]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/genhd.c
block: don't look at the struct device dev_t in disk_devt
[mirror_ubuntu-bionic-kernel.git] / block / genhd.c
1 /*
2 * gendisk handling
3 */
4
5 #include <linux/module.h>
6 #include <linux/fs.h>
7 #include <linux/genhd.h>
8 #include <linux/kdev_t.h>
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/backing-dev.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include <linux/slab.h>
17 #include <linux/kmod.h>
18 #include <linux/kobj_map.h>
19 #include <linux/mutex.h>
20 #include <linux/idr.h>
21 #include <linux/log2.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/badblocks.h>
24
25 #include "blk.h"
26
27 static DEFINE_MUTEX(block_class_lock);
28 struct kobject *block_depr;
29
30 /* for extended dynamic devt allocation, currently only one major is used */
31 #define NR_EXT_DEVT (1 << MINORBITS)
32
33 /* For extended devt allocation. ext_devt_lock prevents look up
34 * results from going away underneath its user.
35 */
36 static DEFINE_SPINLOCK(ext_devt_lock);
37 static DEFINE_IDR(ext_devt_idr);
38
39 static const struct device_type disk_type;
40
41 static void disk_check_events(struct disk_events *ev,
42 unsigned int *clearing_ptr);
43 static void disk_alloc_events(struct gendisk *disk);
44 static void disk_add_events(struct gendisk *disk);
45 static void disk_del_events(struct gendisk *disk);
46 static void disk_release_events(struct gendisk *disk);
47
48 void part_inc_in_flight(struct request_queue *q, struct hd_struct *part, int rw)
49 {
50 if (q->mq_ops)
51 return;
52
53 atomic_inc(&part->in_flight[rw]);
54 if (part->partno)
55 atomic_inc(&part_to_disk(part)->part0.in_flight[rw]);
56 }
57
58 void part_dec_in_flight(struct request_queue *q, struct hd_struct *part, int rw)
59 {
60 if (q->mq_ops)
61 return;
62
63 atomic_dec(&part->in_flight[rw]);
64 if (part->partno)
65 atomic_dec(&part_to_disk(part)->part0.in_flight[rw]);
66 }
67
68 void part_in_flight(struct request_queue *q, struct hd_struct *part,
69 unsigned int inflight[2])
70 {
71 if (q->mq_ops) {
72 blk_mq_in_flight(q, part, inflight);
73 return;
74 }
75
76 inflight[0] = atomic_read(&part->in_flight[0]) +
77 atomic_read(&part->in_flight[1]);
78 if (part->partno) {
79 part = &part_to_disk(part)->part0;
80 inflight[1] = atomic_read(&part->in_flight[0]) +
81 atomic_read(&part->in_flight[1]);
82 }
83 }
84
85 struct hd_struct *__disk_get_part(struct gendisk *disk, int partno)
86 {
87 struct disk_part_tbl *ptbl = rcu_dereference(disk->part_tbl);
88
89 if (unlikely(partno < 0 || partno >= ptbl->len))
90 return NULL;
91 return rcu_dereference(ptbl->part[partno]);
92 }
93
94 /**
95 * disk_get_part - get partition
96 * @disk: disk to look partition from
97 * @partno: partition number
98 *
99 * Look for partition @partno from @disk. If found, increment
100 * reference count and return it.
101 *
102 * CONTEXT:
103 * Don't care.
104 *
105 * RETURNS:
106 * Pointer to the found partition on success, NULL if not found.
107 */
108 struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
109 {
110 struct hd_struct *part;
111
112 rcu_read_lock();
113 part = __disk_get_part(disk, partno);
114 if (part)
115 get_device(part_to_dev(part));
116 rcu_read_unlock();
117
118 return part;
119 }
120 EXPORT_SYMBOL_GPL(disk_get_part);
121
122 /**
123 * disk_part_iter_init - initialize partition iterator
124 * @piter: iterator to initialize
125 * @disk: disk to iterate over
126 * @flags: DISK_PITER_* flags
127 *
128 * Initialize @piter so that it iterates over partitions of @disk.
129 *
130 * CONTEXT:
131 * Don't care.
132 */
133 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
134 unsigned int flags)
135 {
136 struct disk_part_tbl *ptbl;
137
138 rcu_read_lock();
139 ptbl = rcu_dereference(disk->part_tbl);
140
141 piter->disk = disk;
142 piter->part = NULL;
143
144 if (flags & DISK_PITER_REVERSE)
145 piter->idx = ptbl->len - 1;
146 else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
147 piter->idx = 0;
148 else
149 piter->idx = 1;
150
151 piter->flags = flags;
152
153 rcu_read_unlock();
154 }
155 EXPORT_SYMBOL_GPL(disk_part_iter_init);
156
157 /**
158 * disk_part_iter_next - proceed iterator to the next partition and return it
159 * @piter: iterator of interest
160 *
161 * Proceed @piter to the next partition and return it.
162 *
163 * CONTEXT:
164 * Don't care.
165 */
166 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
167 {
168 struct disk_part_tbl *ptbl;
169 int inc, end;
170
171 /* put the last partition */
172 disk_put_part(piter->part);
173 piter->part = NULL;
174
175 /* get part_tbl */
176 rcu_read_lock();
177 ptbl = rcu_dereference(piter->disk->part_tbl);
178
179 /* determine iteration parameters */
180 if (piter->flags & DISK_PITER_REVERSE) {
181 inc = -1;
182 if (piter->flags & (DISK_PITER_INCL_PART0 |
183 DISK_PITER_INCL_EMPTY_PART0))
184 end = -1;
185 else
186 end = 0;
187 } else {
188 inc = 1;
189 end = ptbl->len;
190 }
191
192 /* iterate to the next partition */
193 for (; piter->idx != end; piter->idx += inc) {
194 struct hd_struct *part;
195
196 part = rcu_dereference(ptbl->part[piter->idx]);
197 if (!part)
198 continue;
199 if (!part_nr_sects_read(part) &&
200 !(piter->flags & DISK_PITER_INCL_EMPTY) &&
201 !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
202 piter->idx == 0))
203 continue;
204
205 get_device(part_to_dev(part));
206 piter->part = part;
207 piter->idx += inc;
208 break;
209 }
210
211 rcu_read_unlock();
212
213 return piter->part;
214 }
215 EXPORT_SYMBOL_GPL(disk_part_iter_next);
216
217 /**
218 * disk_part_iter_exit - finish up partition iteration
219 * @piter: iter of interest
220 *
221 * Called when iteration is over. Cleans up @piter.
222 *
223 * CONTEXT:
224 * Don't care.
225 */
226 void disk_part_iter_exit(struct disk_part_iter *piter)
227 {
228 disk_put_part(piter->part);
229 piter->part = NULL;
230 }
231 EXPORT_SYMBOL_GPL(disk_part_iter_exit);
232
233 static inline int sector_in_part(struct hd_struct *part, sector_t sector)
234 {
235 return part->start_sect <= sector &&
236 sector < part->start_sect + part_nr_sects_read(part);
237 }
238
239 /**
240 * disk_map_sector_rcu - map sector to partition
241 * @disk: gendisk of interest
242 * @sector: sector to map
243 *
244 * Find out which partition @sector maps to on @disk. This is
245 * primarily used for stats accounting.
246 *
247 * CONTEXT:
248 * RCU read locked. The returned partition pointer is valid only
249 * while preemption is disabled.
250 *
251 * RETURNS:
252 * Found partition on success, part0 is returned if no partition matches
253 */
254 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
255 {
256 struct disk_part_tbl *ptbl;
257 struct hd_struct *part;
258 int i;
259
260 ptbl = rcu_dereference(disk->part_tbl);
261
262 part = rcu_dereference(ptbl->last_lookup);
263 if (part && sector_in_part(part, sector))
264 return part;
265
266 for (i = 1; i < ptbl->len; i++) {
267 part = rcu_dereference(ptbl->part[i]);
268
269 if (part && sector_in_part(part, sector)) {
270 rcu_assign_pointer(ptbl->last_lookup, part);
271 return part;
272 }
273 }
274 return &disk->part0;
275 }
276 EXPORT_SYMBOL_GPL(disk_map_sector_rcu);
277
278 /*
279 * Can be deleted altogether. Later.
280 *
281 */
282 #define BLKDEV_MAJOR_HASH_SIZE 255
283 static struct blk_major_name {
284 struct blk_major_name *next;
285 int major;
286 char name[16];
287 } *major_names[BLKDEV_MAJOR_HASH_SIZE];
288
289 /* index in the above - for now: assume no multimajor ranges */
290 static inline int major_to_index(unsigned major)
291 {
292 return major % BLKDEV_MAJOR_HASH_SIZE;
293 }
294
295 #ifdef CONFIG_PROC_FS
296 void blkdev_show(struct seq_file *seqf, off_t offset)
297 {
298 struct blk_major_name *dp;
299
300 mutex_lock(&block_class_lock);
301 for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next)
302 if (dp->major == offset)
303 seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
304 mutex_unlock(&block_class_lock);
305 }
306 #endif /* CONFIG_PROC_FS */
307
308 /**
309 * register_blkdev - register a new block device
310 *
311 * @major: the requested major device number [1..255]. If @major = 0, try to
312 * allocate any unused major number.
313 * @name: the name of the new block device as a zero terminated string
314 *
315 * The @name must be unique within the system.
316 *
317 * The return value depends on the @major input parameter:
318 *
319 * - if a major device number was requested in range [1..255] then the
320 * function returns zero on success, or a negative error code
321 * - if any unused major number was requested with @major = 0 parameter
322 * then the return value is the allocated major number in range
323 * [1..255] or a negative error code otherwise
324 */
325 int register_blkdev(unsigned int major, const char *name)
326 {
327 struct blk_major_name **n, *p;
328 int index, ret = 0;
329
330 mutex_lock(&block_class_lock);
331
332 /* temporary */
333 if (major == 0) {
334 for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
335 if (major_names[index] == NULL)
336 break;
337 }
338
339 if (index == 0) {
340 printk("register_blkdev: failed to get major for %s\n",
341 name);
342 ret = -EBUSY;
343 goto out;
344 }
345 major = index;
346 ret = major;
347 }
348
349 if (major >= BLKDEV_MAJOR_MAX) {
350 pr_err("register_blkdev: major requested (%d) is greater than the maximum (%d) for %s\n",
351 major, BLKDEV_MAJOR_MAX, name);
352
353 ret = -EINVAL;
354 goto out;
355 }
356
357 p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
358 if (p == NULL) {
359 ret = -ENOMEM;
360 goto out;
361 }
362
363 p->major = major;
364 strlcpy(p->name, name, sizeof(p->name));
365 p->next = NULL;
366 index = major_to_index(major);
367
368 for (n = &major_names[index]; *n; n = &(*n)->next) {
369 if ((*n)->major == major)
370 break;
371 }
372 if (!*n)
373 *n = p;
374 else
375 ret = -EBUSY;
376
377 if (ret < 0) {
378 printk("register_blkdev: cannot get major %d for %s\n",
379 major, name);
380 kfree(p);
381 }
382 out:
383 mutex_unlock(&block_class_lock);
384 return ret;
385 }
386
387 EXPORT_SYMBOL(register_blkdev);
388
389 void unregister_blkdev(unsigned int major, const char *name)
390 {
391 struct blk_major_name **n;
392 struct blk_major_name *p = NULL;
393 int index = major_to_index(major);
394
395 mutex_lock(&block_class_lock);
396 for (n = &major_names[index]; *n; n = &(*n)->next)
397 if ((*n)->major == major)
398 break;
399 if (!*n || strcmp((*n)->name, name)) {
400 WARN_ON(1);
401 } else {
402 p = *n;
403 *n = p->next;
404 }
405 mutex_unlock(&block_class_lock);
406 kfree(p);
407 }
408
409 EXPORT_SYMBOL(unregister_blkdev);
410
411 static struct kobj_map *bdev_map;
412
413 /**
414 * blk_mangle_minor - scatter minor numbers apart
415 * @minor: minor number to mangle
416 *
417 * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
418 * is enabled. Mangling twice gives the original value.
419 *
420 * RETURNS:
421 * Mangled value.
422 *
423 * CONTEXT:
424 * Don't care.
425 */
426 static int blk_mangle_minor(int minor)
427 {
428 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
429 int i;
430
431 for (i = 0; i < MINORBITS / 2; i++) {
432 int low = minor & (1 << i);
433 int high = minor & (1 << (MINORBITS - 1 - i));
434 int distance = MINORBITS - 1 - 2 * i;
435
436 minor ^= low | high; /* clear both bits */
437 low <<= distance; /* swap the positions */
438 high >>= distance;
439 minor |= low | high; /* and set */
440 }
441 #endif
442 return minor;
443 }
444
445 /**
446 * blk_alloc_devt - allocate a dev_t for a partition
447 * @part: partition to allocate dev_t for
448 * @devt: out parameter for resulting dev_t
449 *
450 * Allocate a dev_t for block device.
451 *
452 * RETURNS:
453 * 0 on success, allocated dev_t is returned in *@devt. -errno on
454 * failure.
455 *
456 * CONTEXT:
457 * Might sleep.
458 */
459 int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
460 {
461 struct gendisk *disk = part_to_disk(part);
462 int idx;
463
464 /* in consecutive minor range? */
465 if (part->partno < disk->minors) {
466 *devt = MKDEV(disk->major, disk->first_minor + part->partno);
467 return 0;
468 }
469
470 /* allocate ext devt */
471 idr_preload(GFP_KERNEL);
472
473 spin_lock_bh(&ext_devt_lock);
474 idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT);
475 spin_unlock_bh(&ext_devt_lock);
476
477 idr_preload_end();
478 if (idx < 0)
479 return idx == -ENOSPC ? -EBUSY : idx;
480
481 *devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
482 return 0;
483 }
484
485 /**
486 * blk_free_devt - free a dev_t
487 * @devt: dev_t to free
488 *
489 * Free @devt which was allocated using blk_alloc_devt().
490 *
491 * CONTEXT:
492 * Might sleep.
493 */
494 void blk_free_devt(dev_t devt)
495 {
496 if (devt == MKDEV(0, 0))
497 return;
498
499 if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
500 spin_lock_bh(&ext_devt_lock);
501 idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
502 spin_unlock_bh(&ext_devt_lock);
503 }
504 }
505
506 static char *bdevt_str(dev_t devt, char *buf)
507 {
508 if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
509 char tbuf[BDEVT_SIZE];
510 snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
511 snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
512 } else
513 snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
514
515 return buf;
516 }
517
518 /*
519 * Register device numbers dev..(dev+range-1)
520 * range must be nonzero
521 * The hash chain is sorted on range, so that subranges can override.
522 */
523 void blk_register_region(dev_t devt, unsigned long range, struct module *module,
524 struct kobject *(*probe)(dev_t, int *, void *),
525 int (*lock)(dev_t, void *), void *data)
526 {
527 kobj_map(bdev_map, devt, range, module, probe, lock, data);
528 }
529
530 EXPORT_SYMBOL(blk_register_region);
531
532 void blk_unregister_region(dev_t devt, unsigned long range)
533 {
534 kobj_unmap(bdev_map, devt, range);
535 }
536
537 EXPORT_SYMBOL(blk_unregister_region);
538
539 static struct kobject *exact_match(dev_t devt, int *partno, void *data)
540 {
541 struct gendisk *p = data;
542
543 return &disk_to_dev(p)->kobj;
544 }
545
546 static int exact_lock(dev_t devt, void *data)
547 {
548 struct gendisk *p = data;
549
550 if (!get_disk(p))
551 return -1;
552 return 0;
553 }
554
555 static void register_disk(struct device *parent, struct gendisk *disk)
556 {
557 struct device *ddev = disk_to_dev(disk);
558 struct block_device *bdev;
559 struct disk_part_iter piter;
560 struct hd_struct *part;
561 int err;
562
563 ddev->parent = parent;
564
565 dev_set_name(ddev, "%s", disk->disk_name);
566
567 /* delay uevents, until we scanned partition table */
568 dev_set_uevent_suppress(ddev, 1);
569
570 if (device_add(ddev))
571 return;
572 if (!sysfs_deprecated) {
573 err = sysfs_create_link(block_depr, &ddev->kobj,
574 kobject_name(&ddev->kobj));
575 if (err) {
576 device_del(ddev);
577 return;
578 }
579 }
580
581 /*
582 * avoid probable deadlock caused by allocating memory with
583 * GFP_KERNEL in runtime_resume callback of its all ancestor
584 * devices
585 */
586 pm_runtime_set_memalloc_noio(ddev, true);
587
588 disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
589 disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
590
591 /* No minors to use for partitions */
592 if (!disk_part_scan_enabled(disk))
593 goto exit;
594
595 /* No such device (e.g., media were just removed) */
596 if (!get_capacity(disk))
597 goto exit;
598
599 bdev = bdget_disk(disk, 0);
600 if (!bdev)
601 goto exit;
602
603 bdev->bd_invalidated = 1;
604 err = blkdev_get(bdev, FMODE_READ, NULL);
605 if (err < 0)
606 goto exit;
607 blkdev_put(bdev, FMODE_READ);
608
609 exit:
610 /* announce disk after possible partitions are created */
611 dev_set_uevent_suppress(ddev, 0);
612 kobject_uevent(&ddev->kobj, KOBJ_ADD);
613
614 /* announce possible partitions */
615 disk_part_iter_init(&piter, disk, 0);
616 while ((part = disk_part_iter_next(&piter)))
617 kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
618 disk_part_iter_exit(&piter);
619 }
620
621 /**
622 * device_add_disk - add partitioning information to kernel list
623 * @parent: parent device for the disk
624 * @disk: per-device partitioning information
625 *
626 * This function registers the partitioning information in @disk
627 * with the kernel.
628 *
629 * FIXME: error handling
630 */
631 void device_add_disk(struct device *parent, struct gendisk *disk)
632 {
633 struct backing_dev_info *bdi;
634 dev_t devt;
635 int retval;
636
637 /* minors == 0 indicates to use ext devt from part0 and should
638 * be accompanied with EXT_DEVT flag. Make sure all
639 * parameters make sense.
640 */
641 WARN_ON(disk->minors && !(disk->major || disk->first_minor));
642 WARN_ON(!disk->minors && !(disk->flags & GENHD_FL_EXT_DEVT));
643
644 disk->flags |= GENHD_FL_UP;
645
646 retval = blk_alloc_devt(&disk->part0, &devt);
647 if (retval) {
648 WARN_ON(1);
649 return;
650 }
651 disk_to_dev(disk)->devt = devt;
652 disk->major = MAJOR(devt);
653 disk->first_minor = MINOR(devt);
654
655 disk_alloc_events(disk);
656
657 /* Register BDI before referencing it from bdev */
658 bdi = disk->queue->backing_dev_info;
659 bdi_register_owner(bdi, disk_to_dev(disk));
660
661 blk_register_region(disk_devt(disk), disk->minors, NULL,
662 exact_match, exact_lock, disk);
663 register_disk(parent, disk);
664 blk_register_queue(disk);
665
666 /*
667 * Take an extra ref on queue which will be put on disk_release()
668 * so that it sticks around as long as @disk is there.
669 */
670 WARN_ON_ONCE(!blk_get_queue(disk->queue));
671
672 retval = sysfs_create_link(&disk_to_dev(disk)->kobj, &bdi->dev->kobj,
673 "bdi");
674 WARN_ON(retval);
675
676 disk_add_events(disk);
677 blk_integrity_add(disk);
678 }
679 EXPORT_SYMBOL(device_add_disk);
680
681 void del_gendisk(struct gendisk *disk)
682 {
683 struct disk_part_iter piter;
684 struct hd_struct *part;
685
686 blk_integrity_del(disk);
687 disk_del_events(disk);
688
689 /* invalidate stuff */
690 disk_part_iter_init(&piter, disk,
691 DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
692 while ((part = disk_part_iter_next(&piter))) {
693 invalidate_partition(disk, part->partno);
694 bdev_unhash_inode(part_devt(part));
695 delete_partition(disk, part->partno);
696 }
697 disk_part_iter_exit(&piter);
698
699 invalidate_partition(disk, 0);
700 bdev_unhash_inode(disk_devt(disk));
701 set_capacity(disk, 0);
702 disk->flags &= ~GENHD_FL_UP;
703
704 sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
705 if (disk->queue) {
706 /*
707 * Unregister bdi before releasing device numbers (as they can
708 * get reused and we'd get clashes in sysfs).
709 */
710 bdi_unregister(disk->queue->backing_dev_info);
711 blk_unregister_queue(disk);
712 } else {
713 WARN_ON(1);
714 }
715 blk_unregister_region(disk_devt(disk), disk->minors);
716
717 part_stat_set_all(&disk->part0, 0);
718 disk->part0.stamp = 0;
719
720 kobject_put(disk->part0.holder_dir);
721 kobject_put(disk->slave_dir);
722 if (!sysfs_deprecated)
723 sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
724 pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
725 device_del(disk_to_dev(disk));
726 }
727 EXPORT_SYMBOL(del_gendisk);
728
729 /* sysfs access to bad-blocks list. */
730 static ssize_t disk_badblocks_show(struct device *dev,
731 struct device_attribute *attr,
732 char *page)
733 {
734 struct gendisk *disk = dev_to_disk(dev);
735
736 if (!disk->bb)
737 return sprintf(page, "\n");
738
739 return badblocks_show(disk->bb, page, 0);
740 }
741
742 static ssize_t disk_badblocks_store(struct device *dev,
743 struct device_attribute *attr,
744 const char *page, size_t len)
745 {
746 struct gendisk *disk = dev_to_disk(dev);
747
748 if (!disk->bb)
749 return -ENXIO;
750
751 return badblocks_store(disk->bb, page, len, 0);
752 }
753
754 /**
755 * get_gendisk - get partitioning information for a given device
756 * @devt: device to get partitioning information for
757 * @partno: returned partition index
758 *
759 * This function gets the structure containing partitioning
760 * information for the given device @devt.
761 */
762 struct gendisk *get_gendisk(dev_t devt, int *partno)
763 {
764 struct gendisk *disk = NULL;
765
766 if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
767 struct kobject *kobj;
768
769 kobj = kobj_lookup(bdev_map, devt, partno);
770 if (kobj)
771 disk = dev_to_disk(kobj_to_dev(kobj));
772 } else {
773 struct hd_struct *part;
774
775 spin_lock_bh(&ext_devt_lock);
776 part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
777 if (part && get_disk(part_to_disk(part))) {
778 *partno = part->partno;
779 disk = part_to_disk(part);
780 }
781 spin_unlock_bh(&ext_devt_lock);
782 }
783
784 return disk;
785 }
786 EXPORT_SYMBOL(get_gendisk);
787
788 /**
789 * bdget_disk - do bdget() by gendisk and partition number
790 * @disk: gendisk of interest
791 * @partno: partition number
792 *
793 * Find partition @partno from @disk, do bdget() on it.
794 *
795 * CONTEXT:
796 * Don't care.
797 *
798 * RETURNS:
799 * Resulting block_device on success, NULL on failure.
800 */
801 struct block_device *bdget_disk(struct gendisk *disk, int partno)
802 {
803 struct hd_struct *part;
804 struct block_device *bdev = NULL;
805
806 part = disk_get_part(disk, partno);
807 if (part)
808 bdev = bdget(part_devt(part));
809 disk_put_part(part);
810
811 return bdev;
812 }
813 EXPORT_SYMBOL(bdget_disk);
814
815 /*
816 * print a full list of all partitions - intended for places where the root
817 * filesystem can't be mounted and thus to give the victim some idea of what
818 * went wrong
819 */
820 void __init printk_all_partitions(void)
821 {
822 struct class_dev_iter iter;
823 struct device *dev;
824
825 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
826 while ((dev = class_dev_iter_next(&iter))) {
827 struct gendisk *disk = dev_to_disk(dev);
828 struct disk_part_iter piter;
829 struct hd_struct *part;
830 char name_buf[BDEVNAME_SIZE];
831 char devt_buf[BDEVT_SIZE];
832
833 /*
834 * Don't show empty devices or things that have been
835 * suppressed
836 */
837 if (get_capacity(disk) == 0 ||
838 (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
839 continue;
840
841 /*
842 * Note, unlike /proc/partitions, I am showing the
843 * numbers in hex - the same format as the root=
844 * option takes.
845 */
846 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
847 while ((part = disk_part_iter_next(&piter))) {
848 bool is_part0 = part == &disk->part0;
849
850 printk("%s%s %10llu %s %s", is_part0 ? "" : " ",
851 bdevt_str(part_devt(part), devt_buf),
852 (unsigned long long)part_nr_sects_read(part) >> 1
853 , disk_name(disk, part->partno, name_buf),
854 part->info ? part->info->uuid : "");
855 if (is_part0) {
856 if (dev->parent && dev->parent->driver)
857 printk(" driver: %s\n",
858 dev->parent->driver->name);
859 else
860 printk(" (driver?)\n");
861 } else
862 printk("\n");
863 }
864 disk_part_iter_exit(&piter);
865 }
866 class_dev_iter_exit(&iter);
867 }
868
869 #ifdef CONFIG_PROC_FS
870 /* iterator */
871 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
872 {
873 loff_t skip = *pos;
874 struct class_dev_iter *iter;
875 struct device *dev;
876
877 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
878 if (!iter)
879 return ERR_PTR(-ENOMEM);
880
881 seqf->private = iter;
882 class_dev_iter_init(iter, &block_class, NULL, &disk_type);
883 do {
884 dev = class_dev_iter_next(iter);
885 if (!dev)
886 return NULL;
887 } while (skip--);
888
889 return dev_to_disk(dev);
890 }
891
892 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
893 {
894 struct device *dev;
895
896 (*pos)++;
897 dev = class_dev_iter_next(seqf->private);
898 if (dev)
899 return dev_to_disk(dev);
900
901 return NULL;
902 }
903
904 static void disk_seqf_stop(struct seq_file *seqf, void *v)
905 {
906 struct class_dev_iter *iter = seqf->private;
907
908 /* stop is called even after start failed :-( */
909 if (iter) {
910 class_dev_iter_exit(iter);
911 kfree(iter);
912 seqf->private = NULL;
913 }
914 }
915
916 static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
917 {
918 void *p;
919
920 p = disk_seqf_start(seqf, pos);
921 if (!IS_ERR_OR_NULL(p) && !*pos)
922 seq_puts(seqf, "major minor #blocks name\n\n");
923 return p;
924 }
925
926 static int show_partition(struct seq_file *seqf, void *v)
927 {
928 struct gendisk *sgp = v;
929 struct disk_part_iter piter;
930 struct hd_struct *part;
931 char buf[BDEVNAME_SIZE];
932
933 /* Don't show non-partitionable removeable devices or empty devices */
934 if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
935 (sgp->flags & GENHD_FL_REMOVABLE)))
936 return 0;
937 if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
938 return 0;
939
940 /* show the full disk and all non-0 size partitions of it */
941 disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
942 while ((part = disk_part_iter_next(&piter)))
943 seq_printf(seqf, "%4d %7d %10llu %s\n",
944 MAJOR(part_devt(part)), MINOR(part_devt(part)),
945 (unsigned long long)part_nr_sects_read(part) >> 1,
946 disk_name(sgp, part->partno, buf));
947 disk_part_iter_exit(&piter);
948
949 return 0;
950 }
951
952 static const struct seq_operations partitions_op = {
953 .start = show_partition_start,
954 .next = disk_seqf_next,
955 .stop = disk_seqf_stop,
956 .show = show_partition
957 };
958
959 static int partitions_open(struct inode *inode, struct file *file)
960 {
961 return seq_open(file, &partitions_op);
962 }
963
964 static const struct file_operations proc_partitions_operations = {
965 .open = partitions_open,
966 .read = seq_read,
967 .llseek = seq_lseek,
968 .release = seq_release,
969 };
970 #endif
971
972
973 static struct kobject *base_probe(dev_t devt, int *partno, void *data)
974 {
975 if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
976 /* Make old-style 2.4 aliases work */
977 request_module("block-major-%d", MAJOR(devt));
978 return NULL;
979 }
980
981 static int __init genhd_device_init(void)
982 {
983 int error;
984
985 block_class.dev_kobj = sysfs_dev_block_kobj;
986 error = class_register(&block_class);
987 if (unlikely(error))
988 return error;
989 bdev_map = kobj_map_init(base_probe, &block_class_lock);
990 blk_dev_init();
991
992 register_blkdev(BLOCK_EXT_MAJOR, "blkext");
993
994 /* create top-level block dir */
995 if (!sysfs_deprecated)
996 block_depr = kobject_create_and_add("block", NULL);
997 return 0;
998 }
999
1000 subsys_initcall(genhd_device_init);
1001
1002 static ssize_t disk_range_show(struct device *dev,
1003 struct device_attribute *attr, char *buf)
1004 {
1005 struct gendisk *disk = dev_to_disk(dev);
1006
1007 return sprintf(buf, "%d\n", disk->minors);
1008 }
1009
1010 static ssize_t disk_ext_range_show(struct device *dev,
1011 struct device_attribute *attr, char *buf)
1012 {
1013 struct gendisk *disk = dev_to_disk(dev);
1014
1015 return sprintf(buf, "%d\n", disk_max_parts(disk));
1016 }
1017
1018 static ssize_t disk_removable_show(struct device *dev,
1019 struct device_attribute *attr, char *buf)
1020 {
1021 struct gendisk *disk = dev_to_disk(dev);
1022
1023 return sprintf(buf, "%d\n",
1024 (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
1025 }
1026
1027 static ssize_t disk_ro_show(struct device *dev,
1028 struct device_attribute *attr, char *buf)
1029 {
1030 struct gendisk *disk = dev_to_disk(dev);
1031
1032 return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
1033 }
1034
1035 static ssize_t disk_capability_show(struct device *dev,
1036 struct device_attribute *attr, char *buf)
1037 {
1038 struct gendisk *disk = dev_to_disk(dev);
1039
1040 return sprintf(buf, "%x\n", disk->flags);
1041 }
1042
1043 static ssize_t disk_alignment_offset_show(struct device *dev,
1044 struct device_attribute *attr,
1045 char *buf)
1046 {
1047 struct gendisk *disk = dev_to_disk(dev);
1048
1049 return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
1050 }
1051
1052 static ssize_t disk_discard_alignment_show(struct device *dev,
1053 struct device_attribute *attr,
1054 char *buf)
1055 {
1056 struct gendisk *disk = dev_to_disk(dev);
1057
1058 return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
1059 }
1060
1061 static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL);
1062 static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL);
1063 static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL);
1064 static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL);
1065 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
1066 static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL);
1067 static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show,
1068 NULL);
1069 static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL);
1070 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
1071 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
1072 static DEVICE_ATTR(badblocks, S_IRUGO | S_IWUSR, disk_badblocks_show,
1073 disk_badblocks_store);
1074 #ifdef CONFIG_FAIL_MAKE_REQUEST
1075 static struct device_attribute dev_attr_fail =
1076 __ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
1077 #endif
1078 #ifdef CONFIG_FAIL_IO_TIMEOUT
1079 static struct device_attribute dev_attr_fail_timeout =
1080 __ATTR(io-timeout-fail, S_IRUGO|S_IWUSR, part_timeout_show,
1081 part_timeout_store);
1082 #endif
1083
1084 static struct attribute *disk_attrs[] = {
1085 &dev_attr_range.attr,
1086 &dev_attr_ext_range.attr,
1087 &dev_attr_removable.attr,
1088 &dev_attr_ro.attr,
1089 &dev_attr_size.attr,
1090 &dev_attr_alignment_offset.attr,
1091 &dev_attr_discard_alignment.attr,
1092 &dev_attr_capability.attr,
1093 &dev_attr_stat.attr,
1094 &dev_attr_inflight.attr,
1095 &dev_attr_badblocks.attr,
1096 #ifdef CONFIG_FAIL_MAKE_REQUEST
1097 &dev_attr_fail.attr,
1098 #endif
1099 #ifdef CONFIG_FAIL_IO_TIMEOUT
1100 &dev_attr_fail_timeout.attr,
1101 #endif
1102 NULL
1103 };
1104
1105 static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n)
1106 {
1107 struct device *dev = container_of(kobj, typeof(*dev), kobj);
1108 struct gendisk *disk = dev_to_disk(dev);
1109
1110 if (a == &dev_attr_badblocks.attr && !disk->bb)
1111 return 0;
1112 return a->mode;
1113 }
1114
1115 static struct attribute_group disk_attr_group = {
1116 .attrs = disk_attrs,
1117 .is_visible = disk_visible,
1118 };
1119
1120 static const struct attribute_group *disk_attr_groups[] = {
1121 &disk_attr_group,
1122 NULL
1123 };
1124
1125 /**
1126 * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1127 * @disk: disk to replace part_tbl for
1128 * @new_ptbl: new part_tbl to install
1129 *
1130 * Replace disk->part_tbl with @new_ptbl in RCU-safe way. The
1131 * original ptbl is freed using RCU callback.
1132 *
1133 * LOCKING:
1134 * Matching bd_mutex locked or the caller is the only user of @disk.
1135 */
1136 static void disk_replace_part_tbl(struct gendisk *disk,
1137 struct disk_part_tbl *new_ptbl)
1138 {
1139 struct disk_part_tbl *old_ptbl =
1140 rcu_dereference_protected(disk->part_tbl, 1);
1141
1142 rcu_assign_pointer(disk->part_tbl, new_ptbl);
1143
1144 if (old_ptbl) {
1145 rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1146 kfree_rcu(old_ptbl, rcu_head);
1147 }
1148 }
1149
1150 /**
1151 * disk_expand_part_tbl - expand disk->part_tbl
1152 * @disk: disk to expand part_tbl for
1153 * @partno: expand such that this partno can fit in
1154 *
1155 * Expand disk->part_tbl such that @partno can fit in. disk->part_tbl
1156 * uses RCU to allow unlocked dereferencing for stats and other stuff.
1157 *
1158 * LOCKING:
1159 * Matching bd_mutex locked or the caller is the only user of @disk.
1160 * Might sleep.
1161 *
1162 * RETURNS:
1163 * 0 on success, -errno on failure.
1164 */
1165 int disk_expand_part_tbl(struct gendisk *disk, int partno)
1166 {
1167 struct disk_part_tbl *old_ptbl =
1168 rcu_dereference_protected(disk->part_tbl, 1);
1169 struct disk_part_tbl *new_ptbl;
1170 int len = old_ptbl ? old_ptbl->len : 0;
1171 int i, target;
1172 size_t size;
1173
1174 /*
1175 * check for int overflow, since we can get here from blkpg_ioctl()
1176 * with a user passed 'partno'.
1177 */
1178 target = partno + 1;
1179 if (target < 0)
1180 return -EINVAL;
1181
1182 /* disk_max_parts() is zero during initialization, ignore if so */
1183 if (disk_max_parts(disk) && target > disk_max_parts(disk))
1184 return -EINVAL;
1185
1186 if (target <= len)
1187 return 0;
1188
1189 size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]);
1190 new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id);
1191 if (!new_ptbl)
1192 return -ENOMEM;
1193
1194 new_ptbl->len = target;
1195
1196 for (i = 0; i < len; i++)
1197 rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1198
1199 disk_replace_part_tbl(disk, new_ptbl);
1200 return 0;
1201 }
1202
1203 static void disk_release(struct device *dev)
1204 {
1205 struct gendisk *disk = dev_to_disk(dev);
1206
1207 blk_free_devt(dev->devt);
1208 disk_release_events(disk);
1209 kfree(disk->random);
1210 disk_replace_part_tbl(disk, NULL);
1211 hd_free_part(&disk->part0);
1212 if (disk->queue)
1213 blk_put_queue(disk->queue);
1214 kfree(disk);
1215 }
1216 struct class block_class = {
1217 .name = "block",
1218 };
1219
1220 static char *block_devnode(struct device *dev, umode_t *mode,
1221 kuid_t *uid, kgid_t *gid)
1222 {
1223 struct gendisk *disk = dev_to_disk(dev);
1224
1225 if (disk->devnode)
1226 return disk->devnode(disk, mode);
1227 return NULL;
1228 }
1229
1230 static const struct device_type disk_type = {
1231 .name = "disk",
1232 .groups = disk_attr_groups,
1233 .release = disk_release,
1234 .devnode = block_devnode,
1235 };
1236
1237 #ifdef CONFIG_PROC_FS
1238 /*
1239 * aggregate disk stat collector. Uses the same stats that the sysfs
1240 * entries do, above, but makes them available through one seq_file.
1241 *
1242 * The output looks suspiciously like /proc/partitions with a bunch of
1243 * extra fields.
1244 */
1245 static int diskstats_show(struct seq_file *seqf, void *v)
1246 {
1247 struct gendisk *gp = v;
1248 struct disk_part_iter piter;
1249 struct hd_struct *hd;
1250 char buf[BDEVNAME_SIZE];
1251 unsigned int inflight[2];
1252 int cpu;
1253
1254 /*
1255 if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1256 seq_puts(seqf, "major minor name"
1257 " rio rmerge rsect ruse wio wmerge "
1258 "wsect wuse running use aveq"
1259 "\n\n");
1260 */
1261
1262 disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1263 while ((hd = disk_part_iter_next(&piter))) {
1264 cpu = part_stat_lock();
1265 part_round_stats(gp->queue, cpu, hd);
1266 part_stat_unlock();
1267 part_in_flight(gp->queue, hd, inflight);
1268 seq_printf(seqf, "%4d %7d %s %lu %lu %lu "
1269 "%u %lu %lu %lu %u %u %u %u\n",
1270 MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1271 disk_name(gp, hd->partno, buf),
1272 part_stat_read(hd, ios[READ]),
1273 part_stat_read(hd, merges[READ]),
1274 part_stat_read(hd, sectors[READ]),
1275 jiffies_to_msecs(part_stat_read(hd, ticks[READ])),
1276 part_stat_read(hd, ios[WRITE]),
1277 part_stat_read(hd, merges[WRITE]),
1278 part_stat_read(hd, sectors[WRITE]),
1279 jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])),
1280 inflight[0],
1281 jiffies_to_msecs(part_stat_read(hd, io_ticks)),
1282 jiffies_to_msecs(part_stat_read(hd, time_in_queue))
1283 );
1284 }
1285 disk_part_iter_exit(&piter);
1286
1287 return 0;
1288 }
1289
1290 static const struct seq_operations diskstats_op = {
1291 .start = disk_seqf_start,
1292 .next = disk_seqf_next,
1293 .stop = disk_seqf_stop,
1294 .show = diskstats_show
1295 };
1296
1297 static int diskstats_open(struct inode *inode, struct file *file)
1298 {
1299 return seq_open(file, &diskstats_op);
1300 }
1301
1302 static const struct file_operations proc_diskstats_operations = {
1303 .open = diskstats_open,
1304 .read = seq_read,
1305 .llseek = seq_lseek,
1306 .release = seq_release,
1307 };
1308
1309 static int __init proc_genhd_init(void)
1310 {
1311 proc_create("diskstats", 0, NULL, &proc_diskstats_operations);
1312 proc_create("partitions", 0, NULL, &proc_partitions_operations);
1313 return 0;
1314 }
1315 module_init(proc_genhd_init);
1316 #endif /* CONFIG_PROC_FS */
1317
1318 dev_t blk_lookup_devt(const char *name, int partno)
1319 {
1320 dev_t devt = MKDEV(0, 0);
1321 struct class_dev_iter iter;
1322 struct device *dev;
1323
1324 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1325 while ((dev = class_dev_iter_next(&iter))) {
1326 struct gendisk *disk = dev_to_disk(dev);
1327 struct hd_struct *part;
1328
1329 if (strcmp(dev_name(dev), name))
1330 continue;
1331
1332 if (partno < disk->minors) {
1333 /* We need to return the right devno, even
1334 * if the partition doesn't exist yet.
1335 */
1336 devt = MKDEV(MAJOR(dev->devt),
1337 MINOR(dev->devt) + partno);
1338 break;
1339 }
1340 part = disk_get_part(disk, partno);
1341 if (part) {
1342 devt = part_devt(part);
1343 disk_put_part(part);
1344 break;
1345 }
1346 disk_put_part(part);
1347 }
1348 class_dev_iter_exit(&iter);
1349 return devt;
1350 }
1351 EXPORT_SYMBOL(blk_lookup_devt);
1352
1353 struct gendisk *alloc_disk(int minors)
1354 {
1355 return alloc_disk_node(minors, NUMA_NO_NODE);
1356 }
1357 EXPORT_SYMBOL(alloc_disk);
1358
1359 struct gendisk *alloc_disk_node(int minors, int node_id)
1360 {
1361 struct gendisk *disk;
1362 struct disk_part_tbl *ptbl;
1363
1364 if (minors > DISK_MAX_PARTS) {
1365 printk(KERN_ERR
1366 "block: can't allocated more than %d partitions\n",
1367 DISK_MAX_PARTS);
1368 minors = DISK_MAX_PARTS;
1369 }
1370
1371 disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
1372 if (disk) {
1373 if (!init_part_stats(&disk->part0)) {
1374 kfree(disk);
1375 return NULL;
1376 }
1377 disk->node_id = node_id;
1378 if (disk_expand_part_tbl(disk, 0)) {
1379 free_part_stats(&disk->part0);
1380 kfree(disk);
1381 return NULL;
1382 }
1383 ptbl = rcu_dereference_protected(disk->part_tbl, 1);
1384 rcu_assign_pointer(ptbl->part[0], &disk->part0);
1385
1386 /*
1387 * set_capacity() and get_capacity() currently don't use
1388 * seqcounter to read/update the part0->nr_sects. Still init
1389 * the counter as we can read the sectors in IO submission
1390 * patch using seqence counters.
1391 *
1392 * TODO: Ideally set_capacity() and get_capacity() should be
1393 * converted to make use of bd_mutex and sequence counters.
1394 */
1395 seqcount_init(&disk->part0.nr_sects_seq);
1396 if (hd_ref_init(&disk->part0)) {
1397 hd_free_part(&disk->part0);
1398 kfree(disk);
1399 return NULL;
1400 }
1401
1402 disk->minors = minors;
1403 rand_initialize_disk(disk);
1404 disk_to_dev(disk)->class = &block_class;
1405 disk_to_dev(disk)->type = &disk_type;
1406 device_initialize(disk_to_dev(disk));
1407 }
1408 return disk;
1409 }
1410 EXPORT_SYMBOL(alloc_disk_node);
1411
1412 struct kobject *get_disk(struct gendisk *disk)
1413 {
1414 struct module *owner;
1415 struct kobject *kobj;
1416
1417 if (!disk->fops)
1418 return NULL;
1419 owner = disk->fops->owner;
1420 if (owner && !try_module_get(owner))
1421 return NULL;
1422 kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj);
1423 if (kobj == NULL) {
1424 module_put(owner);
1425 return NULL;
1426 }
1427 return kobj;
1428
1429 }
1430
1431 EXPORT_SYMBOL(get_disk);
1432
1433 void put_disk(struct gendisk *disk)
1434 {
1435 if (disk)
1436 kobject_put(&disk_to_dev(disk)->kobj);
1437 }
1438
1439 EXPORT_SYMBOL(put_disk);
1440
1441 static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1442 {
1443 char event[] = "DISK_RO=1";
1444 char *envp[] = { event, NULL };
1445
1446 if (!ro)
1447 event[8] = '0';
1448 kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1449 }
1450
1451 void set_device_ro(struct block_device *bdev, int flag)
1452 {
1453 bdev->bd_part->policy = flag;
1454 }
1455
1456 EXPORT_SYMBOL(set_device_ro);
1457
1458 void set_disk_ro(struct gendisk *disk, int flag)
1459 {
1460 struct disk_part_iter piter;
1461 struct hd_struct *part;
1462
1463 if (disk->part0.policy != flag) {
1464 set_disk_ro_uevent(disk, flag);
1465 disk->part0.policy = flag;
1466 }
1467
1468 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1469 while ((part = disk_part_iter_next(&piter)))
1470 part->policy = flag;
1471 disk_part_iter_exit(&piter);
1472 }
1473
1474 EXPORT_SYMBOL(set_disk_ro);
1475
1476 int bdev_read_only(struct block_device *bdev)
1477 {
1478 if (!bdev)
1479 return 0;
1480 return bdev->bd_part->policy;
1481 }
1482
1483 EXPORT_SYMBOL(bdev_read_only);
1484
1485 int invalidate_partition(struct gendisk *disk, int partno)
1486 {
1487 int res = 0;
1488 struct block_device *bdev = bdget_disk(disk, partno);
1489 if (bdev) {
1490 fsync_bdev(bdev);
1491 res = __invalidate_device(bdev, true);
1492 bdput(bdev);
1493 }
1494 return res;
1495 }
1496
1497 EXPORT_SYMBOL(invalidate_partition);
1498
1499 /*
1500 * Disk events - monitor disk events like media change and eject request.
1501 */
1502 struct disk_events {
1503 struct list_head node; /* all disk_event's */
1504 struct gendisk *disk; /* the associated disk */
1505 spinlock_t lock;
1506
1507 struct mutex block_mutex; /* protects blocking */
1508 int block; /* event blocking depth */
1509 unsigned int pending; /* events already sent out */
1510 unsigned int clearing; /* events being cleared */
1511
1512 long poll_msecs; /* interval, -1 for default */
1513 struct delayed_work dwork;
1514 };
1515
1516 static const char *disk_events_strs[] = {
1517 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "media_change",
1518 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "eject_request",
1519 };
1520
1521 static char *disk_uevents[] = {
1522 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "DISK_MEDIA_CHANGE=1",
1523 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "DISK_EJECT_REQUEST=1",
1524 };
1525
1526 /* list of all disk_events */
1527 static DEFINE_MUTEX(disk_events_mutex);
1528 static LIST_HEAD(disk_events);
1529
1530 /* disable in-kernel polling by default */
1531 static unsigned long disk_events_dfl_poll_msecs;
1532
1533 static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1534 {
1535 struct disk_events *ev = disk->ev;
1536 long intv_msecs = 0;
1537
1538 /*
1539 * If device-specific poll interval is set, always use it. If
1540 * the default is being used, poll iff there are events which
1541 * can't be monitored asynchronously.
1542 */
1543 if (ev->poll_msecs >= 0)
1544 intv_msecs = ev->poll_msecs;
1545 else if (disk->events & ~disk->async_events)
1546 intv_msecs = disk_events_dfl_poll_msecs;
1547
1548 return msecs_to_jiffies(intv_msecs);
1549 }
1550
1551 /**
1552 * disk_block_events - block and flush disk event checking
1553 * @disk: disk to block events for
1554 *
1555 * On return from this function, it is guaranteed that event checking
1556 * isn't in progress and won't happen until unblocked by
1557 * disk_unblock_events(). Events blocking is counted and the actual
1558 * unblocking happens after the matching number of unblocks are done.
1559 *
1560 * Note that this intentionally does not block event checking from
1561 * disk_clear_events().
1562 *
1563 * CONTEXT:
1564 * Might sleep.
1565 */
1566 void disk_block_events(struct gendisk *disk)
1567 {
1568 struct disk_events *ev = disk->ev;
1569 unsigned long flags;
1570 bool cancel;
1571
1572 if (!ev)
1573 return;
1574
1575 /*
1576 * Outer mutex ensures that the first blocker completes canceling
1577 * the event work before further blockers are allowed to finish.
1578 */
1579 mutex_lock(&ev->block_mutex);
1580
1581 spin_lock_irqsave(&ev->lock, flags);
1582 cancel = !ev->block++;
1583 spin_unlock_irqrestore(&ev->lock, flags);
1584
1585 if (cancel)
1586 cancel_delayed_work_sync(&disk->ev->dwork);
1587
1588 mutex_unlock(&ev->block_mutex);
1589 }
1590
1591 static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1592 {
1593 struct disk_events *ev = disk->ev;
1594 unsigned long intv;
1595 unsigned long flags;
1596
1597 spin_lock_irqsave(&ev->lock, flags);
1598
1599 if (WARN_ON_ONCE(ev->block <= 0))
1600 goto out_unlock;
1601
1602 if (--ev->block)
1603 goto out_unlock;
1604
1605 intv = disk_events_poll_jiffies(disk);
1606 if (check_now)
1607 queue_delayed_work(system_freezable_power_efficient_wq,
1608 &ev->dwork, 0);
1609 else if (intv)
1610 queue_delayed_work(system_freezable_power_efficient_wq,
1611 &ev->dwork, intv);
1612 out_unlock:
1613 spin_unlock_irqrestore(&ev->lock, flags);
1614 }
1615
1616 /**
1617 * disk_unblock_events - unblock disk event checking
1618 * @disk: disk to unblock events for
1619 *
1620 * Undo disk_block_events(). When the block count reaches zero, it
1621 * starts events polling if configured.
1622 *
1623 * CONTEXT:
1624 * Don't care. Safe to call from irq context.
1625 */
1626 void disk_unblock_events(struct gendisk *disk)
1627 {
1628 if (disk->ev)
1629 __disk_unblock_events(disk, false);
1630 }
1631
1632 /**
1633 * disk_flush_events - schedule immediate event checking and flushing
1634 * @disk: disk to check and flush events for
1635 * @mask: events to flush
1636 *
1637 * Schedule immediate event checking on @disk if not blocked. Events in
1638 * @mask are scheduled to be cleared from the driver. Note that this
1639 * doesn't clear the events from @disk->ev.
1640 *
1641 * CONTEXT:
1642 * If @mask is non-zero must be called with bdev->bd_mutex held.
1643 */
1644 void disk_flush_events(struct gendisk *disk, unsigned int mask)
1645 {
1646 struct disk_events *ev = disk->ev;
1647
1648 if (!ev)
1649 return;
1650
1651 spin_lock_irq(&ev->lock);
1652 ev->clearing |= mask;
1653 if (!ev->block)
1654 mod_delayed_work(system_freezable_power_efficient_wq,
1655 &ev->dwork, 0);
1656 spin_unlock_irq(&ev->lock);
1657 }
1658
1659 /**
1660 * disk_clear_events - synchronously check, clear and return pending events
1661 * @disk: disk to fetch and clear events from
1662 * @mask: mask of events to be fetched and cleared
1663 *
1664 * Disk events are synchronously checked and pending events in @mask
1665 * are cleared and returned. This ignores the block count.
1666 *
1667 * CONTEXT:
1668 * Might sleep.
1669 */
1670 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
1671 {
1672 const struct block_device_operations *bdops = disk->fops;
1673 struct disk_events *ev = disk->ev;
1674 unsigned int pending;
1675 unsigned int clearing = mask;
1676
1677 if (!ev) {
1678 /* for drivers still using the old ->media_changed method */
1679 if ((mask & DISK_EVENT_MEDIA_CHANGE) &&
1680 bdops->media_changed && bdops->media_changed(disk))
1681 return DISK_EVENT_MEDIA_CHANGE;
1682 return 0;
1683 }
1684
1685 disk_block_events(disk);
1686
1687 /*
1688 * store the union of mask and ev->clearing on the stack so that the
1689 * race with disk_flush_events does not cause ambiguity (ev->clearing
1690 * can still be modified even if events are blocked).
1691 */
1692 spin_lock_irq(&ev->lock);
1693 clearing |= ev->clearing;
1694 ev->clearing = 0;
1695 spin_unlock_irq(&ev->lock);
1696
1697 disk_check_events(ev, &clearing);
1698 /*
1699 * if ev->clearing is not 0, the disk_flush_events got called in the
1700 * middle of this function, so we want to run the workfn without delay.
1701 */
1702 __disk_unblock_events(disk, ev->clearing ? true : false);
1703
1704 /* then, fetch and clear pending events */
1705 spin_lock_irq(&ev->lock);
1706 pending = ev->pending & mask;
1707 ev->pending &= ~mask;
1708 spin_unlock_irq(&ev->lock);
1709 WARN_ON_ONCE(clearing & mask);
1710
1711 return pending;
1712 }
1713
1714 /*
1715 * Separate this part out so that a different pointer for clearing_ptr can be
1716 * passed in for disk_clear_events.
1717 */
1718 static void disk_events_workfn(struct work_struct *work)
1719 {
1720 struct delayed_work *dwork = to_delayed_work(work);
1721 struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
1722
1723 disk_check_events(ev, &ev->clearing);
1724 }
1725
1726 static void disk_check_events(struct disk_events *ev,
1727 unsigned int *clearing_ptr)
1728 {
1729 struct gendisk *disk = ev->disk;
1730 char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
1731 unsigned int clearing = *clearing_ptr;
1732 unsigned int events;
1733 unsigned long intv;
1734 int nr_events = 0, i;
1735
1736 /* check events */
1737 events = disk->fops->check_events(disk, clearing);
1738
1739 /* accumulate pending events and schedule next poll if necessary */
1740 spin_lock_irq(&ev->lock);
1741
1742 events &= ~ev->pending;
1743 ev->pending |= events;
1744 *clearing_ptr &= ~clearing;
1745
1746 intv = disk_events_poll_jiffies(disk);
1747 if (!ev->block && intv)
1748 queue_delayed_work(system_freezable_power_efficient_wq,
1749 &ev->dwork, intv);
1750
1751 spin_unlock_irq(&ev->lock);
1752
1753 /*
1754 * Tell userland about new events. Only the events listed in
1755 * @disk->events are reported. Unlisted events are processed the
1756 * same internally but never get reported to userland.
1757 */
1758 for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
1759 if (events & disk->events & (1 << i))
1760 envp[nr_events++] = disk_uevents[i];
1761
1762 if (nr_events)
1763 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
1764 }
1765
1766 /*
1767 * A disk events enabled device has the following sysfs nodes under
1768 * its /sys/block/X/ directory.
1769 *
1770 * events : list of all supported events
1771 * events_async : list of events which can be detected w/o polling
1772 * events_poll_msecs : polling interval, 0: disable, -1: system default
1773 */
1774 static ssize_t __disk_events_show(unsigned int events, char *buf)
1775 {
1776 const char *delim = "";
1777 ssize_t pos = 0;
1778 int i;
1779
1780 for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
1781 if (events & (1 << i)) {
1782 pos += sprintf(buf + pos, "%s%s",
1783 delim, disk_events_strs[i]);
1784 delim = " ";
1785 }
1786 if (pos)
1787 pos += sprintf(buf + pos, "\n");
1788 return pos;
1789 }
1790
1791 static ssize_t disk_events_show(struct device *dev,
1792 struct device_attribute *attr, char *buf)
1793 {
1794 struct gendisk *disk = dev_to_disk(dev);
1795
1796 return __disk_events_show(disk->events, buf);
1797 }
1798
1799 static ssize_t disk_events_async_show(struct device *dev,
1800 struct device_attribute *attr, char *buf)
1801 {
1802 struct gendisk *disk = dev_to_disk(dev);
1803
1804 return __disk_events_show(disk->async_events, buf);
1805 }
1806
1807 static ssize_t disk_events_poll_msecs_show(struct device *dev,
1808 struct device_attribute *attr,
1809 char *buf)
1810 {
1811 struct gendisk *disk = dev_to_disk(dev);
1812
1813 return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
1814 }
1815
1816 static ssize_t disk_events_poll_msecs_store(struct device *dev,
1817 struct device_attribute *attr,
1818 const char *buf, size_t count)
1819 {
1820 struct gendisk *disk = dev_to_disk(dev);
1821 long intv;
1822
1823 if (!count || !sscanf(buf, "%ld", &intv))
1824 return -EINVAL;
1825
1826 if (intv < 0 && intv != -1)
1827 return -EINVAL;
1828
1829 disk_block_events(disk);
1830 disk->ev->poll_msecs = intv;
1831 __disk_unblock_events(disk, true);
1832
1833 return count;
1834 }
1835
1836 static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL);
1837 static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL);
1838 static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR,
1839 disk_events_poll_msecs_show,
1840 disk_events_poll_msecs_store);
1841
1842 static const struct attribute *disk_events_attrs[] = {
1843 &dev_attr_events.attr,
1844 &dev_attr_events_async.attr,
1845 &dev_attr_events_poll_msecs.attr,
1846 NULL,
1847 };
1848
1849 /*
1850 * The default polling interval can be specified by the kernel
1851 * parameter block.events_dfl_poll_msecs which defaults to 0
1852 * (disable). This can also be modified runtime by writing to
1853 * /sys/module/block/events_dfl_poll_msecs.
1854 */
1855 static int disk_events_set_dfl_poll_msecs(const char *val,
1856 const struct kernel_param *kp)
1857 {
1858 struct disk_events *ev;
1859 int ret;
1860
1861 ret = param_set_ulong(val, kp);
1862 if (ret < 0)
1863 return ret;
1864
1865 mutex_lock(&disk_events_mutex);
1866
1867 list_for_each_entry(ev, &disk_events, node)
1868 disk_flush_events(ev->disk, 0);
1869
1870 mutex_unlock(&disk_events_mutex);
1871
1872 return 0;
1873 }
1874
1875 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
1876 .set = disk_events_set_dfl_poll_msecs,
1877 .get = param_get_ulong,
1878 };
1879
1880 #undef MODULE_PARAM_PREFIX
1881 #define MODULE_PARAM_PREFIX "block."
1882
1883 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
1884 &disk_events_dfl_poll_msecs, 0644);
1885
1886 /*
1887 * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
1888 */
1889 static void disk_alloc_events(struct gendisk *disk)
1890 {
1891 struct disk_events *ev;
1892
1893 if (!disk->fops->check_events)
1894 return;
1895
1896 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1897 if (!ev) {
1898 pr_warn("%s: failed to initialize events\n", disk->disk_name);
1899 return;
1900 }
1901
1902 INIT_LIST_HEAD(&ev->node);
1903 ev->disk = disk;
1904 spin_lock_init(&ev->lock);
1905 mutex_init(&ev->block_mutex);
1906 ev->block = 1;
1907 ev->poll_msecs = -1;
1908 INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
1909
1910 disk->ev = ev;
1911 }
1912
1913 static void disk_add_events(struct gendisk *disk)
1914 {
1915 if (!disk->ev)
1916 return;
1917
1918 /* FIXME: error handling */
1919 if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
1920 pr_warn("%s: failed to create sysfs files for events\n",
1921 disk->disk_name);
1922
1923 mutex_lock(&disk_events_mutex);
1924 list_add_tail(&disk->ev->node, &disk_events);
1925 mutex_unlock(&disk_events_mutex);
1926
1927 /*
1928 * Block count is initialized to 1 and the following initial
1929 * unblock kicks it into action.
1930 */
1931 __disk_unblock_events(disk, true);
1932 }
1933
1934 static void disk_del_events(struct gendisk *disk)
1935 {
1936 if (!disk->ev)
1937 return;
1938
1939 disk_block_events(disk);
1940
1941 mutex_lock(&disk_events_mutex);
1942 list_del_init(&disk->ev->node);
1943 mutex_unlock(&disk_events_mutex);
1944
1945 sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
1946 }
1947
1948 static void disk_release_events(struct gendisk *disk)
1949 {
1950 /* the block count should be 1 from disk_del_events() */
1951 WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
1952 kfree(disk->ev);
1953 }