]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - block/genhd.c
Merge tag 'iommu-fix-v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/joro...
[mirror_ubuntu-hirsute-kernel.git] / block / genhd.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * gendisk handling
4 */
5
6 #include <linux/module.h>
7 #include <linux/ctype.h>
8 #include <linux/fs.h>
9 #include <linux/genhd.h>
10 #include <linux/kdev_t.h>
11 #include <linux/kernel.h>
12 #include <linux/blkdev.h>
13 #include <linux/backing-dev.h>
14 #include <linux/init.h>
15 #include <linux/spinlock.h>
16 #include <linux/proc_fs.h>
17 #include <linux/seq_file.h>
18 #include <linux/slab.h>
19 #include <linux/kmod.h>
20 #include <linux/kobj_map.h>
21 #include <linux/mutex.h>
22 #include <linux/idr.h>
23 #include <linux/log2.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/badblocks.h>
26
27 #include "blk.h"
28
29 static DEFINE_MUTEX(block_class_lock);
30 static struct kobject *block_depr;
31
32 /* for extended dynamic devt allocation, currently only one major is used */
33 #define NR_EXT_DEVT (1 << MINORBITS)
34
35 /* For extended devt allocation. ext_devt_lock prevents look up
36 * results from going away underneath its user.
37 */
38 static DEFINE_SPINLOCK(ext_devt_lock);
39 static DEFINE_IDR(ext_devt_idr);
40
41 static void disk_check_events(struct disk_events *ev,
42 unsigned int *clearing_ptr);
43 static void disk_alloc_events(struct gendisk *disk);
44 static void disk_add_events(struct gendisk *disk);
45 static void disk_del_events(struct gendisk *disk);
46 static void disk_release_events(struct gendisk *disk);
47
48 /*
49 * Set disk capacity and notify if the size is not currently
50 * zero and will not be set to zero
51 */
52 void set_capacity_revalidate_and_notify(struct gendisk *disk, sector_t size,
53 bool update_bdev)
54 {
55 sector_t capacity = get_capacity(disk);
56
57 set_capacity(disk, size);
58 if (update_bdev)
59 revalidate_disk_size(disk, true);
60
61 if (capacity != size && capacity != 0 && size != 0) {
62 char *envp[] = { "RESIZE=1", NULL };
63
64 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
65 }
66 }
67
68 EXPORT_SYMBOL_GPL(set_capacity_revalidate_and_notify);
69
70 /*
71 * Format the device name of the indicated disk into the supplied buffer and
72 * return a pointer to that same buffer for convenience.
73 */
74 char *disk_name(struct gendisk *hd, int partno, char *buf)
75 {
76 if (!partno)
77 snprintf(buf, BDEVNAME_SIZE, "%s", hd->disk_name);
78 else if (isdigit(hd->disk_name[strlen(hd->disk_name)-1]))
79 snprintf(buf, BDEVNAME_SIZE, "%sp%d", hd->disk_name, partno);
80 else
81 snprintf(buf, BDEVNAME_SIZE, "%s%d", hd->disk_name, partno);
82
83 return buf;
84 }
85
86 const char *bdevname(struct block_device *bdev, char *buf)
87 {
88 return disk_name(bdev->bd_disk, bdev->bd_partno, buf);
89 }
90 EXPORT_SYMBOL(bdevname);
91
92 static void part_stat_read_all(struct hd_struct *part, struct disk_stats *stat)
93 {
94 int cpu;
95
96 memset(stat, 0, sizeof(struct disk_stats));
97 for_each_possible_cpu(cpu) {
98 struct disk_stats *ptr = per_cpu_ptr(part->dkstats, cpu);
99 int group;
100
101 for (group = 0; group < NR_STAT_GROUPS; group++) {
102 stat->nsecs[group] += ptr->nsecs[group];
103 stat->sectors[group] += ptr->sectors[group];
104 stat->ios[group] += ptr->ios[group];
105 stat->merges[group] += ptr->merges[group];
106 }
107
108 stat->io_ticks += ptr->io_ticks;
109 }
110 }
111
112 static unsigned int part_in_flight(struct hd_struct *part)
113 {
114 unsigned int inflight = 0;
115 int cpu;
116
117 for_each_possible_cpu(cpu) {
118 inflight += part_stat_local_read_cpu(part, in_flight[0], cpu) +
119 part_stat_local_read_cpu(part, in_flight[1], cpu);
120 }
121 if ((int)inflight < 0)
122 inflight = 0;
123
124 return inflight;
125 }
126
127 static void part_in_flight_rw(struct hd_struct *part, unsigned int inflight[2])
128 {
129 int cpu;
130
131 inflight[0] = 0;
132 inflight[1] = 0;
133 for_each_possible_cpu(cpu) {
134 inflight[0] += part_stat_local_read_cpu(part, in_flight[0], cpu);
135 inflight[1] += part_stat_local_read_cpu(part, in_flight[1], cpu);
136 }
137 if ((int)inflight[0] < 0)
138 inflight[0] = 0;
139 if ((int)inflight[1] < 0)
140 inflight[1] = 0;
141 }
142
143 struct hd_struct *__disk_get_part(struct gendisk *disk, int partno)
144 {
145 struct disk_part_tbl *ptbl = rcu_dereference(disk->part_tbl);
146
147 if (unlikely(partno < 0 || partno >= ptbl->len))
148 return NULL;
149 return rcu_dereference(ptbl->part[partno]);
150 }
151
152 /**
153 * disk_get_part - get partition
154 * @disk: disk to look partition from
155 * @partno: partition number
156 *
157 * Look for partition @partno from @disk. If found, increment
158 * reference count and return it.
159 *
160 * CONTEXT:
161 * Don't care.
162 *
163 * RETURNS:
164 * Pointer to the found partition on success, NULL if not found.
165 */
166 struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
167 {
168 struct hd_struct *part;
169
170 rcu_read_lock();
171 part = __disk_get_part(disk, partno);
172 if (part)
173 get_device(part_to_dev(part));
174 rcu_read_unlock();
175
176 return part;
177 }
178
179 /**
180 * disk_part_iter_init - initialize partition iterator
181 * @piter: iterator to initialize
182 * @disk: disk to iterate over
183 * @flags: DISK_PITER_* flags
184 *
185 * Initialize @piter so that it iterates over partitions of @disk.
186 *
187 * CONTEXT:
188 * Don't care.
189 */
190 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
191 unsigned int flags)
192 {
193 struct disk_part_tbl *ptbl;
194
195 rcu_read_lock();
196 ptbl = rcu_dereference(disk->part_tbl);
197
198 piter->disk = disk;
199 piter->part = NULL;
200
201 if (flags & DISK_PITER_REVERSE)
202 piter->idx = ptbl->len - 1;
203 else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
204 piter->idx = 0;
205 else
206 piter->idx = 1;
207
208 piter->flags = flags;
209
210 rcu_read_unlock();
211 }
212 EXPORT_SYMBOL_GPL(disk_part_iter_init);
213
214 /**
215 * disk_part_iter_next - proceed iterator to the next partition and return it
216 * @piter: iterator of interest
217 *
218 * Proceed @piter to the next partition and return it.
219 *
220 * CONTEXT:
221 * Don't care.
222 */
223 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
224 {
225 struct disk_part_tbl *ptbl;
226 int inc, end;
227
228 /* put the last partition */
229 disk_put_part(piter->part);
230 piter->part = NULL;
231
232 /* get part_tbl */
233 rcu_read_lock();
234 ptbl = rcu_dereference(piter->disk->part_tbl);
235
236 /* determine iteration parameters */
237 if (piter->flags & DISK_PITER_REVERSE) {
238 inc = -1;
239 if (piter->flags & (DISK_PITER_INCL_PART0 |
240 DISK_PITER_INCL_EMPTY_PART0))
241 end = -1;
242 else
243 end = 0;
244 } else {
245 inc = 1;
246 end = ptbl->len;
247 }
248
249 /* iterate to the next partition */
250 for (; piter->idx != end; piter->idx += inc) {
251 struct hd_struct *part;
252
253 part = rcu_dereference(ptbl->part[piter->idx]);
254 if (!part)
255 continue;
256 if (!part_nr_sects_read(part) &&
257 !(piter->flags & DISK_PITER_INCL_EMPTY) &&
258 !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
259 piter->idx == 0))
260 continue;
261
262 get_device(part_to_dev(part));
263 piter->part = part;
264 piter->idx += inc;
265 break;
266 }
267
268 rcu_read_unlock();
269
270 return piter->part;
271 }
272 EXPORT_SYMBOL_GPL(disk_part_iter_next);
273
274 /**
275 * disk_part_iter_exit - finish up partition iteration
276 * @piter: iter of interest
277 *
278 * Called when iteration is over. Cleans up @piter.
279 *
280 * CONTEXT:
281 * Don't care.
282 */
283 void disk_part_iter_exit(struct disk_part_iter *piter)
284 {
285 disk_put_part(piter->part);
286 piter->part = NULL;
287 }
288 EXPORT_SYMBOL_GPL(disk_part_iter_exit);
289
290 static inline int sector_in_part(struct hd_struct *part, sector_t sector)
291 {
292 return part->start_sect <= sector &&
293 sector < part->start_sect + part_nr_sects_read(part);
294 }
295
296 /**
297 * disk_map_sector_rcu - map sector to partition
298 * @disk: gendisk of interest
299 * @sector: sector to map
300 *
301 * Find out which partition @sector maps to on @disk. This is
302 * primarily used for stats accounting.
303 *
304 * CONTEXT:
305 * RCU read locked. The returned partition pointer is always valid
306 * because its refcount is grabbed except for part0, which lifetime
307 * is same with the disk.
308 *
309 * RETURNS:
310 * Found partition on success, part0 is returned if no partition matches
311 * or the matched partition is being deleted.
312 */
313 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
314 {
315 struct disk_part_tbl *ptbl;
316 struct hd_struct *part;
317 int i;
318
319 rcu_read_lock();
320 ptbl = rcu_dereference(disk->part_tbl);
321
322 part = rcu_dereference(ptbl->last_lookup);
323 if (part && sector_in_part(part, sector) && hd_struct_try_get(part))
324 goto out_unlock;
325
326 for (i = 1; i < ptbl->len; i++) {
327 part = rcu_dereference(ptbl->part[i]);
328
329 if (part && sector_in_part(part, sector)) {
330 /*
331 * only live partition can be cached for lookup,
332 * so use-after-free on cached & deleting partition
333 * can be avoided
334 */
335 if (!hd_struct_try_get(part))
336 break;
337 rcu_assign_pointer(ptbl->last_lookup, part);
338 goto out_unlock;
339 }
340 }
341
342 part = &disk->part0;
343 out_unlock:
344 rcu_read_unlock();
345 return part;
346 }
347
348 /**
349 * disk_has_partitions
350 * @disk: gendisk of interest
351 *
352 * Walk through the partition table and check if valid partition exists.
353 *
354 * CONTEXT:
355 * Don't care.
356 *
357 * RETURNS:
358 * True if the gendisk has at least one valid non-zero size partition.
359 * Otherwise false.
360 */
361 bool disk_has_partitions(struct gendisk *disk)
362 {
363 struct disk_part_tbl *ptbl;
364 int i;
365 bool ret = false;
366
367 rcu_read_lock();
368 ptbl = rcu_dereference(disk->part_tbl);
369
370 /* Iterate partitions skipping the whole device at index 0 */
371 for (i = 1; i < ptbl->len; i++) {
372 if (rcu_dereference(ptbl->part[i])) {
373 ret = true;
374 break;
375 }
376 }
377
378 rcu_read_unlock();
379
380 return ret;
381 }
382 EXPORT_SYMBOL_GPL(disk_has_partitions);
383
384 /*
385 * Can be deleted altogether. Later.
386 *
387 */
388 #define BLKDEV_MAJOR_HASH_SIZE 255
389 static struct blk_major_name {
390 struct blk_major_name *next;
391 int major;
392 char name[16];
393 } *major_names[BLKDEV_MAJOR_HASH_SIZE];
394
395 /* index in the above - for now: assume no multimajor ranges */
396 static inline int major_to_index(unsigned major)
397 {
398 return major % BLKDEV_MAJOR_HASH_SIZE;
399 }
400
401 #ifdef CONFIG_PROC_FS
402 void blkdev_show(struct seq_file *seqf, off_t offset)
403 {
404 struct blk_major_name *dp;
405
406 mutex_lock(&block_class_lock);
407 for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next)
408 if (dp->major == offset)
409 seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
410 mutex_unlock(&block_class_lock);
411 }
412 #endif /* CONFIG_PROC_FS */
413
414 /**
415 * register_blkdev - register a new block device
416 *
417 * @major: the requested major device number [1..BLKDEV_MAJOR_MAX-1]. If
418 * @major = 0, try to allocate any unused major number.
419 * @name: the name of the new block device as a zero terminated string
420 *
421 * The @name must be unique within the system.
422 *
423 * The return value depends on the @major input parameter:
424 *
425 * - if a major device number was requested in range [1..BLKDEV_MAJOR_MAX-1]
426 * then the function returns zero on success, or a negative error code
427 * - if any unused major number was requested with @major = 0 parameter
428 * then the return value is the allocated major number in range
429 * [1..BLKDEV_MAJOR_MAX-1] or a negative error code otherwise
430 *
431 * See Documentation/admin-guide/devices.txt for the list of allocated
432 * major numbers.
433 */
434 int register_blkdev(unsigned int major, const char *name)
435 {
436 struct blk_major_name **n, *p;
437 int index, ret = 0;
438
439 mutex_lock(&block_class_lock);
440
441 /* temporary */
442 if (major == 0) {
443 for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
444 if (major_names[index] == NULL)
445 break;
446 }
447
448 if (index == 0) {
449 printk("%s: failed to get major for %s\n",
450 __func__, name);
451 ret = -EBUSY;
452 goto out;
453 }
454 major = index;
455 ret = major;
456 }
457
458 if (major >= BLKDEV_MAJOR_MAX) {
459 pr_err("%s: major requested (%u) is greater than the maximum (%u) for %s\n",
460 __func__, major, BLKDEV_MAJOR_MAX-1, name);
461
462 ret = -EINVAL;
463 goto out;
464 }
465
466 p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
467 if (p == NULL) {
468 ret = -ENOMEM;
469 goto out;
470 }
471
472 p->major = major;
473 strlcpy(p->name, name, sizeof(p->name));
474 p->next = NULL;
475 index = major_to_index(major);
476
477 for (n = &major_names[index]; *n; n = &(*n)->next) {
478 if ((*n)->major == major)
479 break;
480 }
481 if (!*n)
482 *n = p;
483 else
484 ret = -EBUSY;
485
486 if (ret < 0) {
487 printk("register_blkdev: cannot get major %u for %s\n",
488 major, name);
489 kfree(p);
490 }
491 out:
492 mutex_unlock(&block_class_lock);
493 return ret;
494 }
495
496 EXPORT_SYMBOL(register_blkdev);
497
498 void unregister_blkdev(unsigned int major, const char *name)
499 {
500 struct blk_major_name **n;
501 struct blk_major_name *p = NULL;
502 int index = major_to_index(major);
503
504 mutex_lock(&block_class_lock);
505 for (n = &major_names[index]; *n; n = &(*n)->next)
506 if ((*n)->major == major)
507 break;
508 if (!*n || strcmp((*n)->name, name)) {
509 WARN_ON(1);
510 } else {
511 p = *n;
512 *n = p->next;
513 }
514 mutex_unlock(&block_class_lock);
515 kfree(p);
516 }
517
518 EXPORT_SYMBOL(unregister_blkdev);
519
520 static struct kobj_map *bdev_map;
521
522 /**
523 * blk_mangle_minor - scatter minor numbers apart
524 * @minor: minor number to mangle
525 *
526 * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
527 * is enabled. Mangling twice gives the original value.
528 *
529 * RETURNS:
530 * Mangled value.
531 *
532 * CONTEXT:
533 * Don't care.
534 */
535 static int blk_mangle_minor(int minor)
536 {
537 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
538 int i;
539
540 for (i = 0; i < MINORBITS / 2; i++) {
541 int low = minor & (1 << i);
542 int high = minor & (1 << (MINORBITS - 1 - i));
543 int distance = MINORBITS - 1 - 2 * i;
544
545 minor ^= low | high; /* clear both bits */
546 low <<= distance; /* swap the positions */
547 high >>= distance;
548 minor |= low | high; /* and set */
549 }
550 #endif
551 return minor;
552 }
553
554 /**
555 * blk_alloc_devt - allocate a dev_t for a partition
556 * @part: partition to allocate dev_t for
557 * @devt: out parameter for resulting dev_t
558 *
559 * Allocate a dev_t for block device.
560 *
561 * RETURNS:
562 * 0 on success, allocated dev_t is returned in *@devt. -errno on
563 * failure.
564 *
565 * CONTEXT:
566 * Might sleep.
567 */
568 int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
569 {
570 struct gendisk *disk = part_to_disk(part);
571 int idx;
572
573 /* in consecutive minor range? */
574 if (part->partno < disk->minors) {
575 *devt = MKDEV(disk->major, disk->first_minor + part->partno);
576 return 0;
577 }
578
579 /* allocate ext devt */
580 idr_preload(GFP_KERNEL);
581
582 spin_lock_bh(&ext_devt_lock);
583 idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT);
584 spin_unlock_bh(&ext_devt_lock);
585
586 idr_preload_end();
587 if (idx < 0)
588 return idx == -ENOSPC ? -EBUSY : idx;
589
590 *devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
591 return 0;
592 }
593
594 /**
595 * blk_free_devt - free a dev_t
596 * @devt: dev_t to free
597 *
598 * Free @devt which was allocated using blk_alloc_devt().
599 *
600 * CONTEXT:
601 * Might sleep.
602 */
603 void blk_free_devt(dev_t devt)
604 {
605 if (devt == MKDEV(0, 0))
606 return;
607
608 if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
609 spin_lock_bh(&ext_devt_lock);
610 idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
611 spin_unlock_bh(&ext_devt_lock);
612 }
613 }
614
615 /*
616 * We invalidate devt by assigning NULL pointer for devt in idr.
617 */
618 void blk_invalidate_devt(dev_t devt)
619 {
620 if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
621 spin_lock_bh(&ext_devt_lock);
622 idr_replace(&ext_devt_idr, NULL, blk_mangle_minor(MINOR(devt)));
623 spin_unlock_bh(&ext_devt_lock);
624 }
625 }
626
627 static char *bdevt_str(dev_t devt, char *buf)
628 {
629 if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
630 char tbuf[BDEVT_SIZE];
631 snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
632 snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
633 } else
634 snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
635
636 return buf;
637 }
638
639 /*
640 * Register device numbers dev..(dev+range-1)
641 * range must be nonzero
642 * The hash chain is sorted on range, so that subranges can override.
643 */
644 void blk_register_region(dev_t devt, unsigned long range, struct module *module,
645 struct kobject *(*probe)(dev_t, int *, void *),
646 int (*lock)(dev_t, void *), void *data)
647 {
648 kobj_map(bdev_map, devt, range, module, probe, lock, data);
649 }
650
651 EXPORT_SYMBOL(blk_register_region);
652
653 void blk_unregister_region(dev_t devt, unsigned long range)
654 {
655 kobj_unmap(bdev_map, devt, range);
656 }
657
658 EXPORT_SYMBOL(blk_unregister_region);
659
660 static struct kobject *exact_match(dev_t devt, int *partno, void *data)
661 {
662 struct gendisk *p = data;
663
664 return &disk_to_dev(p)->kobj;
665 }
666
667 static int exact_lock(dev_t devt, void *data)
668 {
669 struct gendisk *p = data;
670
671 if (!get_disk_and_module(p))
672 return -1;
673 return 0;
674 }
675
676 static void disk_scan_partitions(struct gendisk *disk)
677 {
678 struct block_device *bdev;
679
680 if (!get_capacity(disk) || !disk_part_scan_enabled(disk))
681 return;
682
683 set_bit(GD_NEED_PART_SCAN, &disk->state);
684 bdev = blkdev_get_by_dev(disk_devt(disk), FMODE_READ, NULL);
685 if (!IS_ERR(bdev))
686 blkdev_put(bdev, FMODE_READ);
687 }
688
689 static void register_disk(struct device *parent, struct gendisk *disk,
690 const struct attribute_group **groups)
691 {
692 struct device *ddev = disk_to_dev(disk);
693 struct disk_part_iter piter;
694 struct hd_struct *part;
695 int err;
696
697 ddev->parent = parent;
698
699 dev_set_name(ddev, "%s", disk->disk_name);
700
701 /* delay uevents, until we scanned partition table */
702 dev_set_uevent_suppress(ddev, 1);
703
704 if (groups) {
705 WARN_ON(ddev->groups);
706 ddev->groups = groups;
707 }
708 if (device_add(ddev))
709 return;
710 if (!sysfs_deprecated) {
711 err = sysfs_create_link(block_depr, &ddev->kobj,
712 kobject_name(&ddev->kobj));
713 if (err) {
714 device_del(ddev);
715 return;
716 }
717 }
718
719 /*
720 * avoid probable deadlock caused by allocating memory with
721 * GFP_KERNEL in runtime_resume callback of its all ancestor
722 * devices
723 */
724 pm_runtime_set_memalloc_noio(ddev, true);
725
726 disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
727 disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
728
729 if (disk->flags & GENHD_FL_HIDDEN) {
730 dev_set_uevent_suppress(ddev, 0);
731 return;
732 }
733
734 disk_scan_partitions(disk);
735
736 /* announce disk after possible partitions are created */
737 dev_set_uevent_suppress(ddev, 0);
738 kobject_uevent(&ddev->kobj, KOBJ_ADD);
739
740 /* announce possible partitions */
741 disk_part_iter_init(&piter, disk, 0);
742 while ((part = disk_part_iter_next(&piter)))
743 kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
744 disk_part_iter_exit(&piter);
745
746 if (disk->queue->backing_dev_info->dev) {
747 err = sysfs_create_link(&ddev->kobj,
748 &disk->queue->backing_dev_info->dev->kobj,
749 "bdi");
750 WARN_ON(err);
751 }
752 }
753
754 /**
755 * __device_add_disk - add disk information to kernel list
756 * @parent: parent device for the disk
757 * @disk: per-device partitioning information
758 * @groups: Additional per-device sysfs groups
759 * @register_queue: register the queue if set to true
760 *
761 * This function registers the partitioning information in @disk
762 * with the kernel.
763 *
764 * FIXME: error handling
765 */
766 static void __device_add_disk(struct device *parent, struct gendisk *disk,
767 const struct attribute_group **groups,
768 bool register_queue)
769 {
770 dev_t devt;
771 int retval;
772
773 /*
774 * The disk queue should now be all set with enough information about
775 * the device for the elevator code to pick an adequate default
776 * elevator if one is needed, that is, for devices requesting queue
777 * registration.
778 */
779 if (register_queue)
780 elevator_init_mq(disk->queue);
781
782 /* minors == 0 indicates to use ext devt from part0 and should
783 * be accompanied with EXT_DEVT flag. Make sure all
784 * parameters make sense.
785 */
786 WARN_ON(disk->minors && !(disk->major || disk->first_minor));
787 WARN_ON(!disk->minors &&
788 !(disk->flags & (GENHD_FL_EXT_DEVT | GENHD_FL_HIDDEN)));
789
790 disk->flags |= GENHD_FL_UP;
791
792 retval = blk_alloc_devt(&disk->part0, &devt);
793 if (retval) {
794 WARN_ON(1);
795 return;
796 }
797 disk->major = MAJOR(devt);
798 disk->first_minor = MINOR(devt);
799
800 disk_alloc_events(disk);
801
802 if (disk->flags & GENHD_FL_HIDDEN) {
803 /*
804 * Don't let hidden disks show up in /proc/partitions,
805 * and don't bother scanning for partitions either.
806 */
807 disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
808 disk->flags |= GENHD_FL_NO_PART_SCAN;
809 } else {
810 struct backing_dev_info *bdi = disk->queue->backing_dev_info;
811 struct device *dev = disk_to_dev(disk);
812 int ret;
813
814 /* Register BDI before referencing it from bdev */
815 dev->devt = devt;
816 ret = bdi_register(bdi, "%u:%u", MAJOR(devt), MINOR(devt));
817 WARN_ON(ret);
818 bdi_set_owner(bdi, dev);
819 blk_register_region(disk_devt(disk), disk->minors, NULL,
820 exact_match, exact_lock, disk);
821 }
822 register_disk(parent, disk, groups);
823 if (register_queue)
824 blk_register_queue(disk);
825
826 /*
827 * Take an extra ref on queue which will be put on disk_release()
828 * so that it sticks around as long as @disk is there.
829 */
830 WARN_ON_ONCE(!blk_get_queue(disk->queue));
831
832 disk_add_events(disk);
833 blk_integrity_add(disk);
834 }
835
836 void device_add_disk(struct device *parent, struct gendisk *disk,
837 const struct attribute_group **groups)
838
839 {
840 __device_add_disk(parent, disk, groups, true);
841 }
842 EXPORT_SYMBOL(device_add_disk);
843
844 void device_add_disk_no_queue_reg(struct device *parent, struct gendisk *disk)
845 {
846 __device_add_disk(parent, disk, NULL, false);
847 }
848 EXPORT_SYMBOL(device_add_disk_no_queue_reg);
849
850 static void invalidate_partition(struct gendisk *disk, int partno)
851 {
852 struct block_device *bdev;
853
854 bdev = bdget_disk(disk, partno);
855 if (!bdev)
856 return;
857
858 fsync_bdev(bdev);
859 __invalidate_device(bdev, true);
860
861 /*
862 * Unhash the bdev inode for this device so that it gets evicted as soon
863 * as last inode reference is dropped.
864 */
865 remove_inode_hash(bdev->bd_inode);
866 bdput(bdev);
867 }
868
869 /**
870 * del_gendisk - remove the gendisk
871 * @disk: the struct gendisk to remove
872 *
873 * Removes the gendisk and all its associated resources. This deletes the
874 * partitions associated with the gendisk, and unregisters the associated
875 * request_queue.
876 *
877 * This is the counter to the respective __device_add_disk() call.
878 *
879 * The final removal of the struct gendisk happens when its refcount reaches 0
880 * with put_disk(), which should be called after del_gendisk(), if
881 * __device_add_disk() was used.
882 *
883 * Drivers exist which depend on the release of the gendisk to be synchronous,
884 * it should not be deferred.
885 *
886 * Context: can sleep
887 */
888 void del_gendisk(struct gendisk *disk)
889 {
890 struct disk_part_iter piter;
891 struct hd_struct *part;
892
893 might_sleep();
894
895 blk_integrity_del(disk);
896 disk_del_events(disk);
897
898 /*
899 * Block lookups of the disk until all bdevs are unhashed and the
900 * disk is marked as dead (GENHD_FL_UP cleared).
901 */
902 down_write(&disk->lookup_sem);
903 /* invalidate stuff */
904 disk_part_iter_init(&piter, disk,
905 DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
906 while ((part = disk_part_iter_next(&piter))) {
907 invalidate_partition(disk, part->partno);
908 delete_partition(part);
909 }
910 disk_part_iter_exit(&piter);
911
912 invalidate_partition(disk, 0);
913 set_capacity(disk, 0);
914 disk->flags &= ~GENHD_FL_UP;
915 up_write(&disk->lookup_sem);
916
917 if (!(disk->flags & GENHD_FL_HIDDEN))
918 sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
919 if (disk->queue) {
920 /*
921 * Unregister bdi before releasing device numbers (as they can
922 * get reused and we'd get clashes in sysfs).
923 */
924 if (!(disk->flags & GENHD_FL_HIDDEN))
925 bdi_unregister(disk->queue->backing_dev_info);
926 blk_unregister_queue(disk);
927 } else {
928 WARN_ON(1);
929 }
930
931 if (!(disk->flags & GENHD_FL_HIDDEN))
932 blk_unregister_region(disk_devt(disk), disk->minors);
933 /*
934 * Remove gendisk pointer from idr so that it cannot be looked up
935 * while RCU period before freeing gendisk is running to prevent
936 * use-after-free issues. Note that the device number stays
937 * "in-use" until we really free the gendisk.
938 */
939 blk_invalidate_devt(disk_devt(disk));
940
941 kobject_put(disk->part0.holder_dir);
942 kobject_put(disk->slave_dir);
943
944 part_stat_set_all(&disk->part0, 0);
945 disk->part0.stamp = 0;
946 if (!sysfs_deprecated)
947 sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
948 pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
949 device_del(disk_to_dev(disk));
950 }
951 EXPORT_SYMBOL(del_gendisk);
952
953 /* sysfs access to bad-blocks list. */
954 static ssize_t disk_badblocks_show(struct device *dev,
955 struct device_attribute *attr,
956 char *page)
957 {
958 struct gendisk *disk = dev_to_disk(dev);
959
960 if (!disk->bb)
961 return sprintf(page, "\n");
962
963 return badblocks_show(disk->bb, page, 0);
964 }
965
966 static ssize_t disk_badblocks_store(struct device *dev,
967 struct device_attribute *attr,
968 const char *page, size_t len)
969 {
970 struct gendisk *disk = dev_to_disk(dev);
971
972 if (!disk->bb)
973 return -ENXIO;
974
975 return badblocks_store(disk->bb, page, len, 0);
976 }
977
978 /**
979 * get_gendisk - get partitioning information for a given device
980 * @devt: device to get partitioning information for
981 * @partno: returned partition index
982 *
983 * This function gets the structure containing partitioning
984 * information for the given device @devt.
985 *
986 * Context: can sleep
987 */
988 struct gendisk *get_gendisk(dev_t devt, int *partno)
989 {
990 struct gendisk *disk = NULL;
991
992 might_sleep();
993
994 if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
995 struct kobject *kobj;
996
997 kobj = kobj_lookup(bdev_map, devt, partno);
998 if (kobj)
999 disk = dev_to_disk(kobj_to_dev(kobj));
1000 } else {
1001 struct hd_struct *part;
1002
1003 spin_lock_bh(&ext_devt_lock);
1004 part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
1005 if (part && get_disk_and_module(part_to_disk(part))) {
1006 *partno = part->partno;
1007 disk = part_to_disk(part);
1008 }
1009 spin_unlock_bh(&ext_devt_lock);
1010 }
1011
1012 if (!disk)
1013 return NULL;
1014
1015 /*
1016 * Synchronize with del_gendisk() to not return disk that is being
1017 * destroyed.
1018 */
1019 down_read(&disk->lookup_sem);
1020 if (unlikely((disk->flags & GENHD_FL_HIDDEN) ||
1021 !(disk->flags & GENHD_FL_UP))) {
1022 up_read(&disk->lookup_sem);
1023 put_disk_and_module(disk);
1024 disk = NULL;
1025 } else {
1026 up_read(&disk->lookup_sem);
1027 }
1028 return disk;
1029 }
1030
1031 /**
1032 * bdget_disk - do bdget() by gendisk and partition number
1033 * @disk: gendisk of interest
1034 * @partno: partition number
1035 *
1036 * Find partition @partno from @disk, do bdget() on it.
1037 *
1038 * CONTEXT:
1039 * Don't care.
1040 *
1041 * RETURNS:
1042 * Resulting block_device on success, NULL on failure.
1043 */
1044 struct block_device *bdget_disk(struct gendisk *disk, int partno)
1045 {
1046 struct hd_struct *part;
1047 struct block_device *bdev = NULL;
1048
1049 part = disk_get_part(disk, partno);
1050 if (part)
1051 bdev = bdget_part(part);
1052 disk_put_part(part);
1053
1054 return bdev;
1055 }
1056 EXPORT_SYMBOL(bdget_disk);
1057
1058 /*
1059 * print a full list of all partitions - intended for places where the root
1060 * filesystem can't be mounted and thus to give the victim some idea of what
1061 * went wrong
1062 */
1063 void __init printk_all_partitions(void)
1064 {
1065 struct class_dev_iter iter;
1066 struct device *dev;
1067
1068 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1069 while ((dev = class_dev_iter_next(&iter))) {
1070 struct gendisk *disk = dev_to_disk(dev);
1071 struct disk_part_iter piter;
1072 struct hd_struct *part;
1073 char name_buf[BDEVNAME_SIZE];
1074 char devt_buf[BDEVT_SIZE];
1075
1076 /*
1077 * Don't show empty devices or things that have been
1078 * suppressed
1079 */
1080 if (get_capacity(disk) == 0 ||
1081 (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
1082 continue;
1083
1084 /*
1085 * Note, unlike /proc/partitions, I am showing the
1086 * numbers in hex - the same format as the root=
1087 * option takes.
1088 */
1089 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
1090 while ((part = disk_part_iter_next(&piter))) {
1091 bool is_part0 = part == &disk->part0;
1092
1093 printk("%s%s %10llu %s %s", is_part0 ? "" : " ",
1094 bdevt_str(part_devt(part), devt_buf),
1095 (unsigned long long)part_nr_sects_read(part) >> 1
1096 , disk_name(disk, part->partno, name_buf),
1097 part->info ? part->info->uuid : "");
1098 if (is_part0) {
1099 if (dev->parent && dev->parent->driver)
1100 printk(" driver: %s\n",
1101 dev->parent->driver->name);
1102 else
1103 printk(" (driver?)\n");
1104 } else
1105 printk("\n");
1106 }
1107 disk_part_iter_exit(&piter);
1108 }
1109 class_dev_iter_exit(&iter);
1110 }
1111
1112 #ifdef CONFIG_PROC_FS
1113 /* iterator */
1114 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
1115 {
1116 loff_t skip = *pos;
1117 struct class_dev_iter *iter;
1118 struct device *dev;
1119
1120 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
1121 if (!iter)
1122 return ERR_PTR(-ENOMEM);
1123
1124 seqf->private = iter;
1125 class_dev_iter_init(iter, &block_class, NULL, &disk_type);
1126 do {
1127 dev = class_dev_iter_next(iter);
1128 if (!dev)
1129 return NULL;
1130 } while (skip--);
1131
1132 return dev_to_disk(dev);
1133 }
1134
1135 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
1136 {
1137 struct device *dev;
1138
1139 (*pos)++;
1140 dev = class_dev_iter_next(seqf->private);
1141 if (dev)
1142 return dev_to_disk(dev);
1143
1144 return NULL;
1145 }
1146
1147 static void disk_seqf_stop(struct seq_file *seqf, void *v)
1148 {
1149 struct class_dev_iter *iter = seqf->private;
1150
1151 /* stop is called even after start failed :-( */
1152 if (iter) {
1153 class_dev_iter_exit(iter);
1154 kfree(iter);
1155 seqf->private = NULL;
1156 }
1157 }
1158
1159 static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
1160 {
1161 void *p;
1162
1163 p = disk_seqf_start(seqf, pos);
1164 if (!IS_ERR_OR_NULL(p) && !*pos)
1165 seq_puts(seqf, "major minor #blocks name\n\n");
1166 return p;
1167 }
1168
1169 static int show_partition(struct seq_file *seqf, void *v)
1170 {
1171 struct gendisk *sgp = v;
1172 struct disk_part_iter piter;
1173 struct hd_struct *part;
1174 char buf[BDEVNAME_SIZE];
1175
1176 /* Don't show non-partitionable removeable devices or empty devices */
1177 if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
1178 (sgp->flags & GENHD_FL_REMOVABLE)))
1179 return 0;
1180 if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
1181 return 0;
1182
1183 /* show the full disk and all non-0 size partitions of it */
1184 disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
1185 while ((part = disk_part_iter_next(&piter)))
1186 seq_printf(seqf, "%4d %7d %10llu %s\n",
1187 MAJOR(part_devt(part)), MINOR(part_devt(part)),
1188 (unsigned long long)part_nr_sects_read(part) >> 1,
1189 disk_name(sgp, part->partno, buf));
1190 disk_part_iter_exit(&piter);
1191
1192 return 0;
1193 }
1194
1195 static const struct seq_operations partitions_op = {
1196 .start = show_partition_start,
1197 .next = disk_seqf_next,
1198 .stop = disk_seqf_stop,
1199 .show = show_partition
1200 };
1201 #endif
1202
1203
1204 static struct kobject *base_probe(dev_t devt, int *partno, void *data)
1205 {
1206 if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
1207 /* Make old-style 2.4 aliases work */
1208 request_module("block-major-%d", MAJOR(devt));
1209 return NULL;
1210 }
1211
1212 static int __init genhd_device_init(void)
1213 {
1214 int error;
1215
1216 block_class.dev_kobj = sysfs_dev_block_kobj;
1217 error = class_register(&block_class);
1218 if (unlikely(error))
1219 return error;
1220 bdev_map = kobj_map_init(base_probe, &block_class_lock);
1221 blk_dev_init();
1222
1223 register_blkdev(BLOCK_EXT_MAJOR, "blkext");
1224
1225 /* create top-level block dir */
1226 if (!sysfs_deprecated)
1227 block_depr = kobject_create_and_add("block", NULL);
1228 return 0;
1229 }
1230
1231 subsys_initcall(genhd_device_init);
1232
1233 static ssize_t disk_range_show(struct device *dev,
1234 struct device_attribute *attr, char *buf)
1235 {
1236 struct gendisk *disk = dev_to_disk(dev);
1237
1238 return sprintf(buf, "%d\n", disk->minors);
1239 }
1240
1241 static ssize_t disk_ext_range_show(struct device *dev,
1242 struct device_attribute *attr, char *buf)
1243 {
1244 struct gendisk *disk = dev_to_disk(dev);
1245
1246 return sprintf(buf, "%d\n", disk_max_parts(disk));
1247 }
1248
1249 static ssize_t disk_removable_show(struct device *dev,
1250 struct device_attribute *attr, char *buf)
1251 {
1252 struct gendisk *disk = dev_to_disk(dev);
1253
1254 return sprintf(buf, "%d\n",
1255 (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
1256 }
1257
1258 static ssize_t disk_hidden_show(struct device *dev,
1259 struct device_attribute *attr, char *buf)
1260 {
1261 struct gendisk *disk = dev_to_disk(dev);
1262
1263 return sprintf(buf, "%d\n",
1264 (disk->flags & GENHD_FL_HIDDEN ? 1 : 0));
1265 }
1266
1267 static ssize_t disk_ro_show(struct device *dev,
1268 struct device_attribute *attr, char *buf)
1269 {
1270 struct gendisk *disk = dev_to_disk(dev);
1271
1272 return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
1273 }
1274
1275 ssize_t part_size_show(struct device *dev,
1276 struct device_attribute *attr, char *buf)
1277 {
1278 struct hd_struct *p = dev_to_part(dev);
1279
1280 return sprintf(buf, "%llu\n",
1281 (unsigned long long)part_nr_sects_read(p));
1282 }
1283
1284 ssize_t part_stat_show(struct device *dev,
1285 struct device_attribute *attr, char *buf)
1286 {
1287 struct hd_struct *p = dev_to_part(dev);
1288 struct request_queue *q = part_to_disk(p)->queue;
1289 struct disk_stats stat;
1290 unsigned int inflight;
1291
1292 part_stat_read_all(p, &stat);
1293 if (queue_is_mq(q))
1294 inflight = blk_mq_in_flight(q, p);
1295 else
1296 inflight = part_in_flight(p);
1297
1298 return sprintf(buf,
1299 "%8lu %8lu %8llu %8u "
1300 "%8lu %8lu %8llu %8u "
1301 "%8u %8u %8u "
1302 "%8lu %8lu %8llu %8u "
1303 "%8lu %8u"
1304 "\n",
1305 stat.ios[STAT_READ],
1306 stat.merges[STAT_READ],
1307 (unsigned long long)stat.sectors[STAT_READ],
1308 (unsigned int)div_u64(stat.nsecs[STAT_READ], NSEC_PER_MSEC),
1309 stat.ios[STAT_WRITE],
1310 stat.merges[STAT_WRITE],
1311 (unsigned long long)stat.sectors[STAT_WRITE],
1312 (unsigned int)div_u64(stat.nsecs[STAT_WRITE], NSEC_PER_MSEC),
1313 inflight,
1314 jiffies_to_msecs(stat.io_ticks),
1315 (unsigned int)div_u64(stat.nsecs[STAT_READ] +
1316 stat.nsecs[STAT_WRITE] +
1317 stat.nsecs[STAT_DISCARD] +
1318 stat.nsecs[STAT_FLUSH],
1319 NSEC_PER_MSEC),
1320 stat.ios[STAT_DISCARD],
1321 stat.merges[STAT_DISCARD],
1322 (unsigned long long)stat.sectors[STAT_DISCARD],
1323 (unsigned int)div_u64(stat.nsecs[STAT_DISCARD], NSEC_PER_MSEC),
1324 stat.ios[STAT_FLUSH],
1325 (unsigned int)div_u64(stat.nsecs[STAT_FLUSH], NSEC_PER_MSEC));
1326 }
1327
1328 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
1329 char *buf)
1330 {
1331 struct hd_struct *p = dev_to_part(dev);
1332 struct request_queue *q = part_to_disk(p)->queue;
1333 unsigned int inflight[2];
1334
1335 if (queue_is_mq(q))
1336 blk_mq_in_flight_rw(q, p, inflight);
1337 else
1338 part_in_flight_rw(p, inflight);
1339
1340 return sprintf(buf, "%8u %8u\n", inflight[0], inflight[1]);
1341 }
1342
1343 static ssize_t disk_capability_show(struct device *dev,
1344 struct device_attribute *attr, char *buf)
1345 {
1346 struct gendisk *disk = dev_to_disk(dev);
1347
1348 return sprintf(buf, "%x\n", disk->flags);
1349 }
1350
1351 static ssize_t disk_alignment_offset_show(struct device *dev,
1352 struct device_attribute *attr,
1353 char *buf)
1354 {
1355 struct gendisk *disk = dev_to_disk(dev);
1356
1357 return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
1358 }
1359
1360 static ssize_t disk_discard_alignment_show(struct device *dev,
1361 struct device_attribute *attr,
1362 char *buf)
1363 {
1364 struct gendisk *disk = dev_to_disk(dev);
1365
1366 return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
1367 }
1368
1369 static DEVICE_ATTR(range, 0444, disk_range_show, NULL);
1370 static DEVICE_ATTR(ext_range, 0444, disk_ext_range_show, NULL);
1371 static DEVICE_ATTR(removable, 0444, disk_removable_show, NULL);
1372 static DEVICE_ATTR(hidden, 0444, disk_hidden_show, NULL);
1373 static DEVICE_ATTR(ro, 0444, disk_ro_show, NULL);
1374 static DEVICE_ATTR(size, 0444, part_size_show, NULL);
1375 static DEVICE_ATTR(alignment_offset, 0444, disk_alignment_offset_show, NULL);
1376 static DEVICE_ATTR(discard_alignment, 0444, disk_discard_alignment_show, NULL);
1377 static DEVICE_ATTR(capability, 0444, disk_capability_show, NULL);
1378 static DEVICE_ATTR(stat, 0444, part_stat_show, NULL);
1379 static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL);
1380 static DEVICE_ATTR(badblocks, 0644, disk_badblocks_show, disk_badblocks_store);
1381
1382 #ifdef CONFIG_FAIL_MAKE_REQUEST
1383 ssize_t part_fail_show(struct device *dev,
1384 struct device_attribute *attr, char *buf)
1385 {
1386 struct hd_struct *p = dev_to_part(dev);
1387
1388 return sprintf(buf, "%d\n", p->make_it_fail);
1389 }
1390
1391 ssize_t part_fail_store(struct device *dev,
1392 struct device_attribute *attr,
1393 const char *buf, size_t count)
1394 {
1395 struct hd_struct *p = dev_to_part(dev);
1396 int i;
1397
1398 if (count > 0 && sscanf(buf, "%d", &i) > 0)
1399 p->make_it_fail = (i == 0) ? 0 : 1;
1400
1401 return count;
1402 }
1403
1404 static struct device_attribute dev_attr_fail =
1405 __ATTR(make-it-fail, 0644, part_fail_show, part_fail_store);
1406 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1407
1408 #ifdef CONFIG_FAIL_IO_TIMEOUT
1409 static struct device_attribute dev_attr_fail_timeout =
1410 __ATTR(io-timeout-fail, 0644, part_timeout_show, part_timeout_store);
1411 #endif
1412
1413 static struct attribute *disk_attrs[] = {
1414 &dev_attr_range.attr,
1415 &dev_attr_ext_range.attr,
1416 &dev_attr_removable.attr,
1417 &dev_attr_hidden.attr,
1418 &dev_attr_ro.attr,
1419 &dev_attr_size.attr,
1420 &dev_attr_alignment_offset.attr,
1421 &dev_attr_discard_alignment.attr,
1422 &dev_attr_capability.attr,
1423 &dev_attr_stat.attr,
1424 &dev_attr_inflight.attr,
1425 &dev_attr_badblocks.attr,
1426 #ifdef CONFIG_FAIL_MAKE_REQUEST
1427 &dev_attr_fail.attr,
1428 #endif
1429 #ifdef CONFIG_FAIL_IO_TIMEOUT
1430 &dev_attr_fail_timeout.attr,
1431 #endif
1432 NULL
1433 };
1434
1435 static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n)
1436 {
1437 struct device *dev = container_of(kobj, typeof(*dev), kobj);
1438 struct gendisk *disk = dev_to_disk(dev);
1439
1440 if (a == &dev_attr_badblocks.attr && !disk->bb)
1441 return 0;
1442 return a->mode;
1443 }
1444
1445 static struct attribute_group disk_attr_group = {
1446 .attrs = disk_attrs,
1447 .is_visible = disk_visible,
1448 };
1449
1450 static const struct attribute_group *disk_attr_groups[] = {
1451 &disk_attr_group,
1452 NULL
1453 };
1454
1455 /**
1456 * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1457 * @disk: disk to replace part_tbl for
1458 * @new_ptbl: new part_tbl to install
1459 *
1460 * Replace disk->part_tbl with @new_ptbl in RCU-safe way. The
1461 * original ptbl is freed using RCU callback.
1462 *
1463 * LOCKING:
1464 * Matching bd_mutex locked or the caller is the only user of @disk.
1465 */
1466 static void disk_replace_part_tbl(struct gendisk *disk,
1467 struct disk_part_tbl *new_ptbl)
1468 {
1469 struct disk_part_tbl *old_ptbl =
1470 rcu_dereference_protected(disk->part_tbl, 1);
1471
1472 rcu_assign_pointer(disk->part_tbl, new_ptbl);
1473
1474 if (old_ptbl) {
1475 rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1476 kfree_rcu(old_ptbl, rcu_head);
1477 }
1478 }
1479
1480 /**
1481 * disk_expand_part_tbl - expand disk->part_tbl
1482 * @disk: disk to expand part_tbl for
1483 * @partno: expand such that this partno can fit in
1484 *
1485 * Expand disk->part_tbl such that @partno can fit in. disk->part_tbl
1486 * uses RCU to allow unlocked dereferencing for stats and other stuff.
1487 *
1488 * LOCKING:
1489 * Matching bd_mutex locked or the caller is the only user of @disk.
1490 * Might sleep.
1491 *
1492 * RETURNS:
1493 * 0 on success, -errno on failure.
1494 */
1495 int disk_expand_part_tbl(struct gendisk *disk, int partno)
1496 {
1497 struct disk_part_tbl *old_ptbl =
1498 rcu_dereference_protected(disk->part_tbl, 1);
1499 struct disk_part_tbl *new_ptbl;
1500 int len = old_ptbl ? old_ptbl->len : 0;
1501 int i, target;
1502
1503 /*
1504 * check for int overflow, since we can get here from blkpg_ioctl()
1505 * with a user passed 'partno'.
1506 */
1507 target = partno + 1;
1508 if (target < 0)
1509 return -EINVAL;
1510
1511 /* disk_max_parts() is zero during initialization, ignore if so */
1512 if (disk_max_parts(disk) && target > disk_max_parts(disk))
1513 return -EINVAL;
1514
1515 if (target <= len)
1516 return 0;
1517
1518 new_ptbl = kzalloc_node(struct_size(new_ptbl, part, target), GFP_KERNEL,
1519 disk->node_id);
1520 if (!new_ptbl)
1521 return -ENOMEM;
1522
1523 new_ptbl->len = target;
1524
1525 for (i = 0; i < len; i++)
1526 rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1527
1528 disk_replace_part_tbl(disk, new_ptbl);
1529 return 0;
1530 }
1531
1532 /**
1533 * disk_release - releases all allocated resources of the gendisk
1534 * @dev: the device representing this disk
1535 *
1536 * This function releases all allocated resources of the gendisk.
1537 *
1538 * The struct gendisk refcount is incremented with get_gendisk() or
1539 * get_disk_and_module(), and its refcount is decremented with
1540 * put_disk_and_module() or put_disk(). Once the refcount reaches 0 this
1541 * function is called.
1542 *
1543 * Drivers which used __device_add_disk() have a gendisk with a request_queue
1544 * assigned. Since the request_queue sits on top of the gendisk for these
1545 * drivers we also call blk_put_queue() for them, and we expect the
1546 * request_queue refcount to reach 0 at this point, and so the request_queue
1547 * will also be freed prior to the disk.
1548 *
1549 * Context: can sleep
1550 */
1551 static void disk_release(struct device *dev)
1552 {
1553 struct gendisk *disk = dev_to_disk(dev);
1554
1555 might_sleep();
1556
1557 blk_free_devt(dev->devt);
1558 disk_release_events(disk);
1559 kfree(disk->random);
1560 disk_replace_part_tbl(disk, NULL);
1561 hd_free_part(&disk->part0);
1562 if (disk->queue)
1563 blk_put_queue(disk->queue);
1564 kfree(disk);
1565 }
1566 struct class block_class = {
1567 .name = "block",
1568 };
1569
1570 static char *block_devnode(struct device *dev, umode_t *mode,
1571 kuid_t *uid, kgid_t *gid)
1572 {
1573 struct gendisk *disk = dev_to_disk(dev);
1574
1575 if (disk->fops->devnode)
1576 return disk->fops->devnode(disk, mode);
1577 return NULL;
1578 }
1579
1580 const struct device_type disk_type = {
1581 .name = "disk",
1582 .groups = disk_attr_groups,
1583 .release = disk_release,
1584 .devnode = block_devnode,
1585 };
1586
1587 #ifdef CONFIG_PROC_FS
1588 /*
1589 * aggregate disk stat collector. Uses the same stats that the sysfs
1590 * entries do, above, but makes them available through one seq_file.
1591 *
1592 * The output looks suspiciously like /proc/partitions with a bunch of
1593 * extra fields.
1594 */
1595 static int diskstats_show(struct seq_file *seqf, void *v)
1596 {
1597 struct gendisk *gp = v;
1598 struct disk_part_iter piter;
1599 struct hd_struct *hd;
1600 char buf[BDEVNAME_SIZE];
1601 unsigned int inflight;
1602 struct disk_stats stat;
1603
1604 /*
1605 if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1606 seq_puts(seqf, "major minor name"
1607 " rio rmerge rsect ruse wio wmerge "
1608 "wsect wuse running use aveq"
1609 "\n\n");
1610 */
1611
1612 disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1613 while ((hd = disk_part_iter_next(&piter))) {
1614 part_stat_read_all(hd, &stat);
1615 if (queue_is_mq(gp->queue))
1616 inflight = blk_mq_in_flight(gp->queue, hd);
1617 else
1618 inflight = part_in_flight(hd);
1619
1620 seq_printf(seqf, "%4d %7d %s "
1621 "%lu %lu %lu %u "
1622 "%lu %lu %lu %u "
1623 "%u %u %u "
1624 "%lu %lu %lu %u "
1625 "%lu %u"
1626 "\n",
1627 MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1628 disk_name(gp, hd->partno, buf),
1629 stat.ios[STAT_READ],
1630 stat.merges[STAT_READ],
1631 stat.sectors[STAT_READ],
1632 (unsigned int)div_u64(stat.nsecs[STAT_READ],
1633 NSEC_PER_MSEC),
1634 stat.ios[STAT_WRITE],
1635 stat.merges[STAT_WRITE],
1636 stat.sectors[STAT_WRITE],
1637 (unsigned int)div_u64(stat.nsecs[STAT_WRITE],
1638 NSEC_PER_MSEC),
1639 inflight,
1640 jiffies_to_msecs(stat.io_ticks),
1641 (unsigned int)div_u64(stat.nsecs[STAT_READ] +
1642 stat.nsecs[STAT_WRITE] +
1643 stat.nsecs[STAT_DISCARD] +
1644 stat.nsecs[STAT_FLUSH],
1645 NSEC_PER_MSEC),
1646 stat.ios[STAT_DISCARD],
1647 stat.merges[STAT_DISCARD],
1648 stat.sectors[STAT_DISCARD],
1649 (unsigned int)div_u64(stat.nsecs[STAT_DISCARD],
1650 NSEC_PER_MSEC),
1651 stat.ios[STAT_FLUSH],
1652 (unsigned int)div_u64(stat.nsecs[STAT_FLUSH],
1653 NSEC_PER_MSEC)
1654 );
1655 }
1656 disk_part_iter_exit(&piter);
1657
1658 return 0;
1659 }
1660
1661 static const struct seq_operations diskstats_op = {
1662 .start = disk_seqf_start,
1663 .next = disk_seqf_next,
1664 .stop = disk_seqf_stop,
1665 .show = diskstats_show
1666 };
1667
1668 static int __init proc_genhd_init(void)
1669 {
1670 proc_create_seq("diskstats", 0, NULL, &diskstats_op);
1671 proc_create_seq("partitions", 0, NULL, &partitions_op);
1672 return 0;
1673 }
1674 module_init(proc_genhd_init);
1675 #endif /* CONFIG_PROC_FS */
1676
1677 dev_t blk_lookup_devt(const char *name, int partno)
1678 {
1679 dev_t devt = MKDEV(0, 0);
1680 struct class_dev_iter iter;
1681 struct device *dev;
1682
1683 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1684 while ((dev = class_dev_iter_next(&iter))) {
1685 struct gendisk *disk = dev_to_disk(dev);
1686 struct hd_struct *part;
1687
1688 if (strcmp(dev_name(dev), name))
1689 continue;
1690
1691 if (partno < disk->minors) {
1692 /* We need to return the right devno, even
1693 * if the partition doesn't exist yet.
1694 */
1695 devt = MKDEV(MAJOR(dev->devt),
1696 MINOR(dev->devt) + partno);
1697 break;
1698 }
1699 part = disk_get_part(disk, partno);
1700 if (part) {
1701 devt = part_devt(part);
1702 disk_put_part(part);
1703 break;
1704 }
1705 disk_put_part(part);
1706 }
1707 class_dev_iter_exit(&iter);
1708 return devt;
1709 }
1710
1711 struct gendisk *__alloc_disk_node(int minors, int node_id)
1712 {
1713 struct gendisk *disk;
1714 struct disk_part_tbl *ptbl;
1715
1716 if (minors > DISK_MAX_PARTS) {
1717 printk(KERN_ERR
1718 "block: can't allocate more than %d partitions\n",
1719 DISK_MAX_PARTS);
1720 minors = DISK_MAX_PARTS;
1721 }
1722
1723 disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
1724 if (!disk)
1725 return NULL;
1726
1727 disk->part0.dkstats = alloc_percpu(struct disk_stats);
1728 if (!disk->part0.dkstats)
1729 goto out_free_disk;
1730
1731 init_rwsem(&disk->lookup_sem);
1732 disk->node_id = node_id;
1733 if (disk_expand_part_tbl(disk, 0)) {
1734 free_percpu(disk->part0.dkstats);
1735 goto out_free_disk;
1736 }
1737
1738 ptbl = rcu_dereference_protected(disk->part_tbl, 1);
1739 rcu_assign_pointer(ptbl->part[0], &disk->part0);
1740
1741 /*
1742 * set_capacity() and get_capacity() currently don't use
1743 * seqcounter to read/update the part0->nr_sects. Still init
1744 * the counter as we can read the sectors in IO submission
1745 * patch using seqence counters.
1746 *
1747 * TODO: Ideally set_capacity() and get_capacity() should be
1748 * converted to make use of bd_mutex and sequence counters.
1749 */
1750 hd_sects_seq_init(&disk->part0);
1751 if (hd_ref_init(&disk->part0))
1752 goto out_free_part0;
1753
1754 disk->minors = minors;
1755 rand_initialize_disk(disk);
1756 disk_to_dev(disk)->class = &block_class;
1757 disk_to_dev(disk)->type = &disk_type;
1758 device_initialize(disk_to_dev(disk));
1759 return disk;
1760
1761 out_free_part0:
1762 hd_free_part(&disk->part0);
1763 out_free_disk:
1764 kfree(disk);
1765 return NULL;
1766 }
1767 EXPORT_SYMBOL(__alloc_disk_node);
1768
1769 /**
1770 * get_disk_and_module - increments the gendisk and gendisk fops module refcount
1771 * @disk: the struct gendisk to increment the refcount for
1772 *
1773 * This increments the refcount for the struct gendisk, and the gendisk's
1774 * fops module owner.
1775 *
1776 * Context: Any context.
1777 */
1778 struct kobject *get_disk_and_module(struct gendisk *disk)
1779 {
1780 struct module *owner;
1781 struct kobject *kobj;
1782
1783 if (!disk->fops)
1784 return NULL;
1785 owner = disk->fops->owner;
1786 if (owner && !try_module_get(owner))
1787 return NULL;
1788 kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj);
1789 if (kobj == NULL) {
1790 module_put(owner);
1791 return NULL;
1792 }
1793 return kobj;
1794
1795 }
1796 EXPORT_SYMBOL(get_disk_and_module);
1797
1798 /**
1799 * put_disk - decrements the gendisk refcount
1800 * @disk: the struct gendisk to decrement the refcount for
1801 *
1802 * This decrements the refcount for the struct gendisk. When this reaches 0
1803 * we'll have disk_release() called.
1804 *
1805 * Context: Any context, but the last reference must not be dropped from
1806 * atomic context.
1807 */
1808 void put_disk(struct gendisk *disk)
1809 {
1810 if (disk)
1811 kobject_put(&disk_to_dev(disk)->kobj);
1812 }
1813 EXPORT_SYMBOL(put_disk);
1814
1815 /**
1816 * put_disk_and_module - decrements the module and gendisk refcount
1817 * @disk: the struct gendisk to decrement the refcount for
1818 *
1819 * This is a counterpart of get_disk_and_module() and thus also of
1820 * get_gendisk().
1821 *
1822 * Context: Any context, but the last reference must not be dropped from
1823 * atomic context.
1824 */
1825 void put_disk_and_module(struct gendisk *disk)
1826 {
1827 if (disk) {
1828 struct module *owner = disk->fops->owner;
1829
1830 put_disk(disk);
1831 module_put(owner);
1832 }
1833 }
1834 EXPORT_SYMBOL(put_disk_and_module);
1835
1836 static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1837 {
1838 char event[] = "DISK_RO=1";
1839 char *envp[] = { event, NULL };
1840
1841 if (!ro)
1842 event[8] = '0';
1843 kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1844 }
1845
1846 void set_device_ro(struct block_device *bdev, int flag)
1847 {
1848 bdev->bd_part->policy = flag;
1849 }
1850
1851 EXPORT_SYMBOL(set_device_ro);
1852
1853 void set_disk_ro(struct gendisk *disk, int flag)
1854 {
1855 struct disk_part_iter piter;
1856 struct hd_struct *part;
1857
1858 if (disk->part0.policy != flag) {
1859 set_disk_ro_uevent(disk, flag);
1860 disk->part0.policy = flag;
1861 }
1862
1863 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1864 while ((part = disk_part_iter_next(&piter)))
1865 part->policy = flag;
1866 disk_part_iter_exit(&piter);
1867 }
1868
1869 EXPORT_SYMBOL(set_disk_ro);
1870
1871 int bdev_read_only(struct block_device *bdev)
1872 {
1873 if (!bdev)
1874 return 0;
1875 return bdev->bd_part->policy;
1876 }
1877
1878 EXPORT_SYMBOL(bdev_read_only);
1879
1880 /*
1881 * Disk events - monitor disk events like media change and eject request.
1882 */
1883 struct disk_events {
1884 struct list_head node; /* all disk_event's */
1885 struct gendisk *disk; /* the associated disk */
1886 spinlock_t lock;
1887
1888 struct mutex block_mutex; /* protects blocking */
1889 int block; /* event blocking depth */
1890 unsigned int pending; /* events already sent out */
1891 unsigned int clearing; /* events being cleared */
1892
1893 long poll_msecs; /* interval, -1 for default */
1894 struct delayed_work dwork;
1895 };
1896
1897 static const char *disk_events_strs[] = {
1898 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "media_change",
1899 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "eject_request",
1900 };
1901
1902 static char *disk_uevents[] = {
1903 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "DISK_MEDIA_CHANGE=1",
1904 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "DISK_EJECT_REQUEST=1",
1905 };
1906
1907 /* list of all disk_events */
1908 static DEFINE_MUTEX(disk_events_mutex);
1909 static LIST_HEAD(disk_events);
1910
1911 /* disable in-kernel polling by default */
1912 static unsigned long disk_events_dfl_poll_msecs;
1913
1914 static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1915 {
1916 struct disk_events *ev = disk->ev;
1917 long intv_msecs = 0;
1918
1919 /*
1920 * If device-specific poll interval is set, always use it. If
1921 * the default is being used, poll if the POLL flag is set.
1922 */
1923 if (ev->poll_msecs >= 0)
1924 intv_msecs = ev->poll_msecs;
1925 else if (disk->event_flags & DISK_EVENT_FLAG_POLL)
1926 intv_msecs = disk_events_dfl_poll_msecs;
1927
1928 return msecs_to_jiffies(intv_msecs);
1929 }
1930
1931 /**
1932 * disk_block_events - block and flush disk event checking
1933 * @disk: disk to block events for
1934 *
1935 * On return from this function, it is guaranteed that event checking
1936 * isn't in progress and won't happen until unblocked by
1937 * disk_unblock_events(). Events blocking is counted and the actual
1938 * unblocking happens after the matching number of unblocks are done.
1939 *
1940 * Note that this intentionally does not block event checking from
1941 * disk_clear_events().
1942 *
1943 * CONTEXT:
1944 * Might sleep.
1945 */
1946 void disk_block_events(struct gendisk *disk)
1947 {
1948 struct disk_events *ev = disk->ev;
1949 unsigned long flags;
1950 bool cancel;
1951
1952 if (!ev)
1953 return;
1954
1955 /*
1956 * Outer mutex ensures that the first blocker completes canceling
1957 * the event work before further blockers are allowed to finish.
1958 */
1959 mutex_lock(&ev->block_mutex);
1960
1961 spin_lock_irqsave(&ev->lock, flags);
1962 cancel = !ev->block++;
1963 spin_unlock_irqrestore(&ev->lock, flags);
1964
1965 if (cancel)
1966 cancel_delayed_work_sync(&disk->ev->dwork);
1967
1968 mutex_unlock(&ev->block_mutex);
1969 }
1970
1971 static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1972 {
1973 struct disk_events *ev = disk->ev;
1974 unsigned long intv;
1975 unsigned long flags;
1976
1977 spin_lock_irqsave(&ev->lock, flags);
1978
1979 if (WARN_ON_ONCE(ev->block <= 0))
1980 goto out_unlock;
1981
1982 if (--ev->block)
1983 goto out_unlock;
1984
1985 intv = disk_events_poll_jiffies(disk);
1986 if (check_now)
1987 queue_delayed_work(system_freezable_power_efficient_wq,
1988 &ev->dwork, 0);
1989 else if (intv)
1990 queue_delayed_work(system_freezable_power_efficient_wq,
1991 &ev->dwork, intv);
1992 out_unlock:
1993 spin_unlock_irqrestore(&ev->lock, flags);
1994 }
1995
1996 /**
1997 * disk_unblock_events - unblock disk event checking
1998 * @disk: disk to unblock events for
1999 *
2000 * Undo disk_block_events(). When the block count reaches zero, it
2001 * starts events polling if configured.
2002 *
2003 * CONTEXT:
2004 * Don't care. Safe to call from irq context.
2005 */
2006 void disk_unblock_events(struct gendisk *disk)
2007 {
2008 if (disk->ev)
2009 __disk_unblock_events(disk, false);
2010 }
2011
2012 /**
2013 * disk_flush_events - schedule immediate event checking and flushing
2014 * @disk: disk to check and flush events for
2015 * @mask: events to flush
2016 *
2017 * Schedule immediate event checking on @disk if not blocked. Events in
2018 * @mask are scheduled to be cleared from the driver. Note that this
2019 * doesn't clear the events from @disk->ev.
2020 *
2021 * CONTEXT:
2022 * If @mask is non-zero must be called with bdev->bd_mutex held.
2023 */
2024 void disk_flush_events(struct gendisk *disk, unsigned int mask)
2025 {
2026 struct disk_events *ev = disk->ev;
2027
2028 if (!ev)
2029 return;
2030
2031 spin_lock_irq(&ev->lock);
2032 ev->clearing |= mask;
2033 if (!ev->block)
2034 mod_delayed_work(system_freezable_power_efficient_wq,
2035 &ev->dwork, 0);
2036 spin_unlock_irq(&ev->lock);
2037 }
2038
2039 /**
2040 * disk_clear_events - synchronously check, clear and return pending events
2041 * @disk: disk to fetch and clear events from
2042 * @mask: mask of events to be fetched and cleared
2043 *
2044 * Disk events are synchronously checked and pending events in @mask
2045 * are cleared and returned. This ignores the block count.
2046 *
2047 * CONTEXT:
2048 * Might sleep.
2049 */
2050 static unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
2051 {
2052 struct disk_events *ev = disk->ev;
2053 unsigned int pending;
2054 unsigned int clearing = mask;
2055
2056 if (!ev)
2057 return 0;
2058
2059 disk_block_events(disk);
2060
2061 /*
2062 * store the union of mask and ev->clearing on the stack so that the
2063 * race with disk_flush_events does not cause ambiguity (ev->clearing
2064 * can still be modified even if events are blocked).
2065 */
2066 spin_lock_irq(&ev->lock);
2067 clearing |= ev->clearing;
2068 ev->clearing = 0;
2069 spin_unlock_irq(&ev->lock);
2070
2071 disk_check_events(ev, &clearing);
2072 /*
2073 * if ev->clearing is not 0, the disk_flush_events got called in the
2074 * middle of this function, so we want to run the workfn without delay.
2075 */
2076 __disk_unblock_events(disk, ev->clearing ? true : false);
2077
2078 /* then, fetch and clear pending events */
2079 spin_lock_irq(&ev->lock);
2080 pending = ev->pending & mask;
2081 ev->pending &= ~mask;
2082 spin_unlock_irq(&ev->lock);
2083 WARN_ON_ONCE(clearing & mask);
2084
2085 return pending;
2086 }
2087
2088 /**
2089 * bdev_check_media_change - check if a removable media has been changed
2090 * @bdev: block device to check
2091 *
2092 * Check whether a removable media has been changed, and attempt to free all
2093 * dentries and inodes and invalidates all block device page cache entries in
2094 * that case.
2095 *
2096 * Returns %true if the block device changed, or %false if not.
2097 */
2098 bool bdev_check_media_change(struct block_device *bdev)
2099 {
2100 unsigned int events;
2101
2102 events = disk_clear_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE |
2103 DISK_EVENT_EJECT_REQUEST);
2104 if (!(events & DISK_EVENT_MEDIA_CHANGE))
2105 return false;
2106
2107 if (__invalidate_device(bdev, true))
2108 pr_warn("VFS: busy inodes on changed media %s\n",
2109 bdev->bd_disk->disk_name);
2110 set_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
2111 return true;
2112 }
2113 EXPORT_SYMBOL(bdev_check_media_change);
2114
2115 /*
2116 * Separate this part out so that a different pointer for clearing_ptr can be
2117 * passed in for disk_clear_events.
2118 */
2119 static void disk_events_workfn(struct work_struct *work)
2120 {
2121 struct delayed_work *dwork = to_delayed_work(work);
2122 struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
2123
2124 disk_check_events(ev, &ev->clearing);
2125 }
2126
2127 static void disk_check_events(struct disk_events *ev,
2128 unsigned int *clearing_ptr)
2129 {
2130 struct gendisk *disk = ev->disk;
2131 char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
2132 unsigned int clearing = *clearing_ptr;
2133 unsigned int events;
2134 unsigned long intv;
2135 int nr_events = 0, i;
2136
2137 /* check events */
2138 events = disk->fops->check_events(disk, clearing);
2139
2140 /* accumulate pending events and schedule next poll if necessary */
2141 spin_lock_irq(&ev->lock);
2142
2143 events &= ~ev->pending;
2144 ev->pending |= events;
2145 *clearing_ptr &= ~clearing;
2146
2147 intv = disk_events_poll_jiffies(disk);
2148 if (!ev->block && intv)
2149 queue_delayed_work(system_freezable_power_efficient_wq,
2150 &ev->dwork, intv);
2151
2152 spin_unlock_irq(&ev->lock);
2153
2154 /*
2155 * Tell userland about new events. Only the events listed in
2156 * @disk->events are reported, and only if DISK_EVENT_FLAG_UEVENT
2157 * is set. Otherwise, events are processed internally but never
2158 * get reported to userland.
2159 */
2160 for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
2161 if ((events & disk->events & (1 << i)) &&
2162 (disk->event_flags & DISK_EVENT_FLAG_UEVENT))
2163 envp[nr_events++] = disk_uevents[i];
2164
2165 if (nr_events)
2166 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
2167 }
2168
2169 /*
2170 * A disk events enabled device has the following sysfs nodes under
2171 * its /sys/block/X/ directory.
2172 *
2173 * events : list of all supported events
2174 * events_async : list of events which can be detected w/o polling
2175 * (always empty, only for backwards compatibility)
2176 * events_poll_msecs : polling interval, 0: disable, -1: system default
2177 */
2178 static ssize_t __disk_events_show(unsigned int events, char *buf)
2179 {
2180 const char *delim = "";
2181 ssize_t pos = 0;
2182 int i;
2183
2184 for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
2185 if (events & (1 << i)) {
2186 pos += sprintf(buf + pos, "%s%s",
2187 delim, disk_events_strs[i]);
2188 delim = " ";
2189 }
2190 if (pos)
2191 pos += sprintf(buf + pos, "\n");
2192 return pos;
2193 }
2194
2195 static ssize_t disk_events_show(struct device *dev,
2196 struct device_attribute *attr, char *buf)
2197 {
2198 struct gendisk *disk = dev_to_disk(dev);
2199
2200 if (!(disk->event_flags & DISK_EVENT_FLAG_UEVENT))
2201 return 0;
2202
2203 return __disk_events_show(disk->events, buf);
2204 }
2205
2206 static ssize_t disk_events_async_show(struct device *dev,
2207 struct device_attribute *attr, char *buf)
2208 {
2209 return 0;
2210 }
2211
2212 static ssize_t disk_events_poll_msecs_show(struct device *dev,
2213 struct device_attribute *attr,
2214 char *buf)
2215 {
2216 struct gendisk *disk = dev_to_disk(dev);
2217
2218 if (!disk->ev)
2219 return sprintf(buf, "-1\n");
2220
2221 return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
2222 }
2223
2224 static ssize_t disk_events_poll_msecs_store(struct device *dev,
2225 struct device_attribute *attr,
2226 const char *buf, size_t count)
2227 {
2228 struct gendisk *disk = dev_to_disk(dev);
2229 long intv;
2230
2231 if (!count || !sscanf(buf, "%ld", &intv))
2232 return -EINVAL;
2233
2234 if (intv < 0 && intv != -1)
2235 return -EINVAL;
2236
2237 if (!disk->ev)
2238 return -ENODEV;
2239
2240 disk_block_events(disk);
2241 disk->ev->poll_msecs = intv;
2242 __disk_unblock_events(disk, true);
2243
2244 return count;
2245 }
2246
2247 static const DEVICE_ATTR(events, 0444, disk_events_show, NULL);
2248 static const DEVICE_ATTR(events_async, 0444, disk_events_async_show, NULL);
2249 static const DEVICE_ATTR(events_poll_msecs, 0644,
2250 disk_events_poll_msecs_show,
2251 disk_events_poll_msecs_store);
2252
2253 static const struct attribute *disk_events_attrs[] = {
2254 &dev_attr_events.attr,
2255 &dev_attr_events_async.attr,
2256 &dev_attr_events_poll_msecs.attr,
2257 NULL,
2258 };
2259
2260 /*
2261 * The default polling interval can be specified by the kernel
2262 * parameter block.events_dfl_poll_msecs which defaults to 0
2263 * (disable). This can also be modified runtime by writing to
2264 * /sys/module/block/parameters/events_dfl_poll_msecs.
2265 */
2266 static int disk_events_set_dfl_poll_msecs(const char *val,
2267 const struct kernel_param *kp)
2268 {
2269 struct disk_events *ev;
2270 int ret;
2271
2272 ret = param_set_ulong(val, kp);
2273 if (ret < 0)
2274 return ret;
2275
2276 mutex_lock(&disk_events_mutex);
2277
2278 list_for_each_entry(ev, &disk_events, node)
2279 disk_flush_events(ev->disk, 0);
2280
2281 mutex_unlock(&disk_events_mutex);
2282
2283 return 0;
2284 }
2285
2286 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
2287 .set = disk_events_set_dfl_poll_msecs,
2288 .get = param_get_ulong,
2289 };
2290
2291 #undef MODULE_PARAM_PREFIX
2292 #define MODULE_PARAM_PREFIX "block."
2293
2294 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
2295 &disk_events_dfl_poll_msecs, 0644);
2296
2297 /*
2298 * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
2299 */
2300 static void disk_alloc_events(struct gendisk *disk)
2301 {
2302 struct disk_events *ev;
2303
2304 if (!disk->fops->check_events || !disk->events)
2305 return;
2306
2307 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
2308 if (!ev) {
2309 pr_warn("%s: failed to initialize events\n", disk->disk_name);
2310 return;
2311 }
2312
2313 INIT_LIST_HEAD(&ev->node);
2314 ev->disk = disk;
2315 spin_lock_init(&ev->lock);
2316 mutex_init(&ev->block_mutex);
2317 ev->block = 1;
2318 ev->poll_msecs = -1;
2319 INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
2320
2321 disk->ev = ev;
2322 }
2323
2324 static void disk_add_events(struct gendisk *disk)
2325 {
2326 /* FIXME: error handling */
2327 if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
2328 pr_warn("%s: failed to create sysfs files for events\n",
2329 disk->disk_name);
2330
2331 if (!disk->ev)
2332 return;
2333
2334 mutex_lock(&disk_events_mutex);
2335 list_add_tail(&disk->ev->node, &disk_events);
2336 mutex_unlock(&disk_events_mutex);
2337
2338 /*
2339 * Block count is initialized to 1 and the following initial
2340 * unblock kicks it into action.
2341 */
2342 __disk_unblock_events(disk, true);
2343 }
2344
2345 static void disk_del_events(struct gendisk *disk)
2346 {
2347 if (disk->ev) {
2348 disk_block_events(disk);
2349
2350 mutex_lock(&disk_events_mutex);
2351 list_del_init(&disk->ev->node);
2352 mutex_unlock(&disk_events_mutex);
2353 }
2354
2355 sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
2356 }
2357
2358 static void disk_release_events(struct gendisk *disk)
2359 {
2360 /* the block count should be 1 from disk_del_events() */
2361 WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
2362 kfree(disk->ev);
2363 }