]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - block/genhd.c
UBUNTU: Ubuntu-snapdragon-4.4.0-1026.29
[mirror_ubuntu-zesty-kernel.git] / block / genhd.c
1 /*
2 * gendisk handling
3 */
4
5 #include <linux/module.h>
6 #include <linux/fs.h>
7 #include <linux/genhd.h>
8 #include <linux/kdev_t.h>
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/backing-dev.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include <linux/slab.h>
17 #include <linux/kmod.h>
18 #include <linux/kobj_map.h>
19 #include <linux/mutex.h>
20 #include <linux/idr.h>
21 #include <linux/log2.h>
22 #include <linux/pm_runtime.h>
23
24 #include "blk.h"
25
26 static DEFINE_MUTEX(block_class_lock);
27 struct kobject *block_depr;
28
29 /* for extended dynamic devt allocation, currently only one major is used */
30 #define NR_EXT_DEVT (1 << MINORBITS)
31
32 /* For extended devt allocation. ext_devt_lock prevents look up
33 * results from going away underneath its user.
34 */
35 static DEFINE_SPINLOCK(ext_devt_lock);
36 static DEFINE_IDR(ext_devt_idr);
37
38 static struct device_type disk_type;
39
40 static void disk_check_events(struct disk_events *ev,
41 unsigned int *clearing_ptr);
42 static void disk_alloc_events(struct gendisk *disk);
43 static void disk_add_events(struct gendisk *disk);
44 static void disk_del_events(struct gendisk *disk);
45 static void disk_release_events(struct gendisk *disk);
46
47 /**
48 * disk_get_part - get partition
49 * @disk: disk to look partition from
50 * @partno: partition number
51 *
52 * Look for partition @partno from @disk. If found, increment
53 * reference count and return it.
54 *
55 * CONTEXT:
56 * Don't care.
57 *
58 * RETURNS:
59 * Pointer to the found partition on success, NULL if not found.
60 */
61 struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
62 {
63 struct hd_struct *part = NULL;
64 struct disk_part_tbl *ptbl;
65
66 if (unlikely(partno < 0))
67 return NULL;
68
69 rcu_read_lock();
70
71 ptbl = rcu_dereference(disk->part_tbl);
72 if (likely(partno < ptbl->len)) {
73 part = rcu_dereference(ptbl->part[partno]);
74 if (part)
75 get_device(part_to_dev(part));
76 }
77
78 rcu_read_unlock();
79
80 return part;
81 }
82 EXPORT_SYMBOL_GPL(disk_get_part);
83
84 /**
85 * disk_part_iter_init - initialize partition iterator
86 * @piter: iterator to initialize
87 * @disk: disk to iterate over
88 * @flags: DISK_PITER_* flags
89 *
90 * Initialize @piter so that it iterates over partitions of @disk.
91 *
92 * CONTEXT:
93 * Don't care.
94 */
95 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
96 unsigned int flags)
97 {
98 struct disk_part_tbl *ptbl;
99
100 rcu_read_lock();
101 ptbl = rcu_dereference(disk->part_tbl);
102
103 piter->disk = disk;
104 piter->part = NULL;
105
106 if (flags & DISK_PITER_REVERSE)
107 piter->idx = ptbl->len - 1;
108 else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
109 piter->idx = 0;
110 else
111 piter->idx = 1;
112
113 piter->flags = flags;
114
115 rcu_read_unlock();
116 }
117 EXPORT_SYMBOL_GPL(disk_part_iter_init);
118
119 /**
120 * disk_part_iter_next - proceed iterator to the next partition and return it
121 * @piter: iterator of interest
122 *
123 * Proceed @piter to the next partition and return it.
124 *
125 * CONTEXT:
126 * Don't care.
127 */
128 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
129 {
130 struct disk_part_tbl *ptbl;
131 int inc, end;
132
133 /* put the last partition */
134 disk_put_part(piter->part);
135 piter->part = NULL;
136
137 /* get part_tbl */
138 rcu_read_lock();
139 ptbl = rcu_dereference(piter->disk->part_tbl);
140
141 /* determine iteration parameters */
142 if (piter->flags & DISK_PITER_REVERSE) {
143 inc = -1;
144 if (piter->flags & (DISK_PITER_INCL_PART0 |
145 DISK_PITER_INCL_EMPTY_PART0))
146 end = -1;
147 else
148 end = 0;
149 } else {
150 inc = 1;
151 end = ptbl->len;
152 }
153
154 /* iterate to the next partition */
155 for (; piter->idx != end; piter->idx += inc) {
156 struct hd_struct *part;
157
158 part = rcu_dereference(ptbl->part[piter->idx]);
159 if (!part)
160 continue;
161 if (!part_nr_sects_read(part) &&
162 !(piter->flags & DISK_PITER_INCL_EMPTY) &&
163 !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
164 piter->idx == 0))
165 continue;
166
167 get_device(part_to_dev(part));
168 piter->part = part;
169 piter->idx += inc;
170 break;
171 }
172
173 rcu_read_unlock();
174
175 return piter->part;
176 }
177 EXPORT_SYMBOL_GPL(disk_part_iter_next);
178
179 /**
180 * disk_part_iter_exit - finish up partition iteration
181 * @piter: iter of interest
182 *
183 * Called when iteration is over. Cleans up @piter.
184 *
185 * CONTEXT:
186 * Don't care.
187 */
188 void disk_part_iter_exit(struct disk_part_iter *piter)
189 {
190 disk_put_part(piter->part);
191 piter->part = NULL;
192 }
193 EXPORT_SYMBOL_GPL(disk_part_iter_exit);
194
195 static inline int sector_in_part(struct hd_struct *part, sector_t sector)
196 {
197 return part->start_sect <= sector &&
198 sector < part->start_sect + part_nr_sects_read(part);
199 }
200
201 /**
202 * disk_map_sector_rcu - map sector to partition
203 * @disk: gendisk of interest
204 * @sector: sector to map
205 *
206 * Find out which partition @sector maps to on @disk. This is
207 * primarily used for stats accounting.
208 *
209 * CONTEXT:
210 * RCU read locked. The returned partition pointer is valid only
211 * while preemption is disabled.
212 *
213 * RETURNS:
214 * Found partition on success, part0 is returned if no partition matches
215 */
216 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
217 {
218 struct disk_part_tbl *ptbl;
219 struct hd_struct *part;
220 int i;
221
222 ptbl = rcu_dereference(disk->part_tbl);
223
224 part = rcu_dereference(ptbl->last_lookup);
225 if (part && sector_in_part(part, sector))
226 return part;
227
228 for (i = 1; i < ptbl->len; i++) {
229 part = rcu_dereference(ptbl->part[i]);
230
231 if (part && sector_in_part(part, sector)) {
232 rcu_assign_pointer(ptbl->last_lookup, part);
233 return part;
234 }
235 }
236 return &disk->part0;
237 }
238 EXPORT_SYMBOL_GPL(disk_map_sector_rcu);
239
240 /*
241 * Can be deleted altogether. Later.
242 *
243 */
244 static struct blk_major_name {
245 struct blk_major_name *next;
246 int major;
247 char name[16];
248 } *major_names[BLKDEV_MAJOR_HASH_SIZE];
249
250 /* index in the above - for now: assume no multimajor ranges */
251 static inline int major_to_index(unsigned major)
252 {
253 return major % BLKDEV_MAJOR_HASH_SIZE;
254 }
255
256 #ifdef CONFIG_PROC_FS
257 void blkdev_show(struct seq_file *seqf, off_t offset)
258 {
259 struct blk_major_name *dp;
260
261 if (offset < BLKDEV_MAJOR_HASH_SIZE) {
262 mutex_lock(&block_class_lock);
263 for (dp = major_names[offset]; dp; dp = dp->next)
264 seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
265 mutex_unlock(&block_class_lock);
266 }
267 }
268 #endif /* CONFIG_PROC_FS */
269
270 /**
271 * register_blkdev - register a new block device
272 *
273 * @major: the requested major device number [1..255]. If @major=0, try to
274 * allocate any unused major number.
275 * @name: the name of the new block device as a zero terminated string
276 *
277 * The @name must be unique within the system.
278 *
279 * The return value depends on the @major input parameter.
280 * - if a major device number was requested in range [1..255] then the
281 * function returns zero on success, or a negative error code
282 * - if any unused major number was requested with @major=0 parameter
283 * then the return value is the allocated major number in range
284 * [1..255] or a negative error code otherwise
285 */
286 int register_blkdev(unsigned int major, const char *name)
287 {
288 struct blk_major_name **n, *p;
289 int index, ret = 0;
290
291 mutex_lock(&block_class_lock);
292
293 /* temporary */
294 if (major == 0) {
295 for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
296 if (major_names[index] == NULL)
297 break;
298 }
299
300 if (index == 0) {
301 printk("register_blkdev: failed to get major for %s\n",
302 name);
303 ret = -EBUSY;
304 goto out;
305 }
306 major = index;
307 ret = major;
308 }
309
310 p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
311 if (p == NULL) {
312 ret = -ENOMEM;
313 goto out;
314 }
315
316 p->major = major;
317 strlcpy(p->name, name, sizeof(p->name));
318 p->next = NULL;
319 index = major_to_index(major);
320
321 for (n = &major_names[index]; *n; n = &(*n)->next) {
322 if ((*n)->major == major)
323 break;
324 }
325 if (!*n)
326 *n = p;
327 else
328 ret = -EBUSY;
329
330 if (ret < 0) {
331 printk("register_blkdev: cannot get major %d for %s\n",
332 major, name);
333 kfree(p);
334 }
335 out:
336 mutex_unlock(&block_class_lock);
337 return ret;
338 }
339
340 EXPORT_SYMBOL(register_blkdev);
341
342 void unregister_blkdev(unsigned int major, const char *name)
343 {
344 struct blk_major_name **n;
345 struct blk_major_name *p = NULL;
346 int index = major_to_index(major);
347
348 mutex_lock(&block_class_lock);
349 for (n = &major_names[index]; *n; n = &(*n)->next)
350 if ((*n)->major == major)
351 break;
352 if (!*n || strcmp((*n)->name, name)) {
353 WARN_ON(1);
354 } else {
355 p = *n;
356 *n = p->next;
357 }
358 mutex_unlock(&block_class_lock);
359 kfree(p);
360 }
361
362 EXPORT_SYMBOL(unregister_blkdev);
363
364 static struct kobj_map *bdev_map;
365
366 /**
367 * blk_mangle_minor - scatter minor numbers apart
368 * @minor: minor number to mangle
369 *
370 * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
371 * is enabled. Mangling twice gives the original value.
372 *
373 * RETURNS:
374 * Mangled value.
375 *
376 * CONTEXT:
377 * Don't care.
378 */
379 static int blk_mangle_minor(int minor)
380 {
381 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
382 int i;
383
384 for (i = 0; i < MINORBITS / 2; i++) {
385 int low = minor & (1 << i);
386 int high = minor & (1 << (MINORBITS - 1 - i));
387 int distance = MINORBITS - 1 - 2 * i;
388
389 minor ^= low | high; /* clear both bits */
390 low <<= distance; /* swap the positions */
391 high >>= distance;
392 minor |= low | high; /* and set */
393 }
394 #endif
395 return minor;
396 }
397
398 /**
399 * blk_alloc_devt - allocate a dev_t for a partition
400 * @part: partition to allocate dev_t for
401 * @devt: out parameter for resulting dev_t
402 *
403 * Allocate a dev_t for block device.
404 *
405 * RETURNS:
406 * 0 on success, allocated dev_t is returned in *@devt. -errno on
407 * failure.
408 *
409 * CONTEXT:
410 * Might sleep.
411 */
412 int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
413 {
414 struct gendisk *disk = part_to_disk(part);
415 int idx;
416
417 /* in consecutive minor range? */
418 if (part->partno < disk->minors) {
419 *devt = MKDEV(disk->major, disk->first_minor + part->partno);
420 return 0;
421 }
422
423 /* allocate ext devt */
424 idr_preload(GFP_KERNEL);
425
426 spin_lock_bh(&ext_devt_lock);
427 idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT);
428 spin_unlock_bh(&ext_devt_lock);
429
430 idr_preload_end();
431 if (idx < 0)
432 return idx == -ENOSPC ? -EBUSY : idx;
433
434 *devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
435 return 0;
436 }
437
438 /**
439 * blk_free_devt - free a dev_t
440 * @devt: dev_t to free
441 *
442 * Free @devt which was allocated using blk_alloc_devt().
443 *
444 * CONTEXT:
445 * Might sleep.
446 */
447 void blk_free_devt(dev_t devt)
448 {
449 if (devt == MKDEV(0, 0))
450 return;
451
452 if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
453 spin_lock_bh(&ext_devt_lock);
454 idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
455 spin_unlock_bh(&ext_devt_lock);
456 }
457 }
458
459 static char *bdevt_str(dev_t devt, char *buf)
460 {
461 if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
462 char tbuf[BDEVT_SIZE];
463 snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
464 snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
465 } else
466 snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
467
468 return buf;
469 }
470
471 /*
472 * Register device numbers dev..(dev+range-1)
473 * range must be nonzero
474 * The hash chain is sorted on range, so that subranges can override.
475 */
476 void blk_register_region(dev_t devt, unsigned long range, struct module *module,
477 struct kobject *(*probe)(dev_t, int *, void *),
478 int (*lock)(dev_t, void *), void *data)
479 {
480 kobj_map(bdev_map, devt, range, module, probe, lock, data);
481 }
482
483 EXPORT_SYMBOL(blk_register_region);
484
485 void blk_unregister_region(dev_t devt, unsigned long range)
486 {
487 kobj_unmap(bdev_map, devt, range);
488 }
489
490 EXPORT_SYMBOL(blk_unregister_region);
491
492 static struct kobject *exact_match(dev_t devt, int *partno, void *data)
493 {
494 struct gendisk *p = data;
495
496 return &disk_to_dev(p)->kobj;
497 }
498
499 static int exact_lock(dev_t devt, void *data)
500 {
501 struct gendisk *p = data;
502
503 if (!get_disk(p))
504 return -1;
505 return 0;
506 }
507
508 static void register_disk(struct gendisk *disk)
509 {
510 struct device *ddev = disk_to_dev(disk);
511 struct block_device *bdev;
512 struct disk_part_iter piter;
513 struct hd_struct *part;
514 int err;
515
516 ddev->parent = disk->driverfs_dev;
517
518 dev_set_name(ddev, "%s", disk->disk_name);
519
520 /* delay uevents, until we scanned partition table */
521 dev_set_uevent_suppress(ddev, 1);
522
523 if (device_add(ddev))
524 return;
525 if (!sysfs_deprecated) {
526 err = sysfs_create_link(block_depr, &ddev->kobj,
527 kobject_name(&ddev->kobj));
528 if (err) {
529 device_del(ddev);
530 return;
531 }
532 }
533
534 /*
535 * avoid probable deadlock caused by allocating memory with
536 * GFP_KERNEL in runtime_resume callback of its all ancestor
537 * devices
538 */
539 pm_runtime_set_memalloc_noio(ddev, true);
540
541 disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
542 disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
543
544 /* No minors to use for partitions */
545 if (!disk_part_scan_enabled(disk))
546 goto exit;
547
548 /* No such device (e.g., media were just removed) */
549 if (!get_capacity(disk))
550 goto exit;
551
552 bdev = bdget_disk(disk, 0);
553 if (!bdev)
554 goto exit;
555
556 bdev->bd_invalidated = 1;
557 err = blkdev_get(bdev, FMODE_READ, NULL);
558 if (err < 0)
559 goto exit;
560 blkdev_put(bdev, FMODE_READ);
561
562 exit:
563 /* announce disk after possible partitions are created */
564 dev_set_uevent_suppress(ddev, 0);
565 kobject_uevent(&ddev->kobj, KOBJ_ADD);
566
567 /* announce possible partitions */
568 disk_part_iter_init(&piter, disk, 0);
569 while ((part = disk_part_iter_next(&piter)))
570 kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
571 disk_part_iter_exit(&piter);
572 }
573
574 /**
575 * add_disk - add partitioning information to kernel list
576 * @disk: per-device partitioning information
577 *
578 * This function registers the partitioning information in @disk
579 * with the kernel.
580 *
581 * FIXME: error handling
582 */
583 void add_disk(struct gendisk *disk)
584 {
585 struct backing_dev_info *bdi;
586 dev_t devt;
587 int retval;
588
589 /* minors == 0 indicates to use ext devt from part0 and should
590 * be accompanied with EXT_DEVT flag. Make sure all
591 * parameters make sense.
592 */
593 WARN_ON(disk->minors && !(disk->major || disk->first_minor));
594 WARN_ON(!disk->minors && !(disk->flags & GENHD_FL_EXT_DEVT));
595
596 disk->flags |= GENHD_FL_UP;
597
598 retval = blk_alloc_devt(&disk->part0, &devt);
599 if (retval) {
600 WARN_ON(1);
601 return;
602 }
603 disk_to_dev(disk)->devt = devt;
604
605 /* ->major and ->first_minor aren't supposed to be
606 * dereferenced from here on, but set them just in case.
607 */
608 disk->major = MAJOR(devt);
609 disk->first_minor = MINOR(devt);
610
611 disk_alloc_events(disk);
612
613 /* Register BDI before referencing it from bdev */
614 bdi = disk->queue->backing_dev_info;
615 bdi_register_owner(bdi, disk_to_dev(disk));
616
617 blk_register_region(disk_devt(disk), disk->minors, NULL,
618 exact_match, exact_lock, disk);
619 register_disk(disk);
620 blk_register_queue(disk);
621
622 /*
623 * Take an extra ref on queue which will be put on disk_release()
624 * so that it sticks around as long as @disk is there.
625 */
626 WARN_ON_ONCE(!blk_get_queue(disk->queue));
627
628 retval = sysfs_create_link(&disk_to_dev(disk)->kobj, &bdi->dev->kobj,
629 "bdi");
630 WARN_ON(retval);
631
632 disk_add_events(disk);
633 blk_integrity_add(disk);
634 }
635 EXPORT_SYMBOL(add_disk);
636
637 void del_gendisk(struct gendisk *disk)
638 {
639 struct disk_part_iter piter;
640 struct hd_struct *part;
641
642 blk_integrity_del(disk);
643 disk_del_events(disk);
644
645 /* invalidate stuff */
646 disk_part_iter_init(&piter, disk,
647 DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
648 while ((part = disk_part_iter_next(&piter))) {
649 invalidate_partition(disk, part->partno);
650 bdev_unhash_inode(part_devt(part));
651 delete_partition(disk, part->partno);
652 }
653 disk_part_iter_exit(&piter);
654
655 invalidate_partition(disk, 0);
656 bdev_unhash_inode(disk_devt(disk));
657 set_capacity(disk, 0);
658 disk->flags &= ~GENHD_FL_UP;
659
660 sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
661 if (disk->queue) {
662 /*
663 * Unregister bdi before releasing device numbers (as they can
664 * get reused and we'd get clashes in sysfs).
665 */
666 bdi_unregister(disk->queue->backing_dev_info);
667 blk_unregister_queue(disk);
668 } else {
669 WARN_ON(1);
670 }
671 blk_unregister_region(disk_devt(disk), disk->minors);
672
673 part_stat_set_all(&disk->part0, 0);
674 disk->part0.stamp = 0;
675
676 kobject_put(disk->part0.holder_dir);
677 kobject_put(disk->slave_dir);
678 if (!sysfs_deprecated)
679 sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
680 pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
681 device_del(disk_to_dev(disk));
682 }
683 EXPORT_SYMBOL(del_gendisk);
684
685 /**
686 * get_gendisk - get partitioning information for a given device
687 * @devt: device to get partitioning information for
688 * @partno: returned partition index
689 *
690 * This function gets the structure containing partitioning
691 * information for the given device @devt.
692 */
693 struct gendisk *get_gendisk(dev_t devt, int *partno)
694 {
695 struct gendisk *disk = NULL;
696
697 if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
698 struct kobject *kobj;
699
700 kobj = kobj_lookup(bdev_map, devt, partno);
701 if (kobj)
702 disk = dev_to_disk(kobj_to_dev(kobj));
703 } else {
704 struct hd_struct *part;
705
706 spin_lock_bh(&ext_devt_lock);
707 part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
708 if (part && get_disk(part_to_disk(part))) {
709 *partno = part->partno;
710 disk = part_to_disk(part);
711 }
712 spin_unlock_bh(&ext_devt_lock);
713 }
714
715 return disk;
716 }
717 EXPORT_SYMBOL(get_gendisk);
718
719 /**
720 * bdget_disk - do bdget() by gendisk and partition number
721 * @disk: gendisk of interest
722 * @partno: partition number
723 *
724 * Find partition @partno from @disk, do bdget() on it.
725 *
726 * CONTEXT:
727 * Don't care.
728 *
729 * RETURNS:
730 * Resulting block_device on success, NULL on failure.
731 */
732 struct block_device *bdget_disk(struct gendisk *disk, int partno)
733 {
734 struct hd_struct *part;
735 struct block_device *bdev = NULL;
736
737 part = disk_get_part(disk, partno);
738 if (part)
739 bdev = bdget(part_devt(part));
740 disk_put_part(part);
741
742 return bdev;
743 }
744 EXPORT_SYMBOL(bdget_disk);
745
746 /*
747 * print a full list of all partitions - intended for places where the root
748 * filesystem can't be mounted and thus to give the victim some idea of what
749 * went wrong
750 */
751 void __init printk_all_partitions(void)
752 {
753 struct class_dev_iter iter;
754 struct device *dev;
755
756 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
757 while ((dev = class_dev_iter_next(&iter))) {
758 struct gendisk *disk = dev_to_disk(dev);
759 struct disk_part_iter piter;
760 struct hd_struct *part;
761 char name_buf[BDEVNAME_SIZE];
762 char devt_buf[BDEVT_SIZE];
763
764 /*
765 * Don't show empty devices or things that have been
766 * suppressed
767 */
768 if (get_capacity(disk) == 0 ||
769 (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
770 continue;
771
772 /*
773 * Note, unlike /proc/partitions, I am showing the
774 * numbers in hex - the same format as the root=
775 * option takes.
776 */
777 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
778 while ((part = disk_part_iter_next(&piter))) {
779 bool is_part0 = part == &disk->part0;
780
781 printk("%s%s %10llu %s %s", is_part0 ? "" : " ",
782 bdevt_str(part_devt(part), devt_buf),
783 (unsigned long long)part_nr_sects_read(part) >> 1
784 , disk_name(disk, part->partno, name_buf),
785 part->info ? part->info->uuid : "");
786 if (is_part0) {
787 if (disk->driverfs_dev != NULL &&
788 disk->driverfs_dev->driver != NULL)
789 printk(" driver: %s\n",
790 disk->driverfs_dev->driver->name);
791 else
792 printk(" (driver?)\n");
793 } else
794 printk("\n");
795 }
796 disk_part_iter_exit(&piter);
797 }
798 class_dev_iter_exit(&iter);
799 }
800
801 #ifdef CONFIG_PROC_FS
802 /* iterator */
803 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
804 {
805 loff_t skip = *pos;
806 struct class_dev_iter *iter;
807 struct device *dev;
808
809 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
810 if (!iter)
811 return ERR_PTR(-ENOMEM);
812
813 seqf->private = iter;
814 class_dev_iter_init(iter, &block_class, NULL, &disk_type);
815 do {
816 dev = class_dev_iter_next(iter);
817 if (!dev)
818 return NULL;
819 } while (skip--);
820
821 return dev_to_disk(dev);
822 }
823
824 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
825 {
826 struct device *dev;
827
828 (*pos)++;
829 dev = class_dev_iter_next(seqf->private);
830 if (dev)
831 return dev_to_disk(dev);
832
833 return NULL;
834 }
835
836 static void disk_seqf_stop(struct seq_file *seqf, void *v)
837 {
838 struct class_dev_iter *iter = seqf->private;
839
840 /* stop is called even after start failed :-( */
841 if (iter) {
842 class_dev_iter_exit(iter);
843 kfree(iter);
844 seqf->private = NULL;
845 }
846 }
847
848 static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
849 {
850 void *p;
851
852 p = disk_seqf_start(seqf, pos);
853 if (!IS_ERR_OR_NULL(p) && !*pos)
854 seq_puts(seqf, "major minor #blocks name\n\n");
855 return p;
856 }
857
858 static int show_partition(struct seq_file *seqf, void *v)
859 {
860 struct gendisk *sgp = v;
861 struct disk_part_iter piter;
862 struct hd_struct *part;
863 char buf[BDEVNAME_SIZE];
864
865 /* Don't show non-partitionable removeable devices or empty devices */
866 if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
867 (sgp->flags & GENHD_FL_REMOVABLE)))
868 return 0;
869 if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
870 return 0;
871
872 /* show the full disk and all non-0 size partitions of it */
873 disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
874 while ((part = disk_part_iter_next(&piter)))
875 seq_printf(seqf, "%4d %7d %10llu %s\n",
876 MAJOR(part_devt(part)), MINOR(part_devt(part)),
877 (unsigned long long)part_nr_sects_read(part) >> 1,
878 disk_name(sgp, part->partno, buf));
879 disk_part_iter_exit(&piter);
880
881 return 0;
882 }
883
884 static const struct seq_operations partitions_op = {
885 .start = show_partition_start,
886 .next = disk_seqf_next,
887 .stop = disk_seqf_stop,
888 .show = show_partition
889 };
890
891 static int partitions_open(struct inode *inode, struct file *file)
892 {
893 return seq_open(file, &partitions_op);
894 }
895
896 static const struct file_operations proc_partitions_operations = {
897 .open = partitions_open,
898 .read = seq_read,
899 .llseek = seq_lseek,
900 .release = seq_release,
901 };
902 #endif
903
904
905 static struct kobject *base_probe(dev_t devt, int *partno, void *data)
906 {
907 if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
908 /* Make old-style 2.4 aliases work */
909 request_module("block-major-%d", MAJOR(devt));
910 return NULL;
911 }
912
913 static int __init genhd_device_init(void)
914 {
915 int error;
916
917 block_class.dev_kobj = sysfs_dev_block_kobj;
918 error = class_register(&block_class);
919 if (unlikely(error))
920 return error;
921 bdev_map = kobj_map_init(base_probe, &block_class_lock);
922 blk_dev_init();
923
924 register_blkdev(BLOCK_EXT_MAJOR, "blkext");
925
926 /* create top-level block dir */
927 if (!sysfs_deprecated)
928 block_depr = kobject_create_and_add("block", NULL);
929 return 0;
930 }
931
932 subsys_initcall(genhd_device_init);
933
934 static ssize_t disk_range_show(struct device *dev,
935 struct device_attribute *attr, char *buf)
936 {
937 struct gendisk *disk = dev_to_disk(dev);
938
939 return sprintf(buf, "%d\n", disk->minors);
940 }
941
942 static ssize_t disk_ext_range_show(struct device *dev,
943 struct device_attribute *attr, char *buf)
944 {
945 struct gendisk *disk = dev_to_disk(dev);
946
947 return sprintf(buf, "%d\n", disk_max_parts(disk));
948 }
949
950 static ssize_t disk_removable_show(struct device *dev,
951 struct device_attribute *attr, char *buf)
952 {
953 struct gendisk *disk = dev_to_disk(dev);
954
955 return sprintf(buf, "%d\n",
956 (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
957 }
958
959 static ssize_t disk_ro_show(struct device *dev,
960 struct device_attribute *attr, char *buf)
961 {
962 struct gendisk *disk = dev_to_disk(dev);
963
964 return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
965 }
966
967 static ssize_t disk_capability_show(struct device *dev,
968 struct device_attribute *attr, char *buf)
969 {
970 struct gendisk *disk = dev_to_disk(dev);
971
972 return sprintf(buf, "%x\n", disk->flags);
973 }
974
975 static ssize_t disk_alignment_offset_show(struct device *dev,
976 struct device_attribute *attr,
977 char *buf)
978 {
979 struct gendisk *disk = dev_to_disk(dev);
980
981 return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
982 }
983
984 static ssize_t disk_discard_alignment_show(struct device *dev,
985 struct device_attribute *attr,
986 char *buf)
987 {
988 struct gendisk *disk = dev_to_disk(dev);
989
990 return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
991 }
992
993 static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL);
994 static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL);
995 static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL);
996 static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL);
997 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
998 static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL);
999 static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show,
1000 NULL);
1001 static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL);
1002 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
1003 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
1004 #ifdef CONFIG_FAIL_MAKE_REQUEST
1005 static struct device_attribute dev_attr_fail =
1006 __ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
1007 #endif
1008 #ifdef CONFIG_FAIL_IO_TIMEOUT
1009 static struct device_attribute dev_attr_fail_timeout =
1010 __ATTR(io-timeout-fail, S_IRUGO|S_IWUSR, part_timeout_show,
1011 part_timeout_store);
1012 #endif
1013
1014 static struct attribute *disk_attrs[] = {
1015 &dev_attr_range.attr,
1016 &dev_attr_ext_range.attr,
1017 &dev_attr_removable.attr,
1018 &dev_attr_ro.attr,
1019 &dev_attr_size.attr,
1020 &dev_attr_alignment_offset.attr,
1021 &dev_attr_discard_alignment.attr,
1022 &dev_attr_capability.attr,
1023 &dev_attr_stat.attr,
1024 &dev_attr_inflight.attr,
1025 #ifdef CONFIG_FAIL_MAKE_REQUEST
1026 &dev_attr_fail.attr,
1027 #endif
1028 #ifdef CONFIG_FAIL_IO_TIMEOUT
1029 &dev_attr_fail_timeout.attr,
1030 #endif
1031 NULL
1032 };
1033
1034 static struct attribute_group disk_attr_group = {
1035 .attrs = disk_attrs,
1036 };
1037
1038 static const struct attribute_group *disk_attr_groups[] = {
1039 &disk_attr_group,
1040 NULL
1041 };
1042
1043 /**
1044 * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1045 * @disk: disk to replace part_tbl for
1046 * @new_ptbl: new part_tbl to install
1047 *
1048 * Replace disk->part_tbl with @new_ptbl in RCU-safe way. The
1049 * original ptbl is freed using RCU callback.
1050 *
1051 * LOCKING:
1052 * Matching bd_mutx locked.
1053 */
1054 static void disk_replace_part_tbl(struct gendisk *disk,
1055 struct disk_part_tbl *new_ptbl)
1056 {
1057 struct disk_part_tbl *old_ptbl = disk->part_tbl;
1058
1059 rcu_assign_pointer(disk->part_tbl, new_ptbl);
1060
1061 if (old_ptbl) {
1062 rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1063 kfree_rcu(old_ptbl, rcu_head);
1064 }
1065 }
1066
1067 /**
1068 * disk_expand_part_tbl - expand disk->part_tbl
1069 * @disk: disk to expand part_tbl for
1070 * @partno: expand such that this partno can fit in
1071 *
1072 * Expand disk->part_tbl such that @partno can fit in. disk->part_tbl
1073 * uses RCU to allow unlocked dereferencing for stats and other stuff.
1074 *
1075 * LOCKING:
1076 * Matching bd_mutex locked, might sleep.
1077 *
1078 * RETURNS:
1079 * 0 on success, -errno on failure.
1080 */
1081 int disk_expand_part_tbl(struct gendisk *disk, int partno)
1082 {
1083 struct disk_part_tbl *old_ptbl = disk->part_tbl;
1084 struct disk_part_tbl *new_ptbl;
1085 int len = old_ptbl ? old_ptbl->len : 0;
1086 int i, target;
1087 size_t size;
1088
1089 /*
1090 * check for int overflow, since we can get here from blkpg_ioctl()
1091 * with a user passed 'partno'.
1092 */
1093 target = partno + 1;
1094 if (target < 0)
1095 return -EINVAL;
1096
1097 /* disk_max_parts() is zero during initialization, ignore if so */
1098 if (disk_max_parts(disk) && target > disk_max_parts(disk))
1099 return -EINVAL;
1100
1101 if (target <= len)
1102 return 0;
1103
1104 size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]);
1105 new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id);
1106 if (!new_ptbl)
1107 return -ENOMEM;
1108
1109 new_ptbl->len = target;
1110
1111 for (i = 0; i < len; i++)
1112 rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1113
1114 disk_replace_part_tbl(disk, new_ptbl);
1115 return 0;
1116 }
1117
1118 static void disk_release(struct device *dev)
1119 {
1120 struct gendisk *disk = dev_to_disk(dev);
1121
1122 blk_free_devt(dev->devt);
1123 disk_release_events(disk);
1124 kfree(disk->random);
1125 disk_replace_part_tbl(disk, NULL);
1126 hd_free_part(&disk->part0);
1127 if (disk->queue)
1128 blk_put_queue(disk->queue);
1129 kfree(disk);
1130 }
1131 struct class block_class = {
1132 .name = "block",
1133 };
1134
1135 static char *block_devnode(struct device *dev, umode_t *mode,
1136 kuid_t *uid, kgid_t *gid)
1137 {
1138 struct gendisk *disk = dev_to_disk(dev);
1139
1140 if (disk->devnode)
1141 return disk->devnode(disk, mode);
1142 return NULL;
1143 }
1144
1145 static struct device_type disk_type = {
1146 .name = "disk",
1147 .groups = disk_attr_groups,
1148 .release = disk_release,
1149 .devnode = block_devnode,
1150 };
1151
1152 #ifdef CONFIG_PROC_FS
1153 /*
1154 * aggregate disk stat collector. Uses the same stats that the sysfs
1155 * entries do, above, but makes them available through one seq_file.
1156 *
1157 * The output looks suspiciously like /proc/partitions with a bunch of
1158 * extra fields.
1159 */
1160 static int diskstats_show(struct seq_file *seqf, void *v)
1161 {
1162 struct gendisk *gp = v;
1163 struct disk_part_iter piter;
1164 struct hd_struct *hd;
1165 char buf[BDEVNAME_SIZE];
1166 int cpu;
1167
1168 /*
1169 if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1170 seq_puts(seqf, "major minor name"
1171 " rio rmerge rsect ruse wio wmerge "
1172 "wsect wuse running use aveq"
1173 "\n\n");
1174 */
1175
1176 disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1177 while ((hd = disk_part_iter_next(&piter))) {
1178 cpu = part_stat_lock();
1179 part_round_stats(cpu, hd);
1180 part_stat_unlock();
1181 seq_printf(seqf, "%4d %7d %s %lu %lu %lu "
1182 "%u %lu %lu %lu %u %u %u %u\n",
1183 MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1184 disk_name(gp, hd->partno, buf),
1185 part_stat_read(hd, ios[READ]),
1186 part_stat_read(hd, merges[READ]),
1187 part_stat_read(hd, sectors[READ]),
1188 jiffies_to_msecs(part_stat_read(hd, ticks[READ])),
1189 part_stat_read(hd, ios[WRITE]),
1190 part_stat_read(hd, merges[WRITE]),
1191 part_stat_read(hd, sectors[WRITE]),
1192 jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])),
1193 part_in_flight(hd),
1194 jiffies_to_msecs(part_stat_read(hd, io_ticks)),
1195 jiffies_to_msecs(part_stat_read(hd, time_in_queue))
1196 );
1197 }
1198 disk_part_iter_exit(&piter);
1199
1200 return 0;
1201 }
1202
1203 static const struct seq_operations diskstats_op = {
1204 .start = disk_seqf_start,
1205 .next = disk_seqf_next,
1206 .stop = disk_seqf_stop,
1207 .show = diskstats_show
1208 };
1209
1210 static int diskstats_open(struct inode *inode, struct file *file)
1211 {
1212 return seq_open(file, &diskstats_op);
1213 }
1214
1215 static const struct file_operations proc_diskstats_operations = {
1216 .open = diskstats_open,
1217 .read = seq_read,
1218 .llseek = seq_lseek,
1219 .release = seq_release,
1220 };
1221
1222 static int __init proc_genhd_init(void)
1223 {
1224 proc_create("diskstats", 0, NULL, &proc_diskstats_operations);
1225 proc_create("partitions", 0, NULL, &proc_partitions_operations);
1226 return 0;
1227 }
1228 module_init(proc_genhd_init);
1229 #endif /* CONFIG_PROC_FS */
1230
1231 dev_t blk_lookup_devt(const char *name, int partno)
1232 {
1233 dev_t devt = MKDEV(0, 0);
1234 struct class_dev_iter iter;
1235 struct device *dev;
1236
1237 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1238 while ((dev = class_dev_iter_next(&iter))) {
1239 struct gendisk *disk = dev_to_disk(dev);
1240 struct hd_struct *part;
1241
1242 if (strcmp(dev_name(dev), name))
1243 continue;
1244
1245 if (partno < disk->minors) {
1246 /* We need to return the right devno, even
1247 * if the partition doesn't exist yet.
1248 */
1249 devt = MKDEV(MAJOR(dev->devt),
1250 MINOR(dev->devt) + partno);
1251 break;
1252 }
1253 part = disk_get_part(disk, partno);
1254 if (part) {
1255 devt = part_devt(part);
1256 disk_put_part(part);
1257 break;
1258 }
1259 disk_put_part(part);
1260 }
1261 class_dev_iter_exit(&iter);
1262 return devt;
1263 }
1264 EXPORT_SYMBOL(blk_lookup_devt);
1265
1266 struct gendisk *alloc_disk(int minors)
1267 {
1268 return alloc_disk_node(minors, NUMA_NO_NODE);
1269 }
1270 EXPORT_SYMBOL(alloc_disk);
1271
1272 struct gendisk *alloc_disk_node(int minors, int node_id)
1273 {
1274 struct gendisk *disk;
1275
1276 disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
1277 if (disk) {
1278 if (!init_part_stats(&disk->part0)) {
1279 kfree(disk);
1280 return NULL;
1281 }
1282 disk->node_id = node_id;
1283 if (disk_expand_part_tbl(disk, 0)) {
1284 free_part_stats(&disk->part0);
1285 kfree(disk);
1286 return NULL;
1287 }
1288 disk->part_tbl->part[0] = &disk->part0;
1289
1290 /*
1291 * set_capacity() and get_capacity() currently don't use
1292 * seqcounter to read/update the part0->nr_sects. Still init
1293 * the counter as we can read the sectors in IO submission
1294 * patch using seqence counters.
1295 *
1296 * TODO: Ideally set_capacity() and get_capacity() should be
1297 * converted to make use of bd_mutex and sequence counters.
1298 */
1299 seqcount_init(&disk->part0.nr_sects_seq);
1300 if (hd_ref_init(&disk->part0)) {
1301 hd_free_part(&disk->part0);
1302 kfree(disk);
1303 return NULL;
1304 }
1305
1306 disk->minors = minors;
1307 rand_initialize_disk(disk);
1308 disk_to_dev(disk)->class = &block_class;
1309 disk_to_dev(disk)->type = &disk_type;
1310 device_initialize(disk_to_dev(disk));
1311 }
1312 return disk;
1313 }
1314 EXPORT_SYMBOL(alloc_disk_node);
1315
1316 struct kobject *get_disk(struct gendisk *disk)
1317 {
1318 struct module *owner;
1319 struct kobject *kobj;
1320
1321 if (!disk->fops)
1322 return NULL;
1323 owner = disk->fops->owner;
1324 if (owner && !try_module_get(owner))
1325 return NULL;
1326 kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj);
1327 if (kobj == NULL) {
1328 module_put(owner);
1329 return NULL;
1330 }
1331 return kobj;
1332
1333 }
1334
1335 EXPORT_SYMBOL(get_disk);
1336
1337 void put_disk(struct gendisk *disk)
1338 {
1339 if (disk)
1340 kobject_put(&disk_to_dev(disk)->kobj);
1341 }
1342
1343 EXPORT_SYMBOL(put_disk);
1344
1345 static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1346 {
1347 char event[] = "DISK_RO=1";
1348 char *envp[] = { event, NULL };
1349
1350 if (!ro)
1351 event[8] = '0';
1352 kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1353 }
1354
1355 void set_device_ro(struct block_device *bdev, int flag)
1356 {
1357 bdev->bd_part->policy = flag;
1358 }
1359
1360 EXPORT_SYMBOL(set_device_ro);
1361
1362 void set_disk_ro(struct gendisk *disk, int flag)
1363 {
1364 struct disk_part_iter piter;
1365 struct hd_struct *part;
1366
1367 if (disk->part0.policy != flag) {
1368 set_disk_ro_uevent(disk, flag);
1369 disk->part0.policy = flag;
1370 }
1371
1372 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1373 while ((part = disk_part_iter_next(&piter)))
1374 part->policy = flag;
1375 disk_part_iter_exit(&piter);
1376 }
1377
1378 EXPORT_SYMBOL(set_disk_ro);
1379
1380 int bdev_read_only(struct block_device *bdev)
1381 {
1382 if (!bdev)
1383 return 0;
1384 return bdev->bd_part->policy;
1385 }
1386
1387 EXPORT_SYMBOL(bdev_read_only);
1388
1389 int invalidate_partition(struct gendisk *disk, int partno)
1390 {
1391 int res = 0;
1392 struct block_device *bdev = bdget_disk(disk, partno);
1393 if (bdev) {
1394 fsync_bdev(bdev);
1395 res = __invalidate_device(bdev, true);
1396 bdput(bdev);
1397 }
1398 return res;
1399 }
1400
1401 EXPORT_SYMBOL(invalidate_partition);
1402
1403 /*
1404 * Disk events - monitor disk events like media change and eject request.
1405 */
1406 struct disk_events {
1407 struct list_head node; /* all disk_event's */
1408 struct gendisk *disk; /* the associated disk */
1409 spinlock_t lock;
1410
1411 struct mutex block_mutex; /* protects blocking */
1412 int block; /* event blocking depth */
1413 unsigned int pending; /* events already sent out */
1414 unsigned int clearing; /* events being cleared */
1415
1416 long poll_msecs; /* interval, -1 for default */
1417 struct delayed_work dwork;
1418 };
1419
1420 static const char *disk_events_strs[] = {
1421 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "media_change",
1422 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "eject_request",
1423 };
1424
1425 static char *disk_uevents[] = {
1426 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "DISK_MEDIA_CHANGE=1",
1427 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "DISK_EJECT_REQUEST=1",
1428 };
1429
1430 /* list of all disk_events */
1431 static DEFINE_MUTEX(disk_events_mutex);
1432 static LIST_HEAD(disk_events);
1433
1434 /* disable in-kernel polling by default */
1435 static unsigned long disk_events_dfl_poll_msecs = 0;
1436
1437 static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1438 {
1439 struct disk_events *ev = disk->ev;
1440 long intv_msecs = 0;
1441
1442 /*
1443 * If device-specific poll interval is set, always use it. If
1444 * the default is being used, poll iff there are events which
1445 * can't be monitored asynchronously.
1446 */
1447 if (ev->poll_msecs >= 0)
1448 intv_msecs = ev->poll_msecs;
1449 else if (disk->events & ~disk->async_events)
1450 intv_msecs = disk_events_dfl_poll_msecs;
1451
1452 return msecs_to_jiffies(intv_msecs);
1453 }
1454
1455 /**
1456 * disk_block_events - block and flush disk event checking
1457 * @disk: disk to block events for
1458 *
1459 * On return from this function, it is guaranteed that event checking
1460 * isn't in progress and won't happen until unblocked by
1461 * disk_unblock_events(). Events blocking is counted and the actual
1462 * unblocking happens after the matching number of unblocks are done.
1463 *
1464 * Note that this intentionally does not block event checking from
1465 * disk_clear_events().
1466 *
1467 * CONTEXT:
1468 * Might sleep.
1469 */
1470 void disk_block_events(struct gendisk *disk)
1471 {
1472 struct disk_events *ev = disk->ev;
1473 unsigned long flags;
1474 bool cancel;
1475
1476 if (!ev)
1477 return;
1478
1479 /*
1480 * Outer mutex ensures that the first blocker completes canceling
1481 * the event work before further blockers are allowed to finish.
1482 */
1483 mutex_lock(&ev->block_mutex);
1484
1485 spin_lock_irqsave(&ev->lock, flags);
1486 cancel = !ev->block++;
1487 spin_unlock_irqrestore(&ev->lock, flags);
1488
1489 if (cancel)
1490 cancel_delayed_work_sync(&disk->ev->dwork);
1491
1492 mutex_unlock(&ev->block_mutex);
1493 }
1494
1495 static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1496 {
1497 struct disk_events *ev = disk->ev;
1498 unsigned long intv;
1499 unsigned long flags;
1500
1501 spin_lock_irqsave(&ev->lock, flags);
1502
1503 if (WARN_ON_ONCE(ev->block <= 0))
1504 goto out_unlock;
1505
1506 if (--ev->block)
1507 goto out_unlock;
1508
1509 /*
1510 * Not exactly a latency critical operation, set poll timer
1511 * slack to 25% and kick event check.
1512 */
1513 intv = disk_events_poll_jiffies(disk);
1514 set_timer_slack(&ev->dwork.timer, intv / 4);
1515 if (check_now)
1516 queue_delayed_work(system_freezable_power_efficient_wq,
1517 &ev->dwork, 0);
1518 else if (intv)
1519 queue_delayed_work(system_freezable_power_efficient_wq,
1520 &ev->dwork, intv);
1521 out_unlock:
1522 spin_unlock_irqrestore(&ev->lock, flags);
1523 }
1524
1525 /**
1526 * disk_unblock_events - unblock disk event checking
1527 * @disk: disk to unblock events for
1528 *
1529 * Undo disk_block_events(). When the block count reaches zero, it
1530 * starts events polling if configured.
1531 *
1532 * CONTEXT:
1533 * Don't care. Safe to call from irq context.
1534 */
1535 void disk_unblock_events(struct gendisk *disk)
1536 {
1537 if (disk->ev)
1538 __disk_unblock_events(disk, false);
1539 }
1540
1541 /**
1542 * disk_flush_events - schedule immediate event checking and flushing
1543 * @disk: disk to check and flush events for
1544 * @mask: events to flush
1545 *
1546 * Schedule immediate event checking on @disk if not blocked. Events in
1547 * @mask are scheduled to be cleared from the driver. Note that this
1548 * doesn't clear the events from @disk->ev.
1549 *
1550 * CONTEXT:
1551 * If @mask is non-zero must be called with bdev->bd_mutex held.
1552 */
1553 void disk_flush_events(struct gendisk *disk, unsigned int mask)
1554 {
1555 struct disk_events *ev = disk->ev;
1556
1557 if (!ev)
1558 return;
1559
1560 spin_lock_irq(&ev->lock);
1561 ev->clearing |= mask;
1562 if (!ev->block)
1563 mod_delayed_work(system_freezable_power_efficient_wq,
1564 &ev->dwork, 0);
1565 spin_unlock_irq(&ev->lock);
1566 }
1567
1568 /**
1569 * disk_clear_events - synchronously check, clear and return pending events
1570 * @disk: disk to fetch and clear events from
1571 * @mask: mask of events to be fetched and cleared
1572 *
1573 * Disk events are synchronously checked and pending events in @mask
1574 * are cleared and returned. This ignores the block count.
1575 *
1576 * CONTEXT:
1577 * Might sleep.
1578 */
1579 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
1580 {
1581 const struct block_device_operations *bdops = disk->fops;
1582 struct disk_events *ev = disk->ev;
1583 unsigned int pending;
1584 unsigned int clearing = mask;
1585
1586 if (!ev) {
1587 /* for drivers still using the old ->media_changed method */
1588 if ((mask & DISK_EVENT_MEDIA_CHANGE) &&
1589 bdops->media_changed && bdops->media_changed(disk))
1590 return DISK_EVENT_MEDIA_CHANGE;
1591 return 0;
1592 }
1593
1594 disk_block_events(disk);
1595
1596 /*
1597 * store the union of mask and ev->clearing on the stack so that the
1598 * race with disk_flush_events does not cause ambiguity (ev->clearing
1599 * can still be modified even if events are blocked).
1600 */
1601 spin_lock_irq(&ev->lock);
1602 clearing |= ev->clearing;
1603 ev->clearing = 0;
1604 spin_unlock_irq(&ev->lock);
1605
1606 disk_check_events(ev, &clearing);
1607 /*
1608 * if ev->clearing is not 0, the disk_flush_events got called in the
1609 * middle of this function, so we want to run the workfn without delay.
1610 */
1611 __disk_unblock_events(disk, ev->clearing ? true : false);
1612
1613 /* then, fetch and clear pending events */
1614 spin_lock_irq(&ev->lock);
1615 pending = ev->pending & mask;
1616 ev->pending &= ~mask;
1617 spin_unlock_irq(&ev->lock);
1618 WARN_ON_ONCE(clearing & mask);
1619
1620 return pending;
1621 }
1622
1623 /*
1624 * Separate this part out so that a different pointer for clearing_ptr can be
1625 * passed in for disk_clear_events.
1626 */
1627 static void disk_events_workfn(struct work_struct *work)
1628 {
1629 struct delayed_work *dwork = to_delayed_work(work);
1630 struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
1631
1632 disk_check_events(ev, &ev->clearing);
1633 }
1634
1635 static void disk_check_events(struct disk_events *ev,
1636 unsigned int *clearing_ptr)
1637 {
1638 struct gendisk *disk = ev->disk;
1639 char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
1640 unsigned int clearing = *clearing_ptr;
1641 unsigned int events;
1642 unsigned long intv;
1643 int nr_events = 0, i;
1644
1645 /* check events */
1646 events = disk->fops->check_events(disk, clearing);
1647
1648 /* accumulate pending events and schedule next poll if necessary */
1649 spin_lock_irq(&ev->lock);
1650
1651 events &= ~ev->pending;
1652 ev->pending |= events;
1653 *clearing_ptr &= ~clearing;
1654
1655 intv = disk_events_poll_jiffies(disk);
1656 if (!ev->block && intv)
1657 queue_delayed_work(system_freezable_power_efficient_wq,
1658 &ev->dwork, intv);
1659
1660 spin_unlock_irq(&ev->lock);
1661
1662 /*
1663 * Tell userland about new events. Only the events listed in
1664 * @disk->events are reported. Unlisted events are processed the
1665 * same internally but never get reported to userland.
1666 */
1667 for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
1668 if (events & disk->events & (1 << i))
1669 envp[nr_events++] = disk_uevents[i];
1670
1671 if (nr_events)
1672 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
1673 }
1674
1675 /*
1676 * A disk events enabled device has the following sysfs nodes under
1677 * its /sys/block/X/ directory.
1678 *
1679 * events : list of all supported events
1680 * events_async : list of events which can be detected w/o polling
1681 * events_poll_msecs : polling interval, 0: disable, -1: system default
1682 */
1683 static ssize_t __disk_events_show(unsigned int events, char *buf)
1684 {
1685 const char *delim = "";
1686 ssize_t pos = 0;
1687 int i;
1688
1689 for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
1690 if (events & (1 << i)) {
1691 pos += sprintf(buf + pos, "%s%s",
1692 delim, disk_events_strs[i]);
1693 delim = " ";
1694 }
1695 if (pos)
1696 pos += sprintf(buf + pos, "\n");
1697 return pos;
1698 }
1699
1700 static ssize_t disk_events_show(struct device *dev,
1701 struct device_attribute *attr, char *buf)
1702 {
1703 struct gendisk *disk = dev_to_disk(dev);
1704
1705 return __disk_events_show(disk->events, buf);
1706 }
1707
1708 static ssize_t disk_events_async_show(struct device *dev,
1709 struct device_attribute *attr, char *buf)
1710 {
1711 struct gendisk *disk = dev_to_disk(dev);
1712
1713 return __disk_events_show(disk->async_events, buf);
1714 }
1715
1716 static ssize_t disk_events_poll_msecs_show(struct device *dev,
1717 struct device_attribute *attr,
1718 char *buf)
1719 {
1720 struct gendisk *disk = dev_to_disk(dev);
1721
1722 return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
1723 }
1724
1725 static ssize_t disk_events_poll_msecs_store(struct device *dev,
1726 struct device_attribute *attr,
1727 const char *buf, size_t count)
1728 {
1729 struct gendisk *disk = dev_to_disk(dev);
1730 long intv;
1731
1732 if (!count || !sscanf(buf, "%ld", &intv))
1733 return -EINVAL;
1734
1735 if (intv < 0 && intv != -1)
1736 return -EINVAL;
1737
1738 disk_block_events(disk);
1739 disk->ev->poll_msecs = intv;
1740 __disk_unblock_events(disk, true);
1741
1742 return count;
1743 }
1744
1745 static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL);
1746 static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL);
1747 static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR,
1748 disk_events_poll_msecs_show,
1749 disk_events_poll_msecs_store);
1750
1751 static const struct attribute *disk_events_attrs[] = {
1752 &dev_attr_events.attr,
1753 &dev_attr_events_async.attr,
1754 &dev_attr_events_poll_msecs.attr,
1755 NULL,
1756 };
1757
1758 /*
1759 * The default polling interval can be specified by the kernel
1760 * parameter block.events_dfl_poll_msecs which defaults to 0
1761 * (disable). This can also be modified runtime by writing to
1762 * /sys/module/block/events_dfl_poll_msecs.
1763 */
1764 static int disk_events_set_dfl_poll_msecs(const char *val,
1765 const struct kernel_param *kp)
1766 {
1767 struct disk_events *ev;
1768 int ret;
1769
1770 ret = param_set_ulong(val, kp);
1771 if (ret < 0)
1772 return ret;
1773
1774 mutex_lock(&disk_events_mutex);
1775
1776 list_for_each_entry(ev, &disk_events, node)
1777 disk_flush_events(ev->disk, 0);
1778
1779 mutex_unlock(&disk_events_mutex);
1780
1781 return 0;
1782 }
1783
1784 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
1785 .set = disk_events_set_dfl_poll_msecs,
1786 .get = param_get_ulong,
1787 };
1788
1789 #undef MODULE_PARAM_PREFIX
1790 #define MODULE_PARAM_PREFIX "block."
1791
1792 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
1793 &disk_events_dfl_poll_msecs, 0644);
1794
1795 /*
1796 * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
1797 */
1798 static void disk_alloc_events(struct gendisk *disk)
1799 {
1800 struct disk_events *ev;
1801
1802 if (!disk->fops->check_events)
1803 return;
1804
1805 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1806 if (!ev) {
1807 pr_warn("%s: failed to initialize events\n", disk->disk_name);
1808 return;
1809 }
1810
1811 INIT_LIST_HEAD(&ev->node);
1812 ev->disk = disk;
1813 spin_lock_init(&ev->lock);
1814 mutex_init(&ev->block_mutex);
1815 ev->block = 1;
1816 ev->poll_msecs = -1;
1817 INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
1818
1819 disk->ev = ev;
1820 }
1821
1822 static void disk_add_events(struct gendisk *disk)
1823 {
1824 if (!disk->ev)
1825 return;
1826
1827 /* FIXME: error handling */
1828 if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
1829 pr_warn("%s: failed to create sysfs files for events\n",
1830 disk->disk_name);
1831
1832 mutex_lock(&disk_events_mutex);
1833 list_add_tail(&disk->ev->node, &disk_events);
1834 mutex_unlock(&disk_events_mutex);
1835
1836 /*
1837 * Block count is initialized to 1 and the following initial
1838 * unblock kicks it into action.
1839 */
1840 __disk_unblock_events(disk, true);
1841 }
1842
1843 static void disk_del_events(struct gendisk *disk)
1844 {
1845 if (!disk->ev)
1846 return;
1847
1848 disk_block_events(disk);
1849
1850 mutex_lock(&disk_events_mutex);
1851 list_del_init(&disk->ev->node);
1852 mutex_unlock(&disk_events_mutex);
1853
1854 sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
1855 }
1856
1857 static void disk_release_events(struct gendisk *disk)
1858 {
1859 /* the block count should be 1 from disk_del_events() */
1860 WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
1861 kfree(disk->ev);
1862 }