]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/elevator.c
Merge commit 'v2.6.39' into for-2.6.40/core
[mirror_ubuntu-bionic-kernel.git] / block / elevator.c
1 /*
2 * Block device elevator/IO-scheduler.
3 *
4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 *
6 * 30042000 Jens Axboe <axboe@kernel.dk> :
7 *
8 * Split the elevator a bit so that it is possible to choose a different
9 * one or even write a new "plug in". There are three pieces:
10 * - elevator_fn, inserts a new request in the queue list
11 * - elevator_merge_fn, decides whether a new buffer can be merged with
12 * an existing request
13 * - elevator_dequeue_fn, called when a request is taken off the active list
14 *
15 * 20082000 Dave Jones <davej@suse.de> :
16 * Removed tests for max-bomb-segments, which was breaking elvtune
17 * when run without -bN
18 *
19 * Jens:
20 * - Rework again to work with bio instead of buffer_heads
21 * - loose bi_dev comparisons, partition handling is right now
22 * - completely modularize elevator setup and teardown
23 *
24 */
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
37 #include <linux/uaccess.h>
38
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42
43 static DEFINE_SPINLOCK(elv_list_lock);
44 static LIST_HEAD(elv_list);
45
46 /*
47 * Merge hash stuff.
48 */
49 static const int elv_hash_shift = 6;
50 #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
51 #define ELV_HASH_FN(sec) \
52 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
53 #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
54 #define rq_hash_key(rq) (blk_rq_pos(rq) + blk_rq_sectors(rq))
55
56 /*
57 * Query io scheduler to see if the current process issuing bio may be
58 * merged with rq.
59 */
60 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
61 {
62 struct request_queue *q = rq->q;
63 struct elevator_queue *e = q->elevator;
64
65 if (e->ops->elevator_allow_merge_fn)
66 return e->ops->elevator_allow_merge_fn(q, rq, bio);
67
68 return 1;
69 }
70
71 /*
72 * can we safely merge with this request?
73 */
74 int elv_rq_merge_ok(struct request *rq, struct bio *bio)
75 {
76 if (!rq_mergeable(rq))
77 return 0;
78
79 /*
80 * Don't merge file system requests and discard requests
81 */
82 if ((bio->bi_rw & REQ_DISCARD) != (rq->bio->bi_rw & REQ_DISCARD))
83 return 0;
84
85 /*
86 * Don't merge discard requests and secure discard requests
87 */
88 if ((bio->bi_rw & REQ_SECURE) != (rq->bio->bi_rw & REQ_SECURE))
89 return 0;
90
91 /*
92 * different data direction or already started, don't merge
93 */
94 if (bio_data_dir(bio) != rq_data_dir(rq))
95 return 0;
96
97 /*
98 * must be same device and not a special request
99 */
100 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
101 return 0;
102
103 /*
104 * only merge integrity protected bio into ditto rq
105 */
106 if (bio_integrity(bio) != blk_integrity_rq(rq))
107 return 0;
108
109 if (!elv_iosched_allow_merge(rq, bio))
110 return 0;
111
112 return 1;
113 }
114 EXPORT_SYMBOL(elv_rq_merge_ok);
115
116 int elv_try_merge(struct request *__rq, struct bio *bio)
117 {
118 int ret = ELEVATOR_NO_MERGE;
119
120 /*
121 * we can merge and sequence is ok, check if it's possible
122 */
123 if (elv_rq_merge_ok(__rq, bio)) {
124 if (blk_rq_pos(__rq) + blk_rq_sectors(__rq) == bio->bi_sector)
125 ret = ELEVATOR_BACK_MERGE;
126 else if (blk_rq_pos(__rq) - bio_sectors(bio) == bio->bi_sector)
127 ret = ELEVATOR_FRONT_MERGE;
128 }
129
130 return ret;
131 }
132
133 static struct elevator_type *elevator_find(const char *name)
134 {
135 struct elevator_type *e;
136
137 list_for_each_entry(e, &elv_list, list) {
138 if (!strcmp(e->elevator_name, name))
139 return e;
140 }
141
142 return NULL;
143 }
144
145 static void elevator_put(struct elevator_type *e)
146 {
147 module_put(e->elevator_owner);
148 }
149
150 static struct elevator_type *elevator_get(const char *name)
151 {
152 struct elevator_type *e;
153
154 spin_lock(&elv_list_lock);
155
156 e = elevator_find(name);
157 if (!e) {
158 spin_unlock(&elv_list_lock);
159 request_module("%s-iosched", name);
160 spin_lock(&elv_list_lock);
161 e = elevator_find(name);
162 }
163
164 if (e && !try_module_get(e->elevator_owner))
165 e = NULL;
166
167 spin_unlock(&elv_list_lock);
168
169 return e;
170 }
171
172 static void *elevator_init_queue(struct request_queue *q,
173 struct elevator_queue *eq)
174 {
175 return eq->ops->elevator_init_fn(q);
176 }
177
178 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
179 void *data)
180 {
181 q->elevator = eq;
182 eq->elevator_data = data;
183 }
184
185 static char chosen_elevator[16];
186
187 static int __init elevator_setup(char *str)
188 {
189 /*
190 * Be backwards-compatible with previous kernels, so users
191 * won't get the wrong elevator.
192 */
193 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
194 return 1;
195 }
196
197 __setup("elevator=", elevator_setup);
198
199 static struct kobj_type elv_ktype;
200
201 static struct elevator_queue *elevator_alloc(struct request_queue *q,
202 struct elevator_type *e)
203 {
204 struct elevator_queue *eq;
205 int i;
206
207 eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
208 if (unlikely(!eq))
209 goto err;
210
211 eq->ops = &e->ops;
212 eq->elevator_type = e;
213 kobject_init(&eq->kobj, &elv_ktype);
214 mutex_init(&eq->sysfs_lock);
215
216 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
217 GFP_KERNEL, q->node);
218 if (!eq->hash)
219 goto err;
220
221 for (i = 0; i < ELV_HASH_ENTRIES; i++)
222 INIT_HLIST_HEAD(&eq->hash[i]);
223
224 return eq;
225 err:
226 kfree(eq);
227 elevator_put(e);
228 return NULL;
229 }
230
231 static void elevator_release(struct kobject *kobj)
232 {
233 struct elevator_queue *e;
234
235 e = container_of(kobj, struct elevator_queue, kobj);
236 elevator_put(e->elevator_type);
237 kfree(e->hash);
238 kfree(e);
239 }
240
241 int elevator_init(struct request_queue *q, char *name)
242 {
243 struct elevator_type *e = NULL;
244 struct elevator_queue *eq;
245 void *data;
246
247 if (unlikely(q->elevator))
248 return 0;
249
250 INIT_LIST_HEAD(&q->queue_head);
251 q->last_merge = NULL;
252 q->end_sector = 0;
253 q->boundary_rq = NULL;
254
255 if (name) {
256 e = elevator_get(name);
257 if (!e)
258 return -EINVAL;
259 }
260
261 if (!e && *chosen_elevator) {
262 e = elevator_get(chosen_elevator);
263 if (!e)
264 printk(KERN_ERR "I/O scheduler %s not found\n",
265 chosen_elevator);
266 }
267
268 if (!e) {
269 e = elevator_get(CONFIG_DEFAULT_IOSCHED);
270 if (!e) {
271 printk(KERN_ERR
272 "Default I/O scheduler not found. " \
273 "Using noop.\n");
274 e = elevator_get("noop");
275 }
276 }
277
278 eq = elevator_alloc(q, e);
279 if (!eq)
280 return -ENOMEM;
281
282 data = elevator_init_queue(q, eq);
283 if (!data) {
284 kobject_put(&eq->kobj);
285 return -ENOMEM;
286 }
287
288 elevator_attach(q, eq, data);
289 return 0;
290 }
291 EXPORT_SYMBOL(elevator_init);
292
293 void elevator_exit(struct elevator_queue *e)
294 {
295 mutex_lock(&e->sysfs_lock);
296 if (e->ops->elevator_exit_fn)
297 e->ops->elevator_exit_fn(e);
298 e->ops = NULL;
299 mutex_unlock(&e->sysfs_lock);
300
301 kobject_put(&e->kobj);
302 }
303 EXPORT_SYMBOL(elevator_exit);
304
305 static inline void __elv_rqhash_del(struct request *rq)
306 {
307 hlist_del_init(&rq->hash);
308 }
309
310 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
311 {
312 if (ELV_ON_HASH(rq))
313 __elv_rqhash_del(rq);
314 }
315
316 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
317 {
318 struct elevator_queue *e = q->elevator;
319
320 BUG_ON(ELV_ON_HASH(rq));
321 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
322 }
323
324 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
325 {
326 __elv_rqhash_del(rq);
327 elv_rqhash_add(q, rq);
328 }
329
330 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
331 {
332 struct elevator_queue *e = q->elevator;
333 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
334 struct hlist_node *entry, *next;
335 struct request *rq;
336
337 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
338 BUG_ON(!ELV_ON_HASH(rq));
339
340 if (unlikely(!rq_mergeable(rq))) {
341 __elv_rqhash_del(rq);
342 continue;
343 }
344
345 if (rq_hash_key(rq) == offset)
346 return rq;
347 }
348
349 return NULL;
350 }
351
352 /*
353 * RB-tree support functions for inserting/lookup/removal of requests
354 * in a sorted RB tree.
355 */
356 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
357 {
358 struct rb_node **p = &root->rb_node;
359 struct rb_node *parent = NULL;
360 struct request *__rq;
361
362 while (*p) {
363 parent = *p;
364 __rq = rb_entry(parent, struct request, rb_node);
365
366 if (blk_rq_pos(rq) < blk_rq_pos(__rq))
367 p = &(*p)->rb_left;
368 else if (blk_rq_pos(rq) > blk_rq_pos(__rq))
369 p = &(*p)->rb_right;
370 else
371 return __rq;
372 }
373
374 rb_link_node(&rq->rb_node, parent, p);
375 rb_insert_color(&rq->rb_node, root);
376 return NULL;
377 }
378 EXPORT_SYMBOL(elv_rb_add);
379
380 void elv_rb_del(struct rb_root *root, struct request *rq)
381 {
382 BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
383 rb_erase(&rq->rb_node, root);
384 RB_CLEAR_NODE(&rq->rb_node);
385 }
386 EXPORT_SYMBOL(elv_rb_del);
387
388 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
389 {
390 struct rb_node *n = root->rb_node;
391 struct request *rq;
392
393 while (n) {
394 rq = rb_entry(n, struct request, rb_node);
395
396 if (sector < blk_rq_pos(rq))
397 n = n->rb_left;
398 else if (sector > blk_rq_pos(rq))
399 n = n->rb_right;
400 else
401 return rq;
402 }
403
404 return NULL;
405 }
406 EXPORT_SYMBOL(elv_rb_find);
407
408 /*
409 * Insert rq into dispatch queue of q. Queue lock must be held on
410 * entry. rq is sort instead into the dispatch queue. To be used by
411 * specific elevators.
412 */
413 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
414 {
415 sector_t boundary;
416 struct list_head *entry;
417 int stop_flags;
418
419 BUG_ON(rq->cmd_flags & REQ_ON_PLUG);
420
421 if (q->last_merge == rq)
422 q->last_merge = NULL;
423
424 elv_rqhash_del(q, rq);
425
426 q->nr_sorted--;
427
428 boundary = q->end_sector;
429 stop_flags = REQ_SOFTBARRIER | REQ_STARTED;
430 list_for_each_prev(entry, &q->queue_head) {
431 struct request *pos = list_entry_rq(entry);
432
433 if ((rq->cmd_flags & REQ_DISCARD) !=
434 (pos->cmd_flags & REQ_DISCARD))
435 break;
436 if (rq_data_dir(rq) != rq_data_dir(pos))
437 break;
438 if (pos->cmd_flags & stop_flags)
439 break;
440 if (blk_rq_pos(rq) >= boundary) {
441 if (blk_rq_pos(pos) < boundary)
442 continue;
443 } else {
444 if (blk_rq_pos(pos) >= boundary)
445 break;
446 }
447 if (blk_rq_pos(rq) >= blk_rq_pos(pos))
448 break;
449 }
450
451 list_add(&rq->queuelist, entry);
452 }
453 EXPORT_SYMBOL(elv_dispatch_sort);
454
455 /*
456 * Insert rq into dispatch queue of q. Queue lock must be held on
457 * entry. rq is added to the back of the dispatch queue. To be used by
458 * specific elevators.
459 */
460 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
461 {
462 if (q->last_merge == rq)
463 q->last_merge = NULL;
464
465 elv_rqhash_del(q, rq);
466
467 q->nr_sorted--;
468
469 q->end_sector = rq_end_sector(rq);
470 q->boundary_rq = rq;
471 list_add_tail(&rq->queuelist, &q->queue_head);
472 }
473 EXPORT_SYMBOL(elv_dispatch_add_tail);
474
475 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
476 {
477 struct elevator_queue *e = q->elevator;
478 struct request *__rq;
479 int ret;
480
481 /*
482 * Levels of merges:
483 * nomerges: No merges at all attempted
484 * noxmerges: Only simple one-hit cache try
485 * merges: All merge tries attempted
486 */
487 if (blk_queue_nomerges(q))
488 return ELEVATOR_NO_MERGE;
489
490 /*
491 * First try one-hit cache.
492 */
493 if (q->last_merge) {
494 ret = elv_try_merge(q->last_merge, bio);
495 if (ret != ELEVATOR_NO_MERGE) {
496 *req = q->last_merge;
497 return ret;
498 }
499 }
500
501 if (blk_queue_noxmerges(q))
502 return ELEVATOR_NO_MERGE;
503
504 /*
505 * See if our hash lookup can find a potential backmerge.
506 */
507 __rq = elv_rqhash_find(q, bio->bi_sector);
508 if (__rq && elv_rq_merge_ok(__rq, bio)) {
509 *req = __rq;
510 return ELEVATOR_BACK_MERGE;
511 }
512
513 if (e->ops->elevator_merge_fn)
514 return e->ops->elevator_merge_fn(q, req, bio);
515
516 return ELEVATOR_NO_MERGE;
517 }
518
519 /*
520 * Attempt to do an insertion back merge. Only check for the case where
521 * we can append 'rq' to an existing request, so we can throw 'rq' away
522 * afterwards.
523 *
524 * Returns true if we merged, false otherwise
525 */
526 static bool elv_attempt_insert_merge(struct request_queue *q,
527 struct request *rq)
528 {
529 struct request *__rq;
530
531 if (blk_queue_nomerges(q))
532 return false;
533
534 /*
535 * First try one-hit cache.
536 */
537 if (q->last_merge && blk_attempt_req_merge(q, q->last_merge, rq))
538 return true;
539
540 if (blk_queue_noxmerges(q))
541 return false;
542
543 /*
544 * See if our hash lookup can find a potential backmerge.
545 */
546 __rq = elv_rqhash_find(q, blk_rq_pos(rq));
547 if (__rq && blk_attempt_req_merge(q, __rq, rq))
548 return true;
549
550 return false;
551 }
552
553 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
554 {
555 struct elevator_queue *e = q->elevator;
556
557 if (e->ops->elevator_merged_fn)
558 e->ops->elevator_merged_fn(q, rq, type);
559
560 if (type == ELEVATOR_BACK_MERGE)
561 elv_rqhash_reposition(q, rq);
562
563 q->last_merge = rq;
564 }
565
566 void elv_merge_requests(struct request_queue *q, struct request *rq,
567 struct request *next)
568 {
569 struct elevator_queue *e = q->elevator;
570 const int next_sorted = next->cmd_flags & REQ_SORTED;
571
572 if (next_sorted && e->ops->elevator_merge_req_fn)
573 e->ops->elevator_merge_req_fn(q, rq, next);
574
575 elv_rqhash_reposition(q, rq);
576
577 if (next_sorted) {
578 elv_rqhash_del(q, next);
579 q->nr_sorted--;
580 }
581
582 q->last_merge = rq;
583 }
584
585 void elv_bio_merged(struct request_queue *q, struct request *rq,
586 struct bio *bio)
587 {
588 struct elevator_queue *e = q->elevator;
589
590 if (e->ops->elevator_bio_merged_fn)
591 e->ops->elevator_bio_merged_fn(q, rq, bio);
592 }
593
594 void elv_requeue_request(struct request_queue *q, struct request *rq)
595 {
596 /*
597 * it already went through dequeue, we need to decrement the
598 * in_flight count again
599 */
600 if (blk_account_rq(rq)) {
601 q->in_flight[rq_is_sync(rq)]--;
602 if (rq->cmd_flags & REQ_SORTED)
603 elv_deactivate_rq(q, rq);
604 }
605
606 rq->cmd_flags &= ~REQ_STARTED;
607
608 __elv_add_request(q, rq, ELEVATOR_INSERT_REQUEUE);
609 }
610
611 void elv_drain_elevator(struct request_queue *q)
612 {
613 static int printed;
614 while (q->elevator->ops->elevator_dispatch_fn(q, 1))
615 ;
616 if (q->nr_sorted == 0)
617 return;
618 if (printed++ < 10) {
619 printk(KERN_ERR "%s: forced dispatching is broken "
620 "(nr_sorted=%u), please report this\n",
621 q->elevator->elevator_type->elevator_name, q->nr_sorted);
622 }
623 }
624
625 /*
626 * Call with queue lock held, interrupts disabled
627 */
628 void elv_quiesce_start(struct request_queue *q)
629 {
630 if (!q->elevator)
631 return;
632
633 queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
634
635 /*
636 * make sure we don't have any requests in flight
637 */
638 elv_drain_elevator(q);
639 while (q->rq.elvpriv) {
640 __blk_run_queue(q);
641 spin_unlock_irq(q->queue_lock);
642 msleep(10);
643 spin_lock_irq(q->queue_lock);
644 elv_drain_elevator(q);
645 }
646 }
647
648 void elv_quiesce_end(struct request_queue *q)
649 {
650 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
651 }
652
653 void __elv_add_request(struct request_queue *q, struct request *rq, int where)
654 {
655 trace_block_rq_insert(q, rq);
656
657 rq->q = q;
658
659 BUG_ON(rq->cmd_flags & REQ_ON_PLUG);
660
661 if (rq->cmd_flags & REQ_SOFTBARRIER) {
662 /* barriers are scheduling boundary, update end_sector */
663 if (rq->cmd_type == REQ_TYPE_FS ||
664 (rq->cmd_flags & REQ_DISCARD)) {
665 q->end_sector = rq_end_sector(rq);
666 q->boundary_rq = rq;
667 }
668 } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
669 (where == ELEVATOR_INSERT_SORT ||
670 where == ELEVATOR_INSERT_SORT_MERGE))
671 where = ELEVATOR_INSERT_BACK;
672
673 switch (where) {
674 case ELEVATOR_INSERT_REQUEUE:
675 case ELEVATOR_INSERT_FRONT:
676 rq->cmd_flags |= REQ_SOFTBARRIER;
677 list_add(&rq->queuelist, &q->queue_head);
678 break;
679
680 case ELEVATOR_INSERT_BACK:
681 rq->cmd_flags |= REQ_SOFTBARRIER;
682 elv_drain_elevator(q);
683 list_add_tail(&rq->queuelist, &q->queue_head);
684 /*
685 * We kick the queue here for the following reasons.
686 * - The elevator might have returned NULL previously
687 * to delay requests and returned them now. As the
688 * queue wasn't empty before this request, ll_rw_blk
689 * won't run the queue on return, resulting in hang.
690 * - Usually, back inserted requests won't be merged
691 * with anything. There's no point in delaying queue
692 * processing.
693 */
694 __blk_run_queue(q);
695 break;
696
697 case ELEVATOR_INSERT_SORT_MERGE:
698 /*
699 * If we succeed in merging this request with one in the
700 * queue already, we are done - rq has now been freed,
701 * so no need to do anything further.
702 */
703 if (elv_attempt_insert_merge(q, rq))
704 break;
705 case ELEVATOR_INSERT_SORT:
706 BUG_ON(rq->cmd_type != REQ_TYPE_FS &&
707 !(rq->cmd_flags & REQ_DISCARD));
708 rq->cmd_flags |= REQ_SORTED;
709 q->nr_sorted++;
710 if (rq_mergeable(rq)) {
711 elv_rqhash_add(q, rq);
712 if (!q->last_merge)
713 q->last_merge = rq;
714 }
715
716 /*
717 * Some ioscheds (cfq) run q->request_fn directly, so
718 * rq cannot be accessed after calling
719 * elevator_add_req_fn.
720 */
721 q->elevator->ops->elevator_add_req_fn(q, rq);
722 break;
723
724 case ELEVATOR_INSERT_FLUSH:
725 rq->cmd_flags |= REQ_SOFTBARRIER;
726 blk_insert_flush(rq);
727 break;
728 default:
729 printk(KERN_ERR "%s: bad insertion point %d\n",
730 __func__, where);
731 BUG();
732 }
733 }
734 EXPORT_SYMBOL(__elv_add_request);
735
736 void elv_add_request(struct request_queue *q, struct request *rq, int where)
737 {
738 unsigned long flags;
739
740 spin_lock_irqsave(q->queue_lock, flags);
741 __elv_add_request(q, rq, where);
742 spin_unlock_irqrestore(q->queue_lock, flags);
743 }
744 EXPORT_SYMBOL(elv_add_request);
745
746 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
747 {
748 struct elevator_queue *e = q->elevator;
749
750 if (e->ops->elevator_latter_req_fn)
751 return e->ops->elevator_latter_req_fn(q, rq);
752 return NULL;
753 }
754
755 struct request *elv_former_request(struct request_queue *q, struct request *rq)
756 {
757 struct elevator_queue *e = q->elevator;
758
759 if (e->ops->elevator_former_req_fn)
760 return e->ops->elevator_former_req_fn(q, rq);
761 return NULL;
762 }
763
764 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
765 {
766 struct elevator_queue *e = q->elevator;
767
768 if (e->ops->elevator_set_req_fn)
769 return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
770
771 rq->elevator_private[0] = NULL;
772 return 0;
773 }
774
775 void elv_put_request(struct request_queue *q, struct request *rq)
776 {
777 struct elevator_queue *e = q->elevator;
778
779 if (e->ops->elevator_put_req_fn)
780 e->ops->elevator_put_req_fn(rq);
781 }
782
783 int elv_may_queue(struct request_queue *q, int rw)
784 {
785 struct elevator_queue *e = q->elevator;
786
787 if (e->ops->elevator_may_queue_fn)
788 return e->ops->elevator_may_queue_fn(q, rw);
789
790 return ELV_MQUEUE_MAY;
791 }
792
793 void elv_abort_queue(struct request_queue *q)
794 {
795 struct request *rq;
796
797 blk_abort_flushes(q);
798
799 while (!list_empty(&q->queue_head)) {
800 rq = list_entry_rq(q->queue_head.next);
801 rq->cmd_flags |= REQ_QUIET;
802 trace_block_rq_abort(q, rq);
803 /*
804 * Mark this request as started so we don't trigger
805 * any debug logic in the end I/O path.
806 */
807 blk_start_request(rq);
808 __blk_end_request_all(rq, -EIO);
809 }
810 }
811 EXPORT_SYMBOL(elv_abort_queue);
812
813 void elv_completed_request(struct request_queue *q, struct request *rq)
814 {
815 struct elevator_queue *e = q->elevator;
816
817 /*
818 * request is released from the driver, io must be done
819 */
820 if (blk_account_rq(rq)) {
821 q->in_flight[rq_is_sync(rq)]--;
822 if ((rq->cmd_flags & REQ_SORTED) &&
823 e->ops->elevator_completed_req_fn)
824 e->ops->elevator_completed_req_fn(q, rq);
825 }
826 }
827
828 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
829
830 static ssize_t
831 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
832 {
833 struct elv_fs_entry *entry = to_elv(attr);
834 struct elevator_queue *e;
835 ssize_t error;
836
837 if (!entry->show)
838 return -EIO;
839
840 e = container_of(kobj, struct elevator_queue, kobj);
841 mutex_lock(&e->sysfs_lock);
842 error = e->ops ? entry->show(e, page) : -ENOENT;
843 mutex_unlock(&e->sysfs_lock);
844 return error;
845 }
846
847 static ssize_t
848 elv_attr_store(struct kobject *kobj, struct attribute *attr,
849 const char *page, size_t length)
850 {
851 struct elv_fs_entry *entry = to_elv(attr);
852 struct elevator_queue *e;
853 ssize_t error;
854
855 if (!entry->store)
856 return -EIO;
857
858 e = container_of(kobj, struct elevator_queue, kobj);
859 mutex_lock(&e->sysfs_lock);
860 error = e->ops ? entry->store(e, page, length) : -ENOENT;
861 mutex_unlock(&e->sysfs_lock);
862 return error;
863 }
864
865 static const struct sysfs_ops elv_sysfs_ops = {
866 .show = elv_attr_show,
867 .store = elv_attr_store,
868 };
869
870 static struct kobj_type elv_ktype = {
871 .sysfs_ops = &elv_sysfs_ops,
872 .release = elevator_release,
873 };
874
875 int elv_register_queue(struct request_queue *q)
876 {
877 struct elevator_queue *e = q->elevator;
878 int error;
879
880 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
881 if (!error) {
882 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
883 if (attr) {
884 while (attr->attr.name) {
885 if (sysfs_create_file(&e->kobj, &attr->attr))
886 break;
887 attr++;
888 }
889 }
890 kobject_uevent(&e->kobj, KOBJ_ADD);
891 e->registered = 1;
892 }
893 return error;
894 }
895 EXPORT_SYMBOL(elv_register_queue);
896
897 static void __elv_unregister_queue(struct elevator_queue *e)
898 {
899 kobject_uevent(&e->kobj, KOBJ_REMOVE);
900 kobject_del(&e->kobj);
901 e->registered = 0;
902 }
903
904 void elv_unregister_queue(struct request_queue *q)
905 {
906 if (q)
907 __elv_unregister_queue(q->elevator);
908 }
909 EXPORT_SYMBOL(elv_unregister_queue);
910
911 void elv_register(struct elevator_type *e)
912 {
913 char *def = "";
914
915 spin_lock(&elv_list_lock);
916 BUG_ON(elevator_find(e->elevator_name));
917 list_add_tail(&e->list, &elv_list);
918 spin_unlock(&elv_list_lock);
919
920 if (!strcmp(e->elevator_name, chosen_elevator) ||
921 (!*chosen_elevator &&
922 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
923 def = " (default)";
924
925 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
926 def);
927 }
928 EXPORT_SYMBOL_GPL(elv_register);
929
930 void elv_unregister(struct elevator_type *e)
931 {
932 struct task_struct *g, *p;
933
934 /*
935 * Iterate every thread in the process to remove the io contexts.
936 */
937 if (e->ops.trim) {
938 read_lock(&tasklist_lock);
939 do_each_thread(g, p) {
940 task_lock(p);
941 if (p->io_context)
942 e->ops.trim(p->io_context);
943 task_unlock(p);
944 } while_each_thread(g, p);
945 read_unlock(&tasklist_lock);
946 }
947
948 spin_lock(&elv_list_lock);
949 list_del_init(&e->list);
950 spin_unlock(&elv_list_lock);
951 }
952 EXPORT_SYMBOL_GPL(elv_unregister);
953
954 /*
955 * switch to new_e io scheduler. be careful not to introduce deadlocks -
956 * we don't free the old io scheduler, before we have allocated what we
957 * need for the new one. this way we have a chance of going back to the old
958 * one, if the new one fails init for some reason.
959 */
960 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
961 {
962 struct elevator_queue *old_elevator, *e;
963 void *data;
964 int err;
965
966 /*
967 * Allocate new elevator
968 */
969 e = elevator_alloc(q, new_e);
970 if (!e)
971 return -ENOMEM;
972
973 data = elevator_init_queue(q, e);
974 if (!data) {
975 kobject_put(&e->kobj);
976 return -ENOMEM;
977 }
978
979 /*
980 * Turn on BYPASS and drain all requests w/ elevator private data
981 */
982 spin_lock_irq(q->queue_lock);
983 elv_quiesce_start(q);
984
985 /*
986 * Remember old elevator.
987 */
988 old_elevator = q->elevator;
989
990 /*
991 * attach and start new elevator
992 */
993 elevator_attach(q, e, data);
994
995 spin_unlock_irq(q->queue_lock);
996
997 if (old_elevator->registered) {
998 __elv_unregister_queue(old_elevator);
999
1000 err = elv_register_queue(q);
1001 if (err)
1002 goto fail_register;
1003 }
1004
1005 /*
1006 * finally exit old elevator and turn off BYPASS.
1007 */
1008 elevator_exit(old_elevator);
1009 spin_lock_irq(q->queue_lock);
1010 elv_quiesce_end(q);
1011 spin_unlock_irq(q->queue_lock);
1012
1013 blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
1014
1015 return 0;
1016
1017 fail_register:
1018 /*
1019 * switch failed, exit the new io scheduler and reattach the old
1020 * one again (along with re-adding the sysfs dir)
1021 */
1022 elevator_exit(e);
1023 q->elevator = old_elevator;
1024 elv_register_queue(q);
1025
1026 spin_lock_irq(q->queue_lock);
1027 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1028 spin_unlock_irq(q->queue_lock);
1029
1030 return err;
1031 }
1032
1033 /*
1034 * Switch this queue to the given IO scheduler.
1035 */
1036 int elevator_change(struct request_queue *q, const char *name)
1037 {
1038 char elevator_name[ELV_NAME_MAX];
1039 struct elevator_type *e;
1040
1041 if (!q->elevator)
1042 return -ENXIO;
1043
1044 strlcpy(elevator_name, name, sizeof(elevator_name));
1045 e = elevator_get(strstrip(elevator_name));
1046 if (!e) {
1047 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1048 return -EINVAL;
1049 }
1050
1051 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1052 elevator_put(e);
1053 return 0;
1054 }
1055
1056 return elevator_switch(q, e);
1057 }
1058 EXPORT_SYMBOL(elevator_change);
1059
1060 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1061 size_t count)
1062 {
1063 int ret;
1064
1065 if (!q->elevator)
1066 return count;
1067
1068 ret = elevator_change(q, name);
1069 if (!ret)
1070 return count;
1071
1072 printk(KERN_ERR "elevator: switch to %s failed\n", name);
1073 return ret;
1074 }
1075
1076 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1077 {
1078 struct elevator_queue *e = q->elevator;
1079 struct elevator_type *elv;
1080 struct elevator_type *__e;
1081 int len = 0;
1082
1083 if (!q->elevator || !blk_queue_stackable(q))
1084 return sprintf(name, "none\n");
1085
1086 elv = e->elevator_type;
1087
1088 spin_lock(&elv_list_lock);
1089 list_for_each_entry(__e, &elv_list, list) {
1090 if (!strcmp(elv->elevator_name, __e->elevator_name))
1091 len += sprintf(name+len, "[%s] ", elv->elevator_name);
1092 else
1093 len += sprintf(name+len, "%s ", __e->elevator_name);
1094 }
1095 spin_unlock(&elv_list_lock);
1096
1097 len += sprintf(len+name, "\n");
1098 return len;
1099 }
1100
1101 struct request *elv_rb_former_request(struct request_queue *q,
1102 struct request *rq)
1103 {
1104 struct rb_node *rbprev = rb_prev(&rq->rb_node);
1105
1106 if (rbprev)
1107 return rb_entry_rq(rbprev);
1108
1109 return NULL;
1110 }
1111 EXPORT_SYMBOL(elv_rb_former_request);
1112
1113 struct request *elv_rb_latter_request(struct request_queue *q,
1114 struct request *rq)
1115 {
1116 struct rb_node *rbnext = rb_next(&rq->rb_node);
1117
1118 if (rbnext)
1119 return rb_entry_rq(rbnext);
1120
1121 return NULL;
1122 }
1123 EXPORT_SYMBOL(elv_rb_latter_request);