]> git.proxmox.com Git - mirror_qemu.git/blob - block/io.c
block: Merge .bdrv_co_writev{,_flags} in drivers
[mirror_qemu.git] / block / io.c
1 /*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "qemu/cutils.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35
36 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
37
38 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
39 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
40
41 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
42 int64_t offset, int bytes, BdrvRequestFlags flags);
43
44 void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
45 {
46 BdrvChild *c, *next;
47
48 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
49 if (c == ignore) {
50 continue;
51 }
52 if (c->role->drained_begin) {
53 c->role->drained_begin(c);
54 }
55 }
56 }
57
58 void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
59 {
60 BdrvChild *c, *next;
61
62 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
63 if (c == ignore) {
64 continue;
65 }
66 if (c->role->drained_end) {
67 c->role->drained_end(c);
68 }
69 }
70 }
71
72 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
73 {
74 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
75 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
76 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
77 src->opt_mem_alignment);
78 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
79 src->min_mem_alignment);
80 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
81 }
82
83 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
84 {
85 BlockDriver *drv = bs->drv;
86 Error *local_err = NULL;
87
88 memset(&bs->bl, 0, sizeof(bs->bl));
89
90 if (!drv) {
91 return;
92 }
93
94 /* Default alignment based on whether driver has byte interface */
95 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
96 drv->bdrv_aio_preadv) ? 1 : 512;
97
98 /* Take some limits from the children as a default */
99 if (bs->file) {
100 bdrv_refresh_limits(bs->file->bs, &local_err);
101 if (local_err) {
102 error_propagate(errp, local_err);
103 return;
104 }
105 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
106 } else {
107 bs->bl.min_mem_alignment = 512;
108 bs->bl.opt_mem_alignment = getpagesize();
109
110 /* Safe default since most protocols use readv()/writev()/etc */
111 bs->bl.max_iov = IOV_MAX;
112 }
113
114 if (bs->backing) {
115 bdrv_refresh_limits(bs->backing->bs, &local_err);
116 if (local_err) {
117 error_propagate(errp, local_err);
118 return;
119 }
120 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
121 }
122
123 /* Then let the driver override it */
124 if (drv->bdrv_refresh_limits) {
125 drv->bdrv_refresh_limits(bs, errp);
126 }
127 }
128
129 /**
130 * The copy-on-read flag is actually a reference count so multiple users may
131 * use the feature without worrying about clobbering its previous state.
132 * Copy-on-read stays enabled until all users have called to disable it.
133 */
134 void bdrv_enable_copy_on_read(BlockDriverState *bs)
135 {
136 atomic_inc(&bs->copy_on_read);
137 }
138
139 void bdrv_disable_copy_on_read(BlockDriverState *bs)
140 {
141 int old = atomic_fetch_dec(&bs->copy_on_read);
142 assert(old >= 1);
143 }
144
145 typedef struct {
146 Coroutine *co;
147 BlockDriverState *bs;
148 bool done;
149 bool begin;
150 bool recursive;
151 BdrvChild *parent;
152 } BdrvCoDrainData;
153
154 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
155 {
156 BdrvCoDrainData *data = opaque;
157 BlockDriverState *bs = data->bs;
158
159 if (data->begin) {
160 bs->drv->bdrv_co_drain_begin(bs);
161 } else {
162 bs->drv->bdrv_co_drain_end(bs);
163 }
164
165 /* Set data->done before reading bs->wakeup. */
166 atomic_mb_set(&data->done, true);
167 bdrv_wakeup(bs);
168 }
169
170 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
171 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, bool recursive)
172 {
173 BdrvChild *child, *tmp;
174 BdrvCoDrainData data = { .bs = bs, .done = false, .begin = begin};
175
176 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
177 (!begin && !bs->drv->bdrv_co_drain_end)) {
178 return;
179 }
180
181 data.co = qemu_coroutine_create(bdrv_drain_invoke_entry, &data);
182 bdrv_coroutine_enter(bs, data.co);
183 BDRV_POLL_WHILE(bs, !data.done);
184
185 if (recursive) {
186 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
187 bdrv_drain_invoke(child->bs, begin, true);
188 }
189 }
190 }
191
192 static bool bdrv_drain_recurse(BlockDriverState *bs)
193 {
194 BdrvChild *child, *tmp;
195 bool waited;
196
197 /* Wait for drained requests to finish */
198 waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0);
199
200 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
201 BlockDriverState *bs = child->bs;
202 bool in_main_loop =
203 qemu_get_current_aio_context() == qemu_get_aio_context();
204 assert(bs->refcnt > 0);
205 if (in_main_loop) {
206 /* In case the recursive bdrv_drain_recurse processes a
207 * block_job_defer_to_main_loop BH and modifies the graph,
208 * let's hold a reference to bs until we are done.
209 *
210 * IOThread doesn't have such a BH, and it is not safe to call
211 * bdrv_unref without BQL, so skip doing it there.
212 */
213 bdrv_ref(bs);
214 }
215 waited |= bdrv_drain_recurse(bs);
216 if (in_main_loop) {
217 bdrv_unref(bs);
218 }
219 }
220
221 return waited;
222 }
223
224 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
225 BdrvChild *parent);
226 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
227 BdrvChild *parent);
228
229 static void bdrv_co_drain_bh_cb(void *opaque)
230 {
231 BdrvCoDrainData *data = opaque;
232 Coroutine *co = data->co;
233 BlockDriverState *bs = data->bs;
234
235 bdrv_dec_in_flight(bs);
236 if (data->begin) {
237 bdrv_do_drained_begin(bs, data->recursive, data->parent);
238 } else {
239 bdrv_do_drained_end(bs, data->recursive, data->parent);
240 }
241
242 data->done = true;
243 aio_co_wake(co);
244 }
245
246 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
247 bool begin, bool recursive,
248 BdrvChild *parent)
249 {
250 BdrvCoDrainData data;
251
252 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
253 * other coroutines run if they were queued by aio_co_enter(). */
254
255 assert(qemu_in_coroutine());
256 data = (BdrvCoDrainData) {
257 .co = qemu_coroutine_self(),
258 .bs = bs,
259 .done = false,
260 .begin = begin,
261 .recursive = recursive,
262 .parent = parent,
263 };
264 bdrv_inc_in_flight(bs);
265 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
266 bdrv_co_drain_bh_cb, &data);
267
268 qemu_coroutine_yield();
269 /* If we are resumed from some other event (such as an aio completion or a
270 * timer callback), it is a bug in the caller that should be fixed. */
271 assert(data.done);
272 }
273
274 void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
275 BdrvChild *parent)
276 {
277 BdrvChild *child, *next;
278
279 if (qemu_in_coroutine()) {
280 bdrv_co_yield_to_drain(bs, true, recursive, parent);
281 return;
282 }
283
284 /* Stop things in parent-to-child order */
285 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
286 aio_disable_external(bdrv_get_aio_context(bs));
287 }
288
289 bdrv_parent_drained_begin(bs, parent);
290 bdrv_drain_invoke(bs, true, false);
291 bdrv_drain_recurse(bs);
292
293 if (recursive) {
294 bs->recursive_quiesce_counter++;
295 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
296 bdrv_do_drained_begin(child->bs, true, child);
297 }
298 }
299 }
300
301 void bdrv_drained_begin(BlockDriverState *bs)
302 {
303 bdrv_do_drained_begin(bs, false, NULL);
304 }
305
306 void bdrv_subtree_drained_begin(BlockDriverState *bs)
307 {
308 bdrv_do_drained_begin(bs, true, NULL);
309 }
310
311 void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
312 BdrvChild *parent)
313 {
314 BdrvChild *child, *next;
315 int old_quiesce_counter;
316
317 if (qemu_in_coroutine()) {
318 bdrv_co_yield_to_drain(bs, false, recursive, parent);
319 return;
320 }
321 assert(bs->quiesce_counter > 0);
322 old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter);
323
324 /* Re-enable things in child-to-parent order */
325 bdrv_drain_invoke(bs, false, false);
326 bdrv_parent_drained_end(bs, parent);
327 if (old_quiesce_counter == 1) {
328 aio_enable_external(bdrv_get_aio_context(bs));
329 }
330
331 if (recursive) {
332 bs->recursive_quiesce_counter--;
333 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
334 bdrv_do_drained_end(child->bs, true, child);
335 }
336 }
337 }
338
339 void bdrv_drained_end(BlockDriverState *bs)
340 {
341 bdrv_do_drained_end(bs, false, NULL);
342 }
343
344 void bdrv_subtree_drained_end(BlockDriverState *bs)
345 {
346 bdrv_do_drained_end(bs, true, NULL);
347 }
348
349 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
350 {
351 int i;
352
353 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
354 bdrv_do_drained_begin(child->bs, true, child);
355 }
356 }
357
358 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
359 {
360 int i;
361
362 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
363 bdrv_do_drained_end(child->bs, true, child);
364 }
365 }
366
367 /*
368 * Wait for pending requests to complete on a single BlockDriverState subtree,
369 * and suspend block driver's internal I/O until next request arrives.
370 *
371 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
372 * AioContext.
373 *
374 * Only this BlockDriverState's AioContext is run, so in-flight requests must
375 * not depend on events in other AioContexts. In that case, use
376 * bdrv_drain_all() instead.
377 */
378 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
379 {
380 assert(qemu_in_coroutine());
381 bdrv_drained_begin(bs);
382 bdrv_drained_end(bs);
383 }
384
385 void bdrv_drain(BlockDriverState *bs)
386 {
387 bdrv_drained_begin(bs);
388 bdrv_drained_end(bs);
389 }
390
391 /*
392 * Wait for pending requests to complete across all BlockDriverStates
393 *
394 * This function does not flush data to disk, use bdrv_flush_all() for that
395 * after calling this function.
396 *
397 * This pauses all block jobs and disables external clients. It must
398 * be paired with bdrv_drain_all_end().
399 *
400 * NOTE: no new block jobs or BlockDriverStates can be created between
401 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
402 */
403 void bdrv_drain_all_begin(void)
404 {
405 /* Always run first iteration so any pending completion BHs run */
406 bool waited = true;
407 BlockDriverState *bs;
408 BdrvNextIterator it;
409 GSList *aio_ctxs = NULL, *ctx;
410
411 /* BDRV_POLL_WHILE() for a node can only be called from its own I/O thread
412 * or the main loop AioContext. We potentially use BDRV_POLL_WHILE() on
413 * nodes in several different AioContexts, so make sure we're in the main
414 * context. */
415 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
416
417 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
418 AioContext *aio_context = bdrv_get_aio_context(bs);
419
420 /* Stop things in parent-to-child order */
421 aio_context_acquire(aio_context);
422 aio_disable_external(aio_context);
423 bdrv_parent_drained_begin(bs, NULL);
424 bdrv_drain_invoke(bs, true, true);
425 aio_context_release(aio_context);
426
427 if (!g_slist_find(aio_ctxs, aio_context)) {
428 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
429 }
430 }
431
432 /* Note that completion of an asynchronous I/O operation can trigger any
433 * number of other I/O operations on other devices---for example a
434 * coroutine can submit an I/O request to another device in response to
435 * request completion. Therefore we must keep looping until there was no
436 * more activity rather than simply draining each device independently.
437 */
438 while (waited) {
439 waited = false;
440
441 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
442 AioContext *aio_context = ctx->data;
443
444 aio_context_acquire(aio_context);
445 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
446 if (aio_context == bdrv_get_aio_context(bs)) {
447 waited |= bdrv_drain_recurse(bs);
448 }
449 }
450 aio_context_release(aio_context);
451 }
452 }
453
454 g_slist_free(aio_ctxs);
455 }
456
457 void bdrv_drain_all_end(void)
458 {
459 BlockDriverState *bs;
460 BdrvNextIterator it;
461
462 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
463 AioContext *aio_context = bdrv_get_aio_context(bs);
464
465 /* Re-enable things in child-to-parent order */
466 aio_context_acquire(aio_context);
467 bdrv_drain_invoke(bs, false, true);
468 bdrv_parent_drained_end(bs, NULL);
469 aio_enable_external(aio_context);
470 aio_context_release(aio_context);
471 }
472 }
473
474 void bdrv_drain_all(void)
475 {
476 bdrv_drain_all_begin();
477 bdrv_drain_all_end();
478 }
479
480 /**
481 * Remove an active request from the tracked requests list
482 *
483 * This function should be called when a tracked request is completing.
484 */
485 static void tracked_request_end(BdrvTrackedRequest *req)
486 {
487 if (req->serialising) {
488 atomic_dec(&req->bs->serialising_in_flight);
489 }
490
491 qemu_co_mutex_lock(&req->bs->reqs_lock);
492 QLIST_REMOVE(req, list);
493 qemu_co_queue_restart_all(&req->wait_queue);
494 qemu_co_mutex_unlock(&req->bs->reqs_lock);
495 }
496
497 /**
498 * Add an active request to the tracked requests list
499 */
500 static void tracked_request_begin(BdrvTrackedRequest *req,
501 BlockDriverState *bs,
502 int64_t offset,
503 unsigned int bytes,
504 enum BdrvTrackedRequestType type)
505 {
506 *req = (BdrvTrackedRequest){
507 .bs = bs,
508 .offset = offset,
509 .bytes = bytes,
510 .type = type,
511 .co = qemu_coroutine_self(),
512 .serialising = false,
513 .overlap_offset = offset,
514 .overlap_bytes = bytes,
515 };
516
517 qemu_co_queue_init(&req->wait_queue);
518
519 qemu_co_mutex_lock(&bs->reqs_lock);
520 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
521 qemu_co_mutex_unlock(&bs->reqs_lock);
522 }
523
524 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
525 {
526 int64_t overlap_offset = req->offset & ~(align - 1);
527 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
528 - overlap_offset;
529
530 if (!req->serialising) {
531 atomic_inc(&req->bs->serialising_in_flight);
532 req->serialising = true;
533 }
534
535 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
536 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
537 }
538
539 /**
540 * Round a region to cluster boundaries
541 */
542 void bdrv_round_to_clusters(BlockDriverState *bs,
543 int64_t offset, int64_t bytes,
544 int64_t *cluster_offset,
545 int64_t *cluster_bytes)
546 {
547 BlockDriverInfo bdi;
548
549 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
550 *cluster_offset = offset;
551 *cluster_bytes = bytes;
552 } else {
553 int64_t c = bdi.cluster_size;
554 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
555 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
556 }
557 }
558
559 static int bdrv_get_cluster_size(BlockDriverState *bs)
560 {
561 BlockDriverInfo bdi;
562 int ret;
563
564 ret = bdrv_get_info(bs, &bdi);
565 if (ret < 0 || bdi.cluster_size == 0) {
566 return bs->bl.request_alignment;
567 } else {
568 return bdi.cluster_size;
569 }
570 }
571
572 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
573 int64_t offset, unsigned int bytes)
574 {
575 /* aaaa bbbb */
576 if (offset >= req->overlap_offset + req->overlap_bytes) {
577 return false;
578 }
579 /* bbbb aaaa */
580 if (req->overlap_offset >= offset + bytes) {
581 return false;
582 }
583 return true;
584 }
585
586 void bdrv_inc_in_flight(BlockDriverState *bs)
587 {
588 atomic_inc(&bs->in_flight);
589 }
590
591 void bdrv_wakeup(BlockDriverState *bs)
592 {
593 aio_wait_kick(bdrv_get_aio_wait(bs));
594 }
595
596 void bdrv_dec_in_flight(BlockDriverState *bs)
597 {
598 atomic_dec(&bs->in_flight);
599 bdrv_wakeup(bs);
600 }
601
602 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
603 {
604 BlockDriverState *bs = self->bs;
605 BdrvTrackedRequest *req;
606 bool retry;
607 bool waited = false;
608
609 if (!atomic_read(&bs->serialising_in_flight)) {
610 return false;
611 }
612
613 do {
614 retry = false;
615 qemu_co_mutex_lock(&bs->reqs_lock);
616 QLIST_FOREACH(req, &bs->tracked_requests, list) {
617 if (req == self || (!req->serialising && !self->serialising)) {
618 continue;
619 }
620 if (tracked_request_overlaps(req, self->overlap_offset,
621 self->overlap_bytes))
622 {
623 /* Hitting this means there was a reentrant request, for
624 * example, a block driver issuing nested requests. This must
625 * never happen since it means deadlock.
626 */
627 assert(qemu_coroutine_self() != req->co);
628
629 /* If the request is already (indirectly) waiting for us, or
630 * will wait for us as soon as it wakes up, then just go on
631 * (instead of producing a deadlock in the former case). */
632 if (!req->waiting_for) {
633 self->waiting_for = req;
634 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
635 self->waiting_for = NULL;
636 retry = true;
637 waited = true;
638 break;
639 }
640 }
641 }
642 qemu_co_mutex_unlock(&bs->reqs_lock);
643 } while (retry);
644
645 return waited;
646 }
647
648 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
649 size_t size)
650 {
651 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
652 return -EIO;
653 }
654
655 if (!bdrv_is_inserted(bs)) {
656 return -ENOMEDIUM;
657 }
658
659 if (offset < 0) {
660 return -EIO;
661 }
662
663 return 0;
664 }
665
666 typedef struct RwCo {
667 BdrvChild *child;
668 int64_t offset;
669 QEMUIOVector *qiov;
670 bool is_write;
671 int ret;
672 BdrvRequestFlags flags;
673 } RwCo;
674
675 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
676 {
677 RwCo *rwco = opaque;
678
679 if (!rwco->is_write) {
680 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
681 rwco->qiov->size, rwco->qiov,
682 rwco->flags);
683 } else {
684 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
685 rwco->qiov->size, rwco->qiov,
686 rwco->flags);
687 }
688 }
689
690 /*
691 * Process a vectored synchronous request using coroutines
692 */
693 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
694 QEMUIOVector *qiov, bool is_write,
695 BdrvRequestFlags flags)
696 {
697 Coroutine *co;
698 RwCo rwco = {
699 .child = child,
700 .offset = offset,
701 .qiov = qiov,
702 .is_write = is_write,
703 .ret = NOT_DONE,
704 .flags = flags,
705 };
706
707 if (qemu_in_coroutine()) {
708 /* Fast-path if already in coroutine context */
709 bdrv_rw_co_entry(&rwco);
710 } else {
711 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
712 bdrv_coroutine_enter(child->bs, co);
713 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
714 }
715 return rwco.ret;
716 }
717
718 /*
719 * Process a synchronous request using coroutines
720 */
721 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
722 int nb_sectors, bool is_write, BdrvRequestFlags flags)
723 {
724 QEMUIOVector qiov;
725 struct iovec iov = {
726 .iov_base = (void *)buf,
727 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
728 };
729
730 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
731 return -EINVAL;
732 }
733
734 qemu_iovec_init_external(&qiov, &iov, 1);
735 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
736 &qiov, is_write, flags);
737 }
738
739 /* return < 0 if error. See bdrv_write() for the return codes */
740 int bdrv_read(BdrvChild *child, int64_t sector_num,
741 uint8_t *buf, int nb_sectors)
742 {
743 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
744 }
745
746 /* Return < 0 if error. Important errors are:
747 -EIO generic I/O error (may happen for all errors)
748 -ENOMEDIUM No media inserted.
749 -EINVAL Invalid sector number or nb_sectors
750 -EACCES Trying to write a read-only device
751 */
752 int bdrv_write(BdrvChild *child, int64_t sector_num,
753 const uint8_t *buf, int nb_sectors)
754 {
755 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
756 }
757
758 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
759 int bytes, BdrvRequestFlags flags)
760 {
761 QEMUIOVector qiov;
762 struct iovec iov = {
763 .iov_base = NULL,
764 .iov_len = bytes,
765 };
766
767 qemu_iovec_init_external(&qiov, &iov, 1);
768 return bdrv_prwv_co(child, offset, &qiov, true,
769 BDRV_REQ_ZERO_WRITE | flags);
770 }
771
772 /*
773 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
774 * The operation is sped up by checking the block status and only writing
775 * zeroes to the device if they currently do not return zeroes. Optional
776 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
777 * BDRV_REQ_FUA).
778 *
779 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
780 */
781 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
782 {
783 int ret;
784 int64_t target_size, bytes, offset = 0;
785 BlockDriverState *bs = child->bs;
786
787 target_size = bdrv_getlength(bs);
788 if (target_size < 0) {
789 return target_size;
790 }
791
792 for (;;) {
793 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
794 if (bytes <= 0) {
795 return 0;
796 }
797 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
798 if (ret < 0) {
799 error_report("error getting block status at offset %" PRId64 ": %s",
800 offset, strerror(-ret));
801 return ret;
802 }
803 if (ret & BDRV_BLOCK_ZERO) {
804 offset += bytes;
805 continue;
806 }
807 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
808 if (ret < 0) {
809 error_report("error writing zeroes at offset %" PRId64 ": %s",
810 offset, strerror(-ret));
811 return ret;
812 }
813 offset += bytes;
814 }
815 }
816
817 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
818 {
819 int ret;
820
821 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
822 if (ret < 0) {
823 return ret;
824 }
825
826 return qiov->size;
827 }
828
829 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
830 {
831 QEMUIOVector qiov;
832 struct iovec iov = {
833 .iov_base = (void *)buf,
834 .iov_len = bytes,
835 };
836
837 if (bytes < 0) {
838 return -EINVAL;
839 }
840
841 qemu_iovec_init_external(&qiov, &iov, 1);
842 return bdrv_preadv(child, offset, &qiov);
843 }
844
845 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
846 {
847 int ret;
848
849 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
850 if (ret < 0) {
851 return ret;
852 }
853
854 return qiov->size;
855 }
856
857 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
858 {
859 QEMUIOVector qiov;
860 struct iovec iov = {
861 .iov_base = (void *) buf,
862 .iov_len = bytes,
863 };
864
865 if (bytes < 0) {
866 return -EINVAL;
867 }
868
869 qemu_iovec_init_external(&qiov, &iov, 1);
870 return bdrv_pwritev(child, offset, &qiov);
871 }
872
873 /*
874 * Writes to the file and ensures that no writes are reordered across this
875 * request (acts as a barrier)
876 *
877 * Returns 0 on success, -errno in error cases.
878 */
879 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
880 const void *buf, int count)
881 {
882 int ret;
883
884 ret = bdrv_pwrite(child, offset, buf, count);
885 if (ret < 0) {
886 return ret;
887 }
888
889 ret = bdrv_flush(child->bs);
890 if (ret < 0) {
891 return ret;
892 }
893
894 return 0;
895 }
896
897 typedef struct CoroutineIOCompletion {
898 Coroutine *coroutine;
899 int ret;
900 } CoroutineIOCompletion;
901
902 static void bdrv_co_io_em_complete(void *opaque, int ret)
903 {
904 CoroutineIOCompletion *co = opaque;
905
906 co->ret = ret;
907 aio_co_wake(co->coroutine);
908 }
909
910 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
911 uint64_t offset, uint64_t bytes,
912 QEMUIOVector *qiov, int flags)
913 {
914 BlockDriver *drv = bs->drv;
915 int64_t sector_num;
916 unsigned int nb_sectors;
917
918 assert(!(flags & ~BDRV_REQ_MASK));
919
920 if (!drv) {
921 return -ENOMEDIUM;
922 }
923
924 if (drv->bdrv_co_preadv) {
925 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
926 }
927
928 if (drv->bdrv_aio_preadv) {
929 BlockAIOCB *acb;
930 CoroutineIOCompletion co = {
931 .coroutine = qemu_coroutine_self(),
932 };
933
934 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
935 bdrv_co_io_em_complete, &co);
936 if (acb == NULL) {
937 return -EIO;
938 } else {
939 qemu_coroutine_yield();
940 return co.ret;
941 }
942 }
943
944 sector_num = offset >> BDRV_SECTOR_BITS;
945 nb_sectors = bytes >> BDRV_SECTOR_BITS;
946
947 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
948 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
949 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
950 assert(drv->bdrv_co_readv);
951
952 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
953 }
954
955 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
956 uint64_t offset, uint64_t bytes,
957 QEMUIOVector *qiov, int flags)
958 {
959 BlockDriver *drv = bs->drv;
960 int64_t sector_num;
961 unsigned int nb_sectors;
962 int ret;
963
964 assert(!(flags & ~BDRV_REQ_MASK));
965
966 if (!drv) {
967 return -ENOMEDIUM;
968 }
969
970 if (drv->bdrv_co_pwritev) {
971 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
972 flags & bs->supported_write_flags);
973 flags &= ~bs->supported_write_flags;
974 goto emulate_flags;
975 }
976
977 if (drv->bdrv_aio_pwritev) {
978 BlockAIOCB *acb;
979 CoroutineIOCompletion co = {
980 .coroutine = qemu_coroutine_self(),
981 };
982
983 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
984 flags & bs->supported_write_flags,
985 bdrv_co_io_em_complete, &co);
986 flags &= ~bs->supported_write_flags;
987 if (acb == NULL) {
988 ret = -EIO;
989 } else {
990 qemu_coroutine_yield();
991 ret = co.ret;
992 }
993 goto emulate_flags;
994 }
995
996 sector_num = offset >> BDRV_SECTOR_BITS;
997 nb_sectors = bytes >> BDRV_SECTOR_BITS;
998
999 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1000 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1001 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
1002
1003 assert(drv->bdrv_co_writev);
1004 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1005 flags & bs->supported_write_flags);
1006 flags &= ~bs->supported_write_flags;
1007
1008 emulate_flags:
1009 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1010 ret = bdrv_co_flush(bs);
1011 }
1012
1013 return ret;
1014 }
1015
1016 static int coroutine_fn
1017 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1018 uint64_t bytes, QEMUIOVector *qiov)
1019 {
1020 BlockDriver *drv = bs->drv;
1021
1022 if (!drv) {
1023 return -ENOMEDIUM;
1024 }
1025
1026 if (!drv->bdrv_co_pwritev_compressed) {
1027 return -ENOTSUP;
1028 }
1029
1030 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1031 }
1032
1033 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1034 int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
1035 {
1036 BlockDriverState *bs = child->bs;
1037
1038 /* Perform I/O through a temporary buffer so that users who scribble over
1039 * their read buffer while the operation is in progress do not end up
1040 * modifying the image file. This is critical for zero-copy guest I/O
1041 * where anything might happen inside guest memory.
1042 */
1043 void *bounce_buffer;
1044
1045 BlockDriver *drv = bs->drv;
1046 struct iovec iov;
1047 QEMUIOVector local_qiov;
1048 int64_t cluster_offset;
1049 int64_t cluster_bytes;
1050 size_t skip_bytes;
1051 int ret;
1052 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1053 BDRV_REQUEST_MAX_BYTES);
1054 unsigned int progress = 0;
1055
1056 if (!drv) {
1057 return -ENOMEDIUM;
1058 }
1059
1060 /* FIXME We cannot require callers to have write permissions when all they
1061 * are doing is a read request. If we did things right, write permissions
1062 * would be obtained anyway, but internally by the copy-on-read code. As
1063 * long as it is implemented here rather than in a separate filter driver,
1064 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1065 * it could request permissions. Therefore we have to bypass the permission
1066 * system for the moment. */
1067 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1068
1069 /* Cover entire cluster so no additional backing file I/O is required when
1070 * allocating cluster in the image file. Note that this value may exceed
1071 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1072 * is one reason we loop rather than doing it all at once.
1073 */
1074 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1075 skip_bytes = offset - cluster_offset;
1076
1077 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1078 cluster_offset, cluster_bytes);
1079
1080 bounce_buffer = qemu_try_blockalign(bs,
1081 MIN(MIN(max_transfer, cluster_bytes),
1082 MAX_BOUNCE_BUFFER));
1083 if (bounce_buffer == NULL) {
1084 ret = -ENOMEM;
1085 goto err;
1086 }
1087
1088 while (cluster_bytes) {
1089 int64_t pnum;
1090
1091 ret = bdrv_is_allocated(bs, cluster_offset,
1092 MIN(cluster_bytes, max_transfer), &pnum);
1093 if (ret < 0) {
1094 /* Safe to treat errors in querying allocation as if
1095 * unallocated; we'll probably fail again soon on the
1096 * read, but at least that will set a decent errno.
1097 */
1098 pnum = MIN(cluster_bytes, max_transfer);
1099 }
1100
1101 assert(skip_bytes < pnum);
1102
1103 if (ret <= 0) {
1104 /* Must copy-on-read; use the bounce buffer */
1105 iov.iov_base = bounce_buffer;
1106 iov.iov_len = pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1107 qemu_iovec_init_external(&local_qiov, &iov, 1);
1108
1109 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1110 &local_qiov, 0);
1111 if (ret < 0) {
1112 goto err;
1113 }
1114
1115 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1116 if (drv->bdrv_co_pwrite_zeroes &&
1117 buffer_is_zero(bounce_buffer, pnum)) {
1118 /* FIXME: Should we (perhaps conditionally) be setting
1119 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1120 * that still correctly reads as zero? */
1121 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 0);
1122 } else {
1123 /* This does not change the data on the disk, it is not
1124 * necessary to flush even in cache=writethrough mode.
1125 */
1126 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1127 &local_qiov, 0);
1128 }
1129
1130 if (ret < 0) {
1131 /* It might be okay to ignore write errors for guest
1132 * requests. If this is a deliberate copy-on-read
1133 * then we don't want to ignore the error. Simply
1134 * report it in all cases.
1135 */
1136 goto err;
1137 }
1138
1139 qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes,
1140 pnum - skip_bytes);
1141 } else {
1142 /* Read directly into the destination */
1143 qemu_iovec_init(&local_qiov, qiov->niov);
1144 qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes);
1145 ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size,
1146 &local_qiov, 0);
1147 qemu_iovec_destroy(&local_qiov);
1148 if (ret < 0) {
1149 goto err;
1150 }
1151 }
1152
1153 cluster_offset += pnum;
1154 cluster_bytes -= pnum;
1155 progress += pnum - skip_bytes;
1156 skip_bytes = 0;
1157 }
1158 ret = 0;
1159
1160 err:
1161 qemu_vfree(bounce_buffer);
1162 return ret;
1163 }
1164
1165 /*
1166 * Forwards an already correctly aligned request to the BlockDriver. This
1167 * handles copy on read, zeroing after EOF, and fragmentation of large
1168 * reads; any other features must be implemented by the caller.
1169 */
1170 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1171 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1172 int64_t align, QEMUIOVector *qiov, int flags)
1173 {
1174 BlockDriverState *bs = child->bs;
1175 int64_t total_bytes, max_bytes;
1176 int ret = 0;
1177 uint64_t bytes_remaining = bytes;
1178 int max_transfer;
1179
1180 assert(is_power_of_2(align));
1181 assert((offset & (align - 1)) == 0);
1182 assert((bytes & (align - 1)) == 0);
1183 assert(!qiov || bytes == qiov->size);
1184 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1185 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1186 align);
1187
1188 /* TODO: We would need a per-BDS .supported_read_flags and
1189 * potential fallback support, if we ever implement any read flags
1190 * to pass through to drivers. For now, there aren't any
1191 * passthrough flags. */
1192 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1193
1194 /* Handle Copy on Read and associated serialisation */
1195 if (flags & BDRV_REQ_COPY_ON_READ) {
1196 /* If we touch the same cluster it counts as an overlap. This
1197 * guarantees that allocating writes will be serialized and not race
1198 * with each other for the same cluster. For example, in copy-on-read
1199 * it ensures that the CoR read and write operations are atomic and
1200 * guest writes cannot interleave between them. */
1201 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1202 }
1203
1204 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1205 wait_serialising_requests(req);
1206 }
1207
1208 if (flags & BDRV_REQ_COPY_ON_READ) {
1209 int64_t pnum;
1210
1211 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1212 if (ret < 0) {
1213 goto out;
1214 }
1215
1216 if (!ret || pnum != bytes) {
1217 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1218 goto out;
1219 }
1220 }
1221
1222 /* Forward the request to the BlockDriver, possibly fragmenting it */
1223 total_bytes = bdrv_getlength(bs);
1224 if (total_bytes < 0) {
1225 ret = total_bytes;
1226 goto out;
1227 }
1228
1229 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1230 if (bytes <= max_bytes && bytes <= max_transfer) {
1231 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1232 goto out;
1233 }
1234
1235 while (bytes_remaining) {
1236 int num;
1237
1238 if (max_bytes) {
1239 QEMUIOVector local_qiov;
1240
1241 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1242 assert(num);
1243 qemu_iovec_init(&local_qiov, qiov->niov);
1244 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1245
1246 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1247 num, &local_qiov, 0);
1248 max_bytes -= num;
1249 qemu_iovec_destroy(&local_qiov);
1250 } else {
1251 num = bytes_remaining;
1252 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1253 bytes_remaining);
1254 }
1255 if (ret < 0) {
1256 goto out;
1257 }
1258 bytes_remaining -= num;
1259 }
1260
1261 out:
1262 return ret < 0 ? ret : 0;
1263 }
1264
1265 /*
1266 * Handle a read request in coroutine context
1267 */
1268 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1269 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1270 BdrvRequestFlags flags)
1271 {
1272 BlockDriverState *bs = child->bs;
1273 BlockDriver *drv = bs->drv;
1274 BdrvTrackedRequest req;
1275
1276 uint64_t align = bs->bl.request_alignment;
1277 uint8_t *head_buf = NULL;
1278 uint8_t *tail_buf = NULL;
1279 QEMUIOVector local_qiov;
1280 bool use_local_qiov = false;
1281 int ret;
1282
1283 trace_bdrv_co_preadv(child->bs, offset, bytes, flags);
1284
1285 if (!drv) {
1286 return -ENOMEDIUM;
1287 }
1288
1289 ret = bdrv_check_byte_request(bs, offset, bytes);
1290 if (ret < 0) {
1291 return ret;
1292 }
1293
1294 bdrv_inc_in_flight(bs);
1295
1296 /* Don't do copy-on-read if we read data before write operation */
1297 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1298 flags |= BDRV_REQ_COPY_ON_READ;
1299 }
1300
1301 /* Align read if necessary by padding qiov */
1302 if (offset & (align - 1)) {
1303 head_buf = qemu_blockalign(bs, align);
1304 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1305 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1306 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1307 use_local_qiov = true;
1308
1309 bytes += offset & (align - 1);
1310 offset = offset & ~(align - 1);
1311 }
1312
1313 if ((offset + bytes) & (align - 1)) {
1314 if (!use_local_qiov) {
1315 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1316 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1317 use_local_qiov = true;
1318 }
1319 tail_buf = qemu_blockalign(bs, align);
1320 qemu_iovec_add(&local_qiov, tail_buf,
1321 align - ((offset + bytes) & (align - 1)));
1322
1323 bytes = ROUND_UP(bytes, align);
1324 }
1325
1326 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1327 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1328 use_local_qiov ? &local_qiov : qiov,
1329 flags);
1330 tracked_request_end(&req);
1331 bdrv_dec_in_flight(bs);
1332
1333 if (use_local_qiov) {
1334 qemu_iovec_destroy(&local_qiov);
1335 qemu_vfree(head_buf);
1336 qemu_vfree(tail_buf);
1337 }
1338
1339 return ret;
1340 }
1341
1342 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1343 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1344 BdrvRequestFlags flags)
1345 {
1346 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1347 return -EINVAL;
1348 }
1349
1350 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1351 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1352 }
1353
1354 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1355 int nb_sectors, QEMUIOVector *qiov)
1356 {
1357 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1358 }
1359
1360 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1361 int64_t offset, int bytes, BdrvRequestFlags flags)
1362 {
1363 BlockDriver *drv = bs->drv;
1364 QEMUIOVector qiov;
1365 struct iovec iov = {0};
1366 int ret = 0;
1367 bool need_flush = false;
1368 int head = 0;
1369 int tail = 0;
1370
1371 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1372 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1373 bs->bl.request_alignment);
1374 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1375
1376 if (!drv) {
1377 return -ENOMEDIUM;
1378 }
1379
1380 assert(alignment % bs->bl.request_alignment == 0);
1381 head = offset % alignment;
1382 tail = (offset + bytes) % alignment;
1383 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1384 assert(max_write_zeroes >= bs->bl.request_alignment);
1385
1386 while (bytes > 0 && !ret) {
1387 int num = bytes;
1388
1389 /* Align request. Block drivers can expect the "bulk" of the request
1390 * to be aligned, and that unaligned requests do not cross cluster
1391 * boundaries.
1392 */
1393 if (head) {
1394 /* Make a small request up to the first aligned sector. For
1395 * convenience, limit this request to max_transfer even if
1396 * we don't need to fall back to writes. */
1397 num = MIN(MIN(bytes, max_transfer), alignment - head);
1398 head = (head + num) % alignment;
1399 assert(num < max_write_zeroes);
1400 } else if (tail && num > alignment) {
1401 /* Shorten the request to the last aligned sector. */
1402 num -= tail;
1403 }
1404
1405 /* limit request size */
1406 if (num > max_write_zeroes) {
1407 num = max_write_zeroes;
1408 }
1409
1410 ret = -ENOTSUP;
1411 /* First try the efficient write zeroes operation */
1412 if (drv->bdrv_co_pwrite_zeroes) {
1413 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1414 flags & bs->supported_zero_flags);
1415 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1416 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1417 need_flush = true;
1418 }
1419 } else {
1420 assert(!bs->supported_zero_flags);
1421 }
1422
1423 if (ret == -ENOTSUP) {
1424 /* Fall back to bounce buffer if write zeroes is unsupported */
1425 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1426
1427 if ((flags & BDRV_REQ_FUA) &&
1428 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1429 /* No need for bdrv_driver_pwrite() to do a fallback
1430 * flush on each chunk; use just one at the end */
1431 write_flags &= ~BDRV_REQ_FUA;
1432 need_flush = true;
1433 }
1434 num = MIN(num, max_transfer);
1435 iov.iov_len = num;
1436 if (iov.iov_base == NULL) {
1437 iov.iov_base = qemu_try_blockalign(bs, num);
1438 if (iov.iov_base == NULL) {
1439 ret = -ENOMEM;
1440 goto fail;
1441 }
1442 memset(iov.iov_base, 0, num);
1443 }
1444 qemu_iovec_init_external(&qiov, &iov, 1);
1445
1446 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1447
1448 /* Keep bounce buffer around if it is big enough for all
1449 * all future requests.
1450 */
1451 if (num < max_transfer) {
1452 qemu_vfree(iov.iov_base);
1453 iov.iov_base = NULL;
1454 }
1455 }
1456
1457 offset += num;
1458 bytes -= num;
1459 }
1460
1461 fail:
1462 if (ret == 0 && need_flush) {
1463 ret = bdrv_co_flush(bs);
1464 }
1465 qemu_vfree(iov.iov_base);
1466 return ret;
1467 }
1468
1469 /*
1470 * Forwards an already correctly aligned write request to the BlockDriver,
1471 * after possibly fragmenting it.
1472 */
1473 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1474 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1475 int64_t align, QEMUIOVector *qiov, int flags)
1476 {
1477 BlockDriverState *bs = child->bs;
1478 BlockDriver *drv = bs->drv;
1479 bool waited;
1480 int ret;
1481
1482 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1483 uint64_t bytes_remaining = bytes;
1484 int max_transfer;
1485
1486 if (!drv) {
1487 return -ENOMEDIUM;
1488 }
1489
1490 if (bdrv_has_readonly_bitmaps(bs)) {
1491 return -EPERM;
1492 }
1493
1494 assert(is_power_of_2(align));
1495 assert((offset & (align - 1)) == 0);
1496 assert((bytes & (align - 1)) == 0);
1497 assert(!qiov || bytes == qiov->size);
1498 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1499 assert(!(flags & ~BDRV_REQ_MASK));
1500 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1501 align);
1502
1503 waited = wait_serialising_requests(req);
1504 assert(!waited || !req->serialising);
1505 assert(req->overlap_offset <= offset);
1506 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1507 assert(child->perm & BLK_PERM_WRITE);
1508 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1509
1510 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1511
1512 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1513 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1514 qemu_iovec_is_zero(qiov)) {
1515 flags |= BDRV_REQ_ZERO_WRITE;
1516 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1517 flags |= BDRV_REQ_MAY_UNMAP;
1518 }
1519 }
1520
1521 if (ret < 0) {
1522 /* Do nothing, write notifier decided to fail this request */
1523 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1524 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1525 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1526 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1527 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1528 } else if (bytes <= max_transfer) {
1529 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1530 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1531 } else {
1532 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1533 while (bytes_remaining) {
1534 int num = MIN(bytes_remaining, max_transfer);
1535 QEMUIOVector local_qiov;
1536 int local_flags = flags;
1537
1538 assert(num);
1539 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1540 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1541 /* If FUA is going to be emulated by flush, we only
1542 * need to flush on the last iteration */
1543 local_flags &= ~BDRV_REQ_FUA;
1544 }
1545 qemu_iovec_init(&local_qiov, qiov->niov);
1546 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1547
1548 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1549 num, &local_qiov, local_flags);
1550 qemu_iovec_destroy(&local_qiov);
1551 if (ret < 0) {
1552 break;
1553 }
1554 bytes_remaining -= num;
1555 }
1556 }
1557 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1558
1559 atomic_inc(&bs->write_gen);
1560 bdrv_set_dirty(bs, offset, bytes);
1561
1562 stat64_max(&bs->wr_highest_offset, offset + bytes);
1563
1564 if (ret >= 0) {
1565 bs->total_sectors = MAX(bs->total_sectors, end_sector);
1566 ret = 0;
1567 }
1568
1569 return ret;
1570 }
1571
1572 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1573 int64_t offset,
1574 unsigned int bytes,
1575 BdrvRequestFlags flags,
1576 BdrvTrackedRequest *req)
1577 {
1578 BlockDriverState *bs = child->bs;
1579 uint8_t *buf = NULL;
1580 QEMUIOVector local_qiov;
1581 struct iovec iov;
1582 uint64_t align = bs->bl.request_alignment;
1583 unsigned int head_padding_bytes, tail_padding_bytes;
1584 int ret = 0;
1585
1586 head_padding_bytes = offset & (align - 1);
1587 tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1588
1589
1590 assert(flags & BDRV_REQ_ZERO_WRITE);
1591 if (head_padding_bytes || tail_padding_bytes) {
1592 buf = qemu_blockalign(bs, align);
1593 iov = (struct iovec) {
1594 .iov_base = buf,
1595 .iov_len = align,
1596 };
1597 qemu_iovec_init_external(&local_qiov, &iov, 1);
1598 }
1599 if (head_padding_bytes) {
1600 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1601
1602 /* RMW the unaligned part before head. */
1603 mark_request_serialising(req, align);
1604 wait_serialising_requests(req);
1605 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1606 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1607 align, &local_qiov, 0);
1608 if (ret < 0) {
1609 goto fail;
1610 }
1611 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1612
1613 memset(buf + head_padding_bytes, 0, zero_bytes);
1614 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1615 align, &local_qiov,
1616 flags & ~BDRV_REQ_ZERO_WRITE);
1617 if (ret < 0) {
1618 goto fail;
1619 }
1620 offset += zero_bytes;
1621 bytes -= zero_bytes;
1622 }
1623
1624 assert(!bytes || (offset & (align - 1)) == 0);
1625 if (bytes >= align) {
1626 /* Write the aligned part in the middle. */
1627 uint64_t aligned_bytes = bytes & ~(align - 1);
1628 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1629 NULL, flags);
1630 if (ret < 0) {
1631 goto fail;
1632 }
1633 bytes -= aligned_bytes;
1634 offset += aligned_bytes;
1635 }
1636
1637 assert(!bytes || (offset & (align - 1)) == 0);
1638 if (bytes) {
1639 assert(align == tail_padding_bytes + bytes);
1640 /* RMW the unaligned part after tail. */
1641 mark_request_serialising(req, align);
1642 wait_serialising_requests(req);
1643 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1644 ret = bdrv_aligned_preadv(child, req, offset, align,
1645 align, &local_qiov, 0);
1646 if (ret < 0) {
1647 goto fail;
1648 }
1649 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1650
1651 memset(buf, 0, bytes);
1652 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1653 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1654 }
1655 fail:
1656 qemu_vfree(buf);
1657 return ret;
1658
1659 }
1660
1661 /*
1662 * Handle a write request in coroutine context
1663 */
1664 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1665 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1666 BdrvRequestFlags flags)
1667 {
1668 BlockDriverState *bs = child->bs;
1669 BdrvTrackedRequest req;
1670 uint64_t align = bs->bl.request_alignment;
1671 uint8_t *head_buf = NULL;
1672 uint8_t *tail_buf = NULL;
1673 QEMUIOVector local_qiov;
1674 bool use_local_qiov = false;
1675 int ret;
1676
1677 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
1678
1679 if (!bs->drv) {
1680 return -ENOMEDIUM;
1681 }
1682 if (bs->read_only) {
1683 return -EPERM;
1684 }
1685 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1686
1687 ret = bdrv_check_byte_request(bs, offset, bytes);
1688 if (ret < 0) {
1689 return ret;
1690 }
1691
1692 bdrv_inc_in_flight(bs);
1693 /*
1694 * Align write if necessary by performing a read-modify-write cycle.
1695 * Pad qiov with the read parts and be sure to have a tracked request not
1696 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1697 */
1698 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1699
1700 if (flags & BDRV_REQ_ZERO_WRITE) {
1701 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1702 goto out;
1703 }
1704
1705 if (offset & (align - 1)) {
1706 QEMUIOVector head_qiov;
1707 struct iovec head_iov;
1708
1709 mark_request_serialising(&req, align);
1710 wait_serialising_requests(&req);
1711
1712 head_buf = qemu_blockalign(bs, align);
1713 head_iov = (struct iovec) {
1714 .iov_base = head_buf,
1715 .iov_len = align,
1716 };
1717 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1718
1719 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1720 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1721 align, &head_qiov, 0);
1722 if (ret < 0) {
1723 goto fail;
1724 }
1725 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1726
1727 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1728 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1729 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1730 use_local_qiov = true;
1731
1732 bytes += offset & (align - 1);
1733 offset = offset & ~(align - 1);
1734
1735 /* We have read the tail already if the request is smaller
1736 * than one aligned block.
1737 */
1738 if (bytes < align) {
1739 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1740 bytes = align;
1741 }
1742 }
1743
1744 if ((offset + bytes) & (align - 1)) {
1745 QEMUIOVector tail_qiov;
1746 struct iovec tail_iov;
1747 size_t tail_bytes;
1748 bool waited;
1749
1750 mark_request_serialising(&req, align);
1751 waited = wait_serialising_requests(&req);
1752 assert(!waited || !use_local_qiov);
1753
1754 tail_buf = qemu_blockalign(bs, align);
1755 tail_iov = (struct iovec) {
1756 .iov_base = tail_buf,
1757 .iov_len = align,
1758 };
1759 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1760
1761 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1762 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1763 align, align, &tail_qiov, 0);
1764 if (ret < 0) {
1765 goto fail;
1766 }
1767 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1768
1769 if (!use_local_qiov) {
1770 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1771 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1772 use_local_qiov = true;
1773 }
1774
1775 tail_bytes = (offset + bytes) & (align - 1);
1776 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1777
1778 bytes = ROUND_UP(bytes, align);
1779 }
1780
1781 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1782 use_local_qiov ? &local_qiov : qiov,
1783 flags);
1784
1785 fail:
1786
1787 if (use_local_qiov) {
1788 qemu_iovec_destroy(&local_qiov);
1789 }
1790 qemu_vfree(head_buf);
1791 qemu_vfree(tail_buf);
1792 out:
1793 tracked_request_end(&req);
1794 bdrv_dec_in_flight(bs);
1795 return ret;
1796 }
1797
1798 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1799 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1800 BdrvRequestFlags flags)
1801 {
1802 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1803 return -EINVAL;
1804 }
1805
1806 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1807 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1808 }
1809
1810 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1811 int nb_sectors, QEMUIOVector *qiov)
1812 {
1813 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1814 }
1815
1816 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1817 int bytes, BdrvRequestFlags flags)
1818 {
1819 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
1820
1821 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1822 flags &= ~BDRV_REQ_MAY_UNMAP;
1823 }
1824
1825 return bdrv_co_pwritev(child, offset, bytes, NULL,
1826 BDRV_REQ_ZERO_WRITE | flags);
1827 }
1828
1829 /*
1830 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1831 */
1832 int bdrv_flush_all(void)
1833 {
1834 BdrvNextIterator it;
1835 BlockDriverState *bs = NULL;
1836 int result = 0;
1837
1838 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1839 AioContext *aio_context = bdrv_get_aio_context(bs);
1840 int ret;
1841
1842 aio_context_acquire(aio_context);
1843 ret = bdrv_flush(bs);
1844 if (ret < 0 && !result) {
1845 result = ret;
1846 }
1847 aio_context_release(aio_context);
1848 }
1849
1850 return result;
1851 }
1852
1853
1854 typedef struct BdrvCoBlockStatusData {
1855 BlockDriverState *bs;
1856 BlockDriverState *base;
1857 bool want_zero;
1858 int64_t offset;
1859 int64_t bytes;
1860 int64_t *pnum;
1861 int64_t *map;
1862 BlockDriverState **file;
1863 int ret;
1864 bool done;
1865 } BdrvCoBlockStatusData;
1866
1867 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs,
1868 bool want_zero,
1869 int64_t offset,
1870 int64_t bytes,
1871 int64_t *pnum,
1872 int64_t *map,
1873 BlockDriverState **file)
1874 {
1875 assert(bs->file && bs->file->bs);
1876 *pnum = bytes;
1877 *map = offset;
1878 *file = bs->file->bs;
1879 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
1880 }
1881
1882 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs,
1883 bool want_zero,
1884 int64_t offset,
1885 int64_t bytes,
1886 int64_t *pnum,
1887 int64_t *map,
1888 BlockDriverState **file)
1889 {
1890 assert(bs->backing && bs->backing->bs);
1891 *pnum = bytes;
1892 *map = offset;
1893 *file = bs->backing->bs;
1894 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
1895 }
1896
1897 /*
1898 * Returns the allocation status of the specified sectors.
1899 * Drivers not implementing the functionality are assumed to not support
1900 * backing files, hence all their sectors are reported as allocated.
1901 *
1902 * If 'want_zero' is true, the caller is querying for mapping
1903 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
1904 * _ZERO where possible; otherwise, the result favors larger 'pnum',
1905 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
1906 *
1907 * If 'offset' is beyond the end of the disk image the return value is
1908 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
1909 *
1910 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
1911 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
1912 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
1913 *
1914 * 'pnum' is set to the number of bytes (including and immediately
1915 * following the specified offset) that are easily known to be in the
1916 * same allocated/unallocated state. Note that a second call starting
1917 * at the original offset plus returned pnum may have the same status.
1918 * The returned value is non-zero on success except at end-of-file.
1919 *
1920 * Returns negative errno on failure. Otherwise, if the
1921 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
1922 * set to the host mapping and BDS corresponding to the guest offset.
1923 */
1924 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
1925 bool want_zero,
1926 int64_t offset, int64_t bytes,
1927 int64_t *pnum, int64_t *map,
1928 BlockDriverState **file)
1929 {
1930 int64_t total_size;
1931 int64_t n; /* bytes */
1932 int ret;
1933 int64_t local_map = 0;
1934 BlockDriverState *local_file = NULL;
1935 int64_t aligned_offset, aligned_bytes;
1936 uint32_t align;
1937
1938 assert(pnum);
1939 *pnum = 0;
1940 total_size = bdrv_getlength(bs);
1941 if (total_size < 0) {
1942 ret = total_size;
1943 goto early_out;
1944 }
1945
1946 if (offset >= total_size) {
1947 ret = BDRV_BLOCK_EOF;
1948 goto early_out;
1949 }
1950 if (!bytes) {
1951 ret = 0;
1952 goto early_out;
1953 }
1954
1955 n = total_size - offset;
1956 if (n < bytes) {
1957 bytes = n;
1958 }
1959
1960 /* Must be non-NULL or bdrv_getlength() would have failed */
1961 assert(bs->drv);
1962 if (!bs->drv->bdrv_co_block_status) {
1963 *pnum = bytes;
1964 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1965 if (offset + bytes == total_size) {
1966 ret |= BDRV_BLOCK_EOF;
1967 }
1968 if (bs->drv->protocol_name) {
1969 ret |= BDRV_BLOCK_OFFSET_VALID;
1970 local_map = offset;
1971 local_file = bs;
1972 }
1973 goto early_out;
1974 }
1975
1976 bdrv_inc_in_flight(bs);
1977
1978 /* Round out to request_alignment boundaries */
1979 align = bs->bl.request_alignment;
1980 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
1981 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
1982
1983 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
1984 aligned_bytes, pnum, &local_map,
1985 &local_file);
1986 if (ret < 0) {
1987 *pnum = 0;
1988 goto out;
1989 }
1990
1991 /*
1992 * The driver's result must be a non-zero multiple of request_alignment.
1993 * Clamp pnum and adjust map to original request.
1994 */
1995 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
1996 align > offset - aligned_offset);
1997 *pnum -= offset - aligned_offset;
1998 if (*pnum > bytes) {
1999 *pnum = bytes;
2000 }
2001 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2002 local_map += offset - aligned_offset;
2003 }
2004
2005 if (ret & BDRV_BLOCK_RAW) {
2006 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2007 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2008 *pnum, pnum, &local_map, &local_file);
2009 goto out;
2010 }
2011
2012 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2013 ret |= BDRV_BLOCK_ALLOCATED;
2014 } else if (want_zero) {
2015 if (bdrv_unallocated_blocks_are_zero(bs)) {
2016 ret |= BDRV_BLOCK_ZERO;
2017 } else if (bs->backing) {
2018 BlockDriverState *bs2 = bs->backing->bs;
2019 int64_t size2 = bdrv_getlength(bs2);
2020
2021 if (size2 >= 0 && offset >= size2) {
2022 ret |= BDRV_BLOCK_ZERO;
2023 }
2024 }
2025 }
2026
2027 if (want_zero && local_file && local_file != bs &&
2028 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2029 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2030 int64_t file_pnum;
2031 int ret2;
2032
2033 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2034 *pnum, &file_pnum, NULL, NULL);
2035 if (ret2 >= 0) {
2036 /* Ignore errors. This is just providing extra information, it
2037 * is useful but not necessary.
2038 */
2039 if (ret2 & BDRV_BLOCK_EOF &&
2040 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2041 /*
2042 * It is valid for the format block driver to read
2043 * beyond the end of the underlying file's current
2044 * size; such areas read as zero.
2045 */
2046 ret |= BDRV_BLOCK_ZERO;
2047 } else {
2048 /* Limit request to the range reported by the protocol driver */
2049 *pnum = file_pnum;
2050 ret |= (ret2 & BDRV_BLOCK_ZERO);
2051 }
2052 }
2053 }
2054
2055 out:
2056 bdrv_dec_in_flight(bs);
2057 if (ret >= 0 && offset + *pnum == total_size) {
2058 ret |= BDRV_BLOCK_EOF;
2059 }
2060 early_out:
2061 if (file) {
2062 *file = local_file;
2063 }
2064 if (map) {
2065 *map = local_map;
2066 }
2067 return ret;
2068 }
2069
2070 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2071 BlockDriverState *base,
2072 bool want_zero,
2073 int64_t offset,
2074 int64_t bytes,
2075 int64_t *pnum,
2076 int64_t *map,
2077 BlockDriverState **file)
2078 {
2079 BlockDriverState *p;
2080 int ret = 0;
2081 bool first = true;
2082
2083 assert(bs != base);
2084 for (p = bs; p != base; p = backing_bs(p)) {
2085 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2086 file);
2087 if (ret < 0) {
2088 break;
2089 }
2090 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
2091 /*
2092 * Reading beyond the end of the file continues to read
2093 * zeroes, but we can only widen the result to the
2094 * unallocated length we learned from an earlier
2095 * iteration.
2096 */
2097 *pnum = bytes;
2098 }
2099 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
2100 break;
2101 }
2102 /* [offset, pnum] unallocated on this layer, which could be only
2103 * the first part of [offset, bytes]. */
2104 bytes = MIN(bytes, *pnum);
2105 first = false;
2106 }
2107 return ret;
2108 }
2109
2110 /* Coroutine wrapper for bdrv_block_status_above() */
2111 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque)
2112 {
2113 BdrvCoBlockStatusData *data = opaque;
2114
2115 data->ret = bdrv_co_block_status_above(data->bs, data->base,
2116 data->want_zero,
2117 data->offset, data->bytes,
2118 data->pnum, data->map, data->file);
2119 data->done = true;
2120 }
2121
2122 /*
2123 * Synchronous wrapper around bdrv_co_block_status_above().
2124 *
2125 * See bdrv_co_block_status_above() for details.
2126 */
2127 static int bdrv_common_block_status_above(BlockDriverState *bs,
2128 BlockDriverState *base,
2129 bool want_zero, int64_t offset,
2130 int64_t bytes, int64_t *pnum,
2131 int64_t *map,
2132 BlockDriverState **file)
2133 {
2134 Coroutine *co;
2135 BdrvCoBlockStatusData data = {
2136 .bs = bs,
2137 .base = base,
2138 .want_zero = want_zero,
2139 .offset = offset,
2140 .bytes = bytes,
2141 .pnum = pnum,
2142 .map = map,
2143 .file = file,
2144 .done = false,
2145 };
2146
2147 if (qemu_in_coroutine()) {
2148 /* Fast-path if already in coroutine context */
2149 bdrv_block_status_above_co_entry(&data);
2150 } else {
2151 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data);
2152 bdrv_coroutine_enter(bs, co);
2153 BDRV_POLL_WHILE(bs, !data.done);
2154 }
2155 return data.ret;
2156 }
2157
2158 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2159 int64_t offset, int64_t bytes, int64_t *pnum,
2160 int64_t *map, BlockDriverState **file)
2161 {
2162 return bdrv_common_block_status_above(bs, base, true, offset, bytes,
2163 pnum, map, file);
2164 }
2165
2166 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2167 int64_t *pnum, int64_t *map, BlockDriverState **file)
2168 {
2169 return bdrv_block_status_above(bs, backing_bs(bs),
2170 offset, bytes, pnum, map, file);
2171 }
2172
2173 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2174 int64_t bytes, int64_t *pnum)
2175 {
2176 int ret;
2177 int64_t dummy;
2178
2179 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset,
2180 bytes, pnum ? pnum : &dummy, NULL,
2181 NULL);
2182 if (ret < 0) {
2183 return ret;
2184 }
2185 return !!(ret & BDRV_BLOCK_ALLOCATED);
2186 }
2187
2188 /*
2189 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2190 *
2191 * Return true if (a prefix of) the given range is allocated in any image
2192 * between BASE and TOP (inclusive). BASE can be NULL to check if the given
2193 * offset is allocated in any image of the chain. Return false otherwise,
2194 * or negative errno on failure.
2195 *
2196 * 'pnum' is set to the number of bytes (including and immediately
2197 * following the specified offset) that are known to be in the same
2198 * allocated/unallocated state. Note that a subsequent call starting
2199 * at 'offset + *pnum' may return the same allocation status (in other
2200 * words, the result is not necessarily the maximum possible range);
2201 * but 'pnum' will only be 0 when end of file is reached.
2202 *
2203 */
2204 int bdrv_is_allocated_above(BlockDriverState *top,
2205 BlockDriverState *base,
2206 int64_t offset, int64_t bytes, int64_t *pnum)
2207 {
2208 BlockDriverState *intermediate;
2209 int ret;
2210 int64_t n = bytes;
2211
2212 intermediate = top;
2213 while (intermediate && intermediate != base) {
2214 int64_t pnum_inter;
2215 int64_t size_inter;
2216
2217 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2218 if (ret < 0) {
2219 return ret;
2220 }
2221 if (ret) {
2222 *pnum = pnum_inter;
2223 return 1;
2224 }
2225
2226 size_inter = bdrv_getlength(intermediate);
2227 if (size_inter < 0) {
2228 return size_inter;
2229 }
2230 if (n > pnum_inter &&
2231 (intermediate == top || offset + pnum_inter < size_inter)) {
2232 n = pnum_inter;
2233 }
2234
2235 intermediate = backing_bs(intermediate);
2236 }
2237
2238 *pnum = n;
2239 return 0;
2240 }
2241
2242 typedef struct BdrvVmstateCo {
2243 BlockDriverState *bs;
2244 QEMUIOVector *qiov;
2245 int64_t pos;
2246 bool is_read;
2247 int ret;
2248 } BdrvVmstateCo;
2249
2250 static int coroutine_fn
2251 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2252 bool is_read)
2253 {
2254 BlockDriver *drv = bs->drv;
2255 int ret = -ENOTSUP;
2256
2257 bdrv_inc_in_flight(bs);
2258
2259 if (!drv) {
2260 ret = -ENOMEDIUM;
2261 } else if (drv->bdrv_load_vmstate) {
2262 if (is_read) {
2263 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2264 } else {
2265 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2266 }
2267 } else if (bs->file) {
2268 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2269 }
2270
2271 bdrv_dec_in_flight(bs);
2272 return ret;
2273 }
2274
2275 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2276 {
2277 BdrvVmstateCo *co = opaque;
2278 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2279 }
2280
2281 static inline int
2282 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2283 bool is_read)
2284 {
2285 if (qemu_in_coroutine()) {
2286 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2287 } else {
2288 BdrvVmstateCo data = {
2289 .bs = bs,
2290 .qiov = qiov,
2291 .pos = pos,
2292 .is_read = is_read,
2293 .ret = -EINPROGRESS,
2294 };
2295 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2296
2297 bdrv_coroutine_enter(bs, co);
2298 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2299 return data.ret;
2300 }
2301 }
2302
2303 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2304 int64_t pos, int size)
2305 {
2306 QEMUIOVector qiov;
2307 struct iovec iov = {
2308 .iov_base = (void *) buf,
2309 .iov_len = size,
2310 };
2311 int ret;
2312
2313 qemu_iovec_init_external(&qiov, &iov, 1);
2314
2315 ret = bdrv_writev_vmstate(bs, &qiov, pos);
2316 if (ret < 0) {
2317 return ret;
2318 }
2319
2320 return size;
2321 }
2322
2323 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2324 {
2325 return bdrv_rw_vmstate(bs, qiov, pos, false);
2326 }
2327
2328 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2329 int64_t pos, int size)
2330 {
2331 QEMUIOVector qiov;
2332 struct iovec iov = {
2333 .iov_base = buf,
2334 .iov_len = size,
2335 };
2336 int ret;
2337
2338 qemu_iovec_init_external(&qiov, &iov, 1);
2339 ret = bdrv_readv_vmstate(bs, &qiov, pos);
2340 if (ret < 0) {
2341 return ret;
2342 }
2343
2344 return size;
2345 }
2346
2347 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2348 {
2349 return bdrv_rw_vmstate(bs, qiov, pos, true);
2350 }
2351
2352 /**************************************************************/
2353 /* async I/Os */
2354
2355 void bdrv_aio_cancel(BlockAIOCB *acb)
2356 {
2357 qemu_aio_ref(acb);
2358 bdrv_aio_cancel_async(acb);
2359 while (acb->refcnt > 1) {
2360 if (acb->aiocb_info->get_aio_context) {
2361 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2362 } else if (acb->bs) {
2363 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2364 * assert that we're not using an I/O thread. Thread-safe
2365 * code should use bdrv_aio_cancel_async exclusively.
2366 */
2367 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2368 aio_poll(bdrv_get_aio_context(acb->bs), true);
2369 } else {
2370 abort();
2371 }
2372 }
2373 qemu_aio_unref(acb);
2374 }
2375
2376 /* Async version of aio cancel. The caller is not blocked if the acb implements
2377 * cancel_async, otherwise we do nothing and let the request normally complete.
2378 * In either case the completion callback must be called. */
2379 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2380 {
2381 if (acb->aiocb_info->cancel_async) {
2382 acb->aiocb_info->cancel_async(acb);
2383 }
2384 }
2385
2386 /**************************************************************/
2387 /* Coroutine block device emulation */
2388
2389 typedef struct FlushCo {
2390 BlockDriverState *bs;
2391 int ret;
2392 } FlushCo;
2393
2394
2395 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2396 {
2397 FlushCo *rwco = opaque;
2398
2399 rwco->ret = bdrv_co_flush(rwco->bs);
2400 }
2401
2402 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2403 {
2404 int current_gen;
2405 int ret = 0;
2406
2407 bdrv_inc_in_flight(bs);
2408
2409 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2410 bdrv_is_sg(bs)) {
2411 goto early_exit;
2412 }
2413
2414 qemu_co_mutex_lock(&bs->reqs_lock);
2415 current_gen = atomic_read(&bs->write_gen);
2416
2417 /* Wait until any previous flushes are completed */
2418 while (bs->active_flush_req) {
2419 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2420 }
2421
2422 /* Flushes reach this point in nondecreasing current_gen order. */
2423 bs->active_flush_req = true;
2424 qemu_co_mutex_unlock(&bs->reqs_lock);
2425
2426 /* Write back all layers by calling one driver function */
2427 if (bs->drv->bdrv_co_flush) {
2428 ret = bs->drv->bdrv_co_flush(bs);
2429 goto out;
2430 }
2431
2432 /* Write back cached data to the OS even with cache=unsafe */
2433 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2434 if (bs->drv->bdrv_co_flush_to_os) {
2435 ret = bs->drv->bdrv_co_flush_to_os(bs);
2436 if (ret < 0) {
2437 goto out;
2438 }
2439 }
2440
2441 /* But don't actually force it to the disk with cache=unsafe */
2442 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2443 goto flush_parent;
2444 }
2445
2446 /* Check if we really need to flush anything */
2447 if (bs->flushed_gen == current_gen) {
2448 goto flush_parent;
2449 }
2450
2451 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2452 if (!bs->drv) {
2453 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2454 * (even in case of apparent success) */
2455 ret = -ENOMEDIUM;
2456 goto out;
2457 }
2458 if (bs->drv->bdrv_co_flush_to_disk) {
2459 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2460 } else if (bs->drv->bdrv_aio_flush) {
2461 BlockAIOCB *acb;
2462 CoroutineIOCompletion co = {
2463 .coroutine = qemu_coroutine_self(),
2464 };
2465
2466 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2467 if (acb == NULL) {
2468 ret = -EIO;
2469 } else {
2470 qemu_coroutine_yield();
2471 ret = co.ret;
2472 }
2473 } else {
2474 /*
2475 * Some block drivers always operate in either writethrough or unsafe
2476 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2477 * know how the server works (because the behaviour is hardcoded or
2478 * depends on server-side configuration), so we can't ensure that
2479 * everything is safe on disk. Returning an error doesn't work because
2480 * that would break guests even if the server operates in writethrough
2481 * mode.
2482 *
2483 * Let's hope the user knows what he's doing.
2484 */
2485 ret = 0;
2486 }
2487
2488 if (ret < 0) {
2489 goto out;
2490 }
2491
2492 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2493 * in the case of cache=unsafe, so there are no useless flushes.
2494 */
2495 flush_parent:
2496 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2497 out:
2498 /* Notify any pending flushes that we have completed */
2499 if (ret == 0) {
2500 bs->flushed_gen = current_gen;
2501 }
2502
2503 qemu_co_mutex_lock(&bs->reqs_lock);
2504 bs->active_flush_req = false;
2505 /* Return value is ignored - it's ok if wait queue is empty */
2506 qemu_co_queue_next(&bs->flush_queue);
2507 qemu_co_mutex_unlock(&bs->reqs_lock);
2508
2509 early_exit:
2510 bdrv_dec_in_flight(bs);
2511 return ret;
2512 }
2513
2514 int bdrv_flush(BlockDriverState *bs)
2515 {
2516 Coroutine *co;
2517 FlushCo flush_co = {
2518 .bs = bs,
2519 .ret = NOT_DONE,
2520 };
2521
2522 if (qemu_in_coroutine()) {
2523 /* Fast-path if already in coroutine context */
2524 bdrv_flush_co_entry(&flush_co);
2525 } else {
2526 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2527 bdrv_coroutine_enter(bs, co);
2528 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2529 }
2530
2531 return flush_co.ret;
2532 }
2533
2534 typedef struct DiscardCo {
2535 BlockDriverState *bs;
2536 int64_t offset;
2537 int bytes;
2538 int ret;
2539 } DiscardCo;
2540 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2541 {
2542 DiscardCo *rwco = opaque;
2543
2544 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes);
2545 }
2546
2547 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2548 int bytes)
2549 {
2550 BdrvTrackedRequest req;
2551 int max_pdiscard, ret;
2552 int head, tail, align;
2553
2554 if (!bs->drv) {
2555 return -ENOMEDIUM;
2556 }
2557
2558 if (bdrv_has_readonly_bitmaps(bs)) {
2559 return -EPERM;
2560 }
2561
2562 ret = bdrv_check_byte_request(bs, offset, bytes);
2563 if (ret < 0) {
2564 return ret;
2565 } else if (bs->read_only) {
2566 return -EPERM;
2567 }
2568 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2569
2570 /* Do nothing if disabled. */
2571 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2572 return 0;
2573 }
2574
2575 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2576 return 0;
2577 }
2578
2579 /* Discard is advisory, but some devices track and coalesce
2580 * unaligned requests, so we must pass everything down rather than
2581 * round here. Still, most devices will just silently ignore
2582 * unaligned requests (by returning -ENOTSUP), so we must fragment
2583 * the request accordingly. */
2584 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2585 assert(align % bs->bl.request_alignment == 0);
2586 head = offset % align;
2587 tail = (offset + bytes) % align;
2588
2589 bdrv_inc_in_flight(bs);
2590 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2591
2592 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2593 if (ret < 0) {
2594 goto out;
2595 }
2596
2597 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2598 align);
2599 assert(max_pdiscard >= bs->bl.request_alignment);
2600
2601 while (bytes > 0) {
2602 int num = bytes;
2603
2604 if (head) {
2605 /* Make small requests to get to alignment boundaries. */
2606 num = MIN(bytes, align - head);
2607 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2608 num %= bs->bl.request_alignment;
2609 }
2610 head = (head + num) % align;
2611 assert(num < max_pdiscard);
2612 } else if (tail) {
2613 if (num > align) {
2614 /* Shorten the request to the last aligned cluster. */
2615 num -= tail;
2616 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2617 tail > bs->bl.request_alignment) {
2618 tail %= bs->bl.request_alignment;
2619 num -= tail;
2620 }
2621 }
2622 /* limit request size */
2623 if (num > max_pdiscard) {
2624 num = max_pdiscard;
2625 }
2626
2627 if (!bs->drv) {
2628 ret = -ENOMEDIUM;
2629 goto out;
2630 }
2631 if (bs->drv->bdrv_co_pdiscard) {
2632 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2633 } else {
2634 BlockAIOCB *acb;
2635 CoroutineIOCompletion co = {
2636 .coroutine = qemu_coroutine_self(),
2637 };
2638
2639 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2640 bdrv_co_io_em_complete, &co);
2641 if (acb == NULL) {
2642 ret = -EIO;
2643 goto out;
2644 } else {
2645 qemu_coroutine_yield();
2646 ret = co.ret;
2647 }
2648 }
2649 if (ret && ret != -ENOTSUP) {
2650 goto out;
2651 }
2652
2653 offset += num;
2654 bytes -= num;
2655 }
2656 ret = 0;
2657 out:
2658 atomic_inc(&bs->write_gen);
2659 bdrv_set_dirty(bs, req.offset, req.bytes);
2660 tracked_request_end(&req);
2661 bdrv_dec_in_flight(bs);
2662 return ret;
2663 }
2664
2665 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes)
2666 {
2667 Coroutine *co;
2668 DiscardCo rwco = {
2669 .bs = bs,
2670 .offset = offset,
2671 .bytes = bytes,
2672 .ret = NOT_DONE,
2673 };
2674
2675 if (qemu_in_coroutine()) {
2676 /* Fast-path if already in coroutine context */
2677 bdrv_pdiscard_co_entry(&rwco);
2678 } else {
2679 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2680 bdrv_coroutine_enter(bs, co);
2681 BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE);
2682 }
2683
2684 return rwco.ret;
2685 }
2686
2687 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2688 {
2689 BlockDriver *drv = bs->drv;
2690 CoroutineIOCompletion co = {
2691 .coroutine = qemu_coroutine_self(),
2692 };
2693 BlockAIOCB *acb;
2694
2695 bdrv_inc_in_flight(bs);
2696 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2697 co.ret = -ENOTSUP;
2698 goto out;
2699 }
2700
2701 if (drv->bdrv_co_ioctl) {
2702 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2703 } else {
2704 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2705 if (!acb) {
2706 co.ret = -ENOTSUP;
2707 goto out;
2708 }
2709 qemu_coroutine_yield();
2710 }
2711 out:
2712 bdrv_dec_in_flight(bs);
2713 return co.ret;
2714 }
2715
2716 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2717 {
2718 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2719 }
2720
2721 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2722 {
2723 return memset(qemu_blockalign(bs, size), 0, size);
2724 }
2725
2726 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2727 {
2728 size_t align = bdrv_opt_mem_align(bs);
2729
2730 /* Ensure that NULL is never returned on success */
2731 assert(align > 0);
2732 if (size == 0) {
2733 size = align;
2734 }
2735
2736 return qemu_try_memalign(align, size);
2737 }
2738
2739 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2740 {
2741 void *mem = qemu_try_blockalign(bs, size);
2742
2743 if (mem) {
2744 memset(mem, 0, size);
2745 }
2746
2747 return mem;
2748 }
2749
2750 /*
2751 * Check if all memory in this vector is sector aligned.
2752 */
2753 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2754 {
2755 int i;
2756 size_t alignment = bdrv_min_mem_align(bs);
2757
2758 for (i = 0; i < qiov->niov; i++) {
2759 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2760 return false;
2761 }
2762 if (qiov->iov[i].iov_len % alignment) {
2763 return false;
2764 }
2765 }
2766
2767 return true;
2768 }
2769
2770 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2771 NotifierWithReturn *notifier)
2772 {
2773 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2774 }
2775
2776 void bdrv_io_plug(BlockDriverState *bs)
2777 {
2778 BdrvChild *child;
2779
2780 QLIST_FOREACH(child, &bs->children, next) {
2781 bdrv_io_plug(child->bs);
2782 }
2783
2784 if (atomic_fetch_inc(&bs->io_plugged) == 0) {
2785 BlockDriver *drv = bs->drv;
2786 if (drv && drv->bdrv_io_plug) {
2787 drv->bdrv_io_plug(bs);
2788 }
2789 }
2790 }
2791
2792 void bdrv_io_unplug(BlockDriverState *bs)
2793 {
2794 BdrvChild *child;
2795
2796 assert(bs->io_plugged);
2797 if (atomic_fetch_dec(&bs->io_plugged) == 1) {
2798 BlockDriver *drv = bs->drv;
2799 if (drv && drv->bdrv_io_unplug) {
2800 drv->bdrv_io_unplug(bs);
2801 }
2802 }
2803
2804 QLIST_FOREACH(child, &bs->children, next) {
2805 bdrv_io_unplug(child->bs);
2806 }
2807 }
2808
2809 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
2810 {
2811 BdrvChild *child;
2812
2813 if (bs->drv && bs->drv->bdrv_register_buf) {
2814 bs->drv->bdrv_register_buf(bs, host, size);
2815 }
2816 QLIST_FOREACH(child, &bs->children, next) {
2817 bdrv_register_buf(child->bs, host, size);
2818 }
2819 }
2820
2821 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
2822 {
2823 BdrvChild *child;
2824
2825 if (bs->drv && bs->drv->bdrv_unregister_buf) {
2826 bs->drv->bdrv_unregister_buf(bs, host);
2827 }
2828 QLIST_FOREACH(child, &bs->children, next) {
2829 bdrv_unregister_buf(child->bs, host);
2830 }
2831 }