async),
3734 CFQ_ATTR(back_seek_max),
3735 CFQ_ATTR(back_seek_penalty),
3736 CFQ_ATTR(slice_sync),
3737 CFQ_ATTR(slice_async),
3738 CFQ_ATTR(slice_async_rq),
3739 CFQ_ATTR(slice_idle),
3740 CFQ_ATTR(low_latency),
3741 __ATTR_NULL
3742 };
3743
3744 static struct elevator_type iosched_cfq = {
3745 .ops = {
3746 .elevator_merge_fn = cfq_merge,
3747 .elevator_merged_fn = cfq_merged_request,
3748 .elevator_merge_req_fn = cfq_merged_requests,
3749 .elevator_allow_merge_fn = cfq_allow_merge,
3750 .elevator_dispatch_fn = cfq_dispatch_requests,
3751 .elevator_add_req_fn = cfq_insert_request,
3752 .elevator_activate_req_fn = cfq_activate_request,
3753 .elevator_deactivate_req_fn = cfq_deactivate_request,
3754 .elevator_queue_empty_fn = cfq_queue_empty,
3755 .elevator_completed_req_fn = cfq_completed_request,
3756 .elevator_former_req_fn = elv_rb_former_request,
3757 .elevator_latter_req_fn = elv_rb_latter_request,
3758 .elevator_set_req_fn = cfq_set_request,
3759 .elevator_put_req_fn = cfq_put_request,
3760 .elevator_may_queue_fn = cfq_may_queue,
3761 .elevator_init_fn = cfq_init_queue,
3762 .elevator_exit_fn = cfq_exit_queue,
3763 .trim = cfq_free_io_context,
3764 },
3765 .elevator_attrs = cfq_attrs,
3766 .elevator_name = "cfq",
3767 .elevator_owner = THIS_MODULE,
3768 };
3769
3770 static int __init cfq_init(void)
3771 {
3772 /*
3773 * could be 0 on HZ < 1000 setups
3774 */
3775 if (!cfq_slice_async)
3776 cfq_slice_async = 1;
3777 if (!cfq_slice_idle)
3778 cfq_slice_idle = 1;
3779
3780 if (cfq_slab_setup())
3781 return -ENOMEM;
3782
3783 elv_register(&iosched_cfq);
3784
3785 return 0;
3786 }
3787
3788 static void __exit cfq_exit(void)
3789 {
3790 DECLARE_COMPLETION_ONSTACK(all_gone);
3791 elv_unregister(&iosched_cfq);
3792 ioc_gone = &all_gone;
3793 /* ioc_gone's update must be visible before reading ioc_count */
3794 smp_wmb();
3795
3796 /*
3797 * this also protects us from entering cfq_slab_kill() with
3798 * pending RCU callbacks
3799 */
3800 if (elv_ioc_count_read(cfq_ioc_count))
3801 wait_for_completion(&all_gone);
3802 cfq_slab_kill();
3803 }
3804
3805 module_init(cfq_init);
3806 module_exit(cfq_exit);
3807
3808 MODULE_AUTHOR("Jens Axboe");
3809 MODULE_LICENSE("GPL");
3810 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");