]> git.proxmox.com Git - mirror_qemu.git/blob - block/io.c
block/backup: centralize copy_bitmap initialization
[mirror_qemu.git] / block / io.c
1 /*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "qemu/cutils.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 #include "qemu/main-loop.h"
36
37 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
38
39 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
40 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
41
42 static void bdrv_parent_cb_resize(BlockDriverState *bs);
43 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
44 int64_t offset, int bytes, BdrvRequestFlags flags);
45
46 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
47 bool ignore_bds_parents)
48 {
49 BdrvChild *c, *next;
50
51 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
52 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
53 continue;
54 }
55 bdrv_parent_drained_begin_single(c, false);
56 }
57 }
58
59 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
60 int *drained_end_counter)
61 {
62 assert(c->parent_quiesce_counter > 0);
63 c->parent_quiesce_counter--;
64 if (c->role->drained_end) {
65 c->role->drained_end(c, drained_end_counter);
66 }
67 }
68
69 void bdrv_parent_drained_end_single(BdrvChild *c)
70 {
71 int drained_end_counter = 0;
72 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
73 BDRV_POLL_WHILE(c->bs, atomic_read(&drained_end_counter) > 0);
74 }
75
76 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
77 bool ignore_bds_parents,
78 int *drained_end_counter)
79 {
80 BdrvChild *c;
81
82 QLIST_FOREACH(c, &bs->parents, next_parent) {
83 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
84 continue;
85 }
86 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
87 }
88 }
89
90 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
91 {
92 if (c->role->drained_poll) {
93 return c->role->drained_poll(c);
94 }
95 return false;
96 }
97
98 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
99 bool ignore_bds_parents)
100 {
101 BdrvChild *c, *next;
102 bool busy = false;
103
104 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
105 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
106 continue;
107 }
108 busy |= bdrv_parent_drained_poll_single(c);
109 }
110
111 return busy;
112 }
113
114 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
115 {
116 c->parent_quiesce_counter++;
117 if (c->role->drained_begin) {
118 c->role->drained_begin(c);
119 }
120 if (poll) {
121 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
122 }
123 }
124
125 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
126 {
127 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
128 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
129 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
130 src->opt_mem_alignment);
131 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
132 src->min_mem_alignment);
133 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
134 }
135
136 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
137 {
138 BlockDriver *drv = bs->drv;
139 Error *local_err = NULL;
140
141 memset(&bs->bl, 0, sizeof(bs->bl));
142
143 if (!drv) {
144 return;
145 }
146
147 /* Default alignment based on whether driver has byte interface */
148 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
149 drv->bdrv_aio_preadv) ? 1 : 512;
150
151 /* Take some limits from the children as a default */
152 if (bs->file) {
153 bdrv_refresh_limits(bs->file->bs, &local_err);
154 if (local_err) {
155 error_propagate(errp, local_err);
156 return;
157 }
158 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
159 } else {
160 bs->bl.min_mem_alignment = 512;
161 bs->bl.opt_mem_alignment = getpagesize();
162
163 /* Safe default since most protocols use readv()/writev()/etc */
164 bs->bl.max_iov = IOV_MAX;
165 }
166
167 if (bs->backing) {
168 bdrv_refresh_limits(bs->backing->bs, &local_err);
169 if (local_err) {
170 error_propagate(errp, local_err);
171 return;
172 }
173 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
174 }
175
176 /* Then let the driver override it */
177 if (drv->bdrv_refresh_limits) {
178 drv->bdrv_refresh_limits(bs, errp);
179 }
180 }
181
182 /**
183 * The copy-on-read flag is actually a reference count so multiple users may
184 * use the feature without worrying about clobbering its previous state.
185 * Copy-on-read stays enabled until all users have called to disable it.
186 */
187 void bdrv_enable_copy_on_read(BlockDriverState *bs)
188 {
189 atomic_inc(&bs->copy_on_read);
190 }
191
192 void bdrv_disable_copy_on_read(BlockDriverState *bs)
193 {
194 int old = atomic_fetch_dec(&bs->copy_on_read);
195 assert(old >= 1);
196 }
197
198 typedef struct {
199 Coroutine *co;
200 BlockDriverState *bs;
201 bool done;
202 bool begin;
203 bool recursive;
204 bool poll;
205 BdrvChild *parent;
206 bool ignore_bds_parents;
207 int *drained_end_counter;
208 } BdrvCoDrainData;
209
210 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
211 {
212 BdrvCoDrainData *data = opaque;
213 BlockDriverState *bs = data->bs;
214
215 if (data->begin) {
216 bs->drv->bdrv_co_drain_begin(bs);
217 } else {
218 bs->drv->bdrv_co_drain_end(bs);
219 }
220
221 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
222 atomic_mb_set(&data->done, true);
223 if (!data->begin) {
224 atomic_dec(data->drained_end_counter);
225 }
226 bdrv_dec_in_flight(bs);
227
228 g_free(data);
229 }
230
231 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
232 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
233 int *drained_end_counter)
234 {
235 BdrvCoDrainData *data;
236
237 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
238 (!begin && !bs->drv->bdrv_co_drain_end)) {
239 return;
240 }
241
242 data = g_new(BdrvCoDrainData, 1);
243 *data = (BdrvCoDrainData) {
244 .bs = bs,
245 .done = false,
246 .begin = begin,
247 .drained_end_counter = drained_end_counter,
248 };
249
250 if (!begin) {
251 atomic_inc(drained_end_counter);
252 }
253
254 /* Make sure the driver callback completes during the polling phase for
255 * drain_begin. */
256 bdrv_inc_in_flight(bs);
257 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
258 aio_co_schedule(bdrv_get_aio_context(bs), data->co);
259 }
260
261 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
262 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
263 BdrvChild *ignore_parent, bool ignore_bds_parents)
264 {
265 BdrvChild *child, *next;
266
267 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
268 return true;
269 }
270
271 if (atomic_read(&bs->in_flight)) {
272 return true;
273 }
274
275 if (recursive) {
276 assert(!ignore_bds_parents);
277 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
278 if (bdrv_drain_poll(child->bs, recursive, child, false)) {
279 return true;
280 }
281 }
282 }
283
284 return false;
285 }
286
287 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
288 BdrvChild *ignore_parent)
289 {
290 return bdrv_drain_poll(bs, recursive, ignore_parent, false);
291 }
292
293 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
294 BdrvChild *parent, bool ignore_bds_parents,
295 bool poll);
296 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
297 BdrvChild *parent, bool ignore_bds_parents,
298 int *drained_end_counter);
299
300 static void bdrv_co_drain_bh_cb(void *opaque)
301 {
302 BdrvCoDrainData *data = opaque;
303 Coroutine *co = data->co;
304 BlockDriverState *bs = data->bs;
305
306 if (bs) {
307 AioContext *ctx = bdrv_get_aio_context(bs);
308 AioContext *co_ctx = qemu_coroutine_get_aio_context(co);
309
310 /*
311 * When the coroutine yielded, the lock for its home context was
312 * released, so we need to re-acquire it here. If it explicitly
313 * acquired a different context, the lock is still held and we don't
314 * want to lock it a second time (or AIO_WAIT_WHILE() would hang).
315 */
316 if (ctx == co_ctx) {
317 aio_context_acquire(ctx);
318 }
319 bdrv_dec_in_flight(bs);
320 if (data->begin) {
321 assert(!data->drained_end_counter);
322 bdrv_do_drained_begin(bs, data->recursive, data->parent,
323 data->ignore_bds_parents, data->poll);
324 } else {
325 assert(!data->poll);
326 bdrv_do_drained_end(bs, data->recursive, data->parent,
327 data->ignore_bds_parents,
328 data->drained_end_counter);
329 }
330 if (ctx == co_ctx) {
331 aio_context_release(ctx);
332 }
333 } else {
334 assert(data->begin);
335 bdrv_drain_all_begin();
336 }
337
338 data->done = true;
339 aio_co_wake(co);
340 }
341
342 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
343 bool begin, bool recursive,
344 BdrvChild *parent,
345 bool ignore_bds_parents,
346 bool poll,
347 int *drained_end_counter)
348 {
349 BdrvCoDrainData data;
350
351 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
352 * other coroutines run if they were queued by aio_co_enter(). */
353
354 assert(qemu_in_coroutine());
355 data = (BdrvCoDrainData) {
356 .co = qemu_coroutine_self(),
357 .bs = bs,
358 .done = false,
359 .begin = begin,
360 .recursive = recursive,
361 .parent = parent,
362 .ignore_bds_parents = ignore_bds_parents,
363 .poll = poll,
364 .drained_end_counter = drained_end_counter,
365 };
366
367 if (bs) {
368 bdrv_inc_in_flight(bs);
369 }
370 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
371 bdrv_co_drain_bh_cb, &data);
372
373 qemu_coroutine_yield();
374 /* If we are resumed from some other event (such as an aio completion or a
375 * timer callback), it is a bug in the caller that should be fixed. */
376 assert(data.done);
377 }
378
379 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
380 BdrvChild *parent, bool ignore_bds_parents)
381 {
382 assert(!qemu_in_coroutine());
383
384 /* Stop things in parent-to-child order */
385 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
386 aio_disable_external(bdrv_get_aio_context(bs));
387 }
388
389 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
390 bdrv_drain_invoke(bs, true, NULL);
391 }
392
393 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
394 BdrvChild *parent, bool ignore_bds_parents,
395 bool poll)
396 {
397 BdrvChild *child, *next;
398
399 if (qemu_in_coroutine()) {
400 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
401 poll, NULL);
402 return;
403 }
404
405 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
406
407 if (recursive) {
408 assert(!ignore_bds_parents);
409 bs->recursive_quiesce_counter++;
410 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
411 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
412 false);
413 }
414 }
415
416 /*
417 * Wait for drained requests to finish.
418 *
419 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
420 * call is needed so things in this AioContext can make progress even
421 * though we don't return to the main AioContext loop - this automatically
422 * includes other nodes in the same AioContext and therefore all child
423 * nodes.
424 */
425 if (poll) {
426 assert(!ignore_bds_parents);
427 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
428 }
429 }
430
431 void bdrv_drained_begin(BlockDriverState *bs)
432 {
433 bdrv_do_drained_begin(bs, false, NULL, false, true);
434 }
435
436 void bdrv_subtree_drained_begin(BlockDriverState *bs)
437 {
438 bdrv_do_drained_begin(bs, true, NULL, false, true);
439 }
440
441 /**
442 * This function does not poll, nor must any of its recursively called
443 * functions. The *drained_end_counter pointee will be incremented
444 * once for every background operation scheduled, and decremented once
445 * the operation settles. Therefore, the pointer must remain valid
446 * until the pointee reaches 0. That implies that whoever sets up the
447 * pointee has to poll until it is 0.
448 *
449 * We use atomic operations to access *drained_end_counter, because
450 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
451 * @bs may contain nodes in different AioContexts,
452 * (2) bdrv_drain_all_end() uses the same counter for all nodes,
453 * regardless of which AioContext they are in.
454 */
455 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
456 BdrvChild *parent, bool ignore_bds_parents,
457 int *drained_end_counter)
458 {
459 BdrvChild *child;
460 int old_quiesce_counter;
461
462 assert(drained_end_counter != NULL);
463
464 if (qemu_in_coroutine()) {
465 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
466 false, drained_end_counter);
467 return;
468 }
469 assert(bs->quiesce_counter > 0);
470
471 /* Re-enable things in child-to-parent order */
472 bdrv_drain_invoke(bs, false, drained_end_counter);
473 bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
474 drained_end_counter);
475
476 old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter);
477 if (old_quiesce_counter == 1) {
478 aio_enable_external(bdrv_get_aio_context(bs));
479 }
480
481 if (recursive) {
482 assert(!ignore_bds_parents);
483 bs->recursive_quiesce_counter--;
484 QLIST_FOREACH(child, &bs->children, next) {
485 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
486 drained_end_counter);
487 }
488 }
489 }
490
491 void bdrv_drained_end(BlockDriverState *bs)
492 {
493 int drained_end_counter = 0;
494 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
495 BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0);
496 }
497
498 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
499 {
500 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
501 }
502
503 void bdrv_subtree_drained_end(BlockDriverState *bs)
504 {
505 int drained_end_counter = 0;
506 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
507 BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0);
508 }
509
510 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
511 {
512 int i;
513
514 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
515 bdrv_do_drained_begin(child->bs, true, child, false, true);
516 }
517 }
518
519 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
520 {
521 int drained_end_counter = 0;
522 int i;
523
524 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
525 bdrv_do_drained_end(child->bs, true, child, false,
526 &drained_end_counter);
527 }
528
529 BDRV_POLL_WHILE(child->bs, atomic_read(&drained_end_counter) > 0);
530 }
531
532 /*
533 * Wait for pending requests to complete on a single BlockDriverState subtree,
534 * and suspend block driver's internal I/O until next request arrives.
535 *
536 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
537 * AioContext.
538 */
539 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
540 {
541 assert(qemu_in_coroutine());
542 bdrv_drained_begin(bs);
543 bdrv_drained_end(bs);
544 }
545
546 void bdrv_drain(BlockDriverState *bs)
547 {
548 bdrv_drained_begin(bs);
549 bdrv_drained_end(bs);
550 }
551
552 static void bdrv_drain_assert_idle(BlockDriverState *bs)
553 {
554 BdrvChild *child, *next;
555
556 assert(atomic_read(&bs->in_flight) == 0);
557 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
558 bdrv_drain_assert_idle(child->bs);
559 }
560 }
561
562 unsigned int bdrv_drain_all_count = 0;
563
564 static bool bdrv_drain_all_poll(void)
565 {
566 BlockDriverState *bs = NULL;
567 bool result = false;
568
569 /* bdrv_drain_poll() can't make changes to the graph and we are holding the
570 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
571 while ((bs = bdrv_next_all_states(bs))) {
572 AioContext *aio_context = bdrv_get_aio_context(bs);
573 aio_context_acquire(aio_context);
574 result |= bdrv_drain_poll(bs, false, NULL, true);
575 aio_context_release(aio_context);
576 }
577
578 return result;
579 }
580
581 /*
582 * Wait for pending requests to complete across all BlockDriverStates
583 *
584 * This function does not flush data to disk, use bdrv_flush_all() for that
585 * after calling this function.
586 *
587 * This pauses all block jobs and disables external clients. It must
588 * be paired with bdrv_drain_all_end().
589 *
590 * NOTE: no new block jobs or BlockDriverStates can be created between
591 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
592 */
593 void bdrv_drain_all_begin(void)
594 {
595 BlockDriverState *bs = NULL;
596
597 if (qemu_in_coroutine()) {
598 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
599 return;
600 }
601
602 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
603 * loop AioContext, so make sure we're in the main context. */
604 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
605 assert(bdrv_drain_all_count < INT_MAX);
606 bdrv_drain_all_count++;
607
608 /* Quiesce all nodes, without polling in-flight requests yet. The graph
609 * cannot change during this loop. */
610 while ((bs = bdrv_next_all_states(bs))) {
611 AioContext *aio_context = bdrv_get_aio_context(bs);
612
613 aio_context_acquire(aio_context);
614 bdrv_do_drained_begin(bs, false, NULL, true, false);
615 aio_context_release(aio_context);
616 }
617
618 /* Now poll the in-flight requests */
619 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
620
621 while ((bs = bdrv_next_all_states(bs))) {
622 bdrv_drain_assert_idle(bs);
623 }
624 }
625
626 void bdrv_drain_all_end(void)
627 {
628 BlockDriverState *bs = NULL;
629 int drained_end_counter = 0;
630
631 while ((bs = bdrv_next_all_states(bs))) {
632 AioContext *aio_context = bdrv_get_aio_context(bs);
633
634 aio_context_acquire(aio_context);
635 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
636 aio_context_release(aio_context);
637 }
638
639 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
640 AIO_WAIT_WHILE(NULL, atomic_read(&drained_end_counter) > 0);
641
642 assert(bdrv_drain_all_count > 0);
643 bdrv_drain_all_count--;
644 }
645
646 void bdrv_drain_all(void)
647 {
648 bdrv_drain_all_begin();
649 bdrv_drain_all_end();
650 }
651
652 /**
653 * Remove an active request from the tracked requests list
654 *
655 * This function should be called when a tracked request is completing.
656 */
657 static void tracked_request_end(BdrvTrackedRequest *req)
658 {
659 if (req->serialising) {
660 atomic_dec(&req->bs->serialising_in_flight);
661 }
662
663 qemu_co_mutex_lock(&req->bs->reqs_lock);
664 QLIST_REMOVE(req, list);
665 qemu_co_queue_restart_all(&req->wait_queue);
666 qemu_co_mutex_unlock(&req->bs->reqs_lock);
667 }
668
669 /**
670 * Add an active request to the tracked requests list
671 */
672 static void tracked_request_begin(BdrvTrackedRequest *req,
673 BlockDriverState *bs,
674 int64_t offset,
675 uint64_t bytes,
676 enum BdrvTrackedRequestType type)
677 {
678 assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes);
679
680 *req = (BdrvTrackedRequest){
681 .bs = bs,
682 .offset = offset,
683 .bytes = bytes,
684 .type = type,
685 .co = qemu_coroutine_self(),
686 .serialising = false,
687 .overlap_offset = offset,
688 .overlap_bytes = bytes,
689 };
690
691 qemu_co_queue_init(&req->wait_queue);
692
693 qemu_co_mutex_lock(&bs->reqs_lock);
694 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
695 qemu_co_mutex_unlock(&bs->reqs_lock);
696 }
697
698 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
699 {
700 int64_t overlap_offset = req->offset & ~(align - 1);
701 uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
702 - overlap_offset;
703
704 if (!req->serialising) {
705 atomic_inc(&req->bs->serialising_in_flight);
706 req->serialising = true;
707 }
708
709 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
710 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
711 }
712
713 static bool is_request_serialising_and_aligned(BdrvTrackedRequest *req)
714 {
715 /*
716 * If the request is serialising, overlap_offset and overlap_bytes are set,
717 * so we can check if the request is aligned. Otherwise, don't care and
718 * return false.
719 */
720
721 return req->serialising && (req->offset == req->overlap_offset) &&
722 (req->bytes == req->overlap_bytes);
723 }
724
725 /**
726 * Round a region to cluster boundaries
727 */
728 void bdrv_round_to_clusters(BlockDriverState *bs,
729 int64_t offset, int64_t bytes,
730 int64_t *cluster_offset,
731 int64_t *cluster_bytes)
732 {
733 BlockDriverInfo bdi;
734
735 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
736 *cluster_offset = offset;
737 *cluster_bytes = bytes;
738 } else {
739 int64_t c = bdi.cluster_size;
740 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
741 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
742 }
743 }
744
745 static int bdrv_get_cluster_size(BlockDriverState *bs)
746 {
747 BlockDriverInfo bdi;
748 int ret;
749
750 ret = bdrv_get_info(bs, &bdi);
751 if (ret < 0 || bdi.cluster_size == 0) {
752 return bs->bl.request_alignment;
753 } else {
754 return bdi.cluster_size;
755 }
756 }
757
758 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
759 int64_t offset, uint64_t bytes)
760 {
761 /* aaaa bbbb */
762 if (offset >= req->overlap_offset + req->overlap_bytes) {
763 return false;
764 }
765 /* bbbb aaaa */
766 if (req->overlap_offset >= offset + bytes) {
767 return false;
768 }
769 return true;
770 }
771
772 void bdrv_inc_in_flight(BlockDriverState *bs)
773 {
774 atomic_inc(&bs->in_flight);
775 }
776
777 void bdrv_wakeup(BlockDriverState *bs)
778 {
779 aio_wait_kick();
780 }
781
782 void bdrv_dec_in_flight(BlockDriverState *bs)
783 {
784 atomic_dec(&bs->in_flight);
785 bdrv_wakeup(bs);
786 }
787
788 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
789 {
790 BlockDriverState *bs = self->bs;
791 BdrvTrackedRequest *req;
792 bool retry;
793 bool waited = false;
794
795 if (!atomic_read(&bs->serialising_in_flight)) {
796 return false;
797 }
798
799 do {
800 retry = false;
801 qemu_co_mutex_lock(&bs->reqs_lock);
802 QLIST_FOREACH(req, &bs->tracked_requests, list) {
803 if (req == self || (!req->serialising && !self->serialising)) {
804 continue;
805 }
806 if (tracked_request_overlaps(req, self->overlap_offset,
807 self->overlap_bytes))
808 {
809 /* Hitting this means there was a reentrant request, for
810 * example, a block driver issuing nested requests. This must
811 * never happen since it means deadlock.
812 */
813 assert(qemu_coroutine_self() != req->co);
814
815 /* If the request is already (indirectly) waiting for us, or
816 * will wait for us as soon as it wakes up, then just go on
817 * (instead of producing a deadlock in the former case). */
818 if (!req->waiting_for) {
819 self->waiting_for = req;
820 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
821 self->waiting_for = NULL;
822 retry = true;
823 waited = true;
824 break;
825 }
826 }
827 }
828 qemu_co_mutex_unlock(&bs->reqs_lock);
829 } while (retry);
830
831 return waited;
832 }
833
834 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
835 size_t size)
836 {
837 if (size > BDRV_REQUEST_MAX_BYTES) {
838 return -EIO;
839 }
840
841 if (!bdrv_is_inserted(bs)) {
842 return -ENOMEDIUM;
843 }
844
845 if (offset < 0) {
846 return -EIO;
847 }
848
849 return 0;
850 }
851
852 typedef struct RwCo {
853 BdrvChild *child;
854 int64_t offset;
855 QEMUIOVector *qiov;
856 bool is_write;
857 int ret;
858 BdrvRequestFlags flags;
859 } RwCo;
860
861 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
862 {
863 RwCo *rwco = opaque;
864
865 if (!rwco->is_write) {
866 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
867 rwco->qiov->size, rwco->qiov,
868 rwco->flags);
869 } else {
870 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
871 rwco->qiov->size, rwco->qiov,
872 rwco->flags);
873 }
874 aio_wait_kick();
875 }
876
877 /*
878 * Process a vectored synchronous request using coroutines
879 */
880 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
881 QEMUIOVector *qiov, bool is_write,
882 BdrvRequestFlags flags)
883 {
884 Coroutine *co;
885 RwCo rwco = {
886 .child = child,
887 .offset = offset,
888 .qiov = qiov,
889 .is_write = is_write,
890 .ret = NOT_DONE,
891 .flags = flags,
892 };
893
894 if (qemu_in_coroutine()) {
895 /* Fast-path if already in coroutine context */
896 bdrv_rw_co_entry(&rwco);
897 } else {
898 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
899 bdrv_coroutine_enter(child->bs, co);
900 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
901 }
902 return rwco.ret;
903 }
904
905 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
906 int bytes, BdrvRequestFlags flags)
907 {
908 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
909
910 return bdrv_prwv_co(child, offset, &qiov, true,
911 BDRV_REQ_ZERO_WRITE | flags);
912 }
913
914 /*
915 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
916 * The operation is sped up by checking the block status and only writing
917 * zeroes to the device if they currently do not return zeroes. Optional
918 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
919 * BDRV_REQ_FUA).
920 *
921 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
922 */
923 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
924 {
925 int ret;
926 int64_t target_size, bytes, offset = 0;
927 BlockDriverState *bs = child->bs;
928
929 target_size = bdrv_getlength(bs);
930 if (target_size < 0) {
931 return target_size;
932 }
933
934 for (;;) {
935 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
936 if (bytes <= 0) {
937 return 0;
938 }
939 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
940 if (ret < 0) {
941 return ret;
942 }
943 if (ret & BDRV_BLOCK_ZERO) {
944 offset += bytes;
945 continue;
946 }
947 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
948 if (ret < 0) {
949 return ret;
950 }
951 offset += bytes;
952 }
953 }
954
955 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
956 {
957 int ret;
958
959 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
960 if (ret < 0) {
961 return ret;
962 }
963
964 return qiov->size;
965 }
966
967 /* See bdrv_pwrite() for the return codes */
968 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
969 {
970 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
971
972 if (bytes < 0) {
973 return -EINVAL;
974 }
975
976 return bdrv_preadv(child, offset, &qiov);
977 }
978
979 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
980 {
981 int ret;
982
983 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
984 if (ret < 0) {
985 return ret;
986 }
987
988 return qiov->size;
989 }
990
991 /* Return no. of bytes on success or < 0 on error. Important errors are:
992 -EIO generic I/O error (may happen for all errors)
993 -ENOMEDIUM No media inserted.
994 -EINVAL Invalid offset or number of bytes
995 -EACCES Trying to write a read-only device
996 */
997 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
998 {
999 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1000
1001 if (bytes < 0) {
1002 return -EINVAL;
1003 }
1004
1005 return bdrv_pwritev(child, offset, &qiov);
1006 }
1007
1008 /*
1009 * Writes to the file and ensures that no writes are reordered across this
1010 * request (acts as a barrier)
1011 *
1012 * Returns 0 on success, -errno in error cases.
1013 */
1014 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
1015 const void *buf, int count)
1016 {
1017 int ret;
1018
1019 ret = bdrv_pwrite(child, offset, buf, count);
1020 if (ret < 0) {
1021 return ret;
1022 }
1023
1024 ret = bdrv_flush(child->bs);
1025 if (ret < 0) {
1026 return ret;
1027 }
1028
1029 return 0;
1030 }
1031
1032 typedef struct CoroutineIOCompletion {
1033 Coroutine *coroutine;
1034 int ret;
1035 } CoroutineIOCompletion;
1036
1037 static void bdrv_co_io_em_complete(void *opaque, int ret)
1038 {
1039 CoroutineIOCompletion *co = opaque;
1040
1041 co->ret = ret;
1042 aio_co_wake(co->coroutine);
1043 }
1044
1045 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1046 uint64_t offset, uint64_t bytes,
1047 QEMUIOVector *qiov, int flags)
1048 {
1049 BlockDriver *drv = bs->drv;
1050 int64_t sector_num;
1051 unsigned int nb_sectors;
1052
1053 assert(!(flags & ~BDRV_REQ_MASK));
1054 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1055
1056 if (!drv) {
1057 return -ENOMEDIUM;
1058 }
1059
1060 if (drv->bdrv_co_preadv) {
1061 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1062 }
1063
1064 if (drv->bdrv_aio_preadv) {
1065 BlockAIOCB *acb;
1066 CoroutineIOCompletion co = {
1067 .coroutine = qemu_coroutine_self(),
1068 };
1069
1070 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1071 bdrv_co_io_em_complete, &co);
1072 if (acb == NULL) {
1073 return -EIO;
1074 } else {
1075 qemu_coroutine_yield();
1076 return co.ret;
1077 }
1078 }
1079
1080 sector_num = offset >> BDRV_SECTOR_BITS;
1081 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1082
1083 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1084 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1085 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1086 assert(drv->bdrv_co_readv);
1087
1088 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1089 }
1090
1091 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1092 uint64_t offset, uint64_t bytes,
1093 QEMUIOVector *qiov, int flags)
1094 {
1095 BlockDriver *drv = bs->drv;
1096 int64_t sector_num;
1097 unsigned int nb_sectors;
1098 int ret;
1099
1100 assert(!(flags & ~BDRV_REQ_MASK));
1101 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1102
1103 if (!drv) {
1104 return -ENOMEDIUM;
1105 }
1106
1107 if (drv->bdrv_co_pwritev) {
1108 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1109 flags & bs->supported_write_flags);
1110 flags &= ~bs->supported_write_flags;
1111 goto emulate_flags;
1112 }
1113
1114 if (drv->bdrv_aio_pwritev) {
1115 BlockAIOCB *acb;
1116 CoroutineIOCompletion co = {
1117 .coroutine = qemu_coroutine_self(),
1118 };
1119
1120 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1121 flags & bs->supported_write_flags,
1122 bdrv_co_io_em_complete, &co);
1123 flags &= ~bs->supported_write_flags;
1124 if (acb == NULL) {
1125 ret = -EIO;
1126 } else {
1127 qemu_coroutine_yield();
1128 ret = co.ret;
1129 }
1130 goto emulate_flags;
1131 }
1132
1133 sector_num = offset >> BDRV_SECTOR_BITS;
1134 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1135
1136 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1137 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1138 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1139
1140 assert(drv->bdrv_co_writev);
1141 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1142 flags & bs->supported_write_flags);
1143 flags &= ~bs->supported_write_flags;
1144
1145 emulate_flags:
1146 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1147 ret = bdrv_co_flush(bs);
1148 }
1149
1150 return ret;
1151 }
1152
1153 static int coroutine_fn
1154 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1155 uint64_t bytes, QEMUIOVector *qiov)
1156 {
1157 BlockDriver *drv = bs->drv;
1158
1159 if (!drv) {
1160 return -ENOMEDIUM;
1161 }
1162
1163 if (!drv->bdrv_co_pwritev_compressed) {
1164 return -ENOTSUP;
1165 }
1166
1167 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1168 }
1169
1170 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1171 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1172 int flags)
1173 {
1174 BlockDriverState *bs = child->bs;
1175
1176 /* Perform I/O through a temporary buffer so that users who scribble over
1177 * their read buffer while the operation is in progress do not end up
1178 * modifying the image file. This is critical for zero-copy guest I/O
1179 * where anything might happen inside guest memory.
1180 */
1181 void *bounce_buffer;
1182
1183 BlockDriver *drv = bs->drv;
1184 QEMUIOVector local_qiov;
1185 int64_t cluster_offset;
1186 int64_t cluster_bytes;
1187 size_t skip_bytes;
1188 int ret;
1189 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1190 BDRV_REQUEST_MAX_BYTES);
1191 unsigned int progress = 0;
1192
1193 if (!drv) {
1194 return -ENOMEDIUM;
1195 }
1196
1197 /* FIXME We cannot require callers to have write permissions when all they
1198 * are doing is a read request. If we did things right, write permissions
1199 * would be obtained anyway, but internally by the copy-on-read code. As
1200 * long as it is implemented here rather than in a separate filter driver,
1201 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1202 * it could request permissions. Therefore we have to bypass the permission
1203 * system for the moment. */
1204 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1205
1206 /* Cover entire cluster so no additional backing file I/O is required when
1207 * allocating cluster in the image file. Note that this value may exceed
1208 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1209 * is one reason we loop rather than doing it all at once.
1210 */
1211 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1212 skip_bytes = offset - cluster_offset;
1213
1214 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1215 cluster_offset, cluster_bytes);
1216
1217 bounce_buffer = qemu_try_blockalign(bs,
1218 MIN(MIN(max_transfer, cluster_bytes),
1219 MAX_BOUNCE_BUFFER));
1220 if (bounce_buffer == NULL) {
1221 ret = -ENOMEM;
1222 goto err;
1223 }
1224
1225 while (cluster_bytes) {
1226 int64_t pnum;
1227
1228 ret = bdrv_is_allocated(bs, cluster_offset,
1229 MIN(cluster_bytes, max_transfer), &pnum);
1230 if (ret < 0) {
1231 /* Safe to treat errors in querying allocation as if
1232 * unallocated; we'll probably fail again soon on the
1233 * read, but at least that will set a decent errno.
1234 */
1235 pnum = MIN(cluster_bytes, max_transfer);
1236 }
1237
1238 /* Stop at EOF if the image ends in the middle of the cluster */
1239 if (ret == 0 && pnum == 0) {
1240 assert(progress >= bytes);
1241 break;
1242 }
1243
1244 assert(skip_bytes < pnum);
1245
1246 if (ret <= 0) {
1247 /* Must copy-on-read; use the bounce buffer */
1248 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1249 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1250
1251 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1252 &local_qiov, 0);
1253 if (ret < 0) {
1254 goto err;
1255 }
1256
1257 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1258 if (drv->bdrv_co_pwrite_zeroes &&
1259 buffer_is_zero(bounce_buffer, pnum)) {
1260 /* FIXME: Should we (perhaps conditionally) be setting
1261 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1262 * that still correctly reads as zero? */
1263 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1264 BDRV_REQ_WRITE_UNCHANGED);
1265 } else {
1266 /* This does not change the data on the disk, it is not
1267 * necessary to flush even in cache=writethrough mode.
1268 */
1269 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1270 &local_qiov,
1271 BDRV_REQ_WRITE_UNCHANGED);
1272 }
1273
1274 if (ret < 0) {
1275 /* It might be okay to ignore write errors for guest
1276 * requests. If this is a deliberate copy-on-read
1277 * then we don't want to ignore the error. Simply
1278 * report it in all cases.
1279 */
1280 goto err;
1281 }
1282
1283 if (!(flags & BDRV_REQ_PREFETCH)) {
1284 qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes,
1285 pnum - skip_bytes);
1286 }
1287 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1288 /* Read directly into the destination */
1289 qemu_iovec_init(&local_qiov, qiov->niov);
1290 qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes);
1291 ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size,
1292 &local_qiov, 0);
1293 qemu_iovec_destroy(&local_qiov);
1294 if (ret < 0) {
1295 goto err;
1296 }
1297 }
1298
1299 cluster_offset += pnum;
1300 cluster_bytes -= pnum;
1301 progress += pnum - skip_bytes;
1302 skip_bytes = 0;
1303 }
1304 ret = 0;
1305
1306 err:
1307 qemu_vfree(bounce_buffer);
1308 return ret;
1309 }
1310
1311 /*
1312 * Forwards an already correctly aligned request to the BlockDriver. This
1313 * handles copy on read, zeroing after EOF, and fragmentation of large
1314 * reads; any other features must be implemented by the caller.
1315 */
1316 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1317 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1318 int64_t align, QEMUIOVector *qiov, int flags)
1319 {
1320 BlockDriverState *bs = child->bs;
1321 int64_t total_bytes, max_bytes;
1322 int ret = 0;
1323 uint64_t bytes_remaining = bytes;
1324 int max_transfer;
1325
1326 assert(is_power_of_2(align));
1327 assert((offset & (align - 1)) == 0);
1328 assert((bytes & (align - 1)) == 0);
1329 assert(!qiov || bytes == qiov->size);
1330 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1331 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1332 align);
1333
1334 /* TODO: We would need a per-BDS .supported_read_flags and
1335 * potential fallback support, if we ever implement any read flags
1336 * to pass through to drivers. For now, there aren't any
1337 * passthrough flags. */
1338 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ |
1339 BDRV_REQ_PREFETCH)));
1340
1341 /* Handle Copy on Read and associated serialisation */
1342 if (flags & BDRV_REQ_COPY_ON_READ) {
1343 /* If we touch the same cluster it counts as an overlap. This
1344 * guarantees that allocating writes will be serialized and not race
1345 * with each other for the same cluster. For example, in copy-on-read
1346 * it ensures that the CoR read and write operations are atomic and
1347 * guest writes cannot interleave between them. */
1348 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1349 }
1350
1351 /* BDRV_REQ_SERIALISING is only for write operation */
1352 assert(!(flags & BDRV_REQ_SERIALISING));
1353
1354 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1355 wait_serialising_requests(req);
1356 }
1357
1358 if (flags & BDRV_REQ_COPY_ON_READ) {
1359 int64_t pnum;
1360
1361 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1362 if (ret < 0) {
1363 goto out;
1364 }
1365
1366 if (!ret || pnum != bytes) {
1367 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov, flags);
1368 goto out;
1369 } else if (flags & BDRV_REQ_PREFETCH) {
1370 goto out;
1371 }
1372 }
1373
1374 /* Forward the request to the BlockDriver, possibly fragmenting it */
1375 total_bytes = bdrv_getlength(bs);
1376 if (total_bytes < 0) {
1377 ret = total_bytes;
1378 goto out;
1379 }
1380
1381 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1382 if (bytes <= max_bytes && bytes <= max_transfer) {
1383 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1384 goto out;
1385 }
1386
1387 while (bytes_remaining) {
1388 int num;
1389
1390 if (max_bytes) {
1391 QEMUIOVector local_qiov;
1392
1393 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1394 assert(num);
1395 qemu_iovec_init(&local_qiov, qiov->niov);
1396 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1397
1398 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1399 num, &local_qiov, 0);
1400 max_bytes -= num;
1401 qemu_iovec_destroy(&local_qiov);
1402 } else {
1403 num = bytes_remaining;
1404 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1405 bytes_remaining);
1406 }
1407 if (ret < 0) {
1408 goto out;
1409 }
1410 bytes_remaining -= num;
1411 }
1412
1413 out:
1414 return ret < 0 ? ret : 0;
1415 }
1416
1417 /*
1418 * Handle a read request in coroutine context
1419 */
1420 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1421 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1422 BdrvRequestFlags flags)
1423 {
1424 BlockDriverState *bs = child->bs;
1425 BlockDriver *drv = bs->drv;
1426 BdrvTrackedRequest req;
1427
1428 uint64_t align = bs->bl.request_alignment;
1429 uint8_t *head_buf = NULL;
1430 uint8_t *tail_buf = NULL;
1431 QEMUIOVector local_qiov;
1432 bool use_local_qiov = false;
1433 int ret;
1434
1435 trace_bdrv_co_preadv(child->bs, offset, bytes, flags);
1436
1437 if (!drv) {
1438 return -ENOMEDIUM;
1439 }
1440
1441 ret = bdrv_check_byte_request(bs, offset, bytes);
1442 if (ret < 0) {
1443 return ret;
1444 }
1445
1446 bdrv_inc_in_flight(bs);
1447
1448 /* Don't do copy-on-read if we read data before write operation */
1449 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1450 flags |= BDRV_REQ_COPY_ON_READ;
1451 }
1452
1453 /* Align read if necessary by padding qiov */
1454 if (offset & (align - 1)) {
1455 head_buf = qemu_blockalign(bs, align);
1456 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1457 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1458 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1459 use_local_qiov = true;
1460
1461 bytes += offset & (align - 1);
1462 offset = offset & ~(align - 1);
1463 }
1464
1465 if ((offset + bytes) & (align - 1)) {
1466 if (!use_local_qiov) {
1467 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1468 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1469 use_local_qiov = true;
1470 }
1471 tail_buf = qemu_blockalign(bs, align);
1472 qemu_iovec_add(&local_qiov, tail_buf,
1473 align - ((offset + bytes) & (align - 1)));
1474
1475 bytes = ROUND_UP(bytes, align);
1476 }
1477
1478 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1479 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1480 use_local_qiov ? &local_qiov : qiov,
1481 flags);
1482 tracked_request_end(&req);
1483 bdrv_dec_in_flight(bs);
1484
1485 if (use_local_qiov) {
1486 qemu_iovec_destroy(&local_qiov);
1487 qemu_vfree(head_buf);
1488 qemu_vfree(tail_buf);
1489 }
1490
1491 return ret;
1492 }
1493
1494 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1495 int64_t offset, int bytes, BdrvRequestFlags flags)
1496 {
1497 BlockDriver *drv = bs->drv;
1498 QEMUIOVector qiov;
1499 void *buf = NULL;
1500 int ret = 0;
1501 bool need_flush = false;
1502 int head = 0;
1503 int tail = 0;
1504
1505 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1506 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1507 bs->bl.request_alignment);
1508 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1509
1510 if (!drv) {
1511 return -ENOMEDIUM;
1512 }
1513
1514 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1515 return -ENOTSUP;
1516 }
1517
1518 assert(alignment % bs->bl.request_alignment == 0);
1519 head = offset % alignment;
1520 tail = (offset + bytes) % alignment;
1521 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1522 assert(max_write_zeroes >= bs->bl.request_alignment);
1523
1524 while (bytes > 0 && !ret) {
1525 int num = bytes;
1526
1527 /* Align request. Block drivers can expect the "bulk" of the request
1528 * to be aligned, and that unaligned requests do not cross cluster
1529 * boundaries.
1530 */
1531 if (head) {
1532 /* Make a small request up to the first aligned sector. For
1533 * convenience, limit this request to max_transfer even if
1534 * we don't need to fall back to writes. */
1535 num = MIN(MIN(bytes, max_transfer), alignment - head);
1536 head = (head + num) % alignment;
1537 assert(num < max_write_zeroes);
1538 } else if (tail && num > alignment) {
1539 /* Shorten the request to the last aligned sector. */
1540 num -= tail;
1541 }
1542
1543 /* limit request size */
1544 if (num > max_write_zeroes) {
1545 num = max_write_zeroes;
1546 }
1547
1548 ret = -ENOTSUP;
1549 /* First try the efficient write zeroes operation */
1550 if (drv->bdrv_co_pwrite_zeroes) {
1551 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1552 flags & bs->supported_zero_flags);
1553 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1554 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1555 need_flush = true;
1556 }
1557 } else {
1558 assert(!bs->supported_zero_flags);
1559 }
1560
1561 if (ret < 0 && !(flags & BDRV_REQ_NO_FALLBACK)) {
1562 /* Fall back to bounce buffer if write zeroes is unsupported */
1563 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1564
1565 if ((flags & BDRV_REQ_FUA) &&
1566 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1567 /* No need for bdrv_driver_pwrite() to do a fallback
1568 * flush on each chunk; use just one at the end */
1569 write_flags &= ~BDRV_REQ_FUA;
1570 need_flush = true;
1571 }
1572 num = MIN(num, max_transfer);
1573 if (buf == NULL) {
1574 buf = qemu_try_blockalign0(bs, num);
1575 if (buf == NULL) {
1576 ret = -ENOMEM;
1577 goto fail;
1578 }
1579 }
1580 qemu_iovec_init_buf(&qiov, buf, num);
1581
1582 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1583
1584 /* Keep bounce buffer around if it is big enough for all
1585 * all future requests.
1586 */
1587 if (num < max_transfer) {
1588 qemu_vfree(buf);
1589 buf = NULL;
1590 }
1591 }
1592
1593 offset += num;
1594 bytes -= num;
1595 }
1596
1597 fail:
1598 if (ret == 0 && need_flush) {
1599 ret = bdrv_co_flush(bs);
1600 }
1601 qemu_vfree(buf);
1602 return ret;
1603 }
1604
1605 static inline int coroutine_fn
1606 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes,
1607 BdrvTrackedRequest *req, int flags)
1608 {
1609 BlockDriverState *bs = child->bs;
1610 bool waited;
1611 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1612
1613 if (bs->read_only) {
1614 return -EPERM;
1615 }
1616
1617 /* BDRV_REQ_NO_SERIALISING is only for read operation */
1618 assert(!(flags & BDRV_REQ_NO_SERIALISING));
1619 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1620 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1621 assert(!(flags & ~BDRV_REQ_MASK));
1622
1623 if (flags & BDRV_REQ_SERIALISING) {
1624 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1625 }
1626
1627 waited = wait_serialising_requests(req);
1628
1629 assert(!waited || !req->serialising ||
1630 is_request_serialising_and_aligned(req));
1631 assert(req->overlap_offset <= offset);
1632 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1633 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1634
1635 switch (req->type) {
1636 case BDRV_TRACKED_WRITE:
1637 case BDRV_TRACKED_DISCARD:
1638 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1639 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1640 } else {
1641 assert(child->perm & BLK_PERM_WRITE);
1642 }
1643 return notifier_with_return_list_notify(&bs->before_write_notifiers,
1644 req);
1645 case BDRV_TRACKED_TRUNCATE:
1646 assert(child->perm & BLK_PERM_RESIZE);
1647 return 0;
1648 default:
1649 abort();
1650 }
1651 }
1652
1653 static inline void coroutine_fn
1654 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes,
1655 BdrvTrackedRequest *req, int ret)
1656 {
1657 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1658 BlockDriverState *bs = child->bs;
1659
1660 atomic_inc(&bs->write_gen);
1661
1662 /*
1663 * Discard cannot extend the image, but in error handling cases, such as
1664 * when reverting a qcow2 cluster allocation, the discarded range can pass
1665 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1666 * here. Instead, just skip it, since semantically a discard request
1667 * beyond EOF cannot expand the image anyway.
1668 */
1669 if (ret == 0 &&
1670 (req->type == BDRV_TRACKED_TRUNCATE ||
1671 end_sector > bs->total_sectors) &&
1672 req->type != BDRV_TRACKED_DISCARD) {
1673 bs->total_sectors = end_sector;
1674 bdrv_parent_cb_resize(bs);
1675 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1676 }
1677 if (req->bytes) {
1678 switch (req->type) {
1679 case BDRV_TRACKED_WRITE:
1680 stat64_max(&bs->wr_highest_offset, offset + bytes);
1681 /* fall through, to set dirty bits */
1682 case BDRV_TRACKED_DISCARD:
1683 bdrv_set_dirty(bs, offset, bytes);
1684 break;
1685 default:
1686 break;
1687 }
1688 }
1689 }
1690
1691 /*
1692 * Forwards an already correctly aligned write request to the BlockDriver,
1693 * after possibly fragmenting it.
1694 */
1695 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1696 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1697 int64_t align, QEMUIOVector *qiov, int flags)
1698 {
1699 BlockDriverState *bs = child->bs;
1700 BlockDriver *drv = bs->drv;
1701 int ret;
1702
1703 uint64_t bytes_remaining = bytes;
1704 int max_transfer;
1705
1706 if (!drv) {
1707 return -ENOMEDIUM;
1708 }
1709
1710 if (bdrv_has_readonly_bitmaps(bs)) {
1711 return -EPERM;
1712 }
1713
1714 assert(is_power_of_2(align));
1715 assert((offset & (align - 1)) == 0);
1716 assert((bytes & (align - 1)) == 0);
1717 assert(!qiov || bytes == qiov->size);
1718 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1719 align);
1720
1721 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
1722
1723 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1724 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1725 qemu_iovec_is_zero(qiov)) {
1726 flags |= BDRV_REQ_ZERO_WRITE;
1727 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1728 flags |= BDRV_REQ_MAY_UNMAP;
1729 }
1730 }
1731
1732 if (ret < 0) {
1733 /* Do nothing, write notifier decided to fail this request */
1734 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1735 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1736 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1737 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1738 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1739 } else if (bytes <= max_transfer) {
1740 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1741 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1742 } else {
1743 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1744 while (bytes_remaining) {
1745 int num = MIN(bytes_remaining, max_transfer);
1746 QEMUIOVector local_qiov;
1747 int local_flags = flags;
1748
1749 assert(num);
1750 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1751 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1752 /* If FUA is going to be emulated by flush, we only
1753 * need to flush on the last iteration */
1754 local_flags &= ~BDRV_REQ_FUA;
1755 }
1756 qemu_iovec_init(&local_qiov, qiov->niov);
1757 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1758
1759 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1760 num, &local_qiov, local_flags);
1761 qemu_iovec_destroy(&local_qiov);
1762 if (ret < 0) {
1763 break;
1764 }
1765 bytes_remaining -= num;
1766 }
1767 }
1768 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1769
1770 if (ret >= 0) {
1771 ret = 0;
1772 }
1773 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
1774
1775 return ret;
1776 }
1777
1778 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1779 int64_t offset,
1780 unsigned int bytes,
1781 BdrvRequestFlags flags,
1782 BdrvTrackedRequest *req)
1783 {
1784 BlockDriverState *bs = child->bs;
1785 uint8_t *buf = NULL;
1786 QEMUIOVector local_qiov;
1787 uint64_t align = bs->bl.request_alignment;
1788 unsigned int head_padding_bytes, tail_padding_bytes;
1789 int ret = 0;
1790
1791 head_padding_bytes = offset & (align - 1);
1792 tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1793
1794
1795 assert(flags & BDRV_REQ_ZERO_WRITE);
1796 if (head_padding_bytes || tail_padding_bytes) {
1797 buf = qemu_blockalign(bs, align);
1798 qemu_iovec_init_buf(&local_qiov, buf, align);
1799 }
1800 if (head_padding_bytes) {
1801 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1802
1803 /* RMW the unaligned part before head. */
1804 mark_request_serialising(req, align);
1805 wait_serialising_requests(req);
1806 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1807 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1808 align, &local_qiov, 0);
1809 if (ret < 0) {
1810 goto fail;
1811 }
1812 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1813
1814 memset(buf + head_padding_bytes, 0, zero_bytes);
1815 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1816 align, &local_qiov,
1817 flags & ~BDRV_REQ_ZERO_WRITE);
1818 if (ret < 0) {
1819 goto fail;
1820 }
1821 offset += zero_bytes;
1822 bytes -= zero_bytes;
1823 }
1824
1825 assert(!bytes || (offset & (align - 1)) == 0);
1826 if (bytes >= align) {
1827 /* Write the aligned part in the middle. */
1828 uint64_t aligned_bytes = bytes & ~(align - 1);
1829 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1830 NULL, flags);
1831 if (ret < 0) {
1832 goto fail;
1833 }
1834 bytes -= aligned_bytes;
1835 offset += aligned_bytes;
1836 }
1837
1838 assert(!bytes || (offset & (align - 1)) == 0);
1839 if (bytes) {
1840 assert(align == tail_padding_bytes + bytes);
1841 /* RMW the unaligned part after tail. */
1842 mark_request_serialising(req, align);
1843 wait_serialising_requests(req);
1844 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1845 ret = bdrv_aligned_preadv(child, req, offset, align,
1846 align, &local_qiov, 0);
1847 if (ret < 0) {
1848 goto fail;
1849 }
1850 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1851
1852 memset(buf, 0, bytes);
1853 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1854 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1855 }
1856 fail:
1857 qemu_vfree(buf);
1858 return ret;
1859
1860 }
1861
1862 /*
1863 * Handle a write request in coroutine context
1864 */
1865 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1866 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1867 BdrvRequestFlags flags)
1868 {
1869 BlockDriverState *bs = child->bs;
1870 BdrvTrackedRequest req;
1871 uint64_t align = bs->bl.request_alignment;
1872 uint8_t *head_buf = NULL;
1873 uint8_t *tail_buf = NULL;
1874 QEMUIOVector local_qiov;
1875 bool use_local_qiov = false;
1876 int ret;
1877
1878 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
1879
1880 if (!bs->drv) {
1881 return -ENOMEDIUM;
1882 }
1883
1884 ret = bdrv_check_byte_request(bs, offset, bytes);
1885 if (ret < 0) {
1886 return ret;
1887 }
1888
1889 bdrv_inc_in_flight(bs);
1890 /*
1891 * Align write if necessary by performing a read-modify-write cycle.
1892 * Pad qiov with the read parts and be sure to have a tracked request not
1893 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1894 */
1895 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1896
1897 if (flags & BDRV_REQ_ZERO_WRITE) {
1898 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1899 goto out;
1900 }
1901
1902 if (offset & (align - 1)) {
1903 QEMUIOVector head_qiov;
1904
1905 mark_request_serialising(&req, align);
1906 wait_serialising_requests(&req);
1907
1908 head_buf = qemu_blockalign(bs, align);
1909 qemu_iovec_init_buf(&head_qiov, head_buf, align);
1910
1911 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1912 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1913 align, &head_qiov, 0);
1914 if (ret < 0) {
1915 goto fail;
1916 }
1917 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1918
1919 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1920 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1921 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1922 use_local_qiov = true;
1923
1924 bytes += offset & (align - 1);
1925 offset = offset & ~(align - 1);
1926
1927 /* We have read the tail already if the request is smaller
1928 * than one aligned block.
1929 */
1930 if (bytes < align) {
1931 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1932 bytes = align;
1933 }
1934 }
1935
1936 if ((offset + bytes) & (align - 1)) {
1937 QEMUIOVector tail_qiov;
1938 size_t tail_bytes;
1939 bool waited;
1940
1941 mark_request_serialising(&req, align);
1942 waited = wait_serialising_requests(&req);
1943 assert(!waited || !use_local_qiov);
1944
1945 tail_buf = qemu_blockalign(bs, align);
1946 qemu_iovec_init_buf(&tail_qiov, tail_buf, align);
1947
1948 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1949 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1950 align, align, &tail_qiov, 0);
1951 if (ret < 0) {
1952 goto fail;
1953 }
1954 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1955
1956 if (!use_local_qiov) {
1957 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1958 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1959 use_local_qiov = true;
1960 }
1961
1962 tail_bytes = (offset + bytes) & (align - 1);
1963 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1964
1965 bytes = ROUND_UP(bytes, align);
1966 }
1967
1968 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1969 use_local_qiov ? &local_qiov : qiov,
1970 flags);
1971
1972 fail:
1973
1974 if (use_local_qiov) {
1975 qemu_iovec_destroy(&local_qiov);
1976 }
1977 qemu_vfree(head_buf);
1978 qemu_vfree(tail_buf);
1979 out:
1980 tracked_request_end(&req);
1981 bdrv_dec_in_flight(bs);
1982 return ret;
1983 }
1984
1985 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1986 int bytes, BdrvRequestFlags flags)
1987 {
1988 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
1989
1990 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1991 flags &= ~BDRV_REQ_MAY_UNMAP;
1992 }
1993
1994 return bdrv_co_pwritev(child, offset, bytes, NULL,
1995 BDRV_REQ_ZERO_WRITE | flags);
1996 }
1997
1998 /*
1999 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2000 */
2001 int bdrv_flush_all(void)
2002 {
2003 BdrvNextIterator it;
2004 BlockDriverState *bs = NULL;
2005 int result = 0;
2006
2007 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2008 AioContext *aio_context = bdrv_get_aio_context(bs);
2009 int ret;
2010
2011 aio_context_acquire(aio_context);
2012 ret = bdrv_flush(bs);
2013 if (ret < 0 && !result) {
2014 result = ret;
2015 }
2016 aio_context_release(aio_context);
2017 }
2018
2019 return result;
2020 }
2021
2022
2023 typedef struct BdrvCoBlockStatusData {
2024 BlockDriverState *bs;
2025 BlockDriverState *base;
2026 bool want_zero;
2027 int64_t offset;
2028 int64_t bytes;
2029 int64_t *pnum;
2030 int64_t *map;
2031 BlockDriverState **file;
2032 int ret;
2033 bool done;
2034 } BdrvCoBlockStatusData;
2035
2036 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs,
2037 bool want_zero,
2038 int64_t offset,
2039 int64_t bytes,
2040 int64_t *pnum,
2041 int64_t *map,
2042 BlockDriverState **file)
2043 {
2044 assert(bs->file && bs->file->bs);
2045 *pnum = bytes;
2046 *map = offset;
2047 *file = bs->file->bs;
2048 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2049 }
2050
2051 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs,
2052 bool want_zero,
2053 int64_t offset,
2054 int64_t bytes,
2055 int64_t *pnum,
2056 int64_t *map,
2057 BlockDriverState **file)
2058 {
2059 assert(bs->backing && bs->backing->bs);
2060 *pnum = bytes;
2061 *map = offset;
2062 *file = bs->backing->bs;
2063 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2064 }
2065
2066 /*
2067 * Returns the allocation status of the specified sectors.
2068 * Drivers not implementing the functionality are assumed to not support
2069 * backing files, hence all their sectors are reported as allocated.
2070 *
2071 * If 'want_zero' is true, the caller is querying for mapping
2072 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2073 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2074 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2075 *
2076 * If 'offset' is beyond the end of the disk image the return value is
2077 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2078 *
2079 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2080 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2081 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2082 *
2083 * 'pnum' is set to the number of bytes (including and immediately
2084 * following the specified offset) that are easily known to be in the
2085 * same allocated/unallocated state. Note that a second call starting
2086 * at the original offset plus returned pnum may have the same status.
2087 * The returned value is non-zero on success except at end-of-file.
2088 *
2089 * Returns negative errno on failure. Otherwise, if the
2090 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2091 * set to the host mapping and BDS corresponding to the guest offset.
2092 */
2093 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2094 bool want_zero,
2095 int64_t offset, int64_t bytes,
2096 int64_t *pnum, int64_t *map,
2097 BlockDriverState **file)
2098 {
2099 int64_t total_size;
2100 int64_t n; /* bytes */
2101 int ret;
2102 int64_t local_map = 0;
2103 BlockDriverState *local_file = NULL;
2104 int64_t aligned_offset, aligned_bytes;
2105 uint32_t align;
2106
2107 assert(pnum);
2108 *pnum = 0;
2109 total_size = bdrv_getlength(bs);
2110 if (total_size < 0) {
2111 ret = total_size;
2112 goto early_out;
2113 }
2114
2115 if (offset >= total_size) {
2116 ret = BDRV_BLOCK_EOF;
2117 goto early_out;
2118 }
2119 if (!bytes) {
2120 ret = 0;
2121 goto early_out;
2122 }
2123
2124 n = total_size - offset;
2125 if (n < bytes) {
2126 bytes = n;
2127 }
2128
2129 /* Must be non-NULL or bdrv_getlength() would have failed */
2130 assert(bs->drv);
2131 if (!bs->drv->bdrv_co_block_status) {
2132 *pnum = bytes;
2133 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2134 if (offset + bytes == total_size) {
2135 ret |= BDRV_BLOCK_EOF;
2136 }
2137 if (bs->drv->protocol_name) {
2138 ret |= BDRV_BLOCK_OFFSET_VALID;
2139 local_map = offset;
2140 local_file = bs;
2141 }
2142 goto early_out;
2143 }
2144
2145 bdrv_inc_in_flight(bs);
2146
2147 /* Round out to request_alignment boundaries */
2148 align = bs->bl.request_alignment;
2149 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2150 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2151
2152 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2153 aligned_bytes, pnum, &local_map,
2154 &local_file);
2155 if (ret < 0) {
2156 *pnum = 0;
2157 goto out;
2158 }
2159
2160 /*
2161 * The driver's result must be a non-zero multiple of request_alignment.
2162 * Clamp pnum and adjust map to original request.
2163 */
2164 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2165 align > offset - aligned_offset);
2166 if (ret & BDRV_BLOCK_RECURSE) {
2167 assert(ret & BDRV_BLOCK_DATA);
2168 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2169 assert(!(ret & BDRV_BLOCK_ZERO));
2170 }
2171
2172 *pnum -= offset - aligned_offset;
2173 if (*pnum > bytes) {
2174 *pnum = bytes;
2175 }
2176 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2177 local_map += offset - aligned_offset;
2178 }
2179
2180 if (ret & BDRV_BLOCK_RAW) {
2181 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2182 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2183 *pnum, pnum, &local_map, &local_file);
2184 goto out;
2185 }
2186
2187 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2188 ret |= BDRV_BLOCK_ALLOCATED;
2189 } else if (want_zero) {
2190 if (bdrv_unallocated_blocks_are_zero(bs)) {
2191 ret |= BDRV_BLOCK_ZERO;
2192 } else if (bs->backing) {
2193 BlockDriverState *bs2 = bs->backing->bs;
2194 int64_t size2 = bdrv_getlength(bs2);
2195
2196 if (size2 >= 0 && offset >= size2) {
2197 ret |= BDRV_BLOCK_ZERO;
2198 }
2199 }
2200 }
2201
2202 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2203 local_file && local_file != bs &&
2204 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2205 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2206 int64_t file_pnum;
2207 int ret2;
2208
2209 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2210 *pnum, &file_pnum, NULL, NULL);
2211 if (ret2 >= 0) {
2212 /* Ignore errors. This is just providing extra information, it
2213 * is useful but not necessary.
2214 */
2215 if (ret2 & BDRV_BLOCK_EOF &&
2216 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2217 /*
2218 * It is valid for the format block driver to read
2219 * beyond the end of the underlying file's current
2220 * size; such areas read as zero.
2221 */
2222 ret |= BDRV_BLOCK_ZERO;
2223 } else {
2224 /* Limit request to the range reported by the protocol driver */
2225 *pnum = file_pnum;
2226 ret |= (ret2 & BDRV_BLOCK_ZERO);
2227 }
2228 }
2229 }
2230
2231 out:
2232 bdrv_dec_in_flight(bs);
2233 if (ret >= 0 && offset + *pnum == total_size) {
2234 ret |= BDRV_BLOCK_EOF;
2235 }
2236 early_out:
2237 if (file) {
2238 *file = local_file;
2239 }
2240 if (map) {
2241 *map = local_map;
2242 }
2243 return ret;
2244 }
2245
2246 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2247 BlockDriverState *base,
2248 bool want_zero,
2249 int64_t offset,
2250 int64_t bytes,
2251 int64_t *pnum,
2252 int64_t *map,
2253 BlockDriverState **file)
2254 {
2255 BlockDriverState *p;
2256 int ret = 0;
2257 bool first = true;
2258
2259 assert(bs != base);
2260 for (p = bs; p != base; p = backing_bs(p)) {
2261 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2262 file);
2263 if (ret < 0) {
2264 break;
2265 }
2266 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
2267 /*
2268 * Reading beyond the end of the file continues to read
2269 * zeroes, but we can only widen the result to the
2270 * unallocated length we learned from an earlier
2271 * iteration.
2272 */
2273 *pnum = bytes;
2274 }
2275 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
2276 break;
2277 }
2278 /* [offset, pnum] unallocated on this layer, which could be only
2279 * the first part of [offset, bytes]. */
2280 bytes = MIN(bytes, *pnum);
2281 first = false;
2282 }
2283 return ret;
2284 }
2285
2286 /* Coroutine wrapper for bdrv_block_status_above() */
2287 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque)
2288 {
2289 BdrvCoBlockStatusData *data = opaque;
2290
2291 data->ret = bdrv_co_block_status_above(data->bs, data->base,
2292 data->want_zero,
2293 data->offset, data->bytes,
2294 data->pnum, data->map, data->file);
2295 data->done = true;
2296 aio_wait_kick();
2297 }
2298
2299 /*
2300 * Synchronous wrapper around bdrv_co_block_status_above().
2301 *
2302 * See bdrv_co_block_status_above() for details.
2303 */
2304 static int bdrv_common_block_status_above(BlockDriverState *bs,
2305 BlockDriverState *base,
2306 bool want_zero, int64_t offset,
2307 int64_t bytes, int64_t *pnum,
2308 int64_t *map,
2309 BlockDriverState **file)
2310 {
2311 Coroutine *co;
2312 BdrvCoBlockStatusData data = {
2313 .bs = bs,
2314 .base = base,
2315 .want_zero = want_zero,
2316 .offset = offset,
2317 .bytes = bytes,
2318 .pnum = pnum,
2319 .map = map,
2320 .file = file,
2321 .done = false,
2322 };
2323
2324 if (qemu_in_coroutine()) {
2325 /* Fast-path if already in coroutine context */
2326 bdrv_block_status_above_co_entry(&data);
2327 } else {
2328 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data);
2329 bdrv_coroutine_enter(bs, co);
2330 BDRV_POLL_WHILE(bs, !data.done);
2331 }
2332 return data.ret;
2333 }
2334
2335 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2336 int64_t offset, int64_t bytes, int64_t *pnum,
2337 int64_t *map, BlockDriverState **file)
2338 {
2339 return bdrv_common_block_status_above(bs, base, true, offset, bytes,
2340 pnum, map, file);
2341 }
2342
2343 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2344 int64_t *pnum, int64_t *map, BlockDriverState **file)
2345 {
2346 return bdrv_block_status_above(bs, backing_bs(bs),
2347 offset, bytes, pnum, map, file);
2348 }
2349
2350 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2351 int64_t bytes, int64_t *pnum)
2352 {
2353 int ret;
2354 int64_t dummy;
2355
2356 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset,
2357 bytes, pnum ? pnum : &dummy, NULL,
2358 NULL);
2359 if (ret < 0) {
2360 return ret;
2361 }
2362 return !!(ret & BDRV_BLOCK_ALLOCATED);
2363 }
2364
2365 /*
2366 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2367 *
2368 * Return 1 if (a prefix of) the given range is allocated in any image
2369 * between BASE and TOP (BASE is only included if include_base is set).
2370 * BASE can be NULL to check if the given offset is allocated in any
2371 * image of the chain. Return 0 otherwise, or negative errno on
2372 * failure.
2373 *
2374 * 'pnum' is set to the number of bytes (including and immediately
2375 * following the specified offset) that are known to be in the same
2376 * allocated/unallocated state. Note that a subsequent call starting
2377 * at 'offset + *pnum' may return the same allocation status (in other
2378 * words, the result is not necessarily the maximum possible range);
2379 * but 'pnum' will only be 0 when end of file is reached.
2380 *
2381 */
2382 int bdrv_is_allocated_above(BlockDriverState *top,
2383 BlockDriverState *base,
2384 bool include_base, int64_t offset,
2385 int64_t bytes, int64_t *pnum)
2386 {
2387 BlockDriverState *intermediate;
2388 int ret;
2389 int64_t n = bytes;
2390
2391 assert(base || !include_base);
2392
2393 intermediate = top;
2394 while (include_base || intermediate != base) {
2395 int64_t pnum_inter;
2396 int64_t size_inter;
2397
2398 assert(intermediate);
2399 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2400 if (ret < 0) {
2401 return ret;
2402 }
2403 if (ret) {
2404 *pnum = pnum_inter;
2405 return 1;
2406 }
2407
2408 size_inter = bdrv_getlength(intermediate);
2409 if (size_inter < 0) {
2410 return size_inter;
2411 }
2412 if (n > pnum_inter &&
2413 (intermediate == top || offset + pnum_inter < size_inter)) {
2414 n = pnum_inter;
2415 }
2416
2417 if (intermediate == base) {
2418 break;
2419 }
2420
2421 intermediate = backing_bs(intermediate);
2422 }
2423
2424 *pnum = n;
2425 return 0;
2426 }
2427
2428 typedef struct BdrvVmstateCo {
2429 BlockDriverState *bs;
2430 QEMUIOVector *qiov;
2431 int64_t pos;
2432 bool is_read;
2433 int ret;
2434 } BdrvVmstateCo;
2435
2436 static int coroutine_fn
2437 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2438 bool is_read)
2439 {
2440 BlockDriver *drv = bs->drv;
2441 int ret = -ENOTSUP;
2442
2443 bdrv_inc_in_flight(bs);
2444
2445 if (!drv) {
2446 ret = -ENOMEDIUM;
2447 } else if (drv->bdrv_load_vmstate) {
2448 if (is_read) {
2449 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2450 } else {
2451 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2452 }
2453 } else if (bs->file) {
2454 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2455 }
2456
2457 bdrv_dec_in_flight(bs);
2458 return ret;
2459 }
2460
2461 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2462 {
2463 BdrvVmstateCo *co = opaque;
2464 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2465 aio_wait_kick();
2466 }
2467
2468 static inline int
2469 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2470 bool is_read)
2471 {
2472 if (qemu_in_coroutine()) {
2473 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2474 } else {
2475 BdrvVmstateCo data = {
2476 .bs = bs,
2477 .qiov = qiov,
2478 .pos = pos,
2479 .is_read = is_read,
2480 .ret = -EINPROGRESS,
2481 };
2482 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2483
2484 bdrv_coroutine_enter(bs, co);
2485 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2486 return data.ret;
2487 }
2488 }
2489
2490 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2491 int64_t pos, int size)
2492 {
2493 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2494 int ret;
2495
2496 ret = bdrv_writev_vmstate(bs, &qiov, pos);
2497 if (ret < 0) {
2498 return ret;
2499 }
2500
2501 return size;
2502 }
2503
2504 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2505 {
2506 return bdrv_rw_vmstate(bs, qiov, pos, false);
2507 }
2508
2509 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2510 int64_t pos, int size)
2511 {
2512 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2513 int ret;
2514
2515 ret = bdrv_readv_vmstate(bs, &qiov, pos);
2516 if (ret < 0) {
2517 return ret;
2518 }
2519
2520 return size;
2521 }
2522
2523 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2524 {
2525 return bdrv_rw_vmstate(bs, qiov, pos, true);
2526 }
2527
2528 /**************************************************************/
2529 /* async I/Os */
2530
2531 void bdrv_aio_cancel(BlockAIOCB *acb)
2532 {
2533 qemu_aio_ref(acb);
2534 bdrv_aio_cancel_async(acb);
2535 while (acb->refcnt > 1) {
2536 if (acb->aiocb_info->get_aio_context) {
2537 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2538 } else if (acb->bs) {
2539 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2540 * assert that we're not using an I/O thread. Thread-safe
2541 * code should use bdrv_aio_cancel_async exclusively.
2542 */
2543 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2544 aio_poll(bdrv_get_aio_context(acb->bs), true);
2545 } else {
2546 abort();
2547 }
2548 }
2549 qemu_aio_unref(acb);
2550 }
2551
2552 /* Async version of aio cancel. The caller is not blocked if the acb implements
2553 * cancel_async, otherwise we do nothing and let the request normally complete.
2554 * In either case the completion callback must be called. */
2555 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2556 {
2557 if (acb->aiocb_info->cancel_async) {
2558 acb->aiocb_info->cancel_async(acb);
2559 }
2560 }
2561
2562 /**************************************************************/
2563 /* Coroutine block device emulation */
2564
2565 typedef struct FlushCo {
2566 BlockDriverState *bs;
2567 int ret;
2568 } FlushCo;
2569
2570
2571 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2572 {
2573 FlushCo *rwco = opaque;
2574
2575 rwco->ret = bdrv_co_flush(rwco->bs);
2576 aio_wait_kick();
2577 }
2578
2579 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2580 {
2581 int current_gen;
2582 int ret = 0;
2583
2584 bdrv_inc_in_flight(bs);
2585
2586 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2587 bdrv_is_sg(bs)) {
2588 goto early_exit;
2589 }
2590
2591 qemu_co_mutex_lock(&bs->reqs_lock);
2592 current_gen = atomic_read(&bs->write_gen);
2593
2594 /* Wait until any previous flushes are completed */
2595 while (bs->active_flush_req) {
2596 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2597 }
2598
2599 /* Flushes reach this point in nondecreasing current_gen order. */
2600 bs->active_flush_req = true;
2601 qemu_co_mutex_unlock(&bs->reqs_lock);
2602
2603 /* Write back all layers by calling one driver function */
2604 if (bs->drv->bdrv_co_flush) {
2605 ret = bs->drv->bdrv_co_flush(bs);
2606 goto out;
2607 }
2608
2609 /* Write back cached data to the OS even with cache=unsafe */
2610 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2611 if (bs->drv->bdrv_co_flush_to_os) {
2612 ret = bs->drv->bdrv_co_flush_to_os(bs);
2613 if (ret < 0) {
2614 goto out;
2615 }
2616 }
2617
2618 /* But don't actually force it to the disk with cache=unsafe */
2619 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2620 goto flush_parent;
2621 }
2622
2623 /* Check if we really need to flush anything */
2624 if (bs->flushed_gen == current_gen) {
2625 goto flush_parent;
2626 }
2627
2628 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2629 if (!bs->drv) {
2630 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2631 * (even in case of apparent success) */
2632 ret = -ENOMEDIUM;
2633 goto out;
2634 }
2635 if (bs->drv->bdrv_co_flush_to_disk) {
2636 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2637 } else if (bs->drv->bdrv_aio_flush) {
2638 BlockAIOCB *acb;
2639 CoroutineIOCompletion co = {
2640 .coroutine = qemu_coroutine_self(),
2641 };
2642
2643 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2644 if (acb == NULL) {
2645 ret = -EIO;
2646 } else {
2647 qemu_coroutine_yield();
2648 ret = co.ret;
2649 }
2650 } else {
2651 /*
2652 * Some block drivers always operate in either writethrough or unsafe
2653 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2654 * know how the server works (because the behaviour is hardcoded or
2655 * depends on server-side configuration), so we can't ensure that
2656 * everything is safe on disk. Returning an error doesn't work because
2657 * that would break guests even if the server operates in writethrough
2658 * mode.
2659 *
2660 * Let's hope the user knows what he's doing.
2661 */
2662 ret = 0;
2663 }
2664
2665 if (ret < 0) {
2666 goto out;
2667 }
2668
2669 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2670 * in the case of cache=unsafe, so there are no useless flushes.
2671 */
2672 flush_parent:
2673 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2674 out:
2675 /* Notify any pending flushes that we have completed */
2676 if (ret == 0) {
2677 bs->flushed_gen = current_gen;
2678 }
2679
2680 qemu_co_mutex_lock(&bs->reqs_lock);
2681 bs->active_flush_req = false;
2682 /* Return value is ignored - it's ok if wait queue is empty */
2683 qemu_co_queue_next(&bs->flush_queue);
2684 qemu_co_mutex_unlock(&bs->reqs_lock);
2685
2686 early_exit:
2687 bdrv_dec_in_flight(bs);
2688 return ret;
2689 }
2690
2691 int bdrv_flush(BlockDriverState *bs)
2692 {
2693 Coroutine *co;
2694 FlushCo flush_co = {
2695 .bs = bs,
2696 .ret = NOT_DONE,
2697 };
2698
2699 if (qemu_in_coroutine()) {
2700 /* Fast-path if already in coroutine context */
2701 bdrv_flush_co_entry(&flush_co);
2702 } else {
2703 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2704 bdrv_coroutine_enter(bs, co);
2705 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2706 }
2707
2708 return flush_co.ret;
2709 }
2710
2711 typedef struct DiscardCo {
2712 BdrvChild *child;
2713 int64_t offset;
2714 int64_t bytes;
2715 int ret;
2716 } DiscardCo;
2717 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2718 {
2719 DiscardCo *rwco = opaque;
2720
2721 rwco->ret = bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes);
2722 aio_wait_kick();
2723 }
2724
2725 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2726 int64_t bytes)
2727 {
2728 BdrvTrackedRequest req;
2729 int max_pdiscard, ret;
2730 int head, tail, align;
2731 BlockDriverState *bs = child->bs;
2732
2733 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
2734 return -ENOMEDIUM;
2735 }
2736
2737 if (bdrv_has_readonly_bitmaps(bs)) {
2738 return -EPERM;
2739 }
2740
2741 if (offset < 0 || bytes < 0 || bytes > INT64_MAX - offset) {
2742 return -EIO;
2743 }
2744
2745 /* Do nothing if disabled. */
2746 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2747 return 0;
2748 }
2749
2750 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2751 return 0;
2752 }
2753
2754 /* Discard is advisory, but some devices track and coalesce
2755 * unaligned requests, so we must pass everything down rather than
2756 * round here. Still, most devices will just silently ignore
2757 * unaligned requests (by returning -ENOTSUP), so we must fragment
2758 * the request accordingly. */
2759 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2760 assert(align % bs->bl.request_alignment == 0);
2761 head = offset % align;
2762 tail = (offset + bytes) % align;
2763
2764 bdrv_inc_in_flight(bs);
2765 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2766
2767 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
2768 if (ret < 0) {
2769 goto out;
2770 }
2771
2772 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2773 align);
2774 assert(max_pdiscard >= bs->bl.request_alignment);
2775
2776 while (bytes > 0) {
2777 int64_t num = bytes;
2778
2779 if (head) {
2780 /* Make small requests to get to alignment boundaries. */
2781 num = MIN(bytes, align - head);
2782 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2783 num %= bs->bl.request_alignment;
2784 }
2785 head = (head + num) % align;
2786 assert(num < max_pdiscard);
2787 } else if (tail) {
2788 if (num > align) {
2789 /* Shorten the request to the last aligned cluster. */
2790 num -= tail;
2791 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2792 tail > bs->bl.request_alignment) {
2793 tail %= bs->bl.request_alignment;
2794 num -= tail;
2795 }
2796 }
2797 /* limit request size */
2798 if (num > max_pdiscard) {
2799 num = max_pdiscard;
2800 }
2801
2802 if (!bs->drv) {
2803 ret = -ENOMEDIUM;
2804 goto out;
2805 }
2806 if (bs->drv->bdrv_co_pdiscard) {
2807 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2808 } else {
2809 BlockAIOCB *acb;
2810 CoroutineIOCompletion co = {
2811 .coroutine = qemu_coroutine_self(),
2812 };
2813
2814 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2815 bdrv_co_io_em_complete, &co);
2816 if (acb == NULL) {
2817 ret = -EIO;
2818 goto out;
2819 } else {
2820 qemu_coroutine_yield();
2821 ret = co.ret;
2822 }
2823 }
2824 if (ret && ret != -ENOTSUP) {
2825 goto out;
2826 }
2827
2828 offset += num;
2829 bytes -= num;
2830 }
2831 ret = 0;
2832 out:
2833 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
2834 tracked_request_end(&req);
2835 bdrv_dec_in_flight(bs);
2836 return ret;
2837 }
2838
2839 int bdrv_pdiscard(BdrvChild *child, int64_t offset, int64_t bytes)
2840 {
2841 Coroutine *co;
2842 DiscardCo rwco = {
2843 .child = child,
2844 .offset = offset,
2845 .bytes = bytes,
2846 .ret = NOT_DONE,
2847 };
2848
2849 if (qemu_in_coroutine()) {
2850 /* Fast-path if already in coroutine context */
2851 bdrv_pdiscard_co_entry(&rwco);
2852 } else {
2853 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2854 bdrv_coroutine_enter(child->bs, co);
2855 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
2856 }
2857
2858 return rwco.ret;
2859 }
2860
2861 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2862 {
2863 BlockDriver *drv = bs->drv;
2864 CoroutineIOCompletion co = {
2865 .coroutine = qemu_coroutine_self(),
2866 };
2867 BlockAIOCB *acb;
2868
2869 bdrv_inc_in_flight(bs);
2870 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2871 co.ret = -ENOTSUP;
2872 goto out;
2873 }
2874
2875 if (drv->bdrv_co_ioctl) {
2876 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2877 } else {
2878 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2879 if (!acb) {
2880 co.ret = -ENOTSUP;
2881 goto out;
2882 }
2883 qemu_coroutine_yield();
2884 }
2885 out:
2886 bdrv_dec_in_flight(bs);
2887 return co.ret;
2888 }
2889
2890 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2891 {
2892 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2893 }
2894
2895 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2896 {
2897 return memset(qemu_blockalign(bs, size), 0, size);
2898 }
2899
2900 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2901 {
2902 size_t align = bdrv_opt_mem_align(bs);
2903
2904 /* Ensure that NULL is never returned on success */
2905 assert(align > 0);
2906 if (size == 0) {
2907 size = align;
2908 }
2909
2910 return qemu_try_memalign(align, size);
2911 }
2912
2913 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2914 {
2915 void *mem = qemu_try_blockalign(bs, size);
2916
2917 if (mem) {
2918 memset(mem, 0, size);
2919 }
2920
2921 return mem;
2922 }
2923
2924 /*
2925 * Check if all memory in this vector is sector aligned.
2926 */
2927 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2928 {
2929 int i;
2930 size_t alignment = bdrv_min_mem_align(bs);
2931
2932 for (i = 0; i < qiov->niov; i++) {
2933 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2934 return false;
2935 }
2936 if (qiov->iov[i].iov_len % alignment) {
2937 return false;
2938 }
2939 }
2940
2941 return true;
2942 }
2943
2944 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2945 NotifierWithReturn *notifier)
2946 {
2947 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2948 }
2949
2950 void bdrv_io_plug(BlockDriverState *bs)
2951 {
2952 BdrvChild *child;
2953
2954 QLIST_FOREACH(child, &bs->children, next) {
2955 bdrv_io_plug(child->bs);
2956 }
2957
2958 if (atomic_fetch_inc(&bs->io_plugged) == 0) {
2959 BlockDriver *drv = bs->drv;
2960 if (drv && drv->bdrv_io_plug) {
2961 drv->bdrv_io_plug(bs);
2962 }
2963 }
2964 }
2965
2966 void bdrv_io_unplug(BlockDriverState *bs)
2967 {
2968 BdrvChild *child;
2969
2970 assert(bs->io_plugged);
2971 if (atomic_fetch_dec(&bs->io_plugged) == 1) {
2972 BlockDriver *drv = bs->drv;
2973 if (drv && drv->bdrv_io_unplug) {
2974 drv->bdrv_io_unplug(bs);
2975 }
2976 }
2977
2978 QLIST_FOREACH(child, &bs->children, next) {
2979 bdrv_io_unplug(child->bs);
2980 }
2981 }
2982
2983 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
2984 {
2985 BdrvChild *child;
2986
2987 if (bs->drv && bs->drv->bdrv_register_buf) {
2988 bs->drv->bdrv_register_buf(bs, host, size);
2989 }
2990 QLIST_FOREACH(child, &bs->children, next) {
2991 bdrv_register_buf(child->bs, host, size);
2992 }
2993 }
2994
2995 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
2996 {
2997 BdrvChild *child;
2998
2999 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3000 bs->drv->bdrv_unregister_buf(bs, host);
3001 }
3002 QLIST_FOREACH(child, &bs->children, next) {
3003 bdrv_unregister_buf(child->bs, host);
3004 }
3005 }
3006
3007 static int coroutine_fn bdrv_co_copy_range_internal(
3008 BdrvChild *src, uint64_t src_offset, BdrvChild *dst,
3009 uint64_t dst_offset, uint64_t bytes,
3010 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3011 bool recurse_src)
3012 {
3013 BdrvTrackedRequest req;
3014 int ret;
3015
3016 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3017 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3018 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3019
3020 if (!dst || !dst->bs) {
3021 return -ENOMEDIUM;
3022 }
3023 ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes);
3024 if (ret) {
3025 return ret;
3026 }
3027 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3028 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3029 }
3030
3031 if (!src || !src->bs) {
3032 return -ENOMEDIUM;
3033 }
3034 ret = bdrv_check_byte_request(src->bs, src_offset, bytes);
3035 if (ret) {
3036 return ret;
3037 }
3038
3039 if (!src->bs->drv->bdrv_co_copy_range_from
3040 || !dst->bs->drv->bdrv_co_copy_range_to
3041 || src->bs->encrypted || dst->bs->encrypted) {
3042 return -ENOTSUP;
3043 }
3044
3045 if (recurse_src) {
3046 bdrv_inc_in_flight(src->bs);
3047 tracked_request_begin(&req, src->bs, src_offset, bytes,
3048 BDRV_TRACKED_READ);
3049
3050 /* BDRV_REQ_SERIALISING is only for write operation */
3051 assert(!(read_flags & BDRV_REQ_SERIALISING));
3052 if (!(read_flags & BDRV_REQ_NO_SERIALISING)) {
3053 wait_serialising_requests(&req);
3054 }
3055
3056 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3057 src, src_offset,
3058 dst, dst_offset,
3059 bytes,
3060 read_flags, write_flags);
3061
3062 tracked_request_end(&req);
3063 bdrv_dec_in_flight(src->bs);
3064 } else {
3065 bdrv_inc_in_flight(dst->bs);
3066 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3067 BDRV_TRACKED_WRITE);
3068 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3069 write_flags);
3070 if (!ret) {
3071 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3072 src, src_offset,
3073 dst, dst_offset,
3074 bytes,
3075 read_flags, write_flags);
3076 }
3077 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3078 tracked_request_end(&req);
3079 bdrv_dec_in_flight(dst->bs);
3080 }
3081
3082 return ret;
3083 }
3084
3085 /* Copy range from @src to @dst.
3086 *
3087 * See the comment of bdrv_co_copy_range for the parameter and return value
3088 * semantics. */
3089 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset,
3090 BdrvChild *dst, uint64_t dst_offset,
3091 uint64_t bytes,
3092 BdrvRequestFlags read_flags,
3093 BdrvRequestFlags write_flags)
3094 {
3095 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3096 read_flags, write_flags);
3097 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3098 bytes, read_flags, write_flags, true);
3099 }
3100
3101 /* Copy range from @src to @dst.
3102 *
3103 * See the comment of bdrv_co_copy_range for the parameter and return value
3104 * semantics. */
3105 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset,
3106 BdrvChild *dst, uint64_t dst_offset,
3107 uint64_t bytes,
3108 BdrvRequestFlags read_flags,
3109 BdrvRequestFlags write_flags)
3110 {
3111 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3112 read_flags, write_flags);
3113 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3114 bytes, read_flags, write_flags, false);
3115 }
3116
3117 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset,
3118 BdrvChild *dst, uint64_t dst_offset,
3119 uint64_t bytes, BdrvRequestFlags read_flags,
3120 BdrvRequestFlags write_flags)
3121 {
3122 return bdrv_co_copy_range_from(src, src_offset,
3123 dst, dst_offset,
3124 bytes, read_flags, write_flags);
3125 }
3126
3127 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3128 {
3129 BdrvChild *c;
3130 QLIST_FOREACH(c, &bs->parents, next_parent) {
3131 if (c->role->resize) {
3132 c->role->resize(c);
3133 }
3134 }
3135 }
3136
3137 /**
3138 * Truncate file to 'offset' bytes (needed only for file protocols)
3139 */
3140 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset,
3141 PreallocMode prealloc, Error **errp)
3142 {
3143 BlockDriverState *bs = child->bs;
3144 BlockDriver *drv = bs->drv;
3145 BdrvTrackedRequest req;
3146 int64_t old_size, new_bytes;
3147 int ret;
3148
3149
3150 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3151 if (!drv) {
3152 error_setg(errp, "No medium inserted");
3153 return -ENOMEDIUM;
3154 }
3155 if (offset < 0) {
3156 error_setg(errp, "Image size cannot be negative");
3157 return -EINVAL;
3158 }
3159
3160 old_size = bdrv_getlength(bs);
3161 if (old_size < 0) {
3162 error_setg_errno(errp, -old_size, "Failed to get old image size");
3163 return old_size;
3164 }
3165
3166 if (offset > old_size) {
3167 new_bytes = offset - old_size;
3168 } else {
3169 new_bytes = 0;
3170 }
3171
3172 bdrv_inc_in_flight(bs);
3173 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3174 BDRV_TRACKED_TRUNCATE);
3175
3176 /* If we are growing the image and potentially using preallocation for the
3177 * new area, we need to make sure that no write requests are made to it
3178 * concurrently or they might be overwritten by preallocation. */
3179 if (new_bytes) {
3180 mark_request_serialising(&req, 1);
3181 }
3182 if (bs->read_only) {
3183 error_setg(errp, "Image is read-only");
3184 ret = -EACCES;
3185 goto out;
3186 }
3187 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3188 0);
3189 if (ret < 0) {
3190 error_setg_errno(errp, -ret,
3191 "Failed to prepare request for truncation");
3192 goto out;
3193 }
3194
3195 if (!drv->bdrv_co_truncate) {
3196 if (bs->file && drv->is_filter) {
3197 ret = bdrv_co_truncate(bs->file, offset, prealloc, errp);
3198 goto out;
3199 }
3200 error_setg(errp, "Image format driver does not support resize");
3201 ret = -ENOTSUP;
3202 goto out;
3203 }
3204
3205 ret = drv->bdrv_co_truncate(bs, offset, prealloc, errp);
3206 if (ret < 0) {
3207 goto out;
3208 }
3209 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3210 if (ret < 0) {
3211 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3212 } else {
3213 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3214 }
3215 /* It's possible that truncation succeeded but refresh_total_sectors
3216 * failed, but the latter doesn't affect how we should finish the request.
3217 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3218 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3219
3220 out:
3221 tracked_request_end(&req);
3222 bdrv_dec_in_flight(bs);
3223
3224 return ret;
3225 }
3226
3227 typedef struct TruncateCo {
3228 BdrvChild *child;
3229 int64_t offset;
3230 PreallocMode prealloc;
3231 Error **errp;
3232 int ret;
3233 } TruncateCo;
3234
3235 static void coroutine_fn bdrv_truncate_co_entry(void *opaque)
3236 {
3237 TruncateCo *tco = opaque;
3238 tco->ret = bdrv_co_truncate(tco->child, tco->offset, tco->prealloc,
3239 tco->errp);
3240 aio_wait_kick();
3241 }
3242
3243 int bdrv_truncate(BdrvChild *child, int64_t offset, PreallocMode prealloc,
3244 Error **errp)
3245 {
3246 Coroutine *co;
3247 TruncateCo tco = {
3248 .child = child,
3249 .offset = offset,
3250 .prealloc = prealloc,
3251 .errp = errp,
3252 .ret = NOT_DONE,
3253 };
3254
3255 if (qemu_in_coroutine()) {
3256 /* Fast-path if already in coroutine context */
3257 bdrv_truncate_co_entry(&tco);
3258 } else {
3259 co = qemu_coroutine_create(bdrv_truncate_co_entry, &tco);
3260 bdrv_coroutine_enter(child->bs, co);
3261 BDRV_POLL_WHILE(child->bs, tco.ret == NOT_DONE);
3262 }
3263
3264 return tco.ret;
3265 }